

SECOND EDITION

Lua
Quick Reference

Mitchell

Lua Quick Reference
by Mitchell

Copyright © 2017, 2020 Mitchell. All rights reserved.

Although great care has been taken in preparing this book, the
author assumes no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.
All product names mentioned in this book are trademarks of their
respective owners.

Editor: Ana Balan
Technical Reviewer: Robert Gieseke
Cover Designer: Mitchell
Interior Designer: Mitchell
Indexer: Mitchell

Printing history:
July 2017: First Edition
May 2020: Second Edition

ISBN: 978-0-9912379-5-1

Preface to the Second Edition
This book is an updated version of Lua Quick Reference and
covers many of the features, changes, and incompatibilities
introduced in Lua 5.4. Among the new content contained in
this edition:

• Local variable attributes, including const and to-be-closed
variables.

• Defining to-be-closed variable behavior.

• Lua’s new warning system.

• The improved random number generator.

• Changes to Lua’s string and thread facilities.

• Compiling Lua programs.

• More details about user values in the Lua C API.

• Various Lua C API additions and changes, including
incompatible changes to the threading API.

The book’s code examples have also been updated to use
Lua 5.4 where applicable.

Contents

Introduction 1
Download 2
Code Editors 2
Conventions 3
Terminology 3

Environment Variables 4

Command Line Options 5

Part I: The Lua Language

Fundamentals 9
Comments 9
Identifiers and Reserved Words 9
Variables and Scopes 10

Types 12
Nil 12
Booleans 12
Numbers 12
Strings 13
Functions 14
Tables 15
Threads 15
Userdata 16
Perform Basic Value Operations 16

Expressions and Operators 17
Arithmetic Operators 17
Relational Operators 18
Logical Operators 19

Contents | v

Bitwise Operators 20
Other Operators 21

Statements 23
Variable Assignment 23
Control Structures 24
Labels and Goto 27

Functions 27
Functions with Variable Arguments 30

Metatables and Metamethods 32
Assign and Retrieve Metatables 32
Arithmetic Metamethods 33
Relational Metamethods 33
Bitwise Metamethods 34
Closing Metamethod 35
Other Operator and Statement Metamethods 35
Function Metamethods 37
Bypass Metamethods 38

Object-Oriented Programming 38
Define a Class 38
Utilize a Class 41

Modules 42
Create a Lua Module 45

Environments 46

Error Handling and Warnings 48

Load and Run Dynamic Code 49

Numeric Facilities 51
Trigonometric Functions 52

vi | Contents

Exponential and Logarithmic Functions 52
Generate Random Numbers 53
Work with Integers 53

String Facilities 54
Create a Compound String 54
Query and Transform Strings 59
Search and Replace Within a String 60
Work with UTF-8 Strings 63

Table and List Facilities 64
Iterate Over a Table 64
Manipulate Lists 66
Unpack Lists 66
Create Strings from Lists 67

Thread Facilities 67
Create a Thread 70
Start, Resume, and Yield a Thread 70
Query Thread Status 71
Close a Thread 71

Input and Output Facilities 72
Simple Input and Output 73
Object-Oriented Input and Output 75
Manage Files 77
Start and Interact with a Process 78

Operating System Facilities 78
Dates and Times 79
Locale Settings 81

Memory Management 82

Miscellaneous 82

Contents | vii

Part II: The Lua C API

C API Introduction 87
Compiling Lua Programs 89

The Stack 90
Increase Stack Size 91
Work with Stack Indices 91
Push Values 92
Pop Values 101
Query Values 101
Retrieve Values 102

Basic Stack Operations 105
Element Operations 105
Global Variable Operations 106
Arithmetic Operations 106
Relational Operations 107
Bitwise Operations 107
String Operations 108
Table Operations 109
Length Operations 112
Reference Operations 113

C Functions 114
Define a C Function 114
Register a C Function 120
Call a C Function 121

Metatables 122
Create or Fetch a Metatable 123
Assign a Metatable 123
Retrieve a Metatable 124
Metamethods and Metafields 124

viii | Contents

C Modules 124

Error and Warning Handling 129
Retrieve Error Information 130

Load and Run Dynamic Code 130

Threading in C 133
Create a Thread 136
Start or Resume a Thread 136
Yield a Thread 137
Transfer Values Between Threads 139
Query a Thread’s Status 139
Close a Thread 139
Call a Function that Yields 139

Memory Management 142

Miscellaneous 143

Lua API Index 145

Concept Index 151

Contents | ix

To Brandon Washington
The unbeatable boss

Introduction
Lua1 is a small, fast, powerful, and embeddable scripting
language. It is well-suited for use in video games, application
scripting, embedded devices, and nearly anywhere else a
scripting language is needed.

Weighing in at just 400KB in compiled size and comprising
less than 15,000 lines of highly portable ISO (ANSI) C source
code, Lua is a very small language that compiles unmodified
on nearly any platform with a C compiler. Many independent
benchmarks recognize Lua as one of the fastest scripting
languages available. Not only is Lua small and fast, but it is
also powerful. With dynamic typing, lexical scoping, first-class
functions, collaborative multi-threading, automatic memory
management, and an incredibly flexible data structure, Lua is
a truly effective object-oriented language, functional language,
and data-driven language.

In addition to its assets of size, speed, and power, Lua’s
primary strength is that it is an embedded language. Lua is
implemented as a C library, so a host program can use Lua’s
C Application Programming Interface (C API) to initialize and
interact with a Lua interpreter, define global variables, register
C functions that Lua can call, call user-defined Lua functions,
and execute arbitrary Lua code. (In fact, Lua’s stand-alone
interpreter is just a C application that makes use of the Lua
library and its C API.) This tight coupling between Lua and its
host allows each language to leverage its own strengths: C’s
raw speed and ability to interact with third-party software,
and Lua’s flexibility, rapid prototyping, and ease of use.

Lua Quick Reference is designed to help the software
developer “get things done” when it comes to programming
in and embedding Lua, whether it is Lua 5.4, 5.3, 5.2, or 5.1.
This book can even be used with LuaJIT,2 a Just-In-Time
compiler for Lua based on Lua 5.1. Lua Quick Reference’s
pragmatic approach assumes the developer has a basic
understanding of programming concepts. While familiarity
with Lua is helpful, it is not a requirement—this book is
suitable for helping seasoned developers quickly get up to

1 http://www.lua.org

2 http://luajit.org/luajit.html

speed with the language. This quick reference is broken up
into two parts: Part I covers the Lua language itself and Part II
covers Lua’s C API. Each part has a number of descriptive
sections with conveniently grouped tasks that cover nearly
every aspect of Lua and its C API, with differences between
versions clearly marked. For the most part, the contents of
each task are not listed in conceptual order. They are listed in
procedural order, an order the developer would likely follow
when programming in or embedding Lua.

While this book aims to be a complete reference, it does omit
some of the lesser-known parts of Lua. For example, this
reference does not cover Lua’s debug interface, weak tables,
or some of the finer details of how external modules are
loaded. Lua Quick Reference serves as a complement to each
Lua version’s Reference Manual.

Finally, all code examples in this book are based on Lua 5.4,
so adaptating them for Lua 5.1, 5.2, and Lua 5.3 may be
necessary.

Download
Lua is free software and is available in source format from its
website: http://www.lua.org/download.html. Links to platform-
specific binaries are also available from that page. Lua is
highly extensible and can be configured by modifying its lua
conf.h file prior to compiling the library. For example, on
more restricted platforms and embedded devices, the flag
“LUA_32BITS” can be defined in order to force Lua to use 32-bit
integers and 32-bit floating point numbers.

Code Editors
Programming in Lua does not require an Integrated
Development Environment (IDE). A simple text editor is
sufficient. The author recommends Textadept,3 a fast,
minimalist, and remarkably extensible cross-platform text
editor that has fantastic support for Lua. Not only is Textadept
free and open-source, but it is also one of the few cross-
platform editors that have both a graphical and terminal user
interface, the latter being helpful for working on remote
3 https://orbitalquark.github.io/textadept

2 | Lua Quick Reference – Free Download

machines.

Conventions
This book uses the following conventions.

Italic
Used for filenames and for introducing new terms.

Constant width
Used for environment variables, command line options,
and Lua and C code, including functions, tables, and
variables.

Constant width Right-aligned annotation
Used for Lua or C code that applies to a particular
version of Lua, which the annotation specifies. If there is
no annotation, that code applies to all versions.

Constant width italic
Used for user-specified arguments, parameters,
expressions, and statements.

[]
Used for optional function arguments, optional
parameters, and optional statements, except in code
examples that index Lua tables or contain C arrays.
Unless otherwise specified, optional arguments default to
nil.

Terminology
This book uses the following terminology.

Host
The (typically C) program that interacts with a Lua
interpreter. The stand-alone Lua interpreter is an
example of a host.

Block
A group of statements executed in sequential order.
Blocks include function bodies and control structure
bodies.

Introduction | 3

C function
A special kind of function written in C that Lua can
interact with.

List
A special kind of table that has non-nil values assigned
to an unbroken sequence of integer keys from 1 to n,
where n is the number of elements in the list. Lists may
still have non-integer keys, but those keys and their
associated values are ignored in list operations.

Upvalue
A non-local, non-global variable that a function has
access to. In Lua upvalues are lexically scoped variables
defined outside of functions, and in C they are values
explicitly associated with C functions.

The stack
The C stack of Lua values associated with the applicable
Lua interpreter, C function, or thread.

Environment Variables
Lua is configured to utilize the following environment
variables.

LUA_PATH
LUA_PATH_5_2 Lua 5.2
LUA_PATH_5_3 Lua 5.3
LUA_PATH_5_4 Lua 5.4

The value used for package.path. If more than one of
these environment variables are defined, priority is given
to the versioned variable.

The substring “;;” represents the default path that Lua
was configured and compiled with, which is platform-
dependent.

LUA_CPATH
LUA_CPATH_5_2 Lua 5.2
LUA_CPATH_5_3 Lua 5.3
LUA_CPATH_5_4 Lua 5.4

The value used for package.cpath. If more than one of
these environment variables are defined, priority is given
to the versioned variable.

4 | Lua Quick Reference – Free Download

The substring “;;” represents the default path that Lua
was configured and compiled with, which is platform-
dependent.

LUA_INIT
LUA_INIT_5_2 Lua 5.2
LUA_INIT_5_3 Lua 5.3
LUA_INIT_5_4 Lua 5.4

The Lua script or Lua code to be executed before
executing the script passed to the stand-alone Lua
interpreter (lua, lua.exe, or any of its versioned variants).
Lua scripts to be executed are indicated in “@filename”
format. If more than one of these environment variables
are defined, priority is given to the versioned variable.

Command Line Options
The stand-alone Lua interpreter accepts the following
command line options and processes them sequentially. In
most cases, order matters, the exceptions being -i and -E.

NOTE

When the interactive Lua prompt is active, each
statement entered into the prompt is in its own scope.
This particularly affects local variables, which are not
visible to successive statements outside of a function
body block, control structure block, or bare do … end
block. The section “Variables and Scopes” on page 10
describes scopes.

Also, in Lua 5.1 and 5.2, prefixing an expression with
‘=’ will print its result after evaluation. Lua 5.3 and 5.4
print results implicitly.

Pressing Ctrl+Z on Windows, Ctrl+D on Linux or Mac,
or entering the statement “os.exit()” quits the prompt.

-e statement
Executes string statement as Lua code.

-l module_name
Loads the Lua module whose string name is module_name.

Command Line Options | 5

The section “Modules” on page 43 describes modules
and how Lua searches for them.

-i
Enters the interactive Lua prompt after running the given
Lua script (if any).

-v
Prints Lua’s version information.

-E Lua 5.2, 5.3, 5.4
Ignores the environment variables listed in the previous
section.

-W Lua 5.4
Print to standard error (stderr) any warnings emitted
while running Lua code. The sections “Error Handling
and Warnings” and “Error and Warning Handling” on
pages 48 and 130, respectively, describe Lua’s warning
system.

--
Stops handling command line options.

script [args]
Executes Lua script script with args as the script’s
argument list (which is stored in the global variable arg).
If no script is given, starts an interactive Lua prompt.

-
Stops handling command line options and uses standard
input (stdin) as the Lua script to be executed.

6 | Lua Quick Reference – Free Download

I
The Lua Language

Fundamentals
Lua is a free-form language with whitespace being significant
only between identifiers and keywords. Lua source code files
typically have the extension “.lua”.

Comments
Lua has both line comments and block comments. Line
comments start with “--” and apply until the end of the line
they occur on. Block comments start with “--[[” and end with
“]]”. Block comment delimiters can contain an optional, equal
number of ‘=’ characters between the brackets:

-- Line comment.
i = 1 -- another line comment

--[[Multi-line
block comment.]]
t = {1, 2, --[[in-line block comment]] 3}

--[=[Block comment that contains "]]".]=]

Identifiers and Reserved Words
Identifiers are names of variables, table fields, and labels†.
They are case-sensitive, and can be any combination of ASCII
letters, digits, and underscores, though they cannot start with
a digit or be a reserved word. Table 1 lists Lua’s reserved
words.

Some examples of valid identifiers are “a”, “_”, “A_i”, “a1”,
and “END”. Some examples of invalid identifiers are “1a”, “µ”,
“function”, and “$amount”.

NOTE

By convention, identifiers comprising an underscore
followed by one or more upper-case letters (e.g. “_M”
and “_VERSION”) are reserved for use by Lua itself.

† Except for Lua 5.1, which does not have labels.

Fundamentals | 9

Table 1. Reserved words

and break do else elseif

end false for function gotoa

if in local nil not

or repeat return then true

until while

a Not in Lua 5.1.

Variables and Scopes
Lua has both global and local variables. Global variables do
not need to be declared; they can simply be used. Local
variables must be declared with the keyword “local” (unless
they are function arguments or for loop iterator variables, in
which case they are implicitly local). Local variable
declarations do not have to specify an initial value.

CAUTION

Variables in Lua are global by default. Lua will never
raise an error if an attempt is made to reference a
global variable with no previously defined value.
Instead, the result will always be the value nil.
Example 10 on page 47 gives an example of how to
catch these cases.

It is better practice to use local variables wherever
possible. Not only does this avoid potential name
clashes between different parts of a program, but also
local variable access is faster than global variable
access.

Local variables are lexically scoped, meaning they are
available only from within their current block starting after
their point of declaration, and within any sub-blocks. Blocks
are entities such as function bodies, control structure body
parts, and Lua files. Local variables of the same name
declared in different scopes are completely independent of
one another. The following example and its accompanying

10 | Lua Quick Reference – Free Download

call-outs exhibit the availability of local variables in various
scopes:

-- Scoping example.
x = 1 ➊
local function y(z) ➋
 if condition then
 local x = x ➌
 block
 else
 block
 local z = x ➍
 block
 end
end

➊ x is a global variable. It is available anywhere a local
variable x is not in scope.

➋ y is a local function and z is an implicit local argument
variable. y is available inside itself (including its sub-
blocks) and after its complete definition. z is available
only inside y and its sub-blocks.

➌ x is a local variable whose initial value is the one
assigned to global variable x. (This statement is a
common idiom in Lua.) Any reassignments to local x do
not affect global x. Local x is available only in the
subsequent block below it. Outside that block (including
within the else block), x refers to global x.

➍ z is a local variable whose initial value is global x (not
local x in the if block). z is available only in the
subsequent block below it (and not in the block above).
Outside the lower block, z refers to local argument z.

Local Variable Attributes
Lua 5.4 introduced the ability to append the attributes “const”
and “close” to local variable declarations:

local PI_2 <const> = math.pi / 2
local f <close> = io.open(filename)

<const> prevents the variable from being assigned a new
value after its initial value assignment. <close> closes the
variable’s value when the variable goes out of scope (e.g. via

Fundamentals | 11

break, return, loop end, error, etc.). This to-be-closed variable
is particularly useful for automatic resource management, as
demonstrated by Example 6 on page 36. Any other attribute is
considered a syntax error.

Types
Lua is a dynamically typed scripting language. Lua variables
have no defined type, and can be assigned and reassigned
any Lua value. Lua values are first-class values, meaning they
can be assigned to variables, passed as function arguments,
returned as results, and so on. The following example
illustrates these concepts:

a = nil
a = true
a = 0
a = "string"
a = function(x, y) return x + y, x - y end
a = {1, 2, 3}
a = coroutine.create(function(x)
 coroutine.yield(x^2)
end) -- note the function that is an argument
a = io.open("filename")

Lua has eight basic value types: nil, boolean, number, string,
function, table, thread, and userdata. Each of these types is
described in the following sections.

Nil
The nil type has a single value: nil. It typically indicates the
absence of a useful value. The default value for variables and
table keys is nil. Assigning nil to a variable or table key
effectively deletes it.

Booleans
Booleans have one of two values: true or false. Other than
false and nil, any other value is considered to be true in a
boolean sense, including the number zero, the empty string,
and an empty table.

12 | Lua Quick Reference – Free Download

Numbers
Numbers comprise both integer numbers and floating point
numbers, or floats. Floats are typically double-precision
floating point numbers, though this is configurable when
compiling Lua. This book uses the term “float” in place of
whatever type of float Lua is configured to use, which is not
necessarily C’s single-precision float.

Numbers can be written in decimal, exponential, or
hexadecimal† notation. Integer numbers include “0” and “-10”.
Decimal floats include “-1.0” and “3.14”. Exponential floats
include “6.67e-11” and “3E8”. Hexadecimal numbers include
“0xFF”, “0x1P+8”, and “0X0.a”.

NOTE

Lua 5.3 and 5.4 represent numbers internally as either
integers or floats and seamlessly convert between the
two types as needed. The range of integers that can be
represented exactly is math.mininteger (typically -263) to
math.maxinteger (typically 263). Integers wrap on
overflow or underflow. The function math.type()
returns whether a given number is represented as an
integer or float internally.

Lua 5.1 and 5.2 represent all numbers (including
integers) internally as floats. As a result, the range of
integers that can be represented exactly is typically -253

to 253 (for a double-precision float). Any integer
outside that range loses precision.

Lua can perform arithmetic with numbers, which is described
in the section “Arithmetic Operators” on page 18. Its other
numeric capabilities are listed in the section “Numeric
Facilities” on page 52.

Strings
Strings are immutable, arbitrary sequences of bytes. They can
contain embedded zeros and have no specific encoding
attached to them. Strings can be constructed using double

† Except for Lua 5.1, which cannot express hexadecimal floats.

Types | 13

quotes, single quotes, or brackets:

dq = "double-quoted string"
sq = 'single-quoted string'
ms = [[multi-line
string]]

Quoted strings can contain any of the escape sequences listed
in Table 2.

Bracketed strings cannot contain escape sequences, but can
span multiple lines without the need for an escape sequence.
If a bracketed string immediately starts with a newline, that
initial newline is ignored. Similarly to block comments,
bracketed string delimiters can contain an optional, equal
number of ‘=’ characters between the brackets.

Table 2. Quoted string escape sequences

Sequence Meaning Sequence Meaning

\a Bell \" Double quote

\b Backspace \' Single quote

\f Form feed \(newline) Literal newline

\n Newline \za Ignore subsequent
whitespace

\r Carriage return \ddd Decimal byte

\t Horizontal tab \xhha Hexadecimal byte

\v Vertical tab \u{uuuu}b Hexadecimal
UTF-8 codepoint

\\ Literal ‘\’

a Not in Lua 5.1.
b Not in Lua 5.1 or 5.2.

Lua can concatenate strings, and this operation is covered in
the section “Other Operators” on page 22. Its facilities for
creating strings, querying and transforming strings, and
searching and replacing within strings are described in the
section “String Facilities” on page 55.

14 | Lua Quick Reference – Free Download

Functions
Functions consist of both Lua functions and C functions. (Lua
does not distinguish between the two.) As first-class values,
functions are anonymous (they do not have names). The
sections “Functions” on page 28 and “C Functions” on page
116 describe Lua and C functions, respectively.

Tables
Tables are Lua’s primary data type and implement associative
arrays. An associative array is a set of key-value pairs where
keys can be any value except nil and NaN,4 and values can
be any value except nil. (Therefore, if a table key is assigned
nil, that key will no longer exist in the table.) Tables can be
constructed using brace characters:

empty = {}
list = {1, 2, 3}
dict = {["a"] = 1, ["b"] = 2, ["c"] = 3}
mix = {[0] = 0, 1, 2, 3, a = 1, b = 2, c = 3}

When keys are omitted in a table constructor, they implicitly
become the integer values 1, 2, ..., n for the n values given
without keys. (This kind of table with successive integer keys
is considered a list and its values are considered elements.)
Otherwise, keys are enclosed between brackets and are
explicitly assigned values. (Both keys and values can be the
results of expressions.) As a shortcut, an identifier may be
used for a key. In this case, that field becomes a string key
(e.g. the assignment “a = 1” is equivalent to “["a"] = 1”). If
the last (or only) expression in a table constructor is a
function call, all of the values returned by the called function
are added as trailing list elements.

NOTE

Lua’s list indices start at 1, unlike C’s array indices,
which start at 0.

Tables are mutable and can be altered using the various

4 Not a Number is a special value for undefined numbers like 0/0.

Types | 15

operators, statements, and functions covered throughout this
book. Lua always assigns, passes, and returns references to
tables instead of copies of tables. Tables automatically grow
in size as needed, and Lua handles all of the memory
management associated with them.

Threads
Threads are separate, independent lines of execution. Instead
of true multi-threading (asynchronous threads), Lua supports
collaborative threads, or coroutines. Coroutines work together
by resuming one another and then yielding to one another (a
coroutine cannot be interrupted from the outside). Despite
the fact that they run independently from one another,
coroutines share the same global environment, and only one
can be active at a time. Lua’s main thread is a coroutine. The
sections “Thread Facilities” and “Threading in C” on pages 69
and 135, respectively, describe Lua threads in more detail.

Userdata
Userdata act in place of C data types that cannot be
represented by any other Lua value. As userdata, those C
types can be treated like any other Lua value. (For example,
Lua’s file input and output objects are userdata.) Userdata
values cannot be modified by Lua itself. The section “Push a
userdata” on page 99 describes userdata in more detail.

Perform Basic Value Operations
Lua provides the means to retrieve the type of an arbitrary
value, obtain the string representation of a value, and convert
a string value to a number value.

type(value)
Returns the string type of value value. The returned
string is either "nil", "boolean", "number", "string", "ta
ble", "function", "thread", or "userdata".

tostring(value)
Returns the string representation of value value, invoking
the metamethod __tostring() if it exists. The section

16 | Lua Quick Reference – Free Download

“Metatables and Metamethods” on page 33 describes
metamethods.

tonumber(value[, base])
Returns string value converted to a number in base
number base, or nil if the conversion fails. base must be
an integer between 2 and 36, inclusive, and its default
value is 10.

Expressions and Operators
Expressions are combinations of operators and operands, but
they can also be stand-alone values and variables. Table 3
lists Lua’s operators, their precedence, and their grouping.
Those operators are broken down into categories and
described in the following sections.

Table 3. Operator precedence

Priority Operator Grouping

1 () [] . Left-to-right

2 ^ Right-to-left

3 not # - ~a (unary) Left-to-right

4 * / //a % Left-to-right

5 + - Left-to-right

6 .. Right-to-left

7 <<a >>a Left-to-right

8 &a Left-to-right

9 ~a Left-to-right

10 |a Left-to-right

11 == ~= < <= > >= Left-to-right

12 and Left-to-right

13 or Left-to-right

a Not in Lua 5.1 or 5.2.

Grouping indicates how operators with equal precedence are

Expressions and Operators | 17

grouped. For example, the expression “2*3*4” is equivalent to
“(2*3)*4” (left-to-right grouping), and “2^3^4” is equivalent to
“2^(3^4)” (right-to-left grouping).

Arithmetic Operators
Lua supports the usual arithmetic operators.

x + y
x - y
x * y
x / y
x // y Lua 5.3, 5.4
x % y
x^y

Arithmetically adds, subtracts, multiplies, divides, integer
divides, computes the remainder of floor division
between, or exponentiates numeric or string operands x
and y. (String operands are converted to numbers first.)

If either x or y is a table or userdata value with the
applicable metamethod __add(), __sub(), __mul(),
__div(), __idiv(), __mod(), or __pow(), that metamethod
is called to perform the operation. The section
“Arithmetic Metamethods” on page 34 describes
arithmetic metamethods.

-x
Arithmetically negates numeric or string operand x.
(String operands are converted to numbers first.)

If x is a table or userdata value with the metamethod
__unm(), that metamethod is called to perform the
operation. The section “Arithmetic Metamethods” on
page 34 describes arithmetic metamethods.

Relational Operators
Lua allows values to be compared to one another.

a == b
a ~= b

Returns a boolean that indicates whether values a and b
are equal or unequal.

18 | Lua Quick Reference – Free Download

If a and b are numbers, they are compared numerically,
regardless of their internal representation (e.g. the
integer 1 is equivalent to the float 1.0). If a and b are
strings, they are compared byte-wise. Otherwise, a and b
are compared by reference: they are equal only if they
have the same originally created value. (For example,
two separately created tables with the same contents are
not considered equal.)

If either a or b is a table or userdata value with the
metamethod __eq(), that metamethod is called to
perform the operation. (The operator “~=” returns the
negation of the result of __eq()). The section “Relational
Metamethods” on page 34 describes relational
metamethods.

a < b
a <= b
a > b
a >= b

Returns a boolean that indicates whether value a is less
than value b, less than or equal to b, greater than b, or
greater than or equal to b.

If a and b are numbers, they are compared numerically,
regardless of their internal representation. If a and b are
strings, they are compared according to the current
locale.

If either a or b is a table or userdata value with the
applicable metamethod __lt() or __le(), that
metamethod is called to perform the operation. __lt()
handles “less than” and “greater than” operations and
__le() handles the other two. The section “Relational
Metamethods” on page 34 describes relational
metamethods.

If a could not be compared to b, an error is raised.

Logical Operators
Logical operators can be used in boolean expressions and in
conditional expressions.

Expressions and Operators | 19

not a
Returns the negation of the result of converting value a
to a boolean, where any value other than false and nil
is considered true.

a and b
Returns value a if it is boolean false (i.e. false or nil), or
value b otherwise. (The boolean result of the expression
is true if both operands are boolean true.) If a is to be
returned, the conditional short-circuits, and b is not
evaluated.

a or b
Returns value a if it is boolean true (i.e. not false or
nil), or value b otherwise. (The boolean result of the
expression is true if either operand is boolean true.) If a
is to be returned, the conditional short-circuits, and b is
not evaluated.

TIP

The expression “a and b or c” is equivalent to the C
ternary operator expression “a ? b : c” as long as b is
not boolean false.

Bitwise Operators
Lua 5.3 introduced bitwise operators for 64-bit integers5 as a
substitute for many of Lua 5.2’s bitwise functions, which were
provided by the module bit32 and supported only 32-bit
integers. Lua 5.1 does not have any bitwise facilities for
integers.

5 64-bit integers can be used on 32-bit operating systems, provided the C
data type long long is available. This is the case on many modern
systems. More restricted platforms and embedded devices that support
only up to 32-bit numbers can compile Lua with the “LUA_32BITS” flag
defined in order to force Lua to use 32-bit integers.

20 | Lua Quick Reference – Free Download

x & y Lua 5.3, 5.4
bit32.band(x, y) Lua 5.2
x | y Lua 5.3, 5.4
bit32.bor (x, y) Lua 5.2
x ~ y Lua 5.3, 5.4
bit32.bxor(x, y) Lua 5.2

Performs bitwise AND, OR, or XOR on integer operands
x and y. For each bit in x and y, bitwise AND returns 1 if
both bits are 1, bitwise OR returns 1 if either bit is 1, and
bitwise XOR returns 1 if either bit is 1, but not both.

