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Chapter 1

Background

1.1. Introduction

Formally, Polkadot is a replicated sharded state machine designed to resolve the scalability and interoperability
among blockchains. In Polkadot vocabulary, shards are called parachains and Polkadot relay chain is part of the
protocol ensuring global consensus among all the parachains. The Polkadot relay chain protocol, henceforward
called Polkadot protocol , can itself be considered as a replicated state machine on its own. As such, the protocol
can be speci�ed by identifying the state machine and the replication strategy.

From a more technical point of view, the Polkadot protocol has been divided into two parts, the Runtime
and the Runtime environment (RE). The Runtime comprises most of the state transition logic for the Polkadot
protocol and is designed and expected to be upgradable as part of the state transition process. The Runtime
environment consists of parts of the protocol, shared mostly among peer-to-peer decentralized cryptographi-
cally-secured transaction systems, i.e. blockchains whose consensus system is based on the proof-of-stake. The
RE is planned to be stable and static for the lifetime duration of the Polkadot protocol.

With the current document, we aim to specify the RE part of the Polkadot protocol as a replicated state
machine. After de�ning the basic terms in Chapter 1, we proceed to specify the representation of a valid state of
the Protocol in Chapter 2. In Chapter 3, we identify the protocol states, by explain the Polkadot state transition
and discussing the detail based on which Polkadot RE interacts with the state transition function, i.e. Runtime.
Following, we specify the input messages triggering the state transition and the system behaviour. In Chapter
4, we specify the consensus protocol, which is responsible for keeping all the replica in the same state. Finally,
the initial state of the machine is identi�ed and discussed in Appendix C. A Polkadot RE implementation which
conforms with this part of the speci�cation should successfully be able to sync its states with the Polkadot
network.

1.2. Definitions and Conventions

Definition 1.1. A Discrete State Machine (DSM) is a state transition system whose set of states and set
of transitions are countable and admits a starting state. Formally, it is a tuple of

(�; S; s0; �)

where

� � is the countable set of all possible transactions.

� S is a countable set of all possible states.

� s02S is the initial state.

� � is the state-transition function, known as Runtime in the Polkadot vocabulary, such that

�:S ��!S
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Definition 1.2. A path graph or a path of n nodes formally referred to as Pn, is a tree with two nodes of
vertex degree 1 and the other n-2 nodes of vertex degree 2. Therefore, Pn can be represented by sequences of
(v1; :::; vn) where ei=(vi; vi+1) for 16 i6n¡ 1 is the edge which connect vi and vi+1.

Definition 1.3. Radix-r tree is a variant of a trie in which:

� Every node has at most r children where r=2x for some x;

� Each node that is the only child of a parent, which does not represent a valid key is merged with its parent.

As a result, in a radix tree, any path whose interior vertices all have only one child and does not represent
a valid key in the data set, is compressed into a single edge. This improves space e�ciency when the key space
is sparse.

Definition 1.4. By a sequences of bytes or a byte array, b, of length n, we refer to

b := (b0; b1; :::; bn¡1) such that 06 bi6 255

We de�ne Bn to be the set of all byte arrays of length n. Furthermore, we de�ne:

B :=
[
i=0

1

Bi

Notation 1.5. We represent the concatenation of byte arrays a := (a0; :::; an) and b := (b0; :::; bm) by:

ajj b := (a0; :::; an; b0; :::; bm)

Definition 1.6. For a given byte b the bitwise representation of b is de�ned as

b := b7 ::: b0

where

b=20 b0+21 b1+ ���+27 b7

Definition 1.7. By the little-endian representation of a non-negative integer, I, represented as

I =(Bn:::B0)256

in base 256, we refer to a byte array B=(b0; b1; :::; bn) such that

bi :=Bi

Accordingly, de�ne the function EncLE:

EncLE: Z+ ! B
(Bn:::B0)256 7! (B0;B1; :::; Bn)