If either x or y is a table or userdata value with the
applicable metamethod __band(), __bor(), or __bxor(),
that metamethod is called to perform the operation. The
section “Bitwise Metamethods” on page 35 describes
bitwise metamethods. Lua 5.2 does not have these
metamethods.

~x Lua 5.3, 5.4
bit32.bnot(x) Lua 5.2

Performs bitwise NOT on integer operand x. Bitwise
NOT flips each bit in x.

If x is a table or userdata value with the metamethod
__bnot(), that metamethod is called to perform the
operation. The section “Bitwise Metamethods” on page
35 describes bitwise metamethods. Lua 5.2 does not have
this metamethod.

x << y Lua 5.3, 5.4
bit32.lshift(x, y) Lua 5.2
x >> y Lua 5.3, 5.4
bit32.rshift(x, y) Lua 5.2

Shifts the bits in integer x by y bits to the left or right,
and fills vacant bits with zeros.

If either x or y is a table or userdata value with the
applicable metamethod __shl() or __shr(), that
metamethod is called to perform the operation. The
section “Bitwise Metamethods” on page 35 describes
bitwise metamethods. Lua 5.2 does not have these
metamethods.

Expressions and Operators | 21

Other Operators
Lua has other operators for function calls, table indexing,
string concatenation, and value length.

f([expr1, expr2, …, exprN])
f{…}
f"string" or f'string' or f[[string]]

Calls function f with an argument list, a single
constructed table argument, or a single string argument.
The values in an argument list are the respective values
that result from the evaluation of expressions expr1,
expr2, …, exprN. If exprN is a function call that returns
multiple values, all returned values are used in the
argument list. (In any prior function call expression, only
the first returned value is used.)

Unless the function call is enclosed within parentheses,
all of the values returned by f become the values
returned by the function call. Otherwise, only the first
value returned is used.

If f is a table or userdata value with the metamethod
__call(), that metamethod is called to perform the
operation. The section “Other Operator and Statement
Metamethods” on page 36 covers this metamethod in its
generic form.

t[key]
t.name

Retrieves the value in table t associated with key key or
string "name". name must be a valid identifier. key may
also be an expression whose resulting value will be used
as the lookup key.

If either t is a table value that does not contain key or
"name", or t is a userdata value, and t has the metafield
__index or metamethod __index(), then that entity is used
to perform the operation. The section “Other Operator
and Statement Metamethods” on page 36 covers this
metafield and metamethod.

CAUTION

22 | Lua Quick Reference – Free Download

Lua will never raise an error if an attempt is made to
reference a table key with no assigned value
(regardless of whether or not it had one previously).
Instead, the result will always be nil. Example 10 on
page 47 gives an example of how to catch these cases
(though after substituting _G in the example with t).

a .. b
Returns strings or numbers a and b concatenated
together into a new string. (Number operands are
converted to strings first.)

If either a or b is a table or userdata value with the
metamethod __concat(), that metamethod is called to
perform the operation. The section “Other Operator and
Statement Metamethods” on page 36 covers this
metamethod in its generic form.

#v
Returns the length of value v. If v is a string, returns the
number of bytes in v. If v is a list, returns the number of
elements in it (ignoring any values assigned to non-
integer keys in v).

If v is a table (in Lua 5.2, 5.3, or 5.4) or userdata value
with the metamethod __len(), that metamethod is called
to perform the operation. The section “Other Operator
and Statement Metamethods” on page 36 covers this
metamethod in its generic form.

TIP

The expression “not next(v)” evaluates to true if table
v is truly empty. The expression “#v == 0” applies only
when v is a list. The next() function returns an
arbitrary key in v.

Statements
A statement is an action or group of actions to be performed.
Lua’s set of statements includes variable assignments, control
structures, and jumps, each of which is described in the

Statements | 23

subsequent sections. Statements may optionally end with the
character ‘;’, though this is rare in practice.

Variable Assignment
Lua supports both traditional variable assignment and
multiple variable assignment. Variable names must be valid
identifiers.

variable = expr
local variable[= expr]
local variable[<attribute>][= expr] Lua 5.4

Evaluates expression expr and assigns the resulting value
to the global or local variable named variable (with
optional attribute attribute).

A local variable declaration does not have to specify an
initial value. It is nil by default.

var1, var2, …, varN = expr1, expr2, …, exprN
local var1, var2, …, varN[= expr1, expr2, …, exprN]

Evaluates expressions expr1, expr2, …, exprN and assigns
the resulting values to the global or local variables
named var1, var2, …, varN, respectively.

Local variable declarations do not have to specify initial
values. They are nil by default.

If exprN is a function call that returns multiple values, all
returned values are used in the list of values to be
assigned. (In any prior function call expression, only the
first returned value is used.) If the number of values is
less than the number of variables, the remaining
variables each have the value nil. If the number of
values is greater than the number of variables, the extra
values are ignored.

Lua 5.4 allows attributes in a list of local variable
declarations, though only one <close> attribute may
exist.

TIP

24 | Lua Quick Reference – Free Download

The values of two variables a and b can be swapped
using the statement “a, b = b, a”.

Table key assignment
Values can be assigned to keys in tables similarly to how
values can be retrieved from table keys.

t[key] = expr
t.name = expr

Evaluates expression expr and assigns the resulting value
to key key or string "name" in table t. name must be a
valid identifier. key may also be an expression whose
resulting value is used as the lookup key.

If either t is a table value that does not contain key or
"name", or t is a userdata value, and t has the metafield
__newindex or metamethod __newindex(), then that entity
is used to perform the assignment. The section “Other
Operator and Statement Metamethods” on page 36
covers this metafield and metamethod.

Control Structures
Lua has four different control structures: if, for, while, and
repeat. It also provides the means to immediately jump out of
the latter three loop structures. Example 1 demonstrates a
couple of these control structures while implementing a
global function that computes a list of prime numbers using
the Sieve of Eratosthenes method.

Example 1. Sieve of Eratosthenes

function sieve(n)
 -- Construct initial {2..n} table.
 local is_prime = {}
 for i = 2, n do
 is_prime[i] = true
 end

 -- Strike out all existing multiples of primes.
 for i = 2, math.sqrt(n) do
 if is_prime[i] then
 for j = i^2, n, i do

Statements | 25

 is_prime[j] = false
 end
 end
 end

 -- Construct the final primes list.
 local primes = {}
 for i = 2, n do
 if is_prime[i] then
 primes[#primes + 1] = i
 end
 end
 return primes
end

if expr1 then block1
[elseif expr2 then block2 … elseif exprN then blockN]
[else blockE]
end

Evaluates expression expr1 and, if the resulting value is
boolean true (i.e. not false or nil), executes the
statements in block block1. Otherwise, evaluates
expression expr2 and, if that resulting value is boolean
true, executes the statements in block block2. Continues
this process up through expression exprN. If no
expression evaluation resulted in true, executes the
statements in block blockE.

for variable = expr1, expr2[, expr3] do block end
Evaluates expressions expr1, expr2, and expr3 and then
varies the value of the local variable named variable
between the resultant values of expr1 and expr2 and, for
each iteration, executes the statements in block block
before incrementing variable by the resultant value of
expr3. The value of expr3 can be negative, and its
default value is 1.

block must not alter the value of variable.

for var1, var2, …, varN in iterator do block end
Iterates over all sets of values produced by iterator iter
ator and, for each iteration, assigns each value in a set to
the local variables named var1, var2, …, varN,
respectively, and executes the statements in block block.

block must not alter the values of var1, var2, …, varN.

An iterator is a set of three values: function f, initial state

26 | Lua Quick Reference – Free Download

i, and loop variable v. Lua 5.4 has an optional fourth
value: to-be-closed c. For each iteration, f(i, v) is
evaluated and the results are assigned to var1, var2, …,
varN. If var1 is nil, iteration ceases and c is closed (the
section “Closing Metamethod” on page 36 describes how
to define closing behavior). Otherwise, var1 becomes v
for the next iteration.

The Lua functions pairs(), string.gmatch(), io.lines(),
etc. all return iterators.

while expr do block end
Repeatedly evaluates expression expr and, as long as the
resulting value is boolean true (i.e. not false or nil),
executes the statements in block block.

repeat block until expr
Repeatedly executes the statements in block block and,
after each iteration, evaluates expression expr and
verifies its resulting value is boolean true (i.e. not false
or nil) before continuing with the next iteration.

Any local variables declared in block are available in
expr.

break
Immediately jumps out of the current for, while, or re
peat loop, and jumps to the statement after the end of
the loop.

Labels and Goto
Lua 5.2 introduced labels and the keyword “goto”. Contrary to
popular belief, goto is not a poor design decision, but quite
acceptable in certain situations, especially when emulating the
“continue”, “redo”, and multi-level “break” statements some
programming languages have that Lua does not. Example 2
demonstrates a proper use of goto as a substitute for the lack
of “continue” in loops.

Example 2. Emulating “continue” with goto

local function open_files(filenames)
 for i = 1, #filenames do
 local text = ""
 local f = io.open(filenames[i])

Statements | 27

 if f then
 text = f:read("a")
 if not text then goto continue end -- cannot read
 f:close()
 end
 --[[process text...]]
 ::continue::
 end
end

::label:: Lua 5.2, 5.3, 5.4
Defines a label named label in the current scope. label
must be a valid identifier and, in Lua 5.4, unique to its
scope. This label is visible from anywhere inside its
scope (not just from its point of definition).

goto label Lua 5.2, 5.3, 5.4
Jumps to the statement after the visible label named la
bel as long as that label is not inside a function other
than the current one (if any), outside the current
function (if any), or in the middle of a block with a local
variable already defined in the scope of that block.

Functions
A Lua function is little more than a block of statements
assigned to a variable or table key. Functions can accept one
or more argument values and can also return one or more
values. (Example 1 on page 25 defines a global function that
returns a single list of prime numbers up to an argument n.)
Due to the nature of lexical scoping, functions have access to
any local variables defined outside their bodies, as long as
those variables are in scope. These non-local (in a sense) but
non-global variables are referred to as upvalues, and are
extremely useful. Example 3 utilizes upvalues in order to
compute the numeric antiderivative (integral) for a given
mathematical function and optional epsilon value.

NOTE

Functions are limited to defining 200 local variables
(including arguments). This limit does not include
upvalues.

28 | Lua Quick Reference – Free Download

Example 3. Numeric antiderivative (integral) function

local function F(f, dx)
 dx = dx or 1e-4
 -- Trapezoidal numeric integration function that uses
 -- upvalues 'f' and 'dx'.
 return function(b)
 local sum, a = 0, 0
 for x = a, b, dx do
 sum = sum + (f(x) + f(x + dx)) / 2 * dx
 end
 return sum
 end
end

-- x2 = ∫ 2x dx
local x2 = F(function(x) return 2 * x end)
-- x2(0), x2(1), x2(2), x2(3) gives approx. 0, 1, 4, 9

TIP

The statement “a = a or b” is an idiom for assigning a
default value b to function argument a, provided a is
boolean false (i.e. false or nil).

function name ([arg1, arg2, …, argN]) block end
name = function ([arg1, arg2, …, argN]) block end
local function name ([arg1, arg2, …, argN]) block end
local name = function([arg1, arg2, …, argN]) block end

Defines a function (or local function) that accepts
arguments, and assigns that function to the variable
named name.6 When the function is called, it assigns any
argument values given to the respective local variables
named arg1, arg2, …, argN, and then executes the
statements in block block. If the number of argument
values is less than the number of variables, the
remaining variables each have the value nil. If the
number of argument values is greater than the number
of variables, the extra values are ignored.

name may also be a table key (e.g. “t.name”, “t1.t2.name”,
etc.). In that case, the keyword “local” cannot be used.

6 name is just a variable name, not the function’s name. In Lua, functions
are first-class values, which are inherently anonymous.

Functions | 29

TIP

Functions can have “named arguments” if they accept
only one table value and are called in the following
manner: “name{arg1=expr1, arg2=expr2, …,
argN=exprN}”. This can be useful if a function has many
optional arguments.

return [expr1, expr2, …, exprN]
Immediately jumps out of the current function and
returns the resulting values of expressions expr1, expr2,
…, exprN as the results of the function call. If exprN is a
function call that returns multiple values, all of those
returned values are included in the current function’s
returned results. (In any prior function call expression,
only the first returned value is used.)

If only one expression is given, if that expression is a
function call, and if there are no to-be-closed variables in
scope, then Lua reuses the current call stack frame for
the resulting tail call. As a result, it is not possible to
overflow the call stack with tail calls (which is useful for
recursive functions).

This statement can also appear at the end of a file. Lua
modules, which are described in the section “Create a
Lua Module” on page 45, make use of this, as does the
function dofile().

NOTE

The maximum number of return values is around
8,000 in Lua 5.1 and around 15,000 in Lua 5.2, 5.3, and
5.4. This arbitrary limit is related to Lua’s maximum
stack size and is configurable when compiling Lua.
The section “The Stack” on page 91 describes Lua’s
stack.

30 | Lua Quick Reference – Free Download

Functions with Variable Arguments
Lua functions can accept and work with a variable number of
argument values and return a variable number of values.
Example 4 shows a function that accepts a variable number of
arguments and passes some of them to another function.

Example 4. Function that accepts variable arguments

function handle_event(event_name, ...)
 local f = event_handlers[event_name]
 if f then
 -- Forward all event parameters to the event
 -- handler function.
 return f(...)
 end
end

function name ([arg1, arg2, …, argN,]...) block end
name = function ([arg1, arg2, …, argN,]...) block end
local function name ([arg1, arg2, …, argN,]...) block end
local name = function([arg1, arg2, …, argN,]...) block end

Defines a function (or local function) that accepts a
variable number of arguments, and assigns that function
to the variable named name. When the function is called,
it assigns the first N argument values given to the
respective local variables named arg1, arg2, …, argN and
stores the remaining values in the expression “...”. The
function then executes the statements in block block. If
the number of argument values is less than the number
of variables, the remaining variables each have the value
nil and “...” will be empty.

Any statements in block can use the expression “...” in
place of the extra argument values the function was
given. For example, “...” can be used in variable
assignment statements, function calls, table constructors,
and return statements.

name may also be a table key (e.g. “t.name”, “t1.t2.name”,
etc.). In this case, the keyword “local” cannot be used.

NOTE

Functions | 31

The expression “...” represents all of its values only
when it occurs at the end of an expression list.
Anywhere else it only represents its first value. For
example, given a function f, the expression “f(x, ...)”
calls f with at least two arguments, while the
expression “f(..., x)” calls f with exactly two
arguments, regardless of how many values “...”
represents.

select("#", ...)
select(index, ...)

Returns the number of extra argument values given, or
all of the extra argument values given after extra
argument number index. In Lua 5.2, 5.3, and 5.4, if index
is negative, counts from the end of the argument list.

{...}
table.pack(...) Lua 5.2, 5.3, 5.4

Returns a new list whose elements are the extra
argument values given. The table returned by
table.pack() also contains a field "n" that indicates the
number of extra arguments. This is useful in the event
that any of those values are nil, since lists cannot
contain nil values.

return [expr1, expr2, …, exprN,]...
Immediately jumps out of the current function and
returns as the results of the function call the resulting
values of expressions expr1, expr2, …, exprN along with
any extra argument values given.

NOTE

The maximum number of return values is around
8,000 in Lua 5.1 and around 15,000 in Lua 5.2, 5.3, and
5.4. This arbitrary limit is related to Lua’s maximum
stack size and is configurable when compiling Lua.
The section “The Stack” on page 91 describes Lua’s
stack.

32 | Lua Quick Reference – Free Download

Metatables and Metamethods
Lua’s operators are not limited to specific types of values, nor
are they limited to a specific operation. By using metatables
and metamethods, operators can be overloaded, or have their
operations changed, depending on the operands given. This
concept also applies to some of Lua’s built-in functions such
as tostring().

A metatable is a special kind of table with specific keys
assigned to user-defined functions called metamethods. When
a value is assigned a metatable, operators using that value as
an operand can behave differently. Example 5 demonstrates
how to overload the concatenation operator for one list in
order to concatenate that list with another one. The following
sections cover metatable assignment as well as the
metamethods that affect Lua’s operators and built-in functions.

NOTE

For the sake of brevity, metamethods are listed in
“func
tion name() … end” form. The “name = function() … end”
form is also valid.

Example 5. Overload concatenation for a list

local t1, t2 = {1, 2, 3}, {4, 5, 6}
local mt = {}
function mt.__concat(a, b)
 local t = {}
 -- Add all elements of a to t.
 for i = 1, #a do t[#t + 1] = a[i] end
 -- Add all elements of b to t.
 for i = 1, #b do t[#t + 1] = b[i] end
 return t
end
setmetatable(t1, mt)
local t3 = t1 .. t2 -- results in {1, 2, 3, 4, 5, 6}

Assign and Retrieve Metatables
Lua allows any table or userdata value to have its own meta-

Metatables and Metamethods | 33

table. (Groups of tables and userdata can also share the same
metatable.)

setmetatable(v, metatable)
Assigns metatable metatable to be the metatable of table
or userdata v, and returns v. If metatable is nil, removes
the metatable assigned to v. If v has a metatable and that
metatable has the metafield __metatable, raises an error.

getmetatable(v)
Returns the metatable of table or userdata v, or nil if v
has no metatable. If v has a metatable and that metatable
has the metafield __metatable, returns that value instead.

Arithmetic Metamethods
Lua’s arithmetic operators can be overloaded with arithmetic
metamethods. These metamethods are invoked only if one of
the operands is a table or userdata value with the applicable
metamethod. The first value returned by the metamethod
becomes the resulting value of the arithmetic operation.

function metatable.__add (x, y) block end
function metatable.__sub (x, y) block end
function metatable.__mul (x, y) block end
function metatable.__div (x, y) block end
function metatable.__idiv(x, y) block end Lua 5.3, 5.4
function metatable.__mod (x, y) block end
function metatable.__pow (x, y) block end

Overloads the addition (+), subtraction (-), multiplication
(*), division (/), integer division (//), modulo (%), and
exponentiation (^) operators for values whose meta-
tables are table metatable. Local variables x and y refer to
the operator’s operands. If the value of x has the
appropriate metamethod, that metamethod is used.
Otherwise, the metamethod of the value of y is used.

function metatable.__unm(x) block end
Overloads the arithmetic negation operator (-) for values
whose metatables are table metatable. Local variable x
refers to the operator’s operand.

Relational Metamethods
Lua’s relational operators can be overloaded with relational

34 | Lua Quick Reference – Free Download

metamethods. Typically, these metamethods are invoked only
if one of the operands is a table or userdata value with the
applicable metamethod. The first value returned by the meta-
method is converted to a boolean, and that boolean becomes
the resulting value of the relational operation.

function metatable.__eq(a, b) block end
function metatable.__lt(a, b) block end
function metatable.__le(a, b) block end

Overloads the equality (==) and inequality (~=), less
than (<) and greater than (>), and less than or equal to
(<=) and greater than or equal to (>=) operators for
values whose metatables are table metatable. Local
variables a and b refer to the operator’s operands. If the
value of a has the appropriate metamethod, that
metamethod is used. Otherwise, the metamethod of the
value of b is used.

__eq() is invoked only when a and b are of the same
type. Only __lt() and __le() are needed for relational
inequalities, since the expression “a > b” is translated to
“b < a” and the expression “a >= b” is translated to “b <=
a”. Furthermore, in Lua 5.1, 5.2, and 5.3, the metamethod
__le() may be omitted as long as __lt() exists, since the
expression “a <= b” would be translated to “not (b < a)”.

Bitwise Metamethods
The bitwise operators introduced in Lua 5.3 can be
overloaded with bitwise metamethods. These metamethods
are invoked only if one of the operator’s operands is a table
or userdata value with the applicable metamethod. The first
value returned by the metamethod becomes the resulting
value of the bitwise operation.

function metatable.__band(x, y) block end Lua 5.3, 5.4
function metatable.__bor (x, y) block end Lua 5.3, 5.4
function metatable.__bxor(x, y) block end Lua 5.3, 5.4

Overloads the bitwise AND (&), OR (|), and XOR (~)
operators for values whose metatables are table meta
table. Local variables x and y refer to the operator’s
operands. If the value of x has the appropriate
metamethod, that metamethod is used. Otherwise, the
metamethod of the value of y is used.

Metatables and Metamethods | 35

function metatable.__bnot(x) block end Lua 5.3, 5.4
Overloads the bitwise NOT operator (~) for values
whose metatables are table metatable. Local variable x
refers to the operator’s operand.

function metatable.__shl(x, y) block end Lua 5.3, 5.4
function metatable.__shr(x, y) block end Lua 5.3, 5.4

Overloads the bitwise shift left (<<) and shift right (>>)
operators for values whose metatables are table meta
table. Local variables x and y refer to the operator’s
operands. If the value of x has the appropriate
metamethod, that metamethod is used. Otherwise, the
metamethod of the value of y is used.

Closing Metamethod
Lua 5.4’s handling of local variables going out of scope can
be overloaded with the attribute <close> and a closing meta-
method. This enables easy resource cleanup, particularly if
unexpected errors occur. Example 6 shows this with a Lua file
handle, which defines its own __close() metamethod.

Example 6. Processing a file

local filenames = { --[[list of filenames...]] }
for i = 1, #filenames do
 local f <close> = io.open(filenames[i])
 if f then
 --[[process file...]]
 end
end

function metatable.__close(v) block end Lua 5.4
Overloads the behavior of values whose metatables are
table metatable when they go out of scope (e.g. via
break, return, loop end, error, etc.). Local variable v
refers to the value of a to-be-closed variable.

Other Operator and Statement Metamethods
Some of Lua’s other various operators and statements can be
overloaded with the appropriate metamethods. These meta-
methods are invoked only if the operator’s operand or one of
its operands is a table or userdata value with the applicable

36 | Lua Quick Reference – Free Download

metamethod. The first value returned by the metamethod
becomes the resulting value of the operation, except for the
function call operator, which returns all values returned by
the metamethod. Example 7 illustrates how to create a read-
only table.

Example 7. Create a read-only table

local t = { --[[read-only table contents...]] }
t = setmetatable({}, {
 __index = t,
 __newindex = function() error("read-only table") end
})

function metatable.__call(v[, arg1, arg2, …, argN])
function metatable.__call(v[, ...]) block end

Overloads the function call operator for values whose
metatables are table metatable. Local variable v refers to
the value being called and local variables arg1, arg2, …,
argN (as well as the expression “...”) refer to the
argument values being passed to the call.

function metatable.__index (t, key) block end
function metatable.__newindex(t, key, value) block end
metatable.__index = proxy
metatable.__newindex = proxy

Overloads the table index operators ([] and .) and table
assignment statement for values whose metatables are
table metatable. Local variable t refers to the value being
indexed, local variable key refers to the key used in the
indexing, and local variable value refers to the value to
be assigned to key. (Lua does not actually perform the
assignment, however.) Table proxy is the table indexed
or assigned to in place of t, and may have its own
indexing or assignment metamethods.

These metamethods are invoked only if either t is not a
table or key does not exist in table t.

function metatable.__concat(a, b) block end
Overloads the string concatenation operator (..) for
values whose metatables are table metatable. Local
variables a and b refer to the operator’s operands. If the
value of a has the appropriate metamethod, that
metamethod is used. Otherwise, the metamethod of the
value of b is used.

Metatables and Metamethods | 37

function metatable.__len(v) block end
Overloads the value length operator (#) for values whose
metatables are table metatable. Local variable v refers to
the operator’s operand.

In Lua 5.1, table values cannot overload the length
operator. Only userdata values can.

Function Metamethods
Some of Lua’s built-in functions can be overloaded with the
appropriate metamethods. These metamethods are invoked
only if the argument value is a table or userdata value with
the applicable metamethod.

function metatable.__pairs (t) block end
function metatable.__ipairs(t) block end Lua 5.2

Overloads the functions pairs() and ipairs() for
argument values whose metatables are table metatable.
Local variable t refers to the argument value passed.
Only the first three values returned by the metamethod
become the resulting values of the function call. Those
values constitute an iterator. The section “Control
Structures” on page 25 mentions iterators.

NOTE

In Lua 5.3 and 5.4, ipairs() respects the metafield
__index and metamethod __index() when producing
index-element pairs, so there is no longer a need for
__ipairs().

function metatable.__tostring(v) block end
Overloads the function tostring() for argument values
whose metatables are table metatable. Local variable v
refers to the argument value passed.

metatable.__metatable = value
Overloads the functions getmetatable() and setmetata
ble() for argument values whose metatables are table
metatable. getmetatable() will return value value and
setmetatable() will raise an error.

38 | Lua Quick Reference – Free Download

Bypass Metamethods
Sometimes it is desirable (or even necessary) to bypass
metamethods in order to work with values directly. For
instance, Example 10 on page 47 makes it impossible to
intentionally create a global variable using a simple
assignment statement. For cases like these, Lua provides a set
of functions that bypass metamethods.

rawequal(value1, value2)
Returns whether or not values value1 and value2 are
equal, bypassing all metamethods.

rawget(t, key)
Returns the actual value associated with key key in table
t, bypassing all metamethods.

rawset(t, key, value)
Assigns value value to be the actual value of key key in
table t, bypassing all metamethods.

rawlen(t) Lua 5.2, 5.3, 5.4
#t Lua 5.1

Returns the actual length of list t, bypassing all meta-
methods.

Object-Oriented Programming
Lua supports object-oriented programming, though not in the
traditional sense of supplying the means to create classes,
methods, and objects. Instead, Lua can emulate an object-
oriented system by using a blend of tables, metatables, and
some special syntax. While there are many different
approaches for emulating such a system, the subsequent
sections describe a typical approach.

Define a Class
Example 8 demonstrates a common method for defining a
class, and is followed by more details on that approach.

Object-Oriented Programming | 39

Example 8. A sample class for 2-D vector objects

-- Create the vector class object.
local vector = {}
vector.__index = vector

-- Create a new vector with the given components.
function vector.new(x, y)
 local v = {x = x, y = y}
 return setmetatable(v, vector)
end

-- Overload length operator to compute magnitude.
function vector.__len(v)
 return math.sqrt(v.x^2 + v.y^2)
end

-- Overload addition operator to add two vectors.
function vector.__add(v1, v2)
 assert(getmetatable(v1) == getmetatable(v2),
 "vectors expected")
 return vector.new(v1.x + v2.x, v1.y + v2.y)
end

-- Overload subtraction operator to subtract vectors.
function vector.__sub(v1, v2)
 assert(getmetatable(v1) == getmetatable(v2),
 "vectors expected")
 return vector.new(v1.x - v2.x, v1.y - v2.y)
end

-- Overload multiplication operator to compute vector
-- dot product or scale a vector.
function vector.__mul(v1, v2)
 if getmetatable(v1) == getmetatable(v2) then
 return v1.x * v2.x + v1.y * v2.y
 elseif tonumber(v1) or tonumber(v2) then
 local scalar = tonumber(v1) or v2
 local v = not tonumber(v1) and v1 or v2
 return vector.new(scalar * v.x, scalar * v.y)
 else
 error("vectors or scalar and vector expected")
 end
end

-- Normalize a vector in-place.
function vector:normalize()
 local magnitude = #self
 self.x = self.x / magnitude
 self.y = self.y / magnitude

40 | Lua Quick Reference – Free Download

end

-- Overload exponentiation operator to compute angle
-- between vectors.
function vector.__pow(v1, v2)
 assert(getmetatable(v1) == getmetatable(v2),
 "vectors expected")
 return math.acos(v1 * v2 / (#v1 * #v2))
end

-- Return a vector's direction angle from x-axis.
function vector:angle()
 return self ^ vector.new(1, 0)
end

-- Return a vector's string representation.
function vector:__tostring()
 return string.format("< .3f, .3f>", self.x, self.y)% %
end

local class = {}
local class = setmetatable({}, superclass)

Creates a new table that represents a class whose name
is class and optionally inherits methods and members
from another previously defined class named superclass.

class.__index = class
Defines the metafield __index of the class named class
such that any instance object of class (whose metatable
will be assigned class) can access the methods and
members of class.

function class.new([…])
 local instance = {}
 [block]
 return setmetatable(instance, class)
end

Defines a constructor function that creates and returns a
new instance object of the class named class. Block
block may populate that instance object with instance-
specific members (fields) or perform any other instance-
related actions. The returned object has a metatable that
refers back to class in order to access the methods and
members of class (and any superclasses).

function class.method(self[, …]) block end
function class:method([…]) block end

Defines the instance method named method for the class

Object-Oriented Programming | 41

named class. method has a local variable named self that
refers to a class instance object returned by class.new().
(Lua implicitly defines self when the character ‘:’ is used
instead of ‘.’ when defining a method.)

Methods can be metamethods in order to overload Lua’s
operators when instance objects of class are used as the
operator’s operands.

If class has a superclass, and that superclass also has an
instance method named method, the method being
defined overrides the superclass method.

Multiple inheritance
Defining a class with multiple inheritance is similar to
defining a class with single inheritance, except instead of
utilizing the metafield __index, the metamethod __index() is
used.

local class = setmetatable({}, {__index = function(_, k)
 for _, superclass in ipairs{super1, super2, …, superN}
 local v = superclass[k]
 if v then return v end
 end
end

Creates a new table that represents a class whose name
is class and inherits methods and members from other
previously defined classes named super1, super2, …, su
perN.

Utilize a Class
A typical approach for using a class is as follows:

local instance = class.new([…])
Creates and returns a new instance object of the class
whose name is class.

class.method(instance[, …])
instance:method([…])

Calls the instance method named method on instance
object instance, which was returned by a call to
class.new(). (Lua implicitly passes instance as the first
argument to method when the character ‘:’ is used instead

42 | Lua Quick Reference – Free Download

of ‘.’ when invoking method.)

function instance.method(self[, …]) block end
function instance:method([…]) block end

Defines a singleton method named method for instance
object instance. method has a local variable named self
that refers to instance.

If the class (or any superclasses) that instance belongs to
also has an instance method named method, the method
being defined overrides the existing method.

Modules
Lua has a simple system for creating and loading external
modules. A module is basically a named collection of
functions and variables (which may be constants). There are
two types of modules: Lua modules and C modules. Lua
modules are simply tables returned at the end of Lua source
files. C modules are typically shared object binary files (e.g.
.so or .dll files) and their contents are described in the section
“C Modules” on page 126. Lua searches for modules within
defined paths and can load them using the function
require(), which is described in this section. Example 9
defines a simple Lua module for basic trigonometry that has
degree and radian modes, and then uses that module,
provided it is in Lua’s module search path. The sub-section
“Create a Lua Module” contains more information on the
structure of Lua modules.

Numerous third-party modules supplied by Lua’s vibrant
community can be found and installed from the LuaRocks
package manager.7 Among them are: LuaSocket for working
with sockets, LPeg for pattern matching with Parsing
Expression Grammars (PEGs), LuaFileSystem for accessing the
underlying filesystem, Penlight for a set of utilities inspired by
Python’s standard library, Luaposix for POSIX programming,
Lapis for web development, and LuaUnit for unit testing.

Example 9. Define, load, and use a Lua module

-- File "trig.lua".
local M = {}

7 https://luarocks.org/

Modules | 43

-- Radians mode.
M.rad = {
 sin = math.sin,
 cos = math.cos,
 tan = math.tan,
}

-- Degrees mode.
M.deg = {
 sin = function(x) return math.sin(math.rad(x)) end,
 cos = function(x) return math.cos(math.rad(x)) end,
 tan = function(x) return math.tan(math.rad(x)) end
}

return M

-- Program code.
local trig = require("trig").deg
trig.sin(30) -- results in 0.5
trig = require("trig").rad
trig.sin(math.pi / 6) -- also results in 0.5

package.path
package.cpath

The string of ‘;’-delimited paths Lua searches for Lua
modules and C modules in, with ‘?’ characters
representing potential module names.

The default paths are system-dependent and are
configurable when compiling Lua.

The environment variables LUA_PATH, LUA_PATH_5_2, LUA_PA
TH_5_3, LUA_PATH_5_4, LUA_CPATH, LUA_CPATH_5_2, LUA_CPATH_
5_3, and LUA_CPATH_5_4 control the initial value of Lua’s
package paths. If more than one of these environment
variables are defined, priority is given to the versioned
variable.

require(name)
Searches package.path and package.cpath for the module
whose string name is name, and loads and returns that
module or, if no module was found, raises an error. Each
‘.’ character in name is treated as a directory separator.

If the module found is a Lua module, its contents are
executed as a chunk of Lua code and the first value
returned by that chunk is considered as the module to
be returned. If the module found is a C module, its entry

44 | Lua Quick Reference – Free Download

point function, luaopen_name, is called (with any ‘.’
characters replaced by ‘_’ and any “-version” suffix
ignored), and the first value returned by that function is
considered as the module to be returned. The section “C
Modules” on page 126 describes C modules and their
entry point functions in more detail.

In Lua 5.4, the first time a module is loaded, require()
returns a second value that indicates how or where the
module was found (e.g. "path/to/name.lua").

Subsequent calls to require() with name will produce the
original value returned, without reloading the module.

package.loaded[name] = nil
Unregisters the module whose string name is name.

A subsequent call to require() with name will reload the
module.

package.searchpath(name, paths[, sep[, repl]]) Lua 5.2, 5.3, 5.4
Searches each ‘;’-delimited path in string paths for a file
that exists whose filename is the one constructed by
replacing each occurrence of ‘?’ in the search path with
string name, and returns the first found file’s string
filename. (Any instances of string sep in name are
replaced with string repl first.) If no file was found,
returns nil followed by an error message that lists all
filenames tried. The default values of sep and repl are
"." and "/", respectively.

TIP

This function is not restricted for use by Lua’s module
system. It can be used for any purpose that involves
finding a file in a set of directories.

Create a Lua Module
Lua modules do not have a defined structure other than they
should return a table. A module can be a collection of
functions, a set of configuration fields, or even a class.
(Classes are described in the section “Define a Class” on page

Modules | 45

39). As a result, there are many different approaches for
writing modules. (One of them is shown in Example 9 on
page 43.) Regardless of the approach, modules should avoid
creating any global variables and should define only local or
module variables. The typical “building blocks” for a module
are as follows:

local M = {}
Creates a new table that represents a module. The name
of a module’s table is traditionally M, since a module’s
actual name is based on the name of the Lua file it is in.

M.variable = expr
Evaluates expression expr and assigns the resulting value
to the module variable named variable.

function M.name([…]) block end
Defines the module function named name.

return M
Designates M as the value returned by the call to
require() that loaded the module.

Legacy modules
Lua 5.1’s method for creating modules centers around the
function module(). However, that function was deprecated in
Lua 5.2, so the table scheme in the preceding section should
be used instead.

module(name[, package.seeall]) Lua 5.1
Creates a new module whose string name is name,
defines it as a global variable, and changes the global
environment of the module to be the module itself. If the
argument value package.seeall is given, the module’s
environment will inherit from the original global
environment. (The next section, “Environments,”
describes what it means to change the global
environment.)

Each ‘.’ character in name acts as a namespace separator.
Lua will ensure there are separate tables for each name-
space. For example, the statement “module("lua.qui
ck.reference")” creates the new module in the field ref
erence of the field quick of the global table lua.

46 | Lua Quick Reference – Free Download

Environments
Technically, Lua’s global variables are really non-local
variables stored in an environment table, and Lua allows this
table to be changed at any time. When retrieving the value of
a non-local variable named name, Lua looks for the field
name in the current environment table. Similarly, when
assigning a value to a non-local variable, Lua creates the
applicable key-value pair in the current environment.

By default, the current environment table is the global
environment, _G (which also contains all of Lua’s built-in
functions and standard library modules). Thus, non-local
variables can be considered global variables. When retrieving
the value of the global variable a, Lua returns the value
assigned to _G.a, and when assigning a value b to a, Lua
executes the statement “_G.a = b”. If the current environment
is changed to another table, non-local variable access and
assignment will operate using that table instead of _G.

As noted in the section “Variables and Scopes” on page 10,
Lua’s “globals by default” approach can lead to subtle bugs
due to negligence. Example 10 primitively demonstrates how
to overload table indexing and assignment in _G in order to
catch undefined global variable access and prevent accidental
global variable creation. The section “Other Operator and
Statement Metamethods” on page 36 covers the metamethods
used in this example.

Example 10. Control global variable access and
assignment

setmetatable(_G, {
 __index = function(t, key)
 local errmsg = "Unknown global ' s'"%
 error(string.format(errmsg, key))
 end,

 __newindex = function(t, key, value)
 local errmsg = "Attempt to create global ' s'. \z%
 Use rawset() instead."
 error(string.format(errmsg, key))
 end
})

Environments | 47

_G
The global environment table.

NOTE

Reassigning or deleting _G does not affect the global
environment. Deleting values from or adding values to
_G does.

_ENV Lua 5.2, 5.3, 5.4
The current environment table. Unless previously set,
defaults to _G.

getfenv(f) Lua 5.1
getfenv([level]) Lua 5.1

Returns the environment table for function f or the
function at level number level. Level 1 refers to the
current function (or the current file or module if there is
no current function), 2 refers to the caller of the current
function, and so on. Level 0 refers to the global
environment. The default value of level is 1.

_ENV = t Lua 5.2, 5.3, 5.4
Designates table t as the current environment within the
current block starting after the point of declaration and
within any sub-blocks. The environment outside the
current block is unaffected.

setfenv(f, t) Lua 5.1
setfenv(level, t) Lua 5.1

Designates table t as the environment for function f or
the function at level number level. Level 1 refers to the
current function (or the current file or module if there is
no current function), 2 refers to the caller of the current
function, and so on. Level 0 refers to the global
environment.

Error Handling and Warnings
Lua provides basic error handling facilities. Whenever Lua
raises an error (either on its own or from an explicit
instruction), it returns to the host program for handling unless

48 | Lua Quick Reference – Free Download

the error occurs within a protected call. A protected call
catches and handles errors from within Lua itself. The
functions pcall() and xpcall() described in this section are
protected calls, as is coroutine.resume(), which is described in
the section “Start, Resume, and Yield a Thread” on page 72.
Example 11 demonstrates how to handle errors raised when
attempting to decode a text file’s contents with an external,
third-party function.

Errors normally have defined handlers. For the times when
this is not the case (e.g. while closing to-be-closed variables,
and during garbage collection), Lua 5.4 introduces the ability
to emit warnings. However, the host is not required to follow
this convention.

Example 11. Handle string encoding errors

local encodings = {
 "UTF-8", "UTF-16", "UTF-32", "ASCII", "ISO-8859-1"
}
local f = io.open(filename, "r")
local text = f:read("a")
f:close()
for i = 1, #encodings do
 -- Attempt to convert file contents to UTF-8.
 local ok, conv = pcall(toutf8, text, encodings[i])
 if ok then
 text = conv
 goto encoding_detected
 end
end
error("Could not detect file encoding.")
::encoding_detected::
--[[process UTF-8-encoded text]]

pcall (f[, arg1, arg2, …, argN])
xpcall(f, error_handler[, arg1, arg2, …, argN]) Lua 5.2, 5.3, 5.4
xpcall(f, error_handler) Lua 5.1

Calls function f with argument values arg1, arg2, …,
argN, and returns true if an error did not occur, followed
by all of the values returned by f. Otherwise, returns
false followed by an error message, which in the case of
xpcall() is the value returned by function error_han
dler (which was passed the original error message as a
function argument).

Error Handling and Warnings | 49

error(message[, level])
Raises an error at level number level with string message
as the error message. level indicates where in the call
stack the error should be reported at. A level of 1
implicates the current function (or the current file or
module if there is no current function), 2 implicates the
caller of the current function, and so on. A level of 0
omits call stack information. The default value of level is
1.

NOTE

message can be any Lua value, not just a string. (For
example, an error could be reported as a table that
contains a numeric error code and string message.)
However, since Lua itself only raises errors with string
messages, and for the sake of simplicity, this book
refers to all error values as error message strings.

assert(expr[, message])
Asserts that expression expr evaluates to boolean true
(i.e. not false or nil), and returns all values returned by
expr. Otherwise, raises an error with string message as the
error message, which is "assertion failed!" by default.

TIP

The statement “assert(expr, message)” is a shortcut for
“if not expr then error(message) end”.

warn(message[, …]) Lua 5.4
Emits a warning message composed of the concatenation
of all string arguments given. If message is "@off" or
"@on", warning emission is turned off or on, respectively.

By default, warnings are printed to io.stderr. The
section “Error and Warning Handling” on page 130
describes how a host program can alter this behavior.

50 | Lua Quick Reference – Free Download

Load and Run Dynamic Code
Lua can load and execute user-provided chunks of Lua code
at run-time. It can also do this in a sandboxed environment as
a security measure. Example 12 demonstrates how to safely
execute the contents of a sample configuration file and store
all key-value assignments in a table for processing.

Example 12. Safely load a configuration file

-- File "config.lua".
width = 600
height = 400
home_path = "/home/mitchell"

-- Program code.
local config = {}
assert(loadfile("config.lua", "t", config))()
for option, setting in pairs(config) do
 --[[process option and setting...]]
end

dofile([filename])
Executes as a chunk of Lua code the contents of the file
identified by string filename or io.stdin and returns all
values returned by that chunk.

load (chunk[, name[, mode[, env]]]) Lua 5.2, 5.3, 5.4
loadstring(chunk[, name]) Lua 5.1
loadfile ([filename[, mode[, env]]]) Lua 5.2, 5.3, 5.4
loadfile ([filename]) Lua 5.1

Loads as a chunk of Lua code string chunk or the
contents of the file identified by string filename or
io.stdin and returns a function that will execute that
chunk when called, within environment env. name is an
optional string name associated with the chunk and is
used in error messages. String mode indicates whether the
chunk can be text ("t"), binary ("b"), or both ("bt"), and
its default value is "bt". (Binary chunks are produced by
Lua’s luac or luac.exe executable.) The section
“Environments” on page 47 describes environments.

If the chunk contains a syntax error, nil is returned
followed by an error message.

chunk may also be a function that, when repeatedly

Load and Run Dynamic Code | 51

called, returns strings to be concatenated into a single
chunk (a blank string or nil signals the end of the
chunk).

CAUTION

Lua does not verify the integrity of, or in any way
sanitize binary chunks. Running truly arbitrary binary
chunks may be unsafe.

Numeric Facilities
Lua’s math module, math, provides basic numeric functions
and constants.

NOTE

Lua 5.3 removed a few previously available
mathematical functions related to subjects like
hyperbolic trigonometry and float decomposition.
Those functions (along with other useful ones) are
available in an external module maintained by one of
Lua’s authors.8

math.sqrt(x)
Returns the square root of number x.

math.abs(x)
Returns the absolute value of number x.

math.ceil (x)
math.floor(x)

Returns number x rounded up or down to the nearest
integer.

math.min(…)
math.max(…)

Returns the least or greatest of the argument values
given.

8 http://webserver2.tecgraf.puc-rio.br/~lhf/ftp/lua/#lmathx

52 | Lua Quick Reference – Free Download

math.fmod(x, y)
Returns the remainder of x / y that rounds the quotient
towards zero. (By contrast, the modulo (%) operator
rounds towards minus infinity.)

math.modf(x)
Returns the integral and fractional parts of number x.

math.huge
A value greater than any other numeric Lua value
(typically the special float value that represents infinity).

Trigonometric Functions
Lua can do basic trigonometry.

math.pi
The value of the constant π.

math.sin(x)
math.cos(x)
math.tan(x)

Returns the sine, cosine, or tangent of number x, which
is in radians.

math.asin(x)
math.acos(x)
math.atan(x) Lua 5.1, 5.2

Returns, in radians, the arc sine, arc cosine, or arc
tangent of number x.

math.atan(y[, x]) Lua 5.3, 5.4
math.atan2(y, x) Lua 5.1, 5.2

Returns, in radians, the arc tangent of y / x in the proper
quadrant. x can be 0 and its default value is 1.

math.sinh(x) Lua 5.1, 5.2
math.cosh(x) Lua 5.1, 5.2
math.tanh(x) Lua 5.1, 5.2

Returns the hyperbolic sine, cosine, or tangent of
number x.

math.rad(x)
math.deg(x)

Returns number x converted from degrees to radians and
vice-versa.

Numeric Facilities | 53

Exponential and Logarithmic Functions
Lua can work with exponentials and logarithms.

math.exp(x)
Returns ex.

math.log(x[, base]) Lua 5.2, 5.3, 5.4
math.log(x) Lua 5.1

Returns the logarithm of number x in base number base.
The default value of base is e.

math.log10(x) Lua 5.1
Returns the base-10 logarithm of number x.

Generate Random Numbers
Lua can generate pseudo-random numbers.

math.randomseed([x[, y]]) Lua 5.4
math.randomseed(x) Lua 5.1, 5.2, 5.3

Reinitializes the pseudo-random number generator with
a seed produced from integers x and y. Identical seeds
generate identical sequences of pseudo-random
numbers. In Lua 5.4, if x and y are not given, they are
generated, used, and returned.

TIP

In Lua 5.1, 5.2, and 5.3, the random number generator
is always initialized with the same seed. The statement
“math.randomseed(os.time())” can be used to generate
different sets of random numbers each time a program
runs, provided the run frequency is no more than once
per second.

math.random()
Returns a pseudo-random float in the range [0, 1).

math.random([m,]n)
Returns a pseudo-random integer between m and n,
inclusive. The default value of m is 1.

In Lua 5.4, if n is 0 and m is not given, a pseudo-random

54 | Lua Quick Reference – Free Download

integer in the range [math.mininteger, math.maxinteger] is
returned.

Work with Integers
Lua 5.3 introduced some features related to its new ability to
represent numbers internally as integers.

math.type(x) Lua 5.3, 5.4
Returns "integer" if value x is a number whose internal
representation is an integer, "float" if x is a number
whose internal representation is a float, or nil if x is not
a number.

math.tointeger(x) Lua 5.3, 5.4
Returns number x converted to an integer, or nil if the
conversion fails.

math.ult(m, n) Lua 5.3, 5.4
Returns whether or not integer m is less than integer n
when compared as unsigned integers.

math.mininteger Lua 5.3, 5.4
math.maxinteger Lua 5.3, 5.4

The least and greatest possible integer values Lua can
represent (typically -263 and 263, respectively). Integers
wrap on overflow or underflow.

String Facilities
Lua’s string modules, string and utf8, contain tools for
creating compound strings, querying and transforming strings,
searching and replacing within strings, and working with
UTF-8-encoded strings. These modules operate under the
premise that byte positions in strings start at 1 (not 0, as in C).
Byte positions may be negative, which indicates string
functions will count from the end of the string. With the aid
of the string module, string values also behave like objects
(e.g. the expression “s:lower()” is equivalent to
“string.lower(s)”). The following sections cover Lua’s string
modules.

String Facilities | 55

Create a Compound String
In addition to the quote and bracket syntax for creating
simple strings, Lua provides some convenience functions for
creating compound strings, including formatted strings. Tables
4 and 5 list the flags and specifiers available for formatted
strings.

Table 4. String formatting flags

Character Meaning

+ or ' ' (space) Display a ‘+’ sign or leading space, respectively, in
front of positive numbers.

- or 0 Left-align or pad with leading zeros, respectively, a
placeholder’s value.

Always display a decimal point and do not truncate
trailing zeros for floats, or display a leading ‘0x’ or '0’
for hexadecimal and octal numbers, respectively.

Table 5. String formatting specifiers

Character Argument Value Type Meaning

d, i Integer Decimal integer

u Integer Unsigned decimal integer

x, X Integer Hexadecimal integer

o Integer Octal integer

f, F Float Decimal float

e, E Float Exponential notation float

g, G Float The shorter of decimal or
exponential notation float

a, A Float Hexadecimal float

c Integer Character byte

s String String

pa Any Hexadecimal address

q String Safely-quoted Lua string

56 | Lua Quick Reference – Free Download

Character Argument Value Type Meaning

% N/A Literal ‘%’

a Only in Lua 5.4.

string.format(format, …)
Returns a formatted version of the argument values
given, subject to string format. format contains a
sequence of placeholders that specify how to format
their respective values. Each placeholder has the
following syntax:

[% flags][field_width][.precision]specifier

Table 4 lists valid flags for flags along with their
meanings. field_width specifies the minimum number of
characters used to display a placeholder’s value.
precision indicates the minimum number of digits to
display (including leading zeros) for integers, the
minimum number of decimal places to display for floats,
and the minimum number of bytes to display for strings.
Table 5 lists valid specifiers for specifier along with
their meanings.

string.rep(s, n[, separator]) Lua 5.2, 5.3, 5.4
string.rep(s, n) Lua 5.1

Returns a string composed of n of concatenations of
string s separated by string separator. The default value
of separator is the empty string.

table.concat(t[, separator[, i[, j]]])
Returns the string concatenation of all elements in list t
between indices i and j, inclusive, separated by string
separator. The default value of separator is the empty
string, and the default values of i and j are 1 and #t,
respectively.

Example 16 on page 68 illustrates how to efficiently
pretty print the contents of a table.

string.char(…)
Returns a string composed of characters whose byte
values are the argument values given.

String Facilities | 57

Create and work with a binary string
Lua 5.3 introduced the ability to create and work with binary
strings packed with structured data. Table 6 lists the options
available for specifying data to pack. The data types for many
of those options are C data types. Example 13 demonstrates
how data from a game might be saved in a simple,
unencrypted binary format.

Table 6. Conversion options for packed strings

Option Meaning Option Meaning

< Little endian T size_t

> Big endian i[n] Integer of n bytesc

= Native endiana I[n] Unsigned integer
of n bytesc

![n] Maximum
alignment of nb, c

f float

b char d double

B unsigned char n lua_Number

h short cn String of n bytes

H unsigned short z Zero-terminated
string

l (lower-case ‘L’) long s[n] String preceded by
its byte length as
an integer of n
bytesc

L unsigned long x Padding byte (0)

j lua_Integer Xop Empty version of
option op for
alignment padding

J lua_Unsigned ' ' (space) Ignored

a This is the default endian. It assumes the whole system is either big or little endian.
b The default value is 1. An alignment of n ensures that for the length of the string, there is a

data value starting at every byte multiple of n (unless that data value’s size is larger than
n). This does not mean every data value starts at a multiple of n. Values are padded as
necessary in order to ensure alignment.

c n is optional, but must be between 1 and 16.

58 | Lua Quick Reference – Free Download

Example 13. Save game data in a binary format

-- Saved player data comprises a name, level (0-100),
-- attribute stats (0-255), map xy-coordinate position,
-- and item inventory preceded by inventory size.
-- Inventory items each have an id (0-65535) and count
-- (0-255).

local info_fmt = "zI1"
local stats_fmt = "I1I1"
local position_fmt = "ii"
local inventory_item_fmt = "I2I1"

function save_player_data(player)
 -- Generate static player save data.
 local data = {
 info_fmt:pack(player.name, player.level),
 stats_fmt:pack(player.strength, player.defense),
 position_fmt:pack(player.x, player.y),
 string.pack("I1", #player.inventory)
 }
 -- Generate dynamic player save data.
 for i = 1, #player.inventory do
 local item = player.inventory[i]
 data[#data + 1] = string.pack(inventory_item_fmt,
 item.id, item.count)
 end
 data = table.concat(data)
 --[[save data...]]
end

function load_player_data(player)
 --[[read data...]]
 local name, level, stats, x, y, inventory_size, pos
 -- Read static player save data.
 name, level, pos = info_fmt:unpack(data)
 stats = {stats_fmt:unpack(data, pos)}
 x, y, pos = position_fmt:unpack(data, stats[3])
 -- Read dynamic player save data.
 inventory_size, pos = string.unpack("I1", data, pos)
 local inventory = {}
 for i = 1, inventory_size do
 local id, ct
 id, ct, pos = inventory_item_fmt:unpack(data, pos)
 inventory[#inventory + 1] = {id = id, count = ct}
 end
 -- Load player data.
 player.name, player.level = name, level
 player.strength, player.defense = stats[1], stats[2]
 player.x, player.y = x, y

String Facilities | 59

 player.inventory = inventory
end

string.pack(format, …) Lua 5.3, 5.4
Returns a serialized, binary string version of the
argument values given, subject to string format. Table 6
lists the options available for serializing values.

string.packsize(format) Lua 5.3, 5.4
Returns the number of bytes in any serialized, binary
string constructed from string format, which cannot
contain the ‘z’ or ‘s’ options. Table 6 lists the options
available for serializing values.

string.unpack(format, s[, init]) Lua 5.3, 5.4
Returns, subject to string format (and ignoring padding
bytes), the unserialized values in binary string s starting
at byte position init, and also returns the position in s
after the last returned value.

Query and Transform Strings
Strings can be queried and transformed. However, since
strings are immutable, the results from string transformations
are new strings.

string.sub(s, i[, j])
Returns the substring of string s between byte positions
i and j, inclusive. The default value of j is -1.

string.byte(s[, i[, j]])
Returns the byte values of the characters in string s
between byte positions i and j, inclusive. The default
values for i and j are 1 and i, respectively.

string.len(s)
Returns the number of bytes in string s, including
embedded zeros. Equivalent to the expression “#s”.

string.lower(s)
string.upper(s)

Returns a copy of string s with all upper-case letters
converted to lower-case or all lower-case letters
converted to upper-case, according to the current locale.

60 | Lua Quick Reference – Free Download

string.reverse(s)
Returns a copy of s with its bytes reversed.

Search and Replace Within a String
Lua’s searching and replacing facilities for strings are unique,
yet powerful. Due to size and memory considerations, Lua
does not support regular expressions (regex). Instead, Lua has
its own pattern-matching language that is very small,
remarkably fast, and extremely efficient. Search strings that
utilize this language are called patterns. Table 7 lists Lua’s
pattern syntax and Example 14 exhibits many of Lua’s pattern
capabilities with a simple URL parser.

TIP

Patterns that use anchors (‘^’ and/or ‘$’) match text
much more quickly than patterns without anchors.

Example 14. Simple URL parser

function urlparse(url)
 -- Decode escapes like " 5C" -> "\".%
 url = url:gsub(" (x x)", function(c)%% % %
 return string.char(tonumber(c, 16))
 end)
 -- Parse out URL parts.
 local patt = "^([^:]+)://([^/]+)(.*)$"
 local scheme, host_part, rest = url:match(patt)
 local host, port = host_part:match("^([^:]+):?(d*)")%
 local path, query = rest:match("^([^?]*) ??(.*)$")%
 local parts = {}
 for part in query:gmatch("[^&]+") do
 local k, v = part:match("^([^=]+)=(.*)$")
 parts[k] = v
 end
 -- Return parsed parts in a table.
 return {
 scheme = scheme,
 host = host, port = tonumber(port) or 80,
 path = path, query = parts
 }
end

urlparse("http://www.example.com/path?key=value")

String Facilities | 61

-- results in:
-- {scheme = "http", host = "www.example.com",
-- port = 80, path = "/path", query = {key = "value"}}

Table 7. Pattern syntax

Characters Meaning

. Matches any character.