Definition 1.8. By UUUUUUUUUIIIIIIIIINNNNNNNNNTTTTTTTTT333333333222222222 we refer to a non-negative integer stored in a byte array of length 4 using little-
endian encoding format.
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Definition 1.9. A blockchain C is a directed path graph. Each node of the graph is called Block and indicated
by B. The unique sink of C is called Genesis Block, and the source is called the Head of C. For any vertex
(B1; B2) where B1!B2 we say B2 is the parent of B1 and we indicate it by

B2 :=P (B1)

1.2.1. Block Tree
In the course of formation of a (distributed) blockchain, it is possible that the chain forks into multiple subchains
in various block positions. We refer to this structure as a block tree:

Definition 1.10. The block tree of a blockchain, denoted by BT is the union of all di�erent versions of the
blockchain observed by all the nodes in the system such as every such block is a node in the graph and B1 is
connected to B2 if B1 is a parent of B2.

When a block in the block tree gets �nalized, there is an opportunity to prune the block tree to free up
resources into branches of blocks that do not contain all of the �nalized blocks or those that can never be
�nalized in the blockchain. For a de�nition of �nality, see Section 4.2.

Definition 1.11. By Pruned Block Tree, denoted by PBT, we refer to a subtree of the block tree obtained
by eliminating all branches which do not contain the most recent �nalized blocks, as de�ned in De�nition 4.26.
By pruning, we refer to the procedure of BT PBT. When there is no risk of ambiguity and is safe to prune
BT, we use BT to refer to PBT.

De�nition 1.12 gives the means to highlight various branches of the block tree.

Definition 1.12. Let G be the root of the block tree and B be one of its nodes. By Chain(B), we refer to
the path graph from G to B in (P)BT. Conversely, for a chain C=Chain(B), we de�ne the head of C to be
B, formally noted as B :=Head(C). We de�ne jC j, the length of C as a path graph. If B 0 is another node on
Chain(B), then by SubChain(B 0; B) we refer to the subgraph of Chain(B) path graph which contains both
B and B 0. Accordingly, CB 0((P )BT) is the set of all subchains of (P )BT rooted at B 0. The set of all chains of
(P )BT, CG((P )BT) is denoted by C((P)BT) or simply C, for the sake of brevity.

Definition 1.13. We de�ne the following complete order over C such that for C1; C22C if jC1j=/ jC2j we say
C1>C2 if and only if jC1j> jC2j.

If jC1j= jC2j we say C1>C2 if and only if the block arrival time of Head(C1) is less than the block arrival
time of Head(C2) as de�ned in De�nition 4.8. We de�ne the Longest-Chain(BT) to be the maximum
chain given by this order.

Definition 1.14. Longest-Path(BT) returns the path graph of (P )BT which is the longest among all paths
in (P )BT and has the earliest block arrival time as de�ned in De�nition 4.8. Deepest-Leaf(BT) returns the
head of Longest-Path(BT) chain.

Because every block in the blockchain contains a reference to its parent, it is easy to see that the block tree
is de facto a tree. A block tree naturally imposes partial order relationships on the blocks as follows:

Definition 1.15. We say B is descendant of B 0, formally noted as B >B 0 if B is a descendant of B 0 in
the block tree.

1.2 Definitions and Conventions 9





Chapter 2

State Specification

2.1. State Storage and Storage Trie

For storing the state of the system, Polkadot RE implements a hash table storage where the keys are used to
access each data entry. There is no assumption either on the size of the key nor on the size of the data stored
under them, besides the fact that they are byte arrays with speci�c upper limits on their length. The limit is
imposed by the encoding algorithms to store the key and the value in the storage trie.

2.1.1. Accessing System Storage
Polkadot RE implements various functions to facilitate access to the system storage for the runtime. Section
? lists all of those functions. Here we formalize the access to the storage when it is being directly accessed by
Polkadot RE (in contrast to Polkadot runtime).

Definition 2.1. The StoredValue function retrieves the value stored under a speci�c key in the state storage
and is formally de�ned as :

StoredValue: K!V

k 7!
�
v if (k,v) exists in state storage
� otherwise

where K�B and V �B are respectively the set of all keys and values stored in the state storage.

2.1.2. The General Tree Structure
In order to ensure the integrity of the state of the system, the stored data needs to be re-arranged and hashed
in a modi�ed Merkle Patricia Tree, which hereafter we refer to as the Trie. This rearrangment is necessary to
be able to compute the Merkle hash of the whole or part of the state storage, consistently and e�ciently at any
given time.

The Trie is used to compute the state root , Hr, (see De�nition 3.5), whose purpose is to authenticate
the validity of the state database. Thus, Polkadot RE follows a rigorous encoding algorithm to compute the
values stored in the trie nodes to ensure that the computed Merkle hash, Hr, matches across the Polkadot RE
implementations.

The Trie is a radix-16 tree as de�ned in De�nition 1.3. Each key value identi�es a unique node in the tree.
However, a node in a tree might or might not be associated with a key in the storage.

When traversing the Trie to a speci�c node, its key can be reconstructed by concatenating the subsequences
of the key which are stored either explicitly in the nodes on the path or implicitly in their position as a child
of their parent.
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To identify the node corresponding to a key value, k, �rst we need to encode k in a consistent with the Trie
structure way. Because each node in the trie has at most 16 children, we represent the key as a sequence of 4-
bit nibbles:

Definition 2.2. For the purpose of labeling the branches of the Trie, the key k is encoded to kenc using
KeyEncode functions:

kenc := (kenc1; :::; kenc2n) :=KeyEncode(k) (2.1)

such that:

KeyEncode(k):

8>><>>:
B ! Nibbles4

k := (b1; :::; bn) := 7! (b1
1; b1

2; b2
1; b2

2; :::; bn
1; bn

2)
:=(kenc1; :::; kenc2n)

where Nibble4 is the set of all nibbles of 4-bit arrays and bi1 and bi2 are 4-bit nibbles, which are the big endian
representations of bi:

(bi
1; bi

2) := (bi/16; bimod16)

, where mod is the remainder and / is the integer division operators.

By looking at kenc as a sequence of nibbles, one can walk the radix tree to reach the node identifying the
storage value of k.

2.1.3. Trie Structure
In this subsection, we specify the structure of the nodes in the Trie as well as the Trie structure:

Notation 2.3. We refer to the set of the nodes of Polkadot state trie by N : By N 2N to refer to an
individual node in the trie.

Definition 2.4. The State Trie is a radix-16 tree. Each Node in the Trie is identi�ed with a unique key kN
such that:

¡ kN is the shared pre�x of the key of all the descendants of N in the Trie.

and, at least one of the following statements holds:

¡ (kN ; v) corresponds to an existing entry in the State Storage.

¡ N has more than one child.

Conversely, if (k; v) is an entry in the State Trie then there is a node N 2N such that kN=k.

Notation 2.5. A branch node is a node which has one child or more. A branch node can have at most 16
children. A leaf node is a childless node. Accordingly:

Nb := fN 2N jN is a branch nodeg
Nl := fN 2N jN is a leaf nodeg

For each Node, part of kN is built while the trie is traversed from root to N part of kN is stored in N as
formalized in De�nition 2.6.
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Definition 2.6. For any N 2N, its key kN is divided into an aggregated pre�x key, pkN
Agr, aggregated by

Algorithm 2.1 and a partial key, pkN of length 06 lpkN6 65535 in nibbles such that:

pkN := (kenci; :::; kenci+lpkN
)

where pkN is a su�x subsequence of kN; i is the length of pkN
Agr in nibbles and so we have:

KeyEncode(kN) =pkN
AgrjjpkN =(kenc1; :::; kenci¡1; kenci; kenci+lpkN

)

Part of pkN
Agr is explicitly stored in N 's ancestors. Additionally, for each ancestor, a single nibble is implicitly

derived while traversing from the ancestor to its child included in the traversal path using the IndexN function
de�ned in De�nition 2.7.