%a or %A Matches any letter or its complement, respectively.

%c or %C Matches any control character or its complement,
respectively.

%d or %D Matches any digit or its complement, respectively.

%g or %G Matches any printable character except space or matches its
complement, respectively. (Not in Lua 5.1.)

%l or %L Matches any lower-case letter or its complement, respectively.

%p or %P Matches any punctuation character or its complement,
respectively.

%s or %S Matches any space character or its complement, respectively.

%u or %U Matches any upper-case character or its complement,
respectively.

%w or %W Matches any alphanumeric character or its complement,
respectively.

%x or %X Matches any hexadecimal digit or its complement,
respectively.

%z or %Z Matches an embedded zero or its complement, respectively.
(Only in Lua 5.1, which cannot handle ‘\0’.)

[set] or [^set] Matches any character in set (including ranges like [A-Za-z])
or its complement, respectively.

* Matches the previous character class zero or more times.
The character sequences listed previously in this table are
character classes.

+ Matches the previous class one or more times.

- Matches the previous class zero or more times, but as few
times as possible.

? Matches the previous class once, or not at all.

62 | Lua Quick Reference – Free Download

Characters Meaning

%bxy Matches a balanced range that starts with x and ends with y.

%f[set] Matches a position where the next character belongs to set,
but the previous character does not.

^ or $ Matches the beginning or end of a line, respectively, unless
inside a set.

(pattern) Matches pattern pattern and captures its text. An empty
pattern captures the current position.

%n Matches the nth captured pattern’s text.

%x Matches non-alphanumeric character x literally, ignoring any
special meaning it may have by itself.

string.find(s, pattern[, init[, plain]])
Searches string s for pattern pattern starting at byte
position init, and returns the start and end byte
positions of the match followed by any string values
captured by pattern or, if no match was found, returns
nil. The default value of init is 1. plain is a flag that
indicates whether or not to treat pattern as a literal string
instead of a pattern, and its default value is false.

string.gmatch(s, pattern[, init]) Lua 5.4
string.gmatch(s, pattern) Lua 5.1, 5.2, 5.3

Returns an iterator that can be used in a for loop to
iterate over all occurrences of pattern pattern in string s
starting at byte position init. The default value of init is
1. If pattern has captures, the captured values are
assigned to loop variables. Otherwise, the entire match is
used.

string.gsub(s, pattern, replacement[, n])
Returns a copy of string s where all (or the first n)
instances of pattern pattern are replaced by string
replace
ment, and also returns the number of replacements made.
replacement may contain “%d” sequences, which
represent the dth value captured by pattern (“ 0% ”
represents the entire match).

replacement may also be a table or function. If it is a
table and the match or first capture exists as a key, that
key’s associated value is used as the replacement text. If

String Facilities | 63

replacement is a function, that function is called with
either the captured values or the entire match passed as
arguments. If the function returns a string or number,
that value is used as the replacement text.

string.match(s, pattern[, init])
Searches string s for pattern pattern starting at byte
position init, and returns either the values captured by
pat
tern or the entire match itself or, if no match was found,
returns nil. The default value of init is 1.

Work with UTF-8 Strings
Lua 5.3 introduced some basic utilities for creating and
working with strings that contain UTF-8-encoded characters.
(These utilities truly are basic, since more extensive support
for UTF-8 is too complicated for a small, simple language like
Lua.) UTF-8 is a universally accepted and widely-used
encoding for strings that is compatible with ASCII. Whereas
ASCII characters are single bytes, UTF-8 characters may be
multiple bytes in length. Despite this, most of the functions in
Lua’s utf8 module still operate on byte positions, not
character positions.

utf8.char(…) Lua 5.3, 5.4
Returns a string composed of UTF-8 characters whose
numeric codepoints are the argument values given.

utf8.codepoint(s[, i[, j[, lax]]]) Lua 5.4
utf8.codepoint(s[, i[, j]]) Lua 5.3

Returns the numeric codepoints of the valid UTF-8
characters in string s that start between byte positions i
and j, inclusive. The default values of i and j are 1 and
i, respectively. lax is a flag that indicates whether or not
to include codepoints for invalid UTF-8 characters, and
its default value is false.

utf8.len(s[, i[, j[, lax]]]) Lua 5.4
utf8.len(s[, i[, j]]) Lua 5.3

Returns the number of valid UTF-8 characters in string s
that start between byte positions i and j, inclusive. The
default values of i and j are 1 and -1, respectively. lax is
a flag that indicates whether or not to include invalid

64 | Lua Quick Reference – Free Download

UTF-8 characters, and its default value is false. If s
contains an invalid byte sequence, returns false
followed by the byte position of the invalid byte.

utf8.codes(s[, lax]) Lua 5.4
utf8.codes(s) Lua 5.3

Returns an iterator that can be used in a for loop to
iterate over all pairs of byte positions and valid UTF-8
codepoints in string s. lax is a flag that indicates whether
or not to include invalid UTF-8 codepoints, and its
default value is false.

utf8.offset(s, n[, i]) Lua 5.3, 5.4
Returns the byte position in string s of the nth UTF-8
character from byte position i, or nil if no character was
found. The default value of i is 1 for non-negative n and
#s + 1 for negative n.

utf8.charpattern Lua 5.3, 5.4
A pattern that matches a single UTF-8 character in a
string.

Table and List Facilities
Lua provides built-in functions for iterating over tables. It also
supplies a table module, table, that (despite the name)
contains tools for manipulating the contents of lists. The table
module operates under the premise that its functions receive
lists as argument values. A list is a special kind of table that
has non-nil values assigned to integer keys from 1 to n
where n is the number of elements in the list. (Lists may also
have non-numeric keys, but those keys and their associated
values are ignored by table.) Prior to Lua 5.3, table bypassed
all metamethods. The following sections describe Lua’s
facilities for working with tables and lists.

Iterate Over a Table
Lua can iterate over tables and lists using a for loop. By
nature tables (and lists) are unordered, regardless of the
sequence in which key-value pairs were added to them and
regardless of their logical order. However, there are methods
for iterating over tables in a specific order, such as the one

Table and List Facilities | 65

Example 15 demonstrates, which iterates over a table based
on the order of its string keys.

NOTE

Modifying a table during traversal is permitted as long
as no new key-value pairs are added. If a new pair is
added, traversal must begin anew.

Example 15. Iterate over a table in order by string keys

-- Create the table to be iterated over.
local t = {a = 1, b = 2, c = 3, --[[...]] z = 26}

-- Create intermediate list of keys and sort it.
local keys = {}
for k, v in pairs(t) do
 keys[#keys + 1] = k
end
table.sort(keys)

-- Now iterate in key order.
for _, k in ipairs(keys) do
 local v = t[k]
 --[[process v...]]
end

pairs(t)
Returns an iterator that can be used in a for loop to
iterate over all key-value pairs in table t. If t has the
metamethod __pairs(), that metamethod is called to
produce an iterator. The section “Function Metamethods”
on page 38 covers this metamethod in its generic form.

Iteration order is not defined, even if t is a list.

ipairs(t)
Returns an iterator that can be used in a for loop to
iterate over ordered index-element pairs in list t. In Lua
5.3 and 5.4, if t has the metafield __index or the
metamethod __index(), that entity is used to produce the
pairs. In Lua 5.2, if t has the metamethod __ipairs(),
that metamethod is called to produce an iterator. The
sections “Other Operator and Statement Metamethods”
on page 36 and “Function Metamethods” on page 38

66 | Lua Quick Reference – Free Download

cover these respective cases. In Lua 5.1, iteration
behavior cannot be altered.

TIP

A numeric for loop from 1 to #t is slightly more
efficient.

Manipulate Lists
The contents of lists can be manipulated in-place.

table.insert(t, [i,]value)
Inserts value value into list t at index i, shifting
subsequent elements towards the end of the list. The
default value of i is #t + 1.

TIP

The statement “t[#t + 1] = value” is a common
shortcut for appending to a list rather than calling
table.insert().

table.remove(t[, i])
Removes from list t the value at index i, shifting
subsequent elements towards the beginning of the list,
and returns the removed value. The default value of i is
#t.

table.sort(t[, f])
Sorts the elements of list t in-place, subject to
comparator function f. f is passed two list elements and
should return true if the first element comes before the
second. The default comparator is the “less than”
operator.

NOTE

Table and List Facilities | 67

The sort algorithm is not stable. Any equal elements
may have their relative positions changed during a
sort.

table.move(from, i, j, k[, to]) Lua 5.3, 5.4
Moves all elements between indices i and j, inclusive,
from list from to list to, starting at index k in to. The
default value of to is from.

Unpack Lists
Multiple elements can be extracted from a list for use in
multiple variable assignment statements, multiple value return
statements, function calls with multiple arguments, and table
constructors.

table.unpack(t[, i[, j]]) Lua 5.2, 5.3, 5.4
unpack (t[, i[, j]]) Lua 5.1

Returns the elements in list t between indices i and j,
inclusive. The default values of i and j are 1 and #t,
respectively.

Create Strings from Lists
Instead of concatenating a large number of individual strings
together into one string, it is far more efficient to store the
individual strings in a list and concatenate them all together at
once (sometimes with a separator as well). Example 16
illustrates how to pretty print the contents of a table.

Example 16. Pretty print a table

-- Print something like "{a = 1, b = 2, c = 3}".
local items = {}
for k, v in pairs(t) do
 items[#items + 1] = string.format(" s = s", k, v)% %
end
table.sort(items)
print(string.format("{ s}", table.concat(items, ", ")))%

table.concat(t[, separator[, i[, j]]])
Returns the string concatenation of all elements in list t
between indices i and j, inclusive, separated by string

68 | Lua Quick Reference – Free Download

separator. The default value of separator is the empty
string, and the default values of i and j are 1 and #t,
respectively.

Thread Facilities
Lua’s threading facilities are supplied by coroutines.
Coroutines run independently from one another, but share the
same global environment. However, unlike true multi-
threading, only one coroutine can be active at a time.
Coroutines work collaboratively by resuming one another and
yielding to one another. The typical threading procedure is as
follows:

1. The main Lua thread creates a new (suspended) thread T
with a function body that does some work.

2. Upon starting T, the main thread is temporarily
suspended, and the body of T is executed.

3. T performs some work and then yields back to the main
thread.

4. The main thread resumes right where it left off, at the
point where it started T. T is now suspended.

5. The main thread performs some work and then resumes
T.

6. T resumes right where it left off, at the point where it
yielded back to the main thread. The main thread is now
suspended.

7. This process repeats until T completes its work and the
thread finishes.

8. The main thread resumes right where it left off and
continues indefinitely. T is now dead and cannot be
resumed.

During each transition between threads, values can be
exchanged. When the main thread starts T, it can pass values
to the function body of T. When T yields, it can pass values
back to the main thread. When the main thread resumes T, it
can pass more values to T. And so on.

All of this is embodied in Example 17 and described in the
following sections. Additionally, Example 18 illustrates how a

Thread Facilities | 69

thread can be used as an iterator in a for loop.

Example 17. Emulate string.gsub() without captures

-- Returns a thread that, for each instance of a
-- pattern found, yields that match to main thread and
-- substitutes it with the replacement received.
local function gsub(str, patt, init)
 init = init or 1
 return coroutine.create(function()
 local buffer = {} -- for building resultant string
 local s, e = str:find(patt, init)
 while s do
 -- Add substring up to match to result buffer.
 buffer[#buffer + 1] = str:sub(init, s – 1)
 -- Yield match, receive replacement, and add to
 -- result buffer.
 local match = str:sub(s, e)
 local replacement = coroutine.yield(match)
 buffer[#buffer + 1] = replacement
 -- Continue the search.
 init = e + 1
 s, e = str:find(patt, init)
 end
 -- Build and return the final replacement string.
 return table.concat(buffer)
 end)
end

-- Replaces all instances of a pattern in a string by
-- creating a thread that searches within that string
-- and, for each match yielded, produces a suitable
-- replacement.
local function threaded_gsub(str, patt)
 local thread = gsub(str, patt)
 local ok, match = coroutine.resume(thread)
 while coroutine.status(thread) == "suspended" do
 local replacement = --[[produce from match...]]
 ok, match = coroutine.resume(thread, replacement)
 end
 return match -- final resultant string
end

Example 18. Generate list permutations

-- Permutes a list by taking each element and
-- recursively re-ordering the remaining elements.
-- For instance, given {1, 2, 3}:
-- Takes 1 and re-orders 2 and 3 (1, 2, 3 and 1, 3, 2).
-- Takes 2 and re-orders 1 and 3 (2, 1, 3 and 2, 3, 1).

70 | Lua Quick Reference – Free Download

-- Takes 3 and re-orders 1 and 2 (3, 1, 2 and 3, 2, 1).
local function permute(list, i)
 i = i or 1
 if i > #list then
 coroutine.yield(list)
 else
 for j = i, #list do
 list[i], list[j] = list[j], list[i]
 permute(list, i + 1)
 list[i], list[j] = list[j], list[i]
 end
 end
end

-- Iterator.
local function permutations(list)
 return coroutine.wrap(function() permute(list) end)
end

for permutation in permutations{1, 2, 3} do
 --[[process permutation...]]
end

Create a Thread
Threads can be created in one of two ways.

coroutine.create(f)
Creates and returns a suspended thread with function f
as its body.

coroutine.wrap(f)
Creates a new thread with function f as its body and
returns a function that, when called, starts or resumes
that thread. The first time the returned function is called,
the argument values passed to it are passed as arguments
to the thread’s function body. In subsequent calls,
arguments passed are used as the return values of the
call to coroutine.yield() that originally yielded the
thread.

If the thread subsequently yields without error, the
function call returns the argument values passed to the
yielding coroutine.yield() call. If the thread finishes
without error, the function call returns the values
returned by the thread’s function body. Any errors that
occur are not handled by the returned function.

Thread Facilities | 71

Start, Resume, and Yield a Thread
Threads can be started, resumed, and yielded.

coroutine.resume(thread[, val1, val2, …, valN])
Starts or resumes the execution of thread thread with
values val1, val2, …, valN as arguments. If thread is
being started, those values are passed as arguments to
the thread’s function body. If thread is being resumed,
those values are used as the return values of the call to
corou
tine.yield() that originally yielded thread.

If thread subsequently yields without error, this function
returns true followed by the argument values passed to
the yielding coroutine.yield() call. If thread finishes
without error, this function returns true followed by the
values returned by the thread’s function body. If an error
does occur, this function returns false followed by the
error message.

coroutine.isyieldable([thread]) Lua 5.4
coroutine.isyieldable() Lua 5.3

Returns whether or not thread thread or the running
thread can yield.

coroutine.yield([…])
Suspends execution of the current thread, using any
argument values given as the (potentially extra) return
values of the call that originally started or resumed this
thread.

In Lua 5.1, threads cannot be suspended when a C
function, metamethod, or iterator is active.

Query Thread Status
Threads can be queried for their current status.

coroutine.status(thread)
Returns the string status of thread thread: "running" if the
thread is running, "suspended" if the thread has not yet
started or has yielded, "normal" if the thread is active but
not running (i.e. it called coroutine.resume() on another
thread), or "dead" if the thread has finished (whether

72 | Lua Quick Reference – Free Download

normally, due to an error, or via coroutine.close()).

coroutine.running()
Returns the running thread followed by a flag that
indicates whether or not that thread is the main thread. If
the main thread is running in Lua 5.1, returns nil
instead.

Close a Thread
Threads can be closed in Lua 5.4, although this is typically
only done when a thread has variables that need to be closed
and either that thread is suspended and not expected to be
resumed, or an error has occurred inside of it.

coroutine.close(thread) Lua 5.4
Closes thread thread and its to-be-closed variables and
returns true if no error occurred during the closing
process. Otherwise, returns false and an error message.

Input and Output Facilities
Lua’s input and output module, io, contains tools for reading
and writing to files and processes. Lua’s operating system
module, os, supplies some simple tools for managing files.
Table 8 lists the modes Lua can open files in and Table 9 lists
the formats available for reading data in. When it comes to
reading and writing files, Lua provides two different models:
the simple model, and the object-oriented model. Each of
these models are described in the following sections, as is
how to manage files and interact with processes.

Table 8. File open modes

Mode Description

"r" Read-only

"w" Write-only (contents erased)

"a" Append only

"r+" Read and write

"w+" Read and write (contents erased)

Input and Output Facilities | 73

Mode Description

"a+" Read and append

"rb", "wb", "ab", "r+b", "w+b", "a+b" For opening binary files

Table 9. Read formats

Format Description Return Value
number Read number bytes String, or nil on end of

file (EOF)

"*n", "n"a Read a number Number, or nil if the
conversion fails

"*l", "l"a Read a line, skipping over the
end of line (EOL) character(s)

String, or nil on EOF

"*L"b, "L"a Read a line with the EOL
character(s)

String, or nil on EOF

"*a", "a"a Read the remainder of the file String (empty on EOF)

a Not in Lua 5.1 or 5.2.
b Not in Lua 5.1.

Simple Input and Output
Lua’s simple input and output model consists of designating a
filename as the file to read from and designating another
filename as the file to write to. Subsequent calls to functions
in Lua’s io module will interact with the designated files. By
default, the file to read from is standard input (stdin) and the
file to write to is standard output (stdout). Example 19
demonstrates something akin to the UNIX tool grep, but with
Lua patterns instead.

Example 19. Echo lines matching a Lua pattern

local date_patt = " d+/ d+/ d+"% % %
local line = io.read("*L")
while line do
 if line:find(date_patt) then
 io.write(line)
 end
 line = io.read("*L")

74 | Lua Quick Reference – Free Download

end
-- Note: for line in io.lines(io.stdin, "*L") do … end
-- is also valid.

io.input(filename)
io.input(file)

Designates the file identified by string filename or file
file to be the current input file.

io.read([…])
Reads and returns values read from the current input file
according to the formats specified by the argument
values given or, if an error occurred, returns nil
followed by the error message. Table 9 lists the available
formats. If no formats are specified, "l" is used in Lua
5.3 and 5.4, while "*l" is used in Lua 5.1 and 5.2.

TIP

If there is still data to read, the expression “io.read(0)”
returns the empty string without reading anything.

io.output(filename)
io.output(file)

Designates the file identified by string filename or file
file to be the current output file.

io.write(…)
Writes the string or number argument values given to the
current output file and returns that file or, if an error
occurred, returns nil followed by the error message.

io.flush()
Saves any unwritten, buffered data to the current output
file.

io.close([file])
Closes file file or the current output file, saving any
unwritten, buffered data to it.

io.lines([filename[, …]]) Lua 5.2, 5.3, 5.4
io.lines([filename]) Lua 5.1

Returns an iterator that can be used in a for loop to
iterate over all lines in the file identified by string
filename or the current input file. Each line is read
according to the formats specified by the extra argument

Input and Output Facilities | 75

values given, and the resulting values are assigned to
loop variables. Table 9 lists the available formats. If no
formats are specified, "l" is used in Lua 5.3 and 5.4,
while "*l" is used in Lua 5.1 and 5.2.

io.input ()
io.output()

Returns the current input and output file, which, by
default, are io.stdin and io.stdout, respectively.

Object-Oriented Input and Output
Lua’s object-oriented input and output model consists of
opening a file, obtaining a file handle for that opened file,
and using that handle to interact with the file. Example 20
illustrates how to obtain a file’s size in bytes.

Example 20. Obtain a file’s size before processing it

local f = io.open(filename, "r")
local size = f:seek("end")
f:seek("set") -- restore position to beginning of file

io.open(filename[, mode])
Opens the file identified by string filename in string
mode mode, and returns a file handle or, if an error
occurred, returns nil followed by the error message.
Table 8 lists the available modes for opening files in. The
default value for mode is "r".

io.stdin
io.stdout
io.stderr

Files that represent the host’s standard input, standard
output, and standard error streams.

io.tmpfile()
Creates a temporary file and returns a file handle for
reading and writing to that file. The returned file is
deleted when the program ends.

os.tmpname()
Returns the string name of a file that can be opened,
written to, and used as a temporary file (e.g. in a shell
command).

76 | Lua Quick Reference – Free Download

For security reasons, on POSIX systems the returned
filename is actually created and must be explicitly
removed.

On Windows, the returned filename is just a base name
and does not include the path to the system’s temporary
directory. The expression “os.getenv("TEMP")” returns
that path.

file:read([…])
Reads and returns values read from file file according to
the formats specified by the argument values given or, if
an error occurred, returns nil followed by the error
message. Table 9 lists the available formats. If no formats
are specified, "l" is used in Lua 5.3 and 5.4, while "*l" is
used in Lua 5.1 and 5.2.

TIP

If there is still data to read, the expression
“file:read(0)” returns the empty string without reading
anything.

file:seek(["cur"])
Returns the current byte position in file file.

file:seek("set"[, offset])
Sets the current byte position in file file to offset
(measured from the beginning of file) and returns that
position. The default value of offset is 0.

file:seek("end")
Sets the current byte position in file file to the end of
file and returns that position.

file:setvbuf("no")
file:setvbuf("full"[, size])
file:setvbuf("line"[, size])

Turns off buffering in file file such that writes occur
immediately, turns on buffering such that file:flush() is
required for writing, or turns on buffering such that only
full lines are written at a time. Integer size specifies the
maximum byte length of the buffer, and its default value
is platform-specific.

Input and Output Facilities | 77

The default buffering for files is line buffering.

file:write(…)
Writes the string or number argument values given to file
file and returns file or, if an error occurred, returns nil
followed by the error message.

file:flush()
Saves any unwritten, buffered data to file file.

file:lines([…]) Lua 5.2, 5.3, 5.4
file:lines() Lua 5.1

Returns an iterator that can be used in a for loop to
iterate over all lines in file file. Each line is read
according to the formats specified by the argument
values given, and the resulting values are assigned to
loop variables. Table 9 lists the available formats. If no
formats are specified, "l" is used in Lua 5.3 and 5.4,
while "*l" is used in Lua 5.1 and 5.2.

NOTE

The returned iterator does not automatically close file
when it is finished, as io.lines() does.

file:close()
Closes file file, saving any unwritten, buffered data to it.

In Lua 5.4, if file is a to-be-closed variable (i.e. it is a
local variable with the attribute <close>), this will
automatically be called when file goes out of scope. In
Lua 5.1, 5.2, and 5.3, this will automatically be called
when file is garbage-collected, though it could take a
while.

io.type(file)
Returns "file" if value file is an open file handle,
"closed file" if file is a closed file handle, or nil if file
is not a file handle.

Manage Files
Lua can manage files on a basic level. (The third-party

78 | Lua Quick Reference – Free Download

module LuaFileSystem9 provides a more complete interface to
the machine’s underlying filesystem.)

os.rename(oldname, newname)
Renames the file or directory identified by string oldname
to string newname and returns true or, if an error occurred,
returns nil followed by the error message and error
code.

os.remove(filename)
Deletes the file or empty directory identified by string
filename and returns true or, if an error occurred, returns
nil followed by the error message and error code.

Start and Interact with a Process
Lua can start a process and read or write to it (but not both).
Example 21 utilizes the underlying operating system as a way
to obtain a directory’s contents.

Example 21. Fetch the contents of a directory

local filenames = {}
local ls_command = "ls -1 " -- or "dir /B "
local p <close> = io.popen(ls_command .. dir)
for filename in p:lines() do
 filenames[#filenames + 1] = filename
end

io.popen(command[, mode])
Runs string shell command command in a separate process
and returns a file handle for reading or writing to that
process, depending on string mode (either "r" for read or
"w" for write, not both). The default value for mode is "r".

In Lua 5.2, 5.3, and 5.4, when file:close() is called on
the returned file handle, the values returned follow the
same format as the values returned by os.execute().

Operating System Facilities
Lua’s operating system module, os, contains tools for
retrieving environment variables, executing shell commands,

9 http://keplerproject.github.io/luafilesystem/

Operating System Facilities | 79

working with dates and times, and changing locale settings.

os.getenv(name)
Returns the string value of the environment variable
whose name is string name, or nil if the variable is
undefined.

os.execute(command)
Executes string shell command command and returns true
if the command terminated successfully, followed by
either "exit" and an exit code if command terminated
normally, or "signal" and a signal number if command was
terminated by a signal. In Lua 5.1, returns the exit status
of command only.

os.exit([code[, close]]) Lua 5.2, 5.3, 5.4
os.exit([code]) Lua 5.1

Terminates the current program with exit status code. In
Lua 5.2, 5.3, and 5.4, code may be true (indicating
normal exit), false (indicating abnormal exit), or a
number. In Lua 5.1, code must be a number. The default
value of code is true in Lua 5.2, 5.3, and 5.4, and 0 in Lua
5.1. If close is true, closes (if applicable in Lua 5.4),
destroys, garbage-collects, and frees the memory used by
all Lua values before terminating. This is useful when
there are outstanding userdata created by the host that
need to be destroyed properly. The default value of
close is false.

Dates and Times
Lua can work with dates and times. Tables 10 and 11 list the
date and time fields used by Lua’s date and time facilities.
Example 22 illustrates how to easily compute a future date
from the current date.

Example 22. Compute a date 90 days in the future

local time = os.date("*t") -- e.g. 01 May 2017
time.day = time.day + 90
local future = os.time(time)
os.date(" d b Y", future) -- e.g. 30 Jul 2017% % %

80 | Lua Quick Reference – Free Download

Table 10. Date and time table fields

Field Description Field Description

year Full yeara sec Seconds of minute

month Decimal montha wday 1-based digit day of
week

day Decimal daya yday Decimal day of year

hour 24-hour hour (the
default is 12)

isdst Daylight savings time
boolean

min Minutes of hour

a Required field.

Table 11. Date and time format fields

Field Meaning Field Meaning

%a Short day name %p AM or PM

%A Full day name %r 12-hour time of day

%b or %h Short month name %R H: M% %
%B Full month name %S Seconds of minute

%c Locale-specific date and
time

%T H: M: S% % %

%C Decimal century %w 0-based digit day of week

%d Decimal day %W Week of year

%D m/ d/ y% % % %x Locale-specific date

%F Y- m- d% % % %X Locale-specific time

%H 24-hour hour %y Short year

%I 12-hour hour %Y Full year

%j Decimal day of year %z GMT-offset

%m Decimal month of year %Z Time zone

%M Minutes of hour %% Literal ‘%’

os.time([t])
Returns the time represented by table t or the current
time. Table 10 lists the significant fields in t used to

Operating System Facilities | 81

represent a date and time.

The time returned is the number of seconds elapsed
since 01 January 1970, 00:00 UTC (“the epoch”).

os.difftime(time2, time1)
Returns the difference in seconds between times time2
and time1.

TIP

If sub-second precision is needed (e.g. when
benchmarking a chunk of CPU-intensive Lua code),
the difference between the values returned by
successive calls to the function os.clock() should be
sufficient.

os.date([format[, time]])
Returns a formatted string representation of time time or
the current time, subject to string format. format specifies
the date and time fields to be included in the formatted
string, and its default value is " c"% . Table 11 lists the
available fields that format can have.

If format starts with ‘!’, time is formatted in Coordinated
Universal Time (UTC).

os.date("*t"[, time])
os.date("!*t"[, time])

Returns a table representation of time time or the current
time, with the fields listed in Table 10. The prefix ‘!’
indicates that the fields of the returned table should be
in Coordinated Universal Time (UTC).

Locale Settings
Lua can alter the running program’s current locale settings,
which specify things like character classes (which characters
belong to which class), how numbers and monetary balances
are formatted, and how dates and times are displayed. Table
12 lists the locale categories that can be changed.

82 | Lua Quick Reference – Free Download

Table 12. Locale categories

Category Description
"all" Affects all categories.

"collate" Affects string comparisons.

"ctype" Affects string.lower(), string.upper(), and character classes
in patterns.

"monetary" Affects monetary formatting in C.

"numeric" Affects number-to-string and string-to-number conversions.

"time" Affects date and time fields in os.date().

os.setlocale(nil[, category])
os.setlocale(locale[, category])

Returns the current locale setting for string category, or
changes the locale setting for category to locale (or the
system’s native locale if locale is "") and returns the new
locale, or nil if the setting could not be changed. The set
of available locales is system-dependent. category can be
any of the categories listed in Table 12, and its default
value is "all".

Memory Management
Lua employs a garbage collector to manage memory by
automatically deleting values no longer in use and freeing up
the memory associated with them. While more often than not
this is sufficient, Lua provides access controls for its collector
should the need arise. For example, games may want to
temporarily disable garbage collection at times when low
latency is crucial.

collectgarbage(["collect"])
Performs a full garbage collection cycle.

collectgarbage("stop")
collectgarbage("restart")

Stops and restarts automatic garbage collection.

collectgarbage("isrunning")
Returns whether or not automatic garbage collection is
on.

Memory Management | 83

collectgarbage("count") * 1024
Returns the number of bytes of memory in use by Lua.

Miscellaneous
Lua provides other miscellaneous facilities.

arg
List of command line arguments passed to the stand-
alone Lua interpreter. Arguments passed to the Lua script
being run start at index 1. The name of the Lua script is
at index 0. Any arguments passed to the Lua interpreter,
including the interpreter itself, have negative indices.

This list will not exist in C programs that embed Lua
unless they explicitly define it.

print(…)
Prints to io.stdout the string representation of all
argument values given, separated by tab characters (‘\t’).

When it comes to determining a value’s string
representation, Lua 5.4 relies on the metamethod
__tostring(), while Lua 5.1, 5.2, and 5.3 rely on the
function to
string().

_VERSION
The Lua version string.

84 | Lua Quick Reference – Free Download

II
The Lua C API

C API Introduction
Lua itself is just a C library. Its three header files provide the
host application with a simple API for creating an embedded
Lua interpreter, interacting with it, and then closing it.
Example 23 demonstrates a very basic stand-alone Lua
interpreter whose command line accepts only a Lua script to
run.

NOTE

The C examples in this book make use of some C99-
specific features, so adapting those examples on a
platform without a C99-compliant compiler will likely
be necessary. However, Lua itself is written in ISO
(ANSI) C, and will compile without modification.

Example 23. Simple stand-alone Lua interpreter

#include "lua.h"
#include "lauxlib.h"
#include "lualib.h"

int main(int argc, char **argv) {
 int status = 0;
 // Create a new embedded Lua interpreter.
 lua_State *L = luaL_newstate();
 // Load all of Lua's standard library modules.
 luaL_openlibs(L);
 // Execute the Lua script specified on the command
 // line. If there is an error, report it.
 if (argc > 1 && luaL_dofile(L, argv[1]) != LUA_OK†) {
 const char *errmsg = lua_tostring(L, -1);
 fprintf(stderr, "Lua error: s\n", errmsg);%
 status = 1;
 }
 // Close the Lua interpreter.
 lua_close(L);
 return status;
}

The header file lua.h provides Lua’s basic C API. All functions
and macros in that file start with the prefix “lua_”. The file

† LUA_OK does not exist in Lua 5.1, which uses the constant 0 instead.

88 | Lua Quick Reference – Free Download

lauxlib.h provides a higher-level API with convenience
functions for common tasks that involve the basic API. All
functions and macros in that file start with the prefix “luaL_”.
The file lualib.h provides Lua’s standard library module API.
Table 13 lists the contents of lualib.h for hosts that prefer to
load only specific Lua standard library modules rather than all
of them at once.

This book refers to Lua’s API functions and macros as “API
functions” for the sake of simplicity.

CAUTION

Programming with Lua in C does not make
programming in C any easier. Type-checking is
mandatory, memory allocation errors are possible, and
segmentation faults are nearly a given when passing
improper arguments to Lua’s API functions. Also, any
unexpected errors raised by Lua will likely cause the
host program to abort. (The section “Error and
Warning Handling” on page 130 describes how to
avoid that unhappy scenario.)

Table 13. Standard library module API (lualib.h)

Standard Library Module Name C Function
"" luaopen_base

LUA_BITLIBNAME ("bit32")a luaopen_bit32a

LUA_LOADLIBNAME ("package") luaopen_package

LUA_MATHLIBNAME ("math") luaopen_math

LUA_STRLIBNAME ("string") luaopen_string

LUA_UTF8LIBNAME ("utf8")b luaopen_utf8b

LUA_TABLIBNAME ("table") luaopen_table

LUA_COLIBNAME ("coroutine") luaopen_coroutinec

LUA_IOLIBNAME ("io") luaopen_io

LUA_OSLIBNAME ("os") luaopen_os

LUA_DBLIBNAME ("debug") luaopen_debug

C API Introduction | 89

a Only in Lua 5.2.
b Not in Lua 5.1 or 5.2.
c Not in Lua 5.1, whose coroutine library module is included in luaopen_base.

lua_State
A C struct that represents both a thread in a Lua
interpreter and the interpreter itself. Data can be shared
between Lua threads but not between Lua interpreters.

TIP

Lua is fully re-entrant and can be used in multi-
threaded code provided the macros lua_lock and
lua_unlock are defined when compiling Lua.

lua_State *luaL_newstate();
Returns a newly created Lua interpreter, which is also
that interpreter’s main thread.

void luaL_openlibs(lua_State *L);
Loads all of Lua’s standard library modules into Lua
interpreter L.

luaL_requiref(L, name, f, 1), lua_pop(L, 1); Lua 5.2, 5.3, 5.4
lua_pushcfunction(L, f), lua_pushstring(L, name),
 lua_call(L, 1, 0); Lua 5.1

Loads one of Lua’s standard library modules into Lua
interpreter L. name is the string name of the module to
load and f is that module’s C function. Table 13 lists
Lua’s standard library module names and their associated
C functions.

Using this in place of luaL_openlibs() is useful for hosts
that want control over which of Lua’s standard library
modules are available. For example, a host can prevent
Lua code from interacting with the underlying operating
system via the os module by simply not loading that
module.

void lua_close(lua_State *L);
Destroys, garbage-collects, and frees the memory used
by all values in Lua interpreter L. In Lua 5.4, also closes
any to-be-closed variables.

90 | Lua Quick Reference – Free Download

Compiling Lua Programs
While a comprehensive guide to compiling Lua programs is
beyond the scope of this book, the general idea is to provide
a C compiler with the path to Lua’s include files, and either
compile Lua’s liblua.a library directly into an executable, or
dynamically link to a Lua shared library (e.g. liblua5.4.so or
lua54.dll) if the platform supports it. For example, compiling
Example 23 on page 88 using the GNU Compiler Collection
(GCC) on Linux might look like:

Compiling and linking to Lua shared library.
gcc -I /usr/include/lua5.4 -o ex23 ex23.c -llua5.4

Compiling with Lua library directly.
gcc -I /path/to/lua5.4/include -o ex23 ex23.c \
 /path/to/lua5.4/liblua.a -lm -ldl

Note that paths and library names can vary from system to
system depending on how and where Lua is installed.

The Stack
The primary method of communication between Lua and its
host is through Lua’s stack, which is treated as a “Last In, First
Out” (LIFO) type of data structure. (The host however has
complete access to all elements on Lua’s stack and can
manipulate them at will.) This book uses the term “the stack”
to refer to the current Lua interpreter’s stack. Communication
between the host and Lua typically proceeds as follows:

1. The host pushes some C values onto the stack as Lua
values.

2. The host invokes Lua to perform an operation on those
values, such as defining a global variable, calling a
function with arguments, or manipulating a table’s
contents. (During such an operation, Lua may call back
into C via C functions, which are described in the section
“C Functions” on page 116.)

3. The host retrieves any resulting Lua values from the stack
as C values and then pops those Lua values off the stack
or, if an error occurred, the host handles it gracefully.

The Stack | 91

Each element on the stack refers to a Lua value that was
pushed onto it (either directly by the host or indirectly by Lua
or its API functions during an operation). Also, each stack
element has an index. Stack indices counting from the bottom
of the stack are positive and start at 1, while stack indices
counting from the top are negative and start at -1.

The stack has a finite size, so stack overflows are possible
due to negligence. Ensuring that every value pushed onto the
stack is eventually popped off helps maintain consistency.
Where applicable, this book explicitly states how many stack
values an API function pushes and pops.

The following sections describe how to prevent a stack
overflow, how to work with stack indices, and how to push,
pop, query, and retrieve stack values.

Increase Stack Size
Lua’s initial stack size is 40 elements, though it is configurable
when compiling Lua. The stack does not grow automatically
as values are pushed onto it, so the host needs to grow it as
necessary prior to pushing values in order to prevent a stack
overflow.

int lua_checkstack(lua_State *L, int n);
Ensures the stack has room for pushing at least n more
values onto it and returns 1 or, if the stack could not be
grown any further, returns 0.

NOTE

The maximum stack size is 8,000 elements in Lua 5.1
and 15,000 elements in Lua 5.2, 5.3, and 5.4. This
arbitrary limit is configurable when compiling Lua. It is
possible to run out of memory before hitting the
maximum stack size, especially in embedded
environments.

Work with Stack Indices
The host can convert between relative and absolute stack

92 | Lua Quick Reference – Free Download

indices, and retrieve or define the index of the stack top.

int lua_absindex(lua_State *L, int index); Lua 5.2, 5.3, 5.4
Returns relative (negative) stack index index converted to
an absolute (positive) index.

int lua_gettop(lua_State *L);
Returns the stack index of the value at the top of the
stack, which is also the number of values currently on
the stack.

lua_settop(lua_State *L, int index);
Makes the value at stack index index the value at the top
of the stack, filling in any empty space with nil values
and popping off any extra values. The stack has exactly
lua_absindex(L, index) values on it after this operation.

The stack size cannot be shrunk.

Push Values
The host can push various types of C values onto the stack as
Lua values. The means for doing so are broken up into
sections that cover how to push values of each of Lua’s eight
types: nil, boolean, number, string, function, table, thread,
and userdata.

Push a nil
The host can push nil values onto the stack.

void lua_pushnil(lua_State *L);
Pushes the value nil onto the stack.

Push a boolean
The host can push boolean values onto the stack.

void lua_pushboolean(lua_State *L, int b);
Pushes boolean value b onto the stack.

Push a number
The host can push number values onto the stack. Lua
provides some C type definitions that differentiate between

The Stack | 93

integers and floats, since Lua numbers can be either.

lua_Integer
The C type associated with Lua integers (typically long
long in Lua 5.3 and 5.4, and ptrdiff_t in Lua 5.1 and
5.2). This is configurable when compiling Lua.

lua_Unsigned Lua 5.2, 5.3, 5.4
The C type associated with unsigned Lua integers
(typically unsigned long long in Lua 5.3 and 5.4, and
unsigned long in Lua 5.2). This is configurable when
compiling Lua.

lua_Number
The C type associated with Lua floats (typically double).
This is configurable when compiling Lua.

void lua_pushinteger (lua_State *L, lua_Integer i);
void lua_pushunsigned(lua_State *L, lua_Unsigned i); Lua 5.2
void lua_pushnumber (lua_State *L, lua_Number n);

Pushes onto the stack integer value i or float value n.

Push a string
The host can push various kinds of string values onto the
stack. Strings can be C-style strings, strings with embedded
zeros, and formatted strings. Table 14 lists the placeholders
available for formatted strings.

Table 14. String formatting placeholders

Placeholder Argument Type Meaning

%c int Character byte

%d int Integer

%f lua_Number Float

%Ia (upper-case ‘i’) lua_Integer Integer

%p Pointer Hexadecimal address

%s Zero-terminated string String

%Ua long int UTF-8 character

%% N/A Literal ‘%’

a Not in Lua 5.1 or 5.2.

94 | Lua Quick Reference – Free Download

const char *lua_pushstring (lua_State *L,
 const char *s); Lua 5.2, 5.3, 5.4
void lua_pushstring (lua_State *L,
 const char *s); Lua 5.1

const char *lua_pushlstring (lua_State *L, const char *s,
 size_t len); Lua 5.2, 5.3, 5.4
void lua_pushlstring (lua_State *L, const char *s,
 size_t len); Lua 5.1
const char *lua_pushliteral (lua_State *L,
 "literal"); Lua 5.2, 5.3, 5.4
void lua_pushliteral (lua_State *L, "literal"); Lua 5.1
const char *lua_pushfstring (lua_State *L,
 const char *format, ...);
const char *lua_pushvfstring(lua_State *L,
 const char *format,
 va_list argp);

Pushes onto the stack zero-terminated string value s,
string value s of length len bytes, a literal string value,
formatted string value constructed from both string for
mat and a variable number of arguments, or formatted
string value constructed from both string format and
variable argument list argp. Returns a pointer to Lua’s
internal copy of the string.

format contains a sequence of placeholders that specify
how to format their respective arguments. Table 14 lists
valid placeholders along with their meanings.

NOTE

Lua makes an internal copy of the given string. The
host can immediately free that string after pushing it.

Push a string built from a buffer
The host can also push onto the stack a string value built
from a string buffer. The process for pushing one of those
strings is as follows:

1. Declare the buffer as a variable of type luaL_Buffer.

2. Initialize the buffer using luaL_buffinit() or luaL_buff
initsize().

The Stack | 95

3. Fill the buffer using calls to luaL_addch(), luaL_addl
string(), and luaL_addvalue(), or by filling in the string
returned by luaL_buffinitsize().

4. Push the final string onto the stack using luaL_pushre
sult() or luaL_pushresultsize().

CAUTION

While a buffer is in use, it utilizes a variable number of
stack elements. Any non-buffer-related values that are
pushed onto the stack should be popped prior to
appending to the buffer.

Example 24 demonstrates how to push a string built from a
string buffer whose final length is unknown ahead of time
and Example 25 demonstrates how to push a string whose
final length is known ahead of time.

Example 24. Push the entire contents of a file as a string

FILE *f = fopen(filename, "r");
luaL_Buffer b;
luaL_buffinit(L, &b);
char buf[BUFSIZ];
while (fgets(buf, BUFSIZ, f) != NULL)
 luaL_addlstring(&b, buf, strlen(buf));
luaL_pushresult(&b);
fclose(f);

Example 25. Push a lower-case copy of a string

luaL_Buffer b;
size_t len = strlen(s);
char *p = luaL_buffinitsize(L, &b, len);
for (int i = 0; i < len; i++)
 p[i] = tolower((unsigned char)s[i]);
luaL_pushresultsize(&b, len);

luaL_Buffer
The C type associated with a Lua string buffer.

void luaL_buffinit(lua_State *L, luaL_Buffer *b);
Initializes buffer b, a previously declared variable.

96 | Lua Quick Reference – Free Download

char *luaL_buffinitsize(lua_State *L, luaL_Buffer *b,
 size_t len); Lua 5.2, 5.3, 5.4

Initializes buffer b, a previously declared variable, and
returns a string of length len bytes that can be filled in
and subsequently added to b using luaL_addsize().

void luaL_addchar (luaL_Buffer *b, char ch);
void luaL_addlstring(luaL_Buffer *b, const char *s,
 size_t len);

Adds to buffer b byte ch or string s of length len bytes.

const void luaL_addgsub(luaL_Buffer *b, const char *s,
 const char *sub,
 const char *repl); Lua 5.4

Adds to buffer b a copy of string s with all instances of
substring sub replaced with string repl.

void luaL_addvalue(luaL_Buffer *b);
Pops a value off the stack and adds its string
representation to buffer b.

char *luaL_prepbuffer (luaL_Buffer *b);
char *luaL_prepbuffsize(luaL_Buffer *b,
 size_t size); Lua 5.2, 5.3, 5.4

Returns a string of length LUAL_BUFFERSIZE or size bytes
that can be filled in and subsequently added to buffer b
using luaL_addsize().

void luaL_addsize(luaL_Buffer *b, size_t n);
Adds to buffer b n bytes from the string returned by
luaL_buffinitsize(), luaL_prepbuffer() or luaL_prepbuff
size().

void luaL_pushresult(luaL_Buffer *b);
Pushes onto the stack the value of buffer b.

void luaL_pushresultsize(luaL_Buffer *b,
 size_t n); Lua 5.2, 5.3, 5.4

Adds to buffer b n bytes from the string returned by
luaL_buffinitsize(), luaL_prepbuffer() or luaL_prepbuff
size(), and pushes onto the stack the resulting value of
b.

Push a function
The host can push C function values onto the stack. However,
not just any arbitrary C function can be pushed, but only

The Stack | 97

those of type lua_CFunction that follow Lua’s convention. The
section “C Functions” on page 116 describes C functions in
more detail.

Just as Lua functions can have upvalues (non-local, non-
global variables), C functions can have them too. Upvalues in
C functions act just like C static variables and are available
only in those functions. This is useful when functions need
access to values that are neither arguments nor global
variables. Example 29 on page 117 defines an upvalue to be
the default value for a C function’s table argument.

void lua_pushcfunction(lua_State *L, lua_CFunction f);
Pushes C function value f onto the stack.

void lua_pushcclosure(lua_State *L, lua_CFunction f,
 int n);

Pops n values off the stack, associates them with C
function f as upvalues, and pushes the resulting function
(also called a closure) onto the stack.

f can use lua_upvalueindex(i) to fetch the stack index of
upvalue number i, and through that index, retrieve the
upvalue itself. The last value popped is the first upvalue
(i = 1) and the first value popped is the last upvalue (i =
n).

The maximum value for n is 256.

Push a table
The host can push only empty table values onto the stack
(and fill them in later), since there is no C type for tables.

void lua_newtable (lua_State *L);
void lua_createtable(lua_State *L, int nlist, int nhash);

Creates and pushes onto the stack a new, empty table
with nlist pre-allocated list elements and nhash pre-
allocated hash values.

List elements have integer keys from 1 to nlist, and hash
values have keys of any other valid value.

TIP

98 | Lua Quick Reference – Free Download

lua_createtable() exists purely for performance
reasons when table size and makeup are known ahead
of time. All tables automatically grow in size as
needed.

Push a thread
The host can push thread values onto the stack. The section
“Threading in C” on page 135 covers how to work with
thread values.

lua_State *lua_newthread(lua_State *L);
Creates and pushes onto the stack a new (suspended)
thread and returns a pointer to it. The new thread has its
own stack, but shares the same global environment as
Lua interpreter L.

int lua_pushthread(lua_State *thread);
Pushes onto the stack thread thread and returns 1 if
thread is the main thread (i.e. it was created with
luaL_newstate()).

Push a userdata
The host can push onto the stack an instance of a C data type
(typically a C struct) as a full userdata value. The host can
also push onto the stack a regular C pointer as a light
userdata value. Userdata values are treated like any other Lua
value. By assigning a full userdata a metatable, that value can
act like an object. (A light userdata cannot have a metatable.)

When pushing a full userdata onto the stack, Lua allocates a
raw block of memory for it. The host is free to fill in and
manipulate that block of memory as it sees fit. Since Lua itself
cannot modify userdata values, the host is assured of data
integrity. The host can also associate Lua values with full
userdata. These user values are useful for keeping per-object
Lua data, while maintaining a single metatable for similar
objects. This concept is demonstrated in Example 8 on page
40. When Lua detects a full userdata is no longer in use, it
frees the memory associated with it.

When pushing a light userdata onto the stack, Lua does not
assume any responsibility for managing that value. The host is

The Stack | 99

still obligated to do so.

TIP

When a full userdata value is assigned a metatable
with the metamethod __gc(), that metamethod will be
called (with that userdata value as an argument) before
Lua deletes the userdata. This allows the host to clean
up anything outside of Lua related to that userdata,
such as open files, extra host-allocated memory, etc.
The section “Assign a Metatable” on page 125
describes how to assign a metatable to a value.

Example 26 demonstrates how a C FILE* pointer can be used
as a Lua value. Example 31 on page 127 provides a more
complete picture of userdata by using C99’s complex data
types as Lua objects in a complex number module.

Example 26. Use a C structure as a Lua value

// C struct for using FILE* as a Lua value.
typedef struct {FILE *f;} File;

// Metamethod for closing to-be-closed files.
static int close_file(lua_State *L) {
 File *lf = (File *)luaL_checkudata(L, 1, "file_mt");
 lua_getiuservalue(L, 1, 1); // f closed?
 if (!lua_toboolean(L, -1)) {
 fclose(lf->f);
 lua_pushboolean(L, 1);
 lua_setiuservalue(L, 1, 1); // f closed now
 }
 return 0;
}

/* ... */

// Create a new file userdata, open and associate a
// file with it, assign a metatable that helps
// automatically close the file, and mark the userdata
// as a to-be-closed variable.
File *lf = lua_newuserdatauv(L, sizeof(File), 1);
lf->f = fopen(filename, "r");

100 | Lua Quick Reference – Free Download

lua_pushboolean(L, 0);
lua_setiuservalue(L, -2, 1); // f not closed yet
if (luaL_newmetatable(L, "file_mt")) {
 lua_pushcfunction(L, close_file);
 lua_setfield(L, -2, "__close");
}
lua_setmetatable(L, -2);
lua_toclose(L, -1);
/* do something with the file... */
lua_pop(L, 1); // invokes __close()

void *lua_newuserdatauv(lua_State *L, size_t size,
 int nuvalues); Lua 5.4
void *lua_newuserdata (lua_State *L, size_t size);

Allocates size bytes of memory, pushes it onto the stack
as a userdata value, and returns a pointer to the
allocated memory. The userdata can have nuvalues Lua
values associated with it (only one in Lua 5.1, 5.2, and
5.3). The section “Miscellaneous” on page 145 describes
how to associate these user values with userdata.

TIP

If a userdata does not need Lua values to be
associated with it, the expression “lua_newuserdatauv(L,
size, 0)” is more memory-efficient than
“lua_newuserdata(L, size)”.

void lua_pushlightuserdata(lua_State *L, void *p);
Pushes light userdata value p onto the stack.

Push an arbitrary value
The host can push onto the stack another reference to a value
already on the stack.

void lua_pushvalue(lua_State *L, int index);
Pushes onto the stack another reference to the value at
stack index index.

Add attributes to a pushed value
In Lua 5.4, the host can indicate that a value should be closed
when it is popped from the stack. The section “Closing

The Stack | 101

Metamethod” on page 36 describes how to define closing
behavior.

void lua_toclose(lua_State *L, int index); Lua 5.4
Indicates that the value at stack index index should have
its metamethod __close() called when it is popped from
the stack (e.g. when the current function returns to Lua,
when there is an error, or when manually popped).

Only one value on the stack at a time can be marked in
this way, and the host should only manually remove this
value from the stack using lua_settop() or lua_pop().

Pop Values
The host can explicitly pop values off the stack. Even though
some Lua API functions pop certain values off the stack, the
host should not rely on Lua to manage the stack properly. All
values pushed must eventually be popped in order to prevent
a stack overflow.

NOTE

Once a value is popped off the stack, if it has no more
references to it (i.e. it is no longer in use), Lua will
delete that value and free the memory associated with
it. Temporarily storing values in Lua’s registry table is
one way to prevent this from happening. The section
“Reference Operations” on page 114 describes Lua’s
reference system.

void lua_pop(lua_State *L, int n);
Pops n values off the stack.

void lua_remove(lua_State *L, int index);
Removes the value at stack index index, shifting stack
values above it towards the bottom of the stack.

Query Values
The host can query the stack for what types of values are at
particular stack indices.

102 | Lua Quick Reference – Free Download

int lua_isnone (lua_State *L, int index);
int lua_isnoneornil(lua_State *L, int index);

Returns 1 if there is no value at stack index index or if
that value is nil. Otherwise, returns 0.

int lua_isnil (lua_State *L, int index);
int lua_isboolean (lua_State *L, int index);
int lua_isinteger (lua_State *L, int index); Lua 5.3, 5.4
int lua_isnumber (lua_State *L, int index);

int lua_isstring (lua_State *L, int index);
int lua_istable (lua_State *L, int index);
int lua_isfunction (lua_State *L, int index);
int lua_iscfunction (lua_State *L, int index);
int lua_isthread (lua_State *L, int index);
int lua_isuserdata (lua_State *L, int index);
int lua_islightuserdata(lua_State *L, int index);

Returns 1 if the value at stack index index is a nil,
boolean, integer, number (either an integer or a float),
string, table, function (either Lua or C), C function,
thread, userdata (either full or light), or light userdata
value. Otherwise, returns 0.

lua_isnumber() and lua_isstring() will return 1 if the
value is convertible to a number or string, respectively.
lua_type() may be more applicable in those cases.

int lua_type(lua_State *L, int index);
Returns the type of value at stack index index: LUA_TNONE
for a non-existent value, LUA_TNIL for nil, LUA_TBOOLEAN for
a boolean, LUA_TNUMBER for an integer or float, LUA_T
STRING for a string, LUA_TTABLE for a table, LUA_TFUNCTION
for a function, LUA_TTHREAD for a thread, LUA_TUSERDATA for
a userdata, or LUA_TLIGHTUSERDATA for a light userdata.

const char *lua_typename(lua_State *L, int type);
Returns the string name of value type type, which must
be one of the values returned by lua_type().

const char *luaL_typename(lua_State *L, int index);
Returns the string name of the type of value at stack
index index.

Retrieve Values
The host can retrieve Lua values that are on the stack,

The Stack | 103

converted to C values. The means for doing so are broken up
into sections that cover how to retrieve boolean, number,
string, function, thread, and userdata values. (Nil and table
values cannot be converted to C values.)

Retrieve a boolean
The host can retrieve boolean values that are on the stack, as
well as retrieve other types of stack values converted to
booleans.

int lua_toboolean(lua_State *L, int index);
Returns the value at stack index index converted to a
boolean, where any value other than false and nil is
considered boolean true.

Retrieve a number
The host can retrieve number values that are on the stack.
Lua provides some C type definitions that differentiate
between integers and floats, since Lua numbers can be either.

lua_Integer
The C type associated with Lua integers (typically long
long in Lua 5.3 and 5.4, and ptrdiff_t in Lua 5.1 and
5.2). This is configurable when compiling Lua.

lua_Unsigned Lua 5.2, 5.3, 5.4
The C type associated with unsigned Lua integers
(typically unsigned long long in Lua 5.3 and 5.4, and
unsigned long in Lua 5.2). This is configurable when
compiling Lua.

lua_Number
The C type associated with Lua floats (typically double).
This is configurable when compiling Lua.

104 | Lua Quick Reference – Free Download

lua_Integer lua_tointeger (lua_State *L, int index);
lua_Integer lua_tointegerx (lua_State *L, int index,
 int *isnum); Lua 5.2, 5.3, 5.4
lua_Unsigned lua_tounsigned (lua_State *L, int index); Lua 5.2
lua_Unsigned lua_tounsignedx(lua_State *L, int index,
 int *isnum); Lua 5.2
lua_Number lua_tonumber (lua_State *L, int index);
lua_Number lua_tonumberx (lua_State *L, int index,
 int *isnum); Lua 5.2, 5.3, 5.4

Returns the value at stack index index converted to an
integer or float, and sets isnum to 1 or, if the conversion
fails, returns 0 and sets isnum to 0.