Definition 2.7. For N 2Nb and Nc child of N, we de�ne IndexN function as:

IndexN: fNc2N jNc is a child of N g!Nibbles14

Nc 7! i
such that

kNc= kN jjijjpkNc

Assuming that PN is the path (see De�nition 1.2) from the Trie root to node N , Algorithm 2.1 rigorously
demonstrates how to build pkN

Agr while traversing PN.

Algorithm 2.1. Aggregate-Key(PN: =(TrieRoot=N1; :::; Nj=N))

1: pkN
Agr �

2: i 1

3: while (Ni=/ N)

4: pkN
Agr pkN

AgrjjpkNi
5: pkN

Agr pkN
AgrjjIndexNi(Ni+1)

6: i i+1

7: pkN
Agr pkN

AgrjjpkNi
8: return pkN

Agr

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Definition 2.8. A node N 2N stores the node value, vN, which consists of the following concatenated data:

NodeHeader Partial key Node Subvalue

Formally noted as:

vN :=HeadN jjEncHE(pkN)jjsvN

where HeadN, pkN, Encnibbles and svN are de�ned in De�nitions 2.9,2.6, B.9 and 2.11, respectively.

Definition 2.9. The node header of node N, HeadN, consists of l+1> 1 bytes HeadN;1; :::;HeadN;l+1 such
that:

2.1 State Storage and Storage Trie 13



NodeType pk length
HeadN;1

6¡7 HeadN;1
0¡5

pk length extra byte 1
HeadN;2

pk key length extra byte 2
::::

:::
pk length extra byte l

HeadN;l+1

In which HeadN;1
6¡7, the two most signi�cant bits of the �rst byte of HeadN are determined as follows:

HeadN;1
6¡7 :=

8>>>><>>>>:
00 Special case
01 LeafNode
10 BranchNodewith kN 2/ K
11 BranchNodewith kN 2K

where K is de�ned in De�nition 2.1.
HeadN;1

0¡5, the 6 least signi�cant bits of the �rst byte of HeadN are de�ned to be:

HeadN;1
0¡5 :=

�
kpkNknib kpkNknib< 63
63 kpkNknib> 63

In which kpkNknib is the length of pkN in number nibbles. HeadN;2; :::;HeadN;l+1 bytes are determined by
Algorithm 2.2.

Algorithm 2.2. Partial-Key-Length-Encoding(HeadN;1
6¡7; pkN)

1: if kpkNknib> 216
2: return Error
3: HeadN;1 64�HeadN;1

6¡7

4: if kpkNknib< 63
5: HeadN;1 HeadN;1+ kpkNknib
6: return HeadN
7: HeadN;1 HeadN;1+ 63
8: l kpkNknib¡ 63
9: i 2

10: while (l > 255)
11: HeadN;i 255
12: l l¡ 255
13: i i+1

14: HeadN;i l

15: return HeadN
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2.1.4. Merkle Proof
To prove the consistency of the state storage across the network and its modi�cations both e�ciently and
e�ectively, the Trie implements a Merkle tree structure. The hash value corresponding to each node needs to
be computed rigorously to make the inter-implementation data integrity possible.

The Merkle value of each node should depend on the Merkle value of all its children as well as on its
corresponding data in the state storage. This recursive dependancy is encompassed into the subvalue part of
the node value which recursively depends on the Merkle value of its children.

14 State Specification



We use the auxilary function introduced in De�nition 2.10 to encode and decode information stored in a
branch node.