Retrieve a string
The host can retrieve string values that are on the stack.

CAUTION

The string pointers returned by Lua are guaranteed to
be valid only for as long as the value remains on the
stack.

const char *lua_tostring (lua_State *L, int index);
const char *lua_tolstring (lua_State *L, int index,
 size_t *len);
const char *luaL_tolstring(lua_State *L, int index,
 size_t *len); Lua 5.2, 5.3, 5.4

Returns the value at stack index index converted to a C-
style string and sets len to the byte length of the
returned string or, if the conversion fails, returns NULL.

If the value has the metamethod __tostring(), luaL_tol
string() calls that metamethod and returns the resulting
string value instead. The section “Function Metamethods”
on page 38 covers this metamethod in its generic form.

CAUTION

Calling any of these functions on a number value will
actually change that number value into a string in the
process. This may have undesirable side-effects, most
notably during table iteration with numeric keys.

The Stack | 105

Retrieve a function
The host can retrieve C function values (not Lua function
values) that are on the stack.

lua_CFunction lua_tocfunction(lua_State *L, int index);
Returns the value at stack index index converted to a C
function or, if the conversion fails, returns NULL.

Retrieve a thread
The host can retrieve thread values that are on the stack.

lua_State *lua_tothread(lua_State *L, int index);
Returns the value at stack index index converted to a
thread or, if the conversion fails, returns NULL.

Retrieve a userdata
The host can retrieve userdata values that are on the stack,
regardless of whether they are full userdata or light userdata.

void *lua_touserdata(lua_State *L, int index);
Returns the value at stack index index converted to a
userdata or, if the conversion fails, returns NULL.

Retrieve an arbitrary value
The host can retrieve the raw C pointer for a table, function,
thread, or userdata value that is on the stack. However, this
pointer has little practical use and is guaranteed to be valid
only for as long as that value remains on the stack.

const void *lua_topointer(lua_State *L, int index);
Returns the string (Lua 5.4 only), function, table, thread,
or userdata value at stack index index converted to a raw
C pointer.

This is typically used only for hashing or debugging, as
there is no way to retrieve the Lua value associated with
a raw pointer.

106 | Lua Quick Reference – Free Download

Basic Stack Operations
The host can perform many different operations on stack
values, such as element, global variable, arithmetic, relational,
bitwise, string, length, and reference operations. The
following sections cover these operations.

Element Operations
The host can perform simple stack element operations.

void lua_copy(lua_State *L, int from, int to); Lua 5.2, 5.3, 5.4
Copies the value at stack index from to stack index to,
overwriting the existing value.

void lua_insert(lua_State *L, int index);
Moves the value at the top of the stack to stack index
index, shifting prior stack values towards the top of the
stack.

void lua_replace(lua_State *L, int index);
Pops a value off the stack and moves it to stack index
index, overwriting the existing value.

void lua_rotate(lua_State *L, int index, int n); Lua 5.3, 5.4
Rotates the stack values between stack index index and
the top of the stack (inclusive) by n positions towards
the top of the stack. n can be negative.

Global Variable Operations
The host can define and retrieve global Lua variables.

void lua_setglobal(lua_State *L, const char *name);
Pops a value off the stack and assigns it to the global
variable whose name is string name.

int lua_getglobal(lua_State *L, const char *name);Lua 5.3, 5.4
void lua_getglobal(lua_State *L, const char *name);Lua 5.1, 5.2

Pushes onto the stack the value associated with the
global variable whose name is string name, and returns
the pushed value’s type.

Basic Stack Operations | 107

Arithmetic Operations
The host can invoke Lua’s arithmetic operators. These
operators may in turn invoke arithmetic metamethods, which
are described in the section “Arithmetic Metamethods” on
page 34.

void lua_arith(lua_State *L, LUA_OPADD); Lua 5.2, 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPSUB); Lua 5.2, 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPMUL); Lua 5.2, 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPDIV); Lua 5.2, 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPIDIV); Lua 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPMOD); Lua 5.2, 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPPOW); Lua 5.2, 5.3, 5.4

Pops two values off the stack, adds (+), subtracts (-),
multiplies (*), divides (/), integer divides (//), computes
the remainder of floor division between (%), or
exponentiates (^) them, and pushes the resulting value
onto the stack.

The first operand is the second value popped, and the
second operand is the first value popped.

void lua_arith(lua_State *L, LUA_OPUNM); Lua 5.2, 5.3, 5.4
Pops a value off the stack, negates (-) it, and pushes the
resulting value onto the stack.

Relational Operations
The host can invoke Lua’s relational operators. These
operators may in turn invoke relational metamethods, which
are described in the section “Relational Metamethods” on
page 34.

int lua_compare (lua_State *L, int index1, int index2,
 LUA_OPEQ); Lua 5.2, 5.3, 5.4
int lua_equal (lua_State *L, int index1,
 int index2); Lua 5.1
int lua_compare (lua_State *L, int index1, int index2,
 LUA_OPLT); Lua 5.2, 5.3, 5.4
int lua_lessthan(lua_State *L, int index1,
 int index2); Lua 5.1
int lua_compare (lua_State *L, int index1, int index2,
 LUA_OPLE); Lua 5.2, 5.3, 5.4

Compares the values at stack indices index1 and index2

108 | Lua Quick Reference – Free Download

for equality (==), less than (<), or less than or equal to
(<=), and returns 1 if the comparison is correct or 0 if the
comparison is incorrect.

int lua_rawequal(lua_State *L, int index1, int index2);
Returns 1 if the values at stack indices index1 and index2
are equal, bypassing all metamethods. Otherwise, returns
0.

Bitwise Operations
The host can invoke the bitwise operators introduced in Lua
5.3. These operators may in turn invoke bitwise
metamethods, which are described in the section “Bitwise
Metamethods” on page 35.

void lua_arith(lua_State *L, LUA_OPBAND); Lua 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPBOR); Lua 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPBXOR); Lua 5.3, 5.4

Pops two values off the stack, performs bitwise AND
(&), OR (|), or XOR (~) on them, and pushes the
resulting value onto the stack.

The first operand is the second value popped, and the
second operand is the first value popped.

void lua_arith(lua_State *L, LUA_OPBNOT); Lua 5.3, 5.4
Pops a value off the stack, performs bitwise NOT (~) on
it, and pushes the resulting value onto the stack.

void lua_arith(lua_State *L, LUA_OPSHL); Lua 5.3, 5.4
void lua_arith(lua_State *L, LUA_OPSHR); Lua 5.3, 5.4

Pops two values off the stack, performs left shift (<<) or
right shift (>>) on them, and pushes the resulting value
onto the stack.

The first operand is the second value popped, and the
second operand is the first value popped.

String Operations
The host can invoke Lua’s string concatenation (..) and length
(#) operators. These operators may in turn invoke their
respective metamethods, which are covered in the section

Basic Stack Operations | 109

“Other Operator and Statement Metamethods” on page 36.
The host can also take advantage of a convenience function
for performing global substitution in strings.

void lua_concat(lua_State *L, int n);
Pops n values off the stack, concatenates them as strings,
and pushes the resulting value onto the stack.

void lua_len(lua_State *L, int index); Lua 5.2, 5.3, 5.4
Pushes onto the stack the length (#) of the value at stack
index index.

lua_Integer luaL_len (lua_State *L, int index); Lua 5.3, 5.4
int luaL_len (lua_State *L, int index); Lua 5.2
size_t lua_objlen(lua_State *L, int index); Lua 5.1

Returns the length (#) of the value at stack index index.

const char *luaL_gsub(lua_State *L, const char *s,
 const char *sub, const char *repl);

Pushes onto the stack a copy of string s with all
instances of substring sub replaced with string repl, and
returns the new string.

sub is not interpreted as a Lua pattern.

Table Operations
The host can interact with tables in many different ways. The
following sections describe how to retrieve the value
associated with a table key, how to assign a value to a table
key, and how to iterate over a table’s key-value pairs.

Retrieve the value assigned to a key
The host can retrieve values assigned to table keys. These
operations may invoke the metafield __index or metamethod
__index(), both of which are covered in the section “Other
Operator and Statement Metamethods” on page 36.

int lua_gettable(lua_State *L, int index); Lua 5.3, 5.4
void lua_gettable(lua_State *L, int index); Lua 5.1, 5.2
int lua_rawget (lua_State *L, int index); Lua 5.3, 5.4
void lua_rawget (lua_State *L, int index); Lua 5.1, 5.2

Pops a key off the stack, pushes the value in the table at
stack index index associated with that key, and returns

110 | Lua Quick Reference – Free Download

the pushed value’s type.

lua_rawget() bypasses all metamethods.

int lua_geti (lua_State *L, int index,
 lua_Integer i); Lua 5.3, 5.4
int lua_rawgeti(lua_State *L, int index,
 lua_Integer i); Lua 5.3, 5.4
void lua_rawgeti(lua_State *L, int index, int i); Lua 5.1, 5.2

Pushes onto the stack the ith element of the list at stack
index index, and returns the pushed element’s type.

lua_rawgeti() bypasses all metamethods.

int lua_getfield(lua_State *L, int index,
 const char *key); Lua 5.3, 5.4
void lua_getfield(lua_State *L, int index,
 const char *key); Lua 5.1, 5.2

Pushes onto the stack the value associated with string
key in the table at stack index index, and returns the
pushed value’s type.

int lua_rawgetp(lua_State *L, int index,
 const void *p); Lua 5.3, 5.4
void lua_rawgetp(lua_State *L, int index,
 const void *p); Lua 5.2

Pushes onto the stack the value associated with light
userdata p in the table at stack index index (bypassing all
metamethods), and returns the pushed value’s type.

int luaL_getsubtable(lua_State *L, int index,
 const char *key); Lua 5.2, 5.3, 5.4

Pushes onto the stack an existing or newly created table
value assigned to string key in the table at stack index
index, and returns 1 if the pushed table already existed
or 0 if it was created.

Assign a value to a key
The host can fill in a table with key-value pairs. These
operations may invoke the __newindex metafield or
__newindex() metamethod, both of which are covered in the
section “Other Operator and Statement Metamethods” on
page 36.

Basic Stack Operations | 111

void lua_settable(lua_State *L, int index);
void lua_rawset (lua_State *L, int index);

Pops two values off the stack and associates them as a
key-value pair in the table at stack index index.

The second value popped is the key and the first value
popped is the value.

lua_rawset() bypasses all metamethods.

void lua_seti (lua_State *L, int index,
 lua_Integer i); Lua 5.3, 5.4
void lua_rawseti(lua_State *L, int index,
 lua_Integer i); Lua 5.3, 5.4
void lua_rawseti(lua_State *L, int index, int i); Lua 5.1, 5.2

Pops a value off the stack and makes it the ith element in
the list at stack index index.

lua_rawseti() bypasses all metamethods.

void lua_setfield(lua_State *L, int index,
 const char *key);

Pops a value off the stack and associates it with string
key to make a key-value pair in the table at stack index
index.

void lua_rawsetp(lua_State *L, int index,
 const void *p); Lua 5.2, 5.3, 5.4

Pops a value off the stack and associates it with light
userdata p to make a key-value pair in the table at stack
index index, bypassing all metamethods.

TIP

Light userdata can be used as unique keys in Lua’s
registry table without having to appeal to Lua’s
reference system. The section “Reference Operations”
on page 114 describes the registry.

Iterate over a table
The host can iterate over all key-value pairs in a table using
the following procedure:

1. Push the table to be iterated over onto the stack.

112 | Lua Quick Reference – Free Download

2. Push the value nil using lua_pushnil().

3. Continually call lua_next() while its return value is non-
zero.

4. For each iteration, a key is just below the top of the stack
and its associated value is at the top of the stack.

5. Before the next iteration, pop the value off the stack,
leaving the current key.

6. If a new key-value pair was added during the iteration,
pop the key as well and push nil in order to restart
iteration from the beginning. (Any key-value pairs edited
or deleted during iteration do not require a restart.)

Iteration order is not defined, even if the table is a list.

CAUTION

If a key is numeric, calling lua_tostring() or lua_tol
string() on it will actually change that key into a
string and adversely affect the next call to lua_next().

Example 27 illustrates how to iterate over a table and delete
all of its key-value pairs whose keys are strings.

Example 27. Delete all string keys from a table

/* push table to be iterated over... */
lua_pushnil(L);
while (lua_next(L, -2) != 0) {
 if (lua_type(L, -2) == LUA_TSTRING) {
 // Delete values assigned to string keys (fields).
 const char *key = lua_tostring(L, -2);
 lua_pushnil(L);
 lua_setfield(L, -4, key);
 }
 lua_pop(L, 1); // value
}
lua_pop(L, 1); // table iterated over

int lua_next(lua_State *L, int index);
Pops a key off the stack and pushes onto the stack the
next key-value pair from the table at stack index in
dex. If there are no more key-value pairs to push, returns
0.

Basic Stack Operations | 113

The pushed value is at the top of the stack and the
pushed key is just below it.

NOTE

Modifying a table during traversal is permitted as long
as no new key-value pairs are added. If a new pair is
added, traversal must begin anew.

Length Operations
The host can invoke Lua’s length operator. This operator may
in turn invoke the length metamethod, which is covered in
the section “Other Operator and Statement Metamethods” on
page 36.

void lua_len(lua_State *L, int index); Lua 5.2, 5.3, 5.4
Pushes onto the stack the length (#) of the value at stack
index index.

lua_Integer luaL_len(lua_State *L, int index); Lua 5.3, 5.4
int luaL_len(lua_State *L, int index); Lua 5.2

Returns the length (#) of the value at stack index index.

lua_Unsigned lua_rawlen(lua_State *L, int index); Lua 5.4
size_t lua_rawlen(lua_State *L, int index); Lua 5.2, 5.3
size_t lua_objlen(lua_State *L, int index); Lua 5.1

Returns the length of the string, table, or userdata value
at stack index index, bypassing all metamethods.

Reference Operations
The stack is only meant for storing temporary values prior to
performing a stack operation. (Once a value is popped from
the stack, Lua may garbage-collect it.) When the host needs to
store values for later use, it can either assign those values to
global Lua variables (which may not be ideal), or use an
internal registry table that Lua provides for storing and
retrieving any Lua values. Lua’s registry exists at the special
stack index LUA_REGISTRYINDEX (which is not a true stack
index, so it cannot be popped, removed, replaced, rotated,
etc.). The registry is accessible only through Lua’s C API,

114 | Lua Quick Reference – Free Download

ensuring integrity.10

NOTE

By convention, string keys comprising an underscore
followed by one or more upper-case letters are
reserved for use by Lua itself in its registry.

Since the registry is also available to any external Lua C
modules the host loads, there is a possibility of key clashes.
In order to avoid this, Lua provides a way to store and
retrieve unique references to Lua values in the registry (but
does not require the host to utilize it). Example 32 on page
133 uses the registry to store and retrieve a sandboxed
environment for running potentially unsafe code in.

CAUTION

When manually adding key-value pairs to Lua’s
registry, integer keys may not be used, as that will
interfere with Lua’s unique reference system.

int luaL_ref(lua_State *L, LUA_REGISTRYINDEX);
Pops a value off the stack, creates a unique integer
reference to it in Lua’s registry table, and returns that
reference.

The referenced value will not be eligible for garbage
collection at least until luaL_unref() is called for that
value.

int lua_rawgeti(lua_State *L, LUA_REGISTRYINDEX, int ref);
Pushes onto the stack the value associated with the
unique integer reference ref returned by luaL_ref(), and
returns the pushed value’s type.

void luaL_unref(lua_State *L, LUA_REGISTRYINDEX, int ref);
Releases integer reference ref to the value in Lua’s
registry table. That value may now be garbage-collected
if it is no longer being used.

10 Technically, Lua’s standard library module debug can access the registry,
but the host can choose not to load that module or to disable it.

Basic Stack Operations | 115

C Functions
A C function is a special kind of function that Lua can interact
with. It is just like a normal C function, except it has a
specific type:

typedef int (*lua_CFunction) (lua_State *L);

Functions of this type receive their arguments from the stack
and push their return values onto the stack. C functions are a
subset of Lua’s first-class function values and behave in
exactly the same way. The following sections describe how to
define, register, and call C functions.

Define a C Function
C functions are defined using the type lua_CFunction and
follow the form of a normal C function definition. When a C
function is called, it receives its own stack, which contains
only the argument values passed to that function (the first
argument is at the bottom of the stack and the last argument
is at the top of the stack). When the C function is finished, it
should push its return values onto its stack (starting with the
first return value) and then return the number of return values
pushed. Example 28 defines and makes available a simple C
function that returns the value of C99’s gamma function for a
given number argument.

Example 28. Mathematical gamma function

static int gamma(lua_State *L) {
 double z = luaL_checknumber(L, 1); // fetch argument
 lua_pushnumber(L, tgamma(z)); // push value to return
 return 1; // number of stack values to return
}

/* ... */

// Add gamma to Lua's math module.
lua_getglobal(L, "math");
lua_pushcfunction(L, gamma);
lua_setfield(L, -2, "gamma");
lua_pop(L, 1); // global "math"

A C function’s stack is independent of the “main” stack and

116 | Lua Quick Reference – Free Download

any other active C function stack. The function is not required
to pop argument values off its stack, as the stack is discarded
after the function returns. (The function is not even required
to pop off any intermediate values it pushed, so long as there
is enough stack space for its return values.)

Lua provides a number of convenient API functions designed
specifically for C functions. These functions are broken up
into sections that cover how to validate and retrieve argument
values, how to retrieve upvalues, and how to prevent a stack
overflow. (C functions are not limited to using these API
functions, however.) Example 29 exhibits a few of these
convenience functions and concepts.

Example 29. C function that translates string characters

static int translate_chars(lua_State *L) {
 // Fetch arguments. The first should be a string. The
 // second should be a table, if given. Otherwise, use
 // a default table stored as an upvalue.
 const char *s = luaL_checkstring(L, 1);
 if (lua_gettop(L) > 1)
 luaL_checktype(L, 2, LUA_TTABLE);
 else
 lua_pushvalue(L, lua_upvalueindex(1));

 // Allocate and fill a copy of the string argument,
 // translate its characters according to the table
 // argument, and push the result.
 char *o = strcpy(malloc(strlen(s) + 1), s);
 for (char *p = o; *p; p++) {
 lua_pushlstring(L, p, 1); // table key
 lua_gettable(L, 2); // fetch value assigned to key
 if (lua_isstring(L, -1))
 *p = *lua_tostring(L, -1); // translate char
 lua_pop(L, 2); // table key and value
 }
 lua_pushstring(L, o); // push the value to return
 free(o);
 return 1; // the number of stack values to return
}

/* ... */

// Create the default translation table, assign it as
// an upvalue to translate_chars, and register that
// function as the global function "tr".

C Functions | 117

lua_createtable(L, 0, 1);
lua_pushliteral(L, "_");
lua_setfield(L, -2, " "); // translate ' ' to '_'
lua_pushcclosure(L, translate_chars, 1);
lua_setglobal(L, "tr");

-- Lua code.
tr("hello world!") -- returns "hello_world!"
tr("hello!", {["!"] = "?"}) -- returns "hello?"

Validate and retrieve argument value types
The host can conveniently validate argument value types
while retrieving them converted to C values.

lua_Integer luaL_checkinteger (lua_State *L, int arg);
int luaL_checkint (lua_State *L,
 int arg); Lua 5.1, 5.2
long luaL_checklong (lua_State *L,
 int arg); Lua 5.1, 5.2
lua_Unsigned luaL_checkunsigned(lua_State *L,
 int arg); Lua 5.2
lua_Number luaL_checknumber (lua_State *L, int arg);
const char *luaL_checkstring (lua_State *L, int arg);

const char *luaL_checklstring(lua_State *L, int arg,
 size_t *len);
void *luaL_checkudata (lua_State *L, int arg,
 const char *name);

Asserts that function argument number arg is an integer
value, number value (either an integer or a float), string
value, or userdata value whose metatable is the meta-
table identified by string name, and returns that value
converted to its respective C type, or raises an error.

luaL_checklstring() sets len to the byte length of the
returned string.

void *luaL_testudata(lua_State *L, int arg,
 const char *name); Lua 5.2, 5.3, 5.4

Returns the value of function argument number arg
converted to a userdata, provided its metatable is the
metatable identified by string name, or returns NULL if that
value is not the desired type of userdata.

void luaL_checktype(lua_State *L, int arg, int type);
Asserts that function argument number arg is Lua type

118 | Lua Quick Reference – Free Download

type, or raises an error.

const char *luaL_typeerror(lua_State *L, int arg,
 const char *name); Lua 5.4
int luaL_typerror (lua_State *L, int arg,
 const char *name); Lua 5.1

Raises an error that function argument number arg is not
of string type name. name is typically the name of a custom
userdata type.

Validate argument values
The host can conveniently validate that argument values exist
or satisfy a condition.

void luaL_checkany(lua_State *L, int arg);
Asserts that function argument number arg was given, or
raises an error.

void luaL_argcheck(lua_State *L, int expr, int arg,
 const char *message);

Asserts that expression expr evaluates to a non-zero
value, or raises an error that implicates function
argument number arg with string message as additional
error information.

void luaL_argexpected(lua_State *L, int expr, int arg,
 const char *name); Lua 5.4

Asserts that expression expr evaluates to a non-zero
value, or raises an error that function argument number
arg is not of string type name.

void luaL_argerror(lua_State *L, int arg,
 const char *message);

Raises an error that implicates function argument number
arg with string message as additional error information.

Specify default argument values
The host can conveniently retrieve argument values converted
to C values, or retrieve default values.

C Functions | 119

lua_Integer luaL_optinteger (lua_State *L, int arg,
 lua_Integer default);
int luaL_optint (lua_State *L, int arg,
 int default); Lua 5.1, 5.2
long luaL_optlong (lua_State *L, int arg,
 long default); Lua 5.1, 5.2
lua_Unsigned luaL_optunsigned(lua_State *L, int arg,
 lua_Unsigned default); Lua 5.2
lua_Number luaL_optnumber (lua_State *L, int arg,
 lua_Number default);
const char *luaL_optstring (lua_State *L, int arg,
 const char *default);
const char *luaL_optlstring (lua_State *L, int arg,
 const char *default,
 size_t *len);

Returns the value of function argument number arg
converted to an integer, float, or string, defaulting to
default if the argument value does not exist or is nil, or,
if the conversion fails, raises an error.

luaL_optlstring() sets len to the byte length of the
returned string.

int luaL_checkoption(lua_State *L, int arg,
 const char *default,
 const char *const list[]);

Asserts that function argument number arg is a string
included in NULL-terminated string list list, and returns
the index of that string in list, or raises an error. If
given, the default value for argument number arg is
string de
fault.

Retrieve upvalue indices
The host can retrieve the stack indices of a C function’s
upvalues.

int lua_upvalueindex(int i);
Returns the stack index of the ith upvalue of the current
function.

The returned index can be used in most API functions
involving stack indices, but since it is not a true stack
index, it cannot be popped, removed, replaced, rotated,
etc.

120 | Lua Quick Reference – Free Download

Raise an error or emit a warning
The host can raise errors from within C functions. Raising an
error outside of a C function triggers Lua’s panic function and
will most likely result in a hard abort. Lua 5.4 also allows the
host to emit warnings.

int luaL_error(lua_State *L, const char *format, ...);
Raises an error with a formatted error message
constructed from string format and a variable number of
arguments. format contains a sequence of placeholders
that specify how to format their respective arguments.
Table 14 on page 94 lists valid placeholders along with
their meanings.

If available, filename and line number information is
automatically prepended to the error message.

int lua_error(lua_State *L);
Raises a Lua error whose error message is at the top of
the stack.

TIP

The statements “return luaL_error(L, ...);” and
“return lua_error(L);” are idioms in C functions,
signaling that the function immediately halts execution.

void lua_warning(lua_State *L, const char *message,
 int tocontinue); Lua 5.4

Emits a warning with string message. tocontinue is a flag
that indicates whether or not the warning message will
continue in a subsequent call to this function.

Warnings are handled by the function given to lua_set
warnf(), which by default prints warnings to standard
error (stderr).

Increase stack size
A C function’s initial stack size is n + 20 elements, where n is
the number of argument values already on the stack when the
function is called. (This default size is configurable when
compiling Lua.) The stack does not grow automatically as

C Functions | 121

values are pushed onto it, so the host needs to grow it as
necessary prior to pushing values in order to prevent a stack
overflow.

void luaL_checkstack(lua_State *L, int n, const char *msg);
Asserts that the stack can grow by n more values, or
raises an error with error message string msg.

NOTE

The maximum stack size is 8,000 elements in Lua 5.1
and 15,000 elements in Lua 5.2, 5.3, and 5.4. This
arbitrary limit is configurable when compiling Lua. It is
possible to run out of memory before hitting the
maximum stack size, especially in embedded
environments.

Register a C Function
The host can conveniently assign a C function to a global
variable. (C functions may also be assigned to table keys
using various other API functions.)

void lua_register(lua_State *L, const char *name,
 lua_CFunction f);

Assigns C function f to the global variable whose name
is string name.

Call a C Function
The host can call a C function (or any Lua function for that
matter) using the following procedure:

1. Push the function to call onto the stack.

2. Push onto the stack the argument values to pass to the
function, starting with the first argument value.

3. Call the function using one of Lua’s API functions.

4. Process any resulting values returned by the function and
pop them off the stack. (The last value returned is at the
top of the stack.)

Example 30 demonstrates how to call the Lua function str

122 | Lua Quick Reference – Free Download

ing.find() and handle the variable number of values it
returns (zero in the case of no match, two in the case of a
match with no captures, and three or more in the case of a
match with captures).

Example 30. Call Lua’s string.find

// Record initial stack size due to LUA_MULTRET.
int n = lua_gettop(L);
// Push the global function string.find().
lua_getglobal(L, "string");
lua_getfield(L, -1, "find");
lua_replace(L, -2);
// Push two arguments.
lua_pushstring(L, s);
lua_pushstring(L, pattern);
// Call the function with those two arguments,
// expecting a variable number of results.
if (lua_pcall(L, 2, LUA_MULTRET, 0) == LUA_OK† &&
 lua_gettop(L) > n) {
 int start = lua_tointeger(L, n + 1);
 int end = lua_tointeger(L, n + 2);
 /* process returned positions and any captures... */
 lua_settop(L, n); // pop all returned values
}

void lua_call (lua_State *L, int nargs, int nresults);
int lua_pcall(lua_State *L, int nargs, int nresults,
 int error_handler);

Pops nargs function argument values off the stack, pops
off the stack the function that is now at the top of the
stack, calls that popped function with the popped
arguments (the last value popped being the first
argument and the first value popped being the last
argument), and pushes the first nresults values returned
by the function onto the stack (or all of them if nresults
is LUA_MULTRET). lua_pcall() returns LUA_OK (or 0 in Lua
5.1) on success.

lua_call() should only be called from within C functions
that do not care to handle errors and have been
ultimately invoked by a protected call. The section “Error
and Warning Handling” on page 130 describes protected
calls.

If an error occurs, lua_pcall() pushes the error message

† LUA_OK does not exist in Lua 5.1, which uses the constant 0 instead.

C Functions | 123

onto the stack and returns a non-zero error code. If er
ror_handler is nonzero, the function at stack index er
ror_handler is called with the error message as an
argument, and that function’s return value is the error
message ultimately pushed onto the stack. Table 15 on
page 131 lists Lua’s error codes and their meanings.