Definition 2.10. Suppose Nb;Nc2N and Nc is a child of Nb. We de�ne where bit bi: =1 if N has a child with
partial key i, therefore we de�ne ChildrenBitmap functions as follows:

ChildrenBitmap: Nb!B2

N 7! (b15; :::; b8; b7; :::b0)2
where

bi :=

�
1 9Nc2N : kNc= kNbjjijjpkNc
0 otherwise

Definition 2.11. For a given node N, the subvalue of N, formally referred to as svN, is determined as follows:
in a case which:

svN :=�
EncSC(StoredValue(kN)) N is a leaf node
ChildrenBitmap(N)kEncSC(H(NC1)) :::EncSC(H(NCn))jjEncSC(StoredValue(kN)) N is a branch node

Where NC1 :::NCn with n616 are the children nodes of the branch node N and EncSC, StoredValue, H, and
ChildrenBitmap(N) are de�ned in De�nitions B.1,2.1, 2.12 and 2.10 respectively.

The Trie deviates from a traditional Merkle tree where node value, vN (see De�nition 2.8) is presented instead
of its hash if it occupies less space than its hash.

Definition 2.12. For a given node N, the Merkle value of N, denoted by H(N) is de�ned as follows:

H :B!B32

H(N):

�
vN kvNk< 32
Blake2b(vN) kvNk> 32

Where vN is the node value of N de�ned in De�nition 2.8 and 032¡kvNk an all zero byte array of length
32¡ jjvN jj. The Merkle hash of the Trie is de�ned as:

Blake2b(H(R))

Where R is the root of the Trie.
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Chapter 3

State Transition

Like any transaction-based transition system, Polkadot state changes via an executing ordered set of instruc-
tions. These instructions are known as extrinsics. In Polkadot, the execution logic of the state-transition function
is encapsulated in Runtime as de�ned in De�nition 1.1. Runtime is presented as a Wasm blob in(if?) ordered
be easily upgradable. Nonetheless, the Polkadot Runtime Environment needs to be in constant interaction with
Runtime. The detail of such interaction is further described in Section 3.1.

In Section 3.2, we specify the procedure of the process where the extrinsics are submitted, pre-processed
and validated by Runtime and queued to be applied to the current state.

Polkadot, likewise most prominent distributed ledger systems that make state replication feasible, journals
and batches a series of extrinsics together in a structure knows as a block before propagating to the other nodes.
The speci�cation of the Polkadot block as well the process of verifying its validity are both explained in Section
3.3.

3.1. Interactions with Runtime

Runtime as de�ned in De�nition � is the code implementing the logic of the chain. This code is decoupled from
the Polkadot RE to make the Runtime easily upgradable without the need to upgrade the Polkadot RE itself.
The general procedure to interact with Runtime is described in Algorithm 3.1.

Algorithm 3.1. Interact-With-Runtime(F : the runtime entry,
Hb(B): Block hash indicating the state at the end of B,
A1; A2; :::; An: arguments to be passed to the runtime entry)

1: SB Storage-At-State(Hb(B))
2: A EncSC((A1; :::; An))
3: Call-Runtime-Entry(RB;REB; F ;A;Alen)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In this section, we describe the details upon which the Polkadot RE is interacting with the Runtime. In
particular, Storage-At-State and Call-Runtime-Entry procedures called in Algorithm 3.1 are explained
in Notation 3.2 and De�nition ? respectively. RB is the Runtime code loaded from SB, as described in Notation
3.1, and REB is the Polkadot RE API, as described in Notation F.1.

3.1.1. Loading the Runtime Code
Polkadot RE expects to receive the code for the Runtime of the chain as a compiled WebAssembly (Wasm)
Blob. The current runtime is stored in the state database under the key represented as a byte array:

b := 3A,63,6F,64,65
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which is the byte array of ASCII representation of string �:code� (see Section D). For any call to the Runtime,
Polkadot RE makes sure that it has the Runtime corresponding to the state in which the entry has been called.
This is, in part, because the calls to Runtime have potentially the ability to change the Runtime code and hence
Runtime code is state sensitive. Accordingly, we introduce the following notation to refer to the Runtime code
at a speci�c state:

Notation 3.1. By RB, we refer to the Runtime code stored in the state storage whose state is set at the end of
the execution of block B.