If the value being called is a table or userdata value with
the metamethod __call(), that metamethod is called to
perform the operation. The section “Other Operator and
Statement Metamethods” on page 36 covers this meta-
method in its generic form.

int lua_cpcall(lua_State *L, lua_CFunction f,
 void *userdata); Lua 5.1

Calls C function f with userdata userdata as that
function’s only argument value and returns 0 on success.

If an error occurs, the error message is pushed onto the
stack and a non-zero error code is returned instead.
Table 15 on page 131 lists Lua’s error codes and their
meanings.

Metatables
The host can create metatables, assign and retrieve the meta-
tables of values, call specific metamethods, and retrieve
specific metafields. The means for doing so are described in
the following sections. The section “Metatables and
Metamethods” on page 33 describes metatables,
metamethods, and metafields.

Create or Fetch a Metatable
The host can specifically create a metatable, as opposed to
creating a generic table and using it as a metatable. The host
can also easily fetch a previously created metatable by name.

int luaL_newmetatable(lua_State *L, const char *name);
Pushes onto the stack the metatable identified by string
name, and returns 1 if the metatable had to be created
first or 0 if the metatable already existed.

124 | Lua Quick Reference – Free Download

CAUTION

Lua keeps track of all metatable names in the same
place. If the host loads any external C modules, those
modules will also have the ability to create their own
metatables, so there is a possibility of name clashes.

Assign a Metatable
The host can assign a metatable to a value (bypassing the
metafield __metatable that value may have). In the C API,
values are not limited to tables and userdata, but can be any
Lua value. However, only tables and userdata can have
individual metatables. All other types each share a single
metatable.

int lua_setmetatable(lua_State *L, int index); Lua 5.1, 5.4
void lua_setmetatable(lua_State *L, int index); Lua 5.2, 5.3

Pops a table value off the stack and assigns it to be the
metatable of the value at stack index index. Always
returns 1 in Lua 5.1 and 5.4.

void luaL_setmetatable(lua_State *L,
 const char *name); Lua 5.2, 5.3, 5.4

Assigns the metatable identified by string name to be the
metatable of the value at the top of the stack.

Retrieve a Metatable
The host can retrieve a value’s metatable.

int lua_getmetatable(lua_State *L, int index);
Pushes onto the stack the metatable associated with the
value at stack index index and returns 1, or, if that value
has no metatable, pushes nothing and returns 0.

int luaL_getmetatable(lua_State *L,
 const char *name); Lua 5.3, 5.4
void luaL_getmetatable(lua_State *L,
 const char *name); Lua 5.1, 5.2

Pushes onto the stack the metatable identified by string
name or nil if no metatable was found, and returns the
pushed value’s type.

Metatables | 125

Metamethods and Metafields
The host can call specific metamethods and retrieve specific
metafields.

int luaL_callmeta(lua_State *L, int index,
 const char *name);

Calls the metamethod named string name that belongs to
the metatable associated with the value at stack index
index, pushes onto the stack the value returned by that
call, and returns 1. If the metamethod does not exist,
returns 0 and pushes nothing. The metamethod is passed
the stack value as its only argument.

int luaL_getmetafield(lua_State *L, int index,
 const char *key);

Pushes onto the stack the value associated with string
key in the metatable associated with the value at stack
index index, and returns the pushed value’s type. If the
metafield does not exist, returns LUA_TNIL and pushes
nothing.

C Modules
Lua provides an API for creating loadable C modules, which
are typically just Lua tables. A C module often contains:

• A set of Lua C functions specific to the module.

• An array of type luaL_Reg[] that maps those C functions
to string names in the module’s table.

• A Lua C function that serves as the module’s entry point.
This function creates the module table and pushes it onto
the stack as a return value. By convention, the function’s
name is “luaopen_name,” where name is the module’s actual
name (the string that would be passed to Lua’s require()
function). Any ‘.’ characters in name should be replaced
with ‘_’ and any “-version” suffix should be ignored. For
example, a module named “lpeg” has the entry point
“luaopen_lpeg”, a submodule named “utf8.ext” has the
entry point “luaopen_utf8_ext”, and a versioned
submodule named “utf8.ext-v2” has the same entry point
“luaopen_utf8_ext”.

126 | Lua Quick Reference – Free Download

Example 31 lists a module that provides an interface to C99’s
complex numbers.

Example 31. Complex number module

#include <complex.h>
#include "lua.h"
#include "lauxlib.h"

typedef double complex Complex;

// Pushes a complex number as userdata.
static int pushcomplex(lua_State *L, Complex z) {
 Complex *p = lua_newuserdatauv(L, sizeof(Complex),
 0);
 *p = z;
 luaL_setmetatable(L, "complex_mt");
 return 1;
}

// Creates and pushes a new complex number.
static int complex_new(lua_State *L) {
 double x = luaL_optnumber(L, 1, 0);
 double y = luaL_optnumber(L, 2, 0);
 pushcomplex(L, x + y * I);
 return 1;
}

// Asserts and returns a complex number function
// argument.
static Complex checkcomplex(lua_State *L, int arg) {
 return lua_isuserdata(L, 1) ?
 *((Complex *)luaL_checkudata(L, arg, "complex_mt"))
 : luaL_checknumber(L, arg);
}

// Defines a unary complex number operation.
#define unop(name, op) \
 static int complex_##name(lua_State *L) { \
 Complex z = checkcomplex(L, 1); \
 return pushcomplex(L, op(z)); \
 }

// Defines a binary complex number operation.
#define binop(name, op) \
 static int complex_##name(lua_State *L) { \
 Complex z1 = checkcomplex(L, 1); \
 Complex z2 = checkcomplex(L, 2); \

C Modules | 127

 return pushcomplex(L, z1 op z2); \
 }

// Complex number operations.
unop(abs, cabs)
unop(real, creal)
unop(imag, cimag)
unop(arg, carg)
unop(conj, conj)
binop(add, +)
binop(sub, -)
binop(mul, *)
binop(div, /)
unop(unm, -)
binop(eq, ==)

// String representation of a complex number.
static int complex_tostring(lua_State *L) {
 Complex z = checkcomplex(L, 1);
 double x = creal(z), y = cimag(z);
 if (x != 0 && y > 0)
 lua_pushfstring(L, " f+ fi", x, y);% %
 else if (x != 0 && y < 0)
 lua_pushfstring(L, " f fi", x, y);% %
 else if (x == 0)
 lua_pushfstring(L, " fi", y);%

 else
 lua_pushfstring(L, " f", x);%
 return 1;
}

// Complex module functions.
static const luaL_Reg complex_functions[] = {
 {"new", complex_new},
 {"abs", complex_abs},
 {"real", complex_real},
 {"imag", complex_imag},
 {"arg", complex_arg},
 {"conj", compex_conj},
 {NULL, NULL}
};

// Complex number metamethods.
static const luaL_Reg complex_metamethods[] = {
 {"__add", complex_add},
 {"__sub", complex_sub},
 {"__mul", complex_mul},
 {"__div", complex_div},
 {"__unm", complex_unm},

128 | Lua Quick Reference – Free Download

 {"__eq", complex_eq},
 {"__tostring", complex_tostring},
 {NULL, NULL}
};

// Complex number module entry point.
int luaopen_complex(lua_State *L) {
 // Create and push the module table.
 luaL_newlib(L, complex_functions);
 // Create the complex number metatable, fill it,
 // link it with the module table, then pop it.
 luaL_newmetatable(L, "complex_mt");
 luaL_setfuncs(L, complex_metamethods, 0);
 lua_pushvalue(L, -2); // the module table
 lua_setfield(L, -2, "__index");
 lua_pop(L, 1); // metatable
 return 1; // return the module table
}

-- Lua code.
local complex = require("complex")
complex.new(3, 4) + complex(-1, -2) -- results in 2+2i
complex.new(-1, 1):conj() -- results in -1-1i

luaL_Reg
A C struct that represents a named C function:

typedef struct luaL_Reg {
 const char *name;
 lua_CFunction func;
} luaL_Reg;

void luaL_newlib(lua_State *L,
 const luaL_Reg list[]); Lua 5.2, 5.3, 5.4

Pushes onto the stack a new table composed of the C
functions in NULL-terminated list list.

int luaL_newmetatable(lua_State *L, const char *name);
Pushes onto the stack the metatable identified by string
name, and returns 1 if the metatable had to be created
first or 0 if the metatable already existed.

CAUTION

C Modules | 129

Lua keeps track of all metatable names in the same
place. If the host loads any external C modules, those
modules will also have the ability to create their own
metatables, so there is a possibility of name clashes.

void luaL_setfuncs(lua_State *L, const luaL_Reg *list,
 int n); Lua 5.2, 5.3, 5.4

Pops n values off the stack, associates them with the C
functions in NULL-terminated list list as upvalues, and
adds the resulting closures to the table that is now at the
top of the stack, that was originally below the n values.

void luaL_requiref(lua_State *L, const char *name,
 lua_CFunction f,
 int global); Lua 5.2, 5.3, 5.4

Mimics Lua’s require() function by calling function f
with string name as an argument and registering the value
returned by f as the module named name. If global is
nonzero, assigns the returned value to the global
variable whose name is name. Only the first value
returned by f is used and left on the stack.

Subsequent calls to luaL_requiref() with name will
produce the original value returned by f.

void luaL_register(lua_State *L, const char *name,
 const luaL_Reg *list); Lua 5.1

Pushes onto the stack a new table composed of the C
functions in NULL-terminated list list, registers that table
as the module named name, and assigns it to the global
variable whose name is name. If name is NULL, adds all
functions in list to the table at the top of the stack.

Error and Warning Handling
Properly handling Lua errors in C is vitally important.
Whenever Lua raises an error (either on its own or from an
explicit API call), it uses C’s function longjmp() in an attempt
to handle the error. Unless the error occurred within a
protected call, Lua’s panic function is invoked, and a hard
abort will occur unless the host intervenes and performs a
longjmp() of its own to recover. By contrast, a protected call
catches and handles the error gracefully, and returns an error

130 | Lua Quick Reference – Free Download

code. The API functions lua_pcall(), lua_cpcall(),
luaL_dofile(), luaL_do
string(), lua_resume(), and lua_pcallk() are all protected
calls. The first two are described in the section “Call a C
Function” on page 122, the next two are described in the
section “Load and Run Dynamic Code” on page 132, and the
last two are covered in the section “Threading in C” on page
135. Each of those sections has an example that demonstrates
how to handle errors with their respective API functions.
Table 15 lists the error codes that protected calls can return,
along with their meanings.

Table 15. Error codes returned by protected calls

Error code Meaning

LUA_OKa Success

LUA_ERRRUN Runtime error

LUA_ERRMEM Memory allocation error

LUA_ERRERR Error running the error handler given to lua_pcall() or
lua_pcallk()

a Not in Lua 5.1, which uses the constant 0 instead.

Sometimes Lua cannot raise an error in a defined context,
such as while closing a to-be-closed variable, and during
garbage collection. In cases like these, Lua 5.4 emits a
warning, which can either be handled or ignored. (Lua 5.1,
5.2 and 5.3, however, will simply raise the error in an
arbitrary context.) Lua’s default behavior is to print warnings
to standard error (stderr).

lua_CFunction lua_atpanic(lua_State *L, lua_CFunction f);
Designates C function f as the function Lua calls when
an unexpected error occurs, and returns the previously
designated panic function. When f is called, the error
message is at the top of the stack.

After the panic function returns, Lua aborts the host
application. This unhappy outcome can be avoided if the
host performs a longjmp() of its own to recover.

Error and Warning Handling | 131

lua_setwarnf(lua_State *L, lua_WarnFunction f,
 void *data); Lua 5.4

Designates C function f as the function Lua calls to emit
warnings. f has the following type:

typedef void (*lua_WarnFunction) (void *data,
 const char *message,
 int tocontinue);

f is called with data, a string warning message, and a
flag that indicates whether or not the next call’s message
is a continuation of the previous call’s message.

WARNING

f should not utilize L while handling a warning.

Retrieve Error Information
In addition to having the error message at the top of the stack
after an error occurred, the host can also retrieve a traceback
with additional error information.

void luaL_traceback(lua_State *L, lua_State *L1,
 const char *message,
 int level); Lua 5.2, 5.3, 5.4

Pushes onto the stack a string traceback of the call stack
in thread L1 at call level number level, with optional
string message message prepended to the traceback. A
level of 0 is the current function (or the current file or
module if there is no current function), 1 is the function
that called the current function, 2 is the caller of the
function that called the current function, and so on.

Load and Run Dynamic Code
The host can load and execute user-provided chunks of Lua
code at run-time. It can also do this in a sandboxed
environment as a security measure. Example 32 illustrates
how the host can run user-defined Lua scripts in a tightly-
controlled environment that does not provide access to
external modules, the underlying filesystem and operating

132 | Lua Quick Reference – Free Download

system, and any other potentially unsafe Lua features.

Example 32. Run user-defined Lua code in a sandbox

// Define and store the sandbox for subsequent use.
const char *safe[] = {
 "assert", "error", "ipairs", "math", "next", "pairs",
 "pcall", "select", "string", "table", "tonumber",
 "tostring", "type", "xpcall", NULL
};
lua_newtable(L); // the sandbox environment
for (const char **p = safe; *p; p++)
 lua_getglobal(L, *p), lua_setfield(L, -2, *p);
/* add other safe host functions to sandbox... */
int sandbox_ref = luaL_ref(L, LUA_REGISTRYINDEX);

/* ... */

// Attempt to load the user-defined Lua script
// (text-only) as an anonymous function.
if (luaL_loadfilex(L, user_script, "t") == LUA_OK) {
 // Make the sandbox the function's environment.
 lua_rawgeti(L, LUA_REGISTRYINDEX, sandbox_ref);
 lua_setupvalue(L, -2, 1);
 // Execute the script.
 if (lua_pcall(L, 0, 0, 0) != LUA_OK) {
 /* process and pop error message at index -1... */
 }
}

/* ... */

// Finished with the sandbox; delete it.
luaL_unref(L, LUA_REGISTRYINDEX, sandbox_ref);

int luaL_dostring(lua_State *L, const char *s);
int luaL_dofile (lua_State *L, const char *filename);

Executes the contents of string s or the file identified by
string filename as a chunk of Lua code, pushes onto the
stack all values returned by that chunk, and returns
LUA_OK (or 0 in Lua 5.1) on success.

If an error occurred, a non-zero error code is returned
and the error message is pushed onto the stack instead.
In addition to the error codes listed in Table 15 on page
131, LUA_ERRSYNTAX and LUA_ERRFILE can also be returned,
which indicate there was a syntax error or problem
opening the file, respectively.

Load and Run Dynamic Code | 133

int luaL_loadstring (lua_State *L, const char *s);
int luaL_loadbuffer (lua_State *L, const char *s,
 size_t len, const char *name);
int luaL_loadbufferx(lua_State *L, const char *s,
 size_t len, const char *name,
 const char *mode); Lua 5.2, 5.3, 5.4
int luaL_loadfile (lua_State *L, const char *filename);
int luaL_loadfilex (lua_State *L, const char *filename,
 const char *mode); Lua 5.2, 5.3, 5.4

Loads as a chunk of Lua code zero-terminated string s,
string s of length len bytes, or the contents of the file
identified by string filename, pushes onto the stack a Lua
function that will execute that chunk when called, and
returns LUA_OK (or 0 in Lua 5.1) on success. name is an
optional string name associated with the chunk and mode
indicates whether the chunk can be text ("t"), binary
("b"), or both ("bt"). The default value of mode is "bt".
(Binary chunks are produced by Lua’s luac or lu
ac.exe executable.)

If an error occurred, a non-zero error code is returned
and the error message is pushed onto the stack instead.
In addition to the error codes listed in Table 15 on page
131, LUA_ERRSYNTAX and LUA_ERRFILE can also be returned.
The former indicates there was a syntax error and the
latter indicates there was a problem opening the file.

CAUTION

Lua does not verify the integrity of, or in any way
sanitize binary chunks. Running truly arbitrary binary
chunks may be unsafe.

const char *lua_setupvalue(lua_State *L,
 int index, 1); Lua 5.2, 5.3, 5.4
int lua_setfenv (lua_State *L, int index); Lua 5.1

Pops a table value off the stack, designates it as the
environment of the function value at stack index index,
and returns non-NULL or 1 on success. The section
“Environments” on page 47 describes environments.

134 | Lua Quick Reference – Free Download

Threading in C
The host can create and use threads similarly to how Lua can
create and use threads as illustrated in the section “Thread
Facilities” on page 69. However, the typical threading
procedure in C differs slightly from the threading procedure
in Lua:

1. The main Lua thread creates and pushes a new
(suspended) thread T onto the stack.

2. The main thread pushes a function body onto the stack
of T. (T has its own stack, but shares the same global
environment.)

3. Upon starting T, the main thread is temporarily
suspended, and the body of T is executed.

4. T performs some work and then yields back to the main
thread.

5. The main thread resumes right where it left off, at the
point where it started T. T is now suspended.

6. The main thread performs some work and then resumes
T.

7. T resumes, but not right where it left off (at the point
where it yielded back to the main thread). Instead, T
either resumes in the caller of the function that yielded T,
or resumes in the continuation function specified by the
function that yielded T. The main thread is now
suspended.

8. This process repeats until T completes its work and the
thread finishes.

9. The main thread resumes right where it left off and
continues indefinitely. T is now dead and cannot be
resumed.

During each transition between threads, values can be
exchanged between the thread stacks. When the main thread
starts T, it can pass values from its stack to the function body
of T. When T yields, it can pass values from its stack back to
the main thread’s stack. When the main thread resumes T, it
can pass more of its stack values to T. And so on.

Example 33 illustrates the entirety of this typical threading
procedure by starting a series of threads that continuously

Threading in C | 135

monitor files for output, by having those threads pass that
output back to the main thread for processing, and by having
the main thread ask monitoring threads to stop monitoring
based on their processed output. (While this example
operates on files, it can be adapted to work on other
resources like sockets and pipes.)

In addition to the typical threading procedure, there is a quirk
involving a C function that calls another function that
eventually yields. This case is also handled using continuation
functions.

All of the aforementioned aspects of threading in C, including
continuation functions, are described in the following
sections.

Example 33. Monitor output from a set of files

// Filenames to monitor.
const char *filenames[32]; // should have NULL sentinel

/* ... */

// Thread body continuation function for monitoring a
// file.
static int monitor(lua_State *thread, int status,
 lua_KContext ctx) {
 FILE *f = (FILE*)ctx;
 // Stop monitoring file if requested to.
 if (status == LUA_YIELD &&
 !lua_toboolean(thread, 1)) {
 fclose(f);
 return 0;
 }
 // Check for data to be read.
 int c = getc(f);
 if (c != EOF) {
 // Read and yield a line of data.
 ungetc(c, f);
 char buf[BUFSIZ];
 fgets(buf, BUFSIZ, f);
 lua_pushstring(thread, buf);
 return lua_yieldk(thread, 1, ctx, monitor);
 } else {
 // No data to read; yield nothing.
 return lua_yieldk(thread, 0, ctx, monitor);
 }
}

136 | Lua Quick Reference – Free Download

// Thread body function for monitoring a file.
static int monitor_file(lua_State *thread) {
 const char *filename = luaL_checkstring(thread, 1);
 FILE *f = fopen(filename, "r");
 if (!f)
 return luaL_error(thread, "file ' s' not found",%
 filename);
 lua_settop(thread, 0); // clear
 return monitor(thread, LUA_OK, (lua_KContext)f);
}

/* ... */

// Create and start threads.
lua_createtable(L, 32, 0); // active threads table
for (int i = 0; i < 32; i++) {
 if (!filenames[i]) break;
 lua_State *thread = lua_newthread(L);
 lua_pushcfunction(thread, monitor_file);
 lua_pushstring(thread, filenames[i]);
 int nresults; // unused
 if (lua_resume(thread, L, 1, &nresults) == LUA_YIELD)
 // Store thread for monitoring.
 lua_rawseti(L, -2, lua_rawlen(L, -2) + 1);
 else {
 /* handle error starting thread... */
 lua_pop(L, 1);
 }
}

// Monitor active threads.
int i = 1;
while (lua_rawlen(L, -1) > 0) {
 lua_rawgeti(L, -1, i);
 lua_State *thread = lua_tothread(L, -1);
 if (lua_gettop(thread) > 0) {
 // Thread has output from its monitored file.
 const char *line = lua_tostring(thread, -1);
 /* process line and possibly stop monitoring... */
 lua_pushboolean(thread, keep_monitoring);
 lua_replace(thread, 1);
 int nresults; // unused
 lua_resume(thread, L, 1, &nresults);
 if (!keep_monitoring) {
 // Stop monitoring the now-dead thread.
 lua_getglobal(L, "table");
 lua_getfield(L, -1, "remove");
 lua_replace(L, -2);
 lua_pushvalue(L, -3); // active threads table
 lua_pushnumber(L, i);

Threading in C | 137

 lua_call(L, 2, 0); // table.remove(threads, i)
 lua_pop(L, 1); // dead thread
 continue; // monitor next thread
 }
 }
 lua_pop(L, 1); // thread
 if (++i > lua_rawlen(L, -1)) i = 1; // start again
}
lua_pop(L, 1); // active threads table

Create a Thread
The host can create threads. Each thread has its own stack for
pushing values onto (such as a function body) and popping
values off of (such as return values).

lua_State
A C struct that represents both a thread in a Lua
interpreter and the interpreter itself.

lua_State *lua_newthread(lua_State *L);
Creates and pushes onto the stack a new (suspended)
thread and returns a pointer to it. The new thread has its
own stack, but shares the same global environment as
Lua interpreter L.

Start or Resume a Thread
The host can start a thread that has a function body on its
stack and can resume a thread that had previously yielded.

void lua_pushcfunction(lua_State *thread, lua_CFunction f);
Pushes C function value f onto the stack of thread
thread.

int lua_resume(lua_State *thread, lua_State *L, int nargs,
 int *nresults); Lua 5.4
int lua_resume(lua_State *thread, lua_State *L,
 int nargs); Lua 5.2, 5.3
int lua_resume(lua_State *thread, int nargs); Lua 5.1

Starts or resumes execution of thread thread from thread
L (the currently active thread), and returns LUA_OK (or 0 in
Lua 5.1) if thread finishes without error, LUA_YIELD if
thread subsequently yields, or a non-zero error code if
thread raises an error. Table 15 on page 131 lists Lua’s

138 | Lua Quick Reference – Free Download

error codes and their meanings.

When starting thread, nargs function argument values are
popped off the stack of thread, the thread function body
now at the top of the stack is popped off the stack, and
that popped function is called with the popped
arguments (the last value popped being the first
argument and the first value popped being the last
argument).

When resuming thread, all values on its stack are either
left for the continuation function passed to the call to
lua_yieldk() that originally yielded thread, left for the
caller of lua_yield(), or used as the return values of the
yielding call to coroutine.yield().

If thread subsequently yields without error, the top nre
sults on its stack (which happen to be the only values
on the stack in Lua 5.1, 5.2, and 5.3) are the argument
values specified by the yielding call. If thread finishes
without error, the top nresults values on its stack (the
only stack values in Lua 5.1, 5.2, and 5.3) are the values
returned by the function body of thread. If thread raises
an error, the error message is at the top of its stack.

Yield a Thread
The host can yield the running thread. After a C function
yields, it is impossible to return to that function when the
thread resumes, due to the nature of the yield. Instead, Lua
5.2, 5.3, and 5.4 allow for a continuation function to be called
upon resumption. Lua 5.1 simply returns to the caller of the C
function.

int lua_isyieldable(lua_State *L, int index); Lua 5.3, 5.4
Returns 1 if the value at stack index index is a yieldable
thread. Otherwise, returns 0.

lua_KFunction Lua 5.3, 5.4
The C type associated with continuation functions:

typedef int (*lua_KFunction) (lua_State *thread,
 int status,
 lua_KContext ctx);

Threading in C | 139

When a continuation function is called by Lua, status is
LUA_YIELD. When calling a continuation function
manually, status is either LUA_OK, or the non-zero error
code returned by lua_pcallk() if an error occurred.

lua_KContext Lua 5.3, 5.4
The C type associated with continuation function
contexts (typically intptr_t or ptrdiff_t, which are large
enough to store an arbitrary pointer). Continuation
function contexts are unused by Lua, but may be useful
to the host for passing around state information.

int lua_getctx(lua_State *thread, int *ctx); Lua 5.2
Returns LUA_YIELD if the current function was called by
Lua to continue from a yield, and sets ctx to the value
passed to the call to lua_yieldk() that yielded thread
thread. Otherwise, returns LUA_OK and leaves ctx
unmodified.

int lua_yieldk(lua_State *thread, int nresults,
 lua_KContext ctx, lua_KFunction k); Lua 5.3, 5.4
int lua_yieldk(lua_State *thread, int nresults,
 int ctx, lua_CFunction k); Lua 5.2
int lua_yield (lua_State *thread, int nresults);

Yields thread thread, and either leaves only the top nre
sults values on its stack for use by the lua_resume() call
that originally started or resumed thread, or uses those
values as the (potentially extra) return values of the Lua
call that originally started or resumed thread.

When thread is resumed again, k(thread, LUA_YIELD,
ctx) is called (or just k(thread) in Lua 5.2), and the only
values on the stack of thread are either the values left by
the resuming lua_resume() call, or the argument values
passed to the resuming Lua call. If there is no
continuation function (which is always the case in Lua
5.1), execution returns to the original caller of this
function.

Transfer Values Between Threads
When a thread yields, the host can transfer that thread’s stack
values to the main thread (or any other live thread). Similarly,
the host can transfer values from the stack of another live
thread to the thread about to be resumed.

140 | Lua Quick Reference – Free Download

void lua_xmove(lua_State *from, lua_State *to, int n);
Pops n values off the stack of thread from and pushes
them onto the stack of thread to. Both from and to must
share the same Lua interpreter.

Query a Thread’s Status
The host can query the status of a thread.

int lua_status(lua_State *thread);
Returns the status of thread thread: LUA_OK (or 0 in Lua
5.1) for a normal thread (active but not running, not yet
started, or finished without error), LUA_YIELD if thread has
yielded, or the non-zero error code returned by lua_re
sume() if thread raised an error. Table 15 on page 131
lists Lua’s error codes and their meanings.

Close a Thread
The host can close a thread in Lua 5.4, though this is typically
only done when that thread has variables that need to be
closed and either it is suspended and not expected to be
resumed, or an error has occurred inside of it.

int lua_resetthread(lua_State *thread); Lua 5.4
Closes thread thread and its to-be-closed variables, and
returns LUA_OK if no error occurred during the closing
process. Otherwise, returns a non-zero error code and
pushes the error message onto the stack.

Call a Function that Yields
Any running thread (including the main thread) can invoke
functions, including C functions. These C functions can in
turn invoke other functions. A potential problem may arise if
a C function f invokes another function that ultimately yields.
When the suspended thread resumes, it is impossible to
return to f due to the nature of the yield. While Lua 5.1 will
throw an error at this attempt to “yield across a C-call
boundary,” Lua 5.2, 5.3, and 5.4 allow for a continuation
function to be called upon resumption. Example 34
demonstrates how to handle this case as it iterates over all

Threading in C | 141

key-value pairs in a table and calls a potentially yielding
function with each pair as arguments.