The initial runtime code of the chain is embedded as an extrinsics into the chain initialization JSON �le and
is submitted to Polkadot RE (see Section C).

Subsequent calls to the runtime have the ability to call the storage API (see Section ?) to insert a new Wasm
blob into runtime storage slot to upgrade the runtime.

3.1.2. Code Executor

Polkadot RE provides a Wasm Virtual Machine (VM) to run the Runtime. The Wasm VM exposes the Polkadot
RE API to the Runtime, which, on its turn, executes a call to the Runtime entries stored in the Wasm module.
This part of the Runtime environment is referred to as the Executor.

De�nition 3.2 introduces the notation for calling the runtime entry which is used whenever an algorithm of
Polkadot RE needs to access the runtime.

Notation 3.2. By

Call-Runtime-Entry(R;RE ; Runtime-Entry ; A;Alen)

we refer to the task using the executor to invoke the Runtime-Entry while passing an A1; :::; An argument to it
and using the encoding described in Section ?.

In this section, we specify the general setup for an Executor call into the Runtime. In Section G we specify
the parameters and the return values of each Runtime entry separately.

3.1.2.1. Access to Runtime API

When Polkadot RE calls a Runtime entry it should make sure Runtime has access to the all Polkadot Runtime
API functions described in Appendix ?. This can be done for example by loading another Wasm module
alongside the runtime which imports these functions from Polkadot RE as host functions.

3.1.2.2. Sending Arguments to Runtime

In general, all data exchanged between Polkadot RE and the Runtime is encoded using SCALE codec described
in Section B.1. As a Wasm function, all runtime entries have the following identical signatures:

(func $runtime_entry (param $data i32) (param $len i32) (result i64))

In each invocation of a Runtime entry, the argument(s) which are supposed to be sent to the entry, need to
be encoded using SCALE codec into a byte array B using the procedure de�ned in De�nition B.1.
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The Executor then needs to retrieve the Wam memory bu�er of the Runtime Wasm module and extend it
to �t the size of the byte array. Afterwards, it needs to copy the byte array B value in the correct o�set of the
extended bu�er. Finally, when the Wasm method runtime_entry, corresponding to the entry is invoked, two
UINT32 integers are sent to the method as arguments. The �rst argument data is set to the o�set where the
byte array B is stored in the Wasm the extended shared memory bu�er. The second argument len sets the
length of the data stored in B., and the second one is the size of B.

3.1.2.3. The Return Value from a Runtime Entry

The value which is returned from the invocation is an i64 integer, representing two consecutive i32 integers in
which the least signi�cant one indicates the pointer to the o�set of the result returned by the entry encoded in
SCALE codec in the memory bu�er. The most signi�cant one provides the size of the blob.

In the case that the runtime entry is returning a boolean value, then the SCALEd (boolean) value returns
in the least signi�cant byte and all other bytes are set to zero.

3.2. Extrinsics

The block body consists of an array of extrinsics. Nonetheless, Polkadot RE does not specify or limit the internals
of each extrinsics. From Polkadot RE point of view, each extrinsics is simply a SCALE-encoded byte array (see
De�nition B.1).

3.2.1. Preliminaries

Definition 3.3. Account key (ska;pka) is a pair of Ristretto SR25519 used to sign extrinsics among other
accounts and blance-related functions.

3.2.2. Extrinsics Submission
Extrinsic submission is made by sending a Transactions network message. The structure of this message is
speci�ed in Section E.1.5. Upon receiving a Transactions message, Polkadot RE decodes the transaction and
calls validate_trasaction runtime function, de�ned in Section ?, to check the validity of the extrinsic. If
validate_transaction considers the submitted extrinsics as a valid one, Polkadot RE makes the extrinsics
available for the consensus engine for inclusion in future blocks.