Example 34. Call a function for each table key-value pair

// Thread body continuation function for iterating over
// a table's key-value pairs and calling a function
// with each pair as that function's arguments.
static int iterator(lua_State *thread, int status,
 lua_KContext ctx) {
 if (status == LUA_OK)
 lua_pushnil(thread); // start iteration
 else
 lua_pop(thread, 1); // previous value
 while (lua_next(thread, 1) != 0) {
 lua_pushvalue(thread, lua_upvalueindex(1));
 lua_pushvalue(thread, -3); // key
 lua_pushvalue(thread, -3); // value
 lua_callk(thread, 2, 0, 0, iterator);
 lua_pop(thread, 1); // value
 }
 return 0;
}

// Initial thread body function.
static int iterate(lua_State *thread) {
 return iterator(thread, LUA_OK, 0);
}

/* ... */

lua_State *thread = lua_newthread(L);
/* push function to be called each iteration... */
lua_pushcclosure(thread, iterate, 1);
/* push table to be iterated over... */
int nresults;
while (lua_resume(thread, L, 1, &nresults) ==
 LUA_YIELD) {
 /* work to do in-between yields... */
 lua_pop(thread, nresults);
}
lua_pop(L, 1); // dead thread

lua_KFunction Lua 5.3, 5.4
The C type associated with continuation functions:

typedef int (*lua_KFunction) (lua_State *thread,
 int status,
 lua_KContext ctx);

142 | Lua Quick Reference – Free Download

When a continuation function is called by Lua, status is
LUA_YIELD. When calling a continuation function
manually, status is either LUA_OK, or the non-zero error
code returned by lua_pcallk() if an error occurred.

lua_KContext Lua 5.3, 5.4
The C type associated with continuation function
contexts (typically intptr_t or ptrdiff_t, which are large
enough to store an arbitrary pointer). Continuation
function contexts are unused by Lua, but may be useful
to the host for passing around state information.

int lua_getctx(lua_State *thread, int *ctx); Lua 5.2
Returns LUA_YIELD if the current function was called by
Lua to continue from a yield, and sets ctx to the value
passed to the call to lua_yieldk() that yielded thread
thread. If the current function was called by Lua after an
error occurred in a call to lua_pcallk(), returns a non-
zero error code and sets ctx to the value passed to
lua_pcallk(). Otherwise, returns LUA_OK and leaves ctx
unmodified. Table 15 on page 131 lists Lua’s error codes
and their meanings.

void lua_callk(lua_State *thread, int nargs, int nresults,
 lua_KContext ctx, lua_KFunction k); Lua 5.3, 5.4
void lua_callk(lua_State *thread, int nargs, int nresults,
 int ctx, lua_CFunction k); Lua 5.2
int lua_pcallk(lua_State *thread, int nargs, int nresults,
 int error_handler, lua_KContext ctx,
 lua_KFunction k); Lua 5.3, 5.4
int lua_pcallk(lua_State *thread, int nargs, int nresults,
 int error_handler, int ctx,
 lua_CFunction k); Lua 5.2

Pops nargs function argument values off the stack, pops
off the stack the function that is now at the top of the
stack, calls that popped function with the popped
arguments (the last value popped being the first
argument and the first value popped being the last
argument), and pushes the first nresults values returned
by the function onto the stack (or all of them if nresults
is LUA_MULTRET). lua_pcallk() returns LUA_OK on success.

lua_callk() should only be called from within C
functions that do not care to handle errors and have
been ultimately invoked by a protected call. The section
“Error and Warning Handling” on page 130 describes

Threading in C | 143

protected calls.

If an error occurs, lua_pcallk() pushes the error message
onto the stack and returns a non-zero error code. If er
ror_handler is nonzero, the function at stack index er
ror_handler is called with the error message as an
argument, and that function’s return value is the error
message ultimately pushed onto the stack. Table 15 on
page 131 lists Lua’s error codes and their meanings.

If thread yields during the call, the original lua_callk()
or lua_pcallk() call will not return. Instead, whenever
thread resumes, k(thread, LUA_YIELD, ctx) is called (or
just k(thread) in Lua 5.2), and the stack contains the first
nresults values returned by the originally called function
(or all of the returned values if nresults is LUA_MULTRET).

If the value being called is a table or userdata value with
the metamethod __call(), that metamethod is called to
perform the operation. The section “Other Operator and
Statement Metamethods” on page 36 covers this meta-
method in its generic form.

Memory Management
Lua manages the memory of its values by allocating memory
for new values and freeing memory for values no longer in
use. Lua employs a garbage collector to automatically detect
and delete unused values. More often than not this is
sufficient. However, Lua provides access controls for its
collector should the need arise.

int lua_gc(lua_State *L, LUA_GCCOLLECT, 0);
Performs a full garbage collection cycle.

int lua_gc(lua_State *L, LUA_GCSTOP, 0);
int lua_gc(lua_State *L, LUA_GCRESTART, 0);

Stops and restarts automatic garbage collection.

int lua_gc(lua_State *L, LUA_GCISRUNNING, 0);
Returns 1 if automatic garbage collection is on and 0 if it
is off.

int lua_gc(lua_State *L, LUA_GCCOUNT, 0);
Returns the number of kilobytes of memory used by Lua.

144 | Lua Quick Reference – Free Download

Miscellaneous
Lua provides other miscellaneous C API facilities.

int lua_numbertointeger(lua_Number n,
 lua_Integer *i); Lua 5.3, 5.4

Converts float n to an integer, stores the result in i, and
returns 1 or, if the conversion fails, returns 0.

size_t lua_stringtonumber(lua_State *L,
 const char *s); Lua 5.3, 5.4

Converts string s to a number and, if successful, pushes
that number onto the stack and returns a number greater
than zero. A return value of 0 indicates the conversion
failed and that nothing was pushed.

void lua_pushglobaltable(lua_State *L); Lua 5.2, 5.3, 5.4
lua_pushvalue(L, LUA_GLOBALSINDEX); Lua 5.1

Pushes the global environment table onto the stack.

TIP

This may be more accurate than the statement “lua_get
global(L, "_G");”, as _G may have been overwritten by
Lua code.

int lua_setiuservalue(lua_State *L, int index,
 int n); Lua 5.4
void lua_setuservalue (lua_State *L,
 int index); Lua 5.2, 5.3, 5.4
int lua_setfenv (lua_State *L, int index); Lua 5.1

Pops a value off the stack (which must be a table in Lua
5.1, or a table or nil in Lua 5.2), associates it as the nth

(or only) user value of the full userdata value at stack
index index, and returns 1 if the operation succeeded.
Otherwise, returns 0.

int lua_getiuservalue(lua_State *L, int index,
 int n); Lua 5.4
int lua_getuservalue (lua_State *L, int index); Lua 5.3, 5.4
void lua_getuservalue (lua_State *L, int index); Lua 5.2
void lua_getfenv (lua_State *L, int index); Lua 5.1

Pushes onto the stack the nth (or only) user value

Miscellaneous | 145

associated with the full userdata value at stack index
index, and returns the pushed value’s type. In Lua 5.1
the pushed value is always a table, and in Lua 5.2 it is
always either a table or nil.

void lua_getfenv(lua_State *L, int index); Lua 5.1
Pushes onto the stack the environment table of the
function or thread value at stack index index.

146 | Lua Quick Reference – Free Download

Lua and C API Index

Symbols
... (expression), 30, 31
<close>, 11, 35
<const>, 11
__add, 33
__band, 34
__bnot, 35
__bor, 34
__bxor, 34
__call, 36
__close, 35
__concat, 36
__div, 33
__eq, 34
__idiv, 33
__index, 36
__ipairs, 37
__le, 34
__len, 37
__lt, 34
__metatable, 37
__mod, 33
__mul, 33
__newindex, 36
__pairs, 37
__pow, 33
__shl, 35
__shr, 35
__sub, 33
__tostring, 37
__unm, 33

Keywords
and, 19
break, 26
else, 25
elseif, 25
false, 12
for, 25, 26
function, 28

goto, 27
if, 25
in, 26
local, 23, 28
nil, 12
not, 19
or, 20
repeat, 26
return, 29
true, 12
until, 26
while, 26

_G
_ENV, 47
_G, 47
_VERSION, 83
arg, 82
assert, 49
collectgarbage, 82
dofile, 50
error, 49
getfenv, 47
getmetatable, 33
ipairs, 65
load, 50
loadfile, 50
loadstring, 50
module, 45
next, 23
pairs, 65
pcall, 48
print, 83
rawequal, 38
rawget, 38
rawlen, 38
rawset, 38
require, 43
select, 31
self, 41

Index | 147

setfenv, 47

_G (continued)
setmetatable, 33
tonumber, 16
tostring, 16
type, 16
unpack, 67
warn, 49
xpcall, 48

bit32
band, 20
bnot, 21
bor, 20
bxor, 20
lshift, 21
rshift, 21

coroutine
close, 72
create, 70
isyieldable, 71
resume, 70
running, 71
status, 71
wrap, 70
yield, 71

io
close, 74
file:close, 77
file:flush, 76
file:lines, 76
file:read, 75
file:seek, 76
file:setvbuf, 76
file:write, 76
flush, 74
input, 73
lines, 74
open, 75
output, 74
popen, 78
read, 73

stderr, 75
stdin, 75
stdout, 75
tmpfile, 75
type, 77
write, 74

math
abs, 51
acos, 52
asin, 52
atan, 52
atan2, 52
ceil, 51
cos, 52
cosh, 52
deg, 52
exp, 53
floor, 51
fmod, 51
huge, 52
log, 53
log10, 53
max, 51
maxinteger, 54
min, 51
mininteger, 54
modf, 52
pi, 52
rad, 52
random, 53
randomseed, 53
sin, 52
sinh, 52
sqrt, 51
tan, 52
tanh, 52
tointeger, 54
type, 54
ult, 54

os
clock, 81
date, 81

148 | Index

difftime, 80
execute, 78
exit, 79
getenv, 78
remove, 77
rename, 77
setlocale, 81
time, 80
tmpname, 75

package
cpath, 43
loaded, 44
path, 43
searchpath, 44
seeall, 45

string
byte, 59
char, 56
find, 62
format, 55
gmatch, 62
gsub, 62
len, 59
lower, 59
match, 63
pack, 59
packsize, 59
rep, 56
reverse, 59
sub, 59
unpack, 59
upper, 59

table
concat, 56, 67
insert, 66
move, 66
pack, 31
remove, 66
sort, 66
unpack, 67

utf8
char, 63
charpattern, 64
codepoint, 63
codes, 64
len, 63
offset, 64

LUA_*
LUA_ERRERR, 129
LUA_ERRFILE, 132
LUA_ERRMEM, 129
LUA_ERRRUN, 129
LUA_ERRSYNTAX, 132
LUA_GCCOLLECT, 143
LUA_GCCOUNT, 143
LUA_GCISRUNNING, 143
LUA_GCRESTART, 143
LUA_GCSTOP, 143
LUA_GLOBALSINDEX, 143
LUA_MULTRET, 122
LUA_OK, 129
LUA_OPADD, 106
LUA_OPBAND, 107
LUA_OPBNOT, 108
LUA_OPBOR, 107
LUA_OPBXOR, 107
LUA_OPDIV, 106
LUA_OPEQ, 107
LUA_OPIDIV, 106
LUA_OPLE, 107
LUA_OPLT, 107
LUA_OPMOD, 106
LUA_OPMUL, 106
LUA_OPPOW, 106
LUA_OPSHL, 108
LUA_OPSHR, 108
LUA_OPSUB, 106
LUA_OPUNM, 107
LUA_REGISTRYINDEX, 113
LUA_TBOOLEAN, 102
LUA_TFUNCTION, 102
LUA_TLIGHTUSERDATA,

102

Index | 149

LUA_TNIL, 102
LUA_TNONE, 102

LUA_* (continued)
LUA_TNUMBER, 102
LUA_TSTRING, 102
LUA_TTABLE, 102
LUA_TTHREAD, 102
LUA_TUSERDATA, 102
LUA_YIELD, 137-139

lua_*
lua_absindex, 91
lua_arith, 106, 107
lua_atpanic, 130
lua_call, 121
lua_callk, 142
lua_CFunction, 114
lua_checkstack, 91
lua_close, 89
lua_compare, 107
lua_concat, 108
lua_copy, 105
lua_cpcall, 122
lua_createtable, 97
lua_equal, 107
lua_error, 119
lua_gc, 143
lua_getctx, 138
lua_getfenv, 144
lua_getfield, 109
lua_getglobal, 106
lua_geti, 109
lua_getiuservalue, 144
lua_getmetatable, 124
lua_gettable, 109
lua_gettop, 91
lua_getuservalue, 144
lua_insert, 105
lua_Integer, 92, 103
lua_isboolean, 101
lua_iscfunction, 102
lua_isfunction, 102
lua_isinteger, 101

lua_islightuserdata, 102
lua_isnil, 101
lua_isnone, 101
lua_isnoneornil, 101
lua_isnumber, 101
lua_isstring, 102
lua_istable, 102
lua_isthread, 102
lua_isuserdata, 102
lua_isyieldable, 138
lua_KContext, 138
lua_KFunction, 138
lua_len, 108, 112
lua_lessthan, 107
lua_newtable, 97
lua_newthread, 98, 136
lua_newuserdata, 100
lua_newuserdatauv, 100
lua_next, 112
lua_Number, 93, 103
lua_numbertointeger, 143
lua_objlen, 108, 113
lua_pcall, 121
lua_pcallk, 142
lua_pop, 101
lua_pushboolean, 92
lua_pushcclosure, 97
lua_pushcfunction, 97
lua_pushfstring, 94
lua_pushglobaltable, 143
lua_pushinteger, 93
lua_pushlightuserdata, 100
lua_pushliteral, 94
lua_pushlstring, 94
lua_pushnil, 92
lua_pushnumber, 93
lua_pushstring, 93
lua_pushthread, 98
lua_pushunsigned, 93
lua_pushvalue, 100
lua_pushvfstring, 94
lua_rawequal, 107
lua_rawget, 109

150 | Index

lua_rawgeti, 109
lua_rawgetp, 110
lua_rawlen, 113
lua_rawset, 110
lua_rawseti, 110
lua_rawsetp, 111
lua_register, 120
lua_remove, 101
lua_replace, 106
lua_resume, 137
lua_rotate, 106
lua_setfenv, 133, 144
lua_setfield, 110
lua_setglobal, 106
lua_seti, 110
lua_setiuservalue, 144
lua_setmetatable, 123
lua_settable, 110
lua_settop, 92
lua_setupvalue, 133
lua_setuservalue, 144
lua_setwarnf, 130
lua_State, 89, 136
lua_status, 139
lua_stringtonumber, 143
lua_toboolean, 103
lua_tocfunction, 104
lua_toclose, 100
lua_tointeger, 103
lua_tointegerx, 103
lua_tolstring, 104
lua_tonumber, 103
lua_tonumberx, 103
lua_topointer, 105
lua_tostring, 104
lua_tothread, 104
lua_tounsigned, 103
lua_tounsignedx, 103
lua_touserdata, 105
lua_type, 102
lua_typename, 102
lua_Unsigned, 93, 103
lua_upvalueindex, 97, 119

lua_warning, 120
lua_xmove, 139
lua_yield, 138
lua_yieldk, 138

luaL_*
luaL_addchar, 96
luaL_addgsub, 96
luaL_addlstring, 96
luaL_addsize, 96
luaL_addvalue, 96
luaL_argcheck, 117
luaL_argerror, 118
luaL_argexpected, 118
luaL_Buffer, 95
luaL_buffinit, 95
luaL_buffinitsize, 95
luaL_callmeta, 124
luaL_checkany, 117
luaL_checkint, 116
luaL_checkinteger, 116
luaL_checklong, 116
luaL_checklstring, 117
luaL_checknumber, 116
luaL_checkoption, 118
luaL_checkstack, 120
luaL_checkstring, 116
luaL_checktype, 117
luaL_checkudata, 117
luaL_checkunsigned, 116
luaL_dofile, 132
luaL_dostring, 132
luaL_error, 119
luaL_getmetafield, 124
luaL_getmetatable, 124
luaL_getsubtable, 110
luaL_gsub, 108
luaL_len, 108, 112
luaL_loadbuffer, 132
luaL_loadbufferx, 132
luaL_loadfile, 132
luaL_loadfilex, 132
luaL_loadstring, 132
luaL_newlib, 128

Index | 151

luaL_newmetatable, 123
luaL_newstate, 89
luaL_openlibs, 89

luaL_* (continued)
luaL_optint, 118
luaL_optinteger, 118
luaL_optlong, 118
luaL_optlstring, 118
luaL_optnumber, 118
luaL_optstring, 118
luaL_optunsigned, 118
luaL_prepbuffer, 96
luaL_prepbuffsize, 96
luaL_pushresult, 96

luaL_pushresultsize, 96
luaL_ref, 114
luaL_Reg, 128
luaL_register, 129
luaL_requiref, 89, 128
luaL_setfuncs, 128
luaL_setmetatable, 123
luaL_testudata, 117
luaL_tolstring, 104
luaL_traceback, 130
luaL_typeerror, 117
luaL_typename, 102
luaL_typerror, 117
luaL_unref, 114

152 | Index

Concept Index

A
anonymous functions, 14
arithmetic operators, 17

invoking (stack), 106
metamethods for, 33

associative arrays, 15
attributes, 11, 100

B
benchmarking, 80
binary strings, 56-59
bitwise operators, 20

invoking (stack), 107
metamethods for, 34

block comments, 9
blocks, 3
booleans, 12

pushing (stack), 92
retrieving (stack), 102

buffers, 94-96

C
C data types, 98
C functions, 114-122

arguments of,
handling, 116-119

calling, 121
defining, 114-116
environment of,

changing, 133
pushing (stack), 96
registering, 120
retrieving (stack), 104
upvalues of, 96, 119
(see also functions)

C stack (see stack)
calling functions, 21, 121
classes (see object-oriented

programming)
closing metamethod, 35

collaborative multi-threading
(see threads)

command line arguments, 5,
82

comments, 9
compiling Lua programs, 89
complex numbers, 125-127
concatenation operator, 22

invoking (stack), 108
metamethod for, 36

configuration files, 50
control structures, 24-26

break from, 26
continue, 27
for, 25
if, 25
repeat, 26
while, 26

coroutines (see threads)

D
dates and times, 79-81
directory contents, 78
dynamic code execution, 50,

131

E
environment variables, 4, 78
environments, 46

changing, 47, 133
retrieving, 47, 144
sandboxed, 50, 131

error handling, 48, 129-131
exponential functions, 52
expressions, 17-21, 23

F
fields, 15
files,

managing, 77

Index | 153

monitoring, 134-136
files (continued)

opening modes, 72
read formats, 72
reading and

writing, 75-77
size of, 75

filesystem access, 42, 77
first-class values, 12
floats, 12

pushing (stack), 92
retrieving (stack), 103

for loop, 25
full userdata, 98
function call operator, 21

invoking (stack), 121
metamethod for, 36

function metamethods, 37
functions, 14, 27-31

anonymous, 14
calling, 21
default argument

values, 28
defining, 28
named arguments, 29
returning values from,

29, 31
tail calls, 29
upvalues of, 28
variable arguments in, 30
(see also C functions)

G
garbage collection, 82, 99,

143
metamethod for, 99

global environment, 46
global variables, 10, 46, 106
goto, 27

H
host application, 1, 3, 87

I
identifiers, 9
if conditional, 25
input and output, 72-78

files, with, 75-77
processes, with, 78
simple, 73

integers, 12, 54
pushing (stack), 92
retrieving (stack), 103

iterating over tables, 64, 111
metamethods for, 37

iterators, 26

L
labels, 27
length operator, 22

invoking (stack), 112
metamethod of, 37

lexical scoping, 10
light userdata, 98
line comments, 9
lists,

concatenating elements
of, 67

creating, 15
definition of, 4
elements in, 15
indices of, 15, 64
iterating over, 64
length of, 22
manipulating, 66
permutations of, 69
unpacking, 66
(see also tables)

loading dynamic code, 50,
131

local variables, 10
locales, 81
logarithmic functions, 52
logical operators, 19
Lua,

downloading, 2
editing, 2

154 | Index

file extension for, 9
overview of, 1

Lua interpreter,
closing, 89
creating, 89
stand-alone, 1, 5, 87

LuaJIT, 1

M
main thread, 89
mathematical functions, 51
memory management, 82,

143
metamethods, 32-38

arithmetic, 33
bitwise, 34
bypassing, 38
concatenation, 36
function, 37
function call, 36
garbage collection, 99
invoking in C, 124
length, 37
relational, 33
table index, 36
table iteration, 37

metatables, 32, 122-124
assigning, 32, 123
creating in C, 123
retrieving, 32, 123

modules, 42-46, 124-129
creating, 45, 124, 128
loading, 5, 43, 89, 128
unloading, 44

multi-line comments, 9
multi-line strings, 13
multi-threading (see threads)

N
nil, 12

pushing (stack), 92
numbers, 12

pushing (stack), 92
retrieving (stack), 103

numeric for loop, 25

O
object-oriented

programming, 38-42
classes, defining, 38-41
classes, invoking, 41
inheritance, 40
methods, defining, 41
multiple inheritance, 41

opening files (see files)
operator overloading, 32
operators, 17-23

arithmetic, 17
bitwise, 20
concatenation, 22
function call, 21
length, 22
logical, 19
overloading, 32
precedence of, 17
relational, 18
table index, 22
ternary, 20

P
Parsing Expression

Grammars, 42
patterns, 60-62
prime number

generation, 25
processes, 78
protected calls, 48, 129

R
random numbers, 53
read-only tables, 36
reading from files (see files)
reference system, 113
registry, 113
regular expressions, 60
relational operators, 18

invoking (stack), 107
metamethods for, 33

Index | 155

repeat until loop, 26

reserved words, 9
return statement, 29, 31
running dynamic code, 50,

131

S
sandboxed environments,

50, 131
scopes, 10
Sieve of Eratosthenes, 25
sockets, 42
stack, 90-114

arithmetic operations,
106

bitwise operations, 107
element operations, 105
global variable

operations, 106
indices, 91
length operations, 112
overflow, 91
popping values, 101
pushing values, 92-100
querying values, 101
reference operations, 113
relational operations, 107
retrieving values, 102-105
size, 91, 120
string operations, 108
table operations, 109-112

stand-alone Lua
interpreter, 1, 5, 87

statements, 23-27
strings,

binary, working
with, 56-59

buffers, 94-96
concatenating, 22
creating, 13, 54-56, 67
escape sequences in, 14
indices of, 54
length of, 22

patterns, 60-62
pushing (stack), 93-96
querying, 59
retrieving (stack), 103
searching and replacing

in, 60-63
stack operations on, 108
transforming, 59
UTF-8, working with, 63

T
table assignment

statements, 24
invoking (stack), 110
metamethods for, 36

table index operators, 22
invoking (stack), 109
metamethods for, 36

tables,
assigning values in, 24,

110
creating, 15, 97
environments, 46
fields in, 15
indexing, 22, 109
iterating over, 64, 111
pretty-printing, 67
pushing (stack), 97
read-only, 36
registry, 113
stack operations

on, 109-112
(see also lists)

tail calls, 29
Textadept, 2
the stack (see stack)
threads, 15, 67-72, 133-142

calling yielding
functions, 140-142

closing, 71, 139
creating, 70, 136
main thread, 89
procedure for, 67, 133
pushing (stack), 98

156 | Index

querying, 71, 139
resuming, 70, 137
retrieving (stack), 104
starting, 70, 137
transferring data between

in C, 139
yielding, 70, 138

times and dates, 79-81
to-be-closed variables, 11,

35
metamethod for, 35

trigonometric functions, 52
types, 12-16

boolean, 12
converting between, 16,

143
determining, 16, 101
function, 14
nil, 12
number, 12
string, 13
table, 15
thread, 15
userdata, 16

U
unit testing, 42

upvalues, 4, 28, 96, 119
URL parser, 60
user values, 98
userdata, 16, 98-100

full userdata, 98
light userdata, 98
pushing (stack), 98-100
retrieving (stack), 105

UTF-8 strings, 63

V
values (see types)
variables,

assigning, 23
attributes for, 11, 100
global, 10, 46, 106
local, 10
multiple assignment, 23
scope of, 10
swapping values of, 24
to-be-closed, 11, 35

vectors, 39

W
warnings, 6, 48, 119, 129
while loop, 26
writing to files (see files)

Index | 157

	Lua
	Preface to the Second Edition
	Contents
	Introduction
	Download
	Code Editors
	Conventions
	Terminology

	Environment Variables
	Command Line Options
	The Lua Language
	Fundamentals
	Comments
	Identifiers and Reserved Words
	Variables and Scopes
	Local Variable Attributes

	Types
	Nil
	Booleans
	Numbers
	Strings
	Functions
	Tables
	Threads
	Userdata
	Perform Basic Value Operations

	Expressions and Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Other Operators

	Statements
	Variable Assignment
	Table key assignment

	Control Structures
	Labels and Goto

	Functions
	Functions with Variable Arguments

	Metatables and Metamethods
	Assign and Retrieve Metatables
	Arithmetic Metamethods
	Relational Metamethods
	Bitwise Metamethods
	Closing Metamethod
	Other Operator and Statement Metamethods
	Function Metamethods
	Bypass Metamethods

	Object-Oriented Programming
	Define a Class
	Multiple inheritance

	Utilize a Class

	Modules
	Create a Lua Module
	Legacy modules

	Environments
	Error Handling and Warnings
	Load and Run Dynamic Code
	Numeric Facilities
	Trigonometric Functions
	Exponential and Logarithmic Functions
	Generate Random Numbers
	Work with Integers

	String Facilities
	Create a Compound String
	Create and work with a binary string

	Query and Transform Strings
	Search and Replace Within a String
	Work with UTF-8 Strings

	Table and List Facilities
	Iterate Over a Table
	Manipulate Lists
	Unpack Lists
	Create Strings from Lists

	Thread Facilities
	Create a Thread
	Start, Resume, and Yield a Thread
	Query Thread Status
	Close a Thread

	Input and Output Facilities
	Simple Input and Output
	Object-Oriented Input and Output
	Manage Files
	Start and Interact with a Process

	Operating System Facilities
	Dates and Times
	Locale Settings

	Memory Management
	Miscellaneous
	The Lua C API
	C API Introduction
	Compiling Lua Programs

	The Stack
	Increase Stack Size
	Work with Stack Indices
	Push Values
	Push a nil
	Push a boolean
	Push a number
	Push a string
	Push a string built from a buffer
	Push a function
	Push a table
	Push a thread
	Push a userdata
	Push an arbitrary value
	Add attributes to a pushed value

	Pop Values
	Query Values
	Retrieve Values
	Retrieve a boolean
	Retrieve a number
	Retrieve a string
	Retrieve a function
	Retrieve a thread
	Retrieve a userdata
	Retrieve an arbitrary value

	Basic Stack Operations
	Element Operations
	Global Variable Operations
	Arithmetic Operations
	Relational Operations
	Bitwise Operations
	String Operations
	Table Operations
	Retrieve the value assigned to a key
	Assign a value to a key
	Iterate over a table

	Length Operations
	Reference Operations

	C Functions
	Define a C Function
	Validate and retrieve argument value types
	Validate argument values
	Specify default argument values
	Retrieve upvalue indices
	Raise an error or emit a warning
	Increase stack size

	Register a C Function
	Call a C Function

	Metatables
	Create or Fetch a Metatable
	Assign a Metatable
	Retrieve a Metatable
	Metamethods and Metafields

	C Modules
	Error and Warning Handling
	Retrieve Error Information

	Load and Run Dynamic Code
	Threading in C
	Create a Thread
	Start or Resume a Thread
	Yield a Thread
	Transfer Values Between Threads
	Query a Thread’s Status
	Close a Thread
	Call a Function that Yields

	Memory Management
	Miscellaneous
	Lua and C API Index
	Concept Index