3.2.3. Transaction Queue
A Block producer node should listen to all transaction messages. This is because the transactions are submitted
to the node through the transactions network message speci�ed in Section E.1.5. Upon receiving a transac-
tions message, Polkadot RE separates the submitted transactions in the transactions message into individual
extrinsics and passes them to the Runtime by executing Algorithm 3.2 to validate and store them for inclusion
into future blocks. To that aim, Polkodot RE should keep a transaction pool and a transaction queue de�ned
as follows:

Definition 3.4. The Transaction Queue of a block producer node, formally referred to as TQ is a data
structure which stores the transactions ready to be included in a block sorted according to their priorities. The
Transaction Pool, formally referred to as TP, is a hash table in which Polkadot RE keeps the list of all valid
transactions not in the transaction queue.
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Algorithm 3.2 updates the transaction pool and the transaction queue according to the received message:

Algorithm 3.2. Validate-Extrinsics-and-Store(MT :Transaction Message)

1: L DecSC(MT)

2: for T in L such that E 2/ TQ and E 2/ TP:
3: Bd Head(Longest-Chain((BT))
4: N Hn(Bd)

5: R Call-Runtime-Entry(TaggedTransactionQueue_validate_transaction; N ; T )

6: if R indicates E is Valid:
7: if Requires(R)�S

8T2(TQ)Provided-Tags(T) [
S
i<d;8T ;T2BiProvided-Tags(T):

8: Insert-At(TQ; T ;Requires(R);Priority(R))
9: else
10: Add-To(TP,T )
11: Maintain-Transaction-Pool
12: if Propagate(R)=True:
13: Propagate(T )

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In which

¡ Longest-Chain is de�ned in De�nition 1.13.

¡ TaggedTransactionQueue_validate_transaction is a Runtime entry speci�ed in Section G.2.7 and
Requires(R), Priority(R) and Propagate(R) refer to the corresponding �elds in the tuple returned by the
entry when it deems that T is valid.

¡ Provided-Tags(T) is the list of tags that transaction T provides. Polkadot RE needs to keep track of
tags that transaction T provides as well as requires after validating it.

¡ Insert-At(TQ; T ;Requires(R);Priority(R)) places T into TQ approperietly such that the transactions
providing the tags which T requires or have higher priority than T are ahead of T .

¡ Maintain-Transaction-Pool is described in Algorithm 3.3.

¡ Propagate(T ) include T in the next transactions message sent to all peers of Polkadot RE node.

Algorithm 3.3. Maintain-Transaction-Pool

[This is scaning the pool for ready transactions and moving them to the TQ and dropping transactions
which are not valid]

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

3.3. State Replication

Polkadot nodes replicate each other's state by syncing the history of the extrinsics. This, however, is only
practical if a large set of transactions are batched and synced at the time. The structure in which the transactions
are journaled and propagated is known as a block (of extrinsics).
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3.3.1. Block Format
In Polkadot RE, a block is made of two main parts, namely the block header and the list of extrinsics. The
Extrinsics represent the generalization of the concept of transaction, containing any set of data that is external
to the system, and which the underlying chain wishes to validate and keep track of.

3.3.1.1. Block Header

The block header is designed to be minimalistic in order to boost the e�ciency of the light clients. It is de�ned
formally as follows:

Definition 3.5. The header of block B, Head(B) is a 5-tuple containing the following elements:

� parent_hash: is the 32-byte Blake2b hash (see Section A.2) of the header of the parent of the block
indicated henceforth by Hp.

� number: formally indicated as Hi is an integer, which represents the index of the current block in the
chain. It is equal to the number of the ancestor blocks. The genesis block has number 0.

� state_root: formally indicated as Hr is the root of the Merkle trie, whose leaves implement the storage
for the system.

� extrinsics_root: is the �eld which is reserved for the Runtime to validate the integrity of the extrinsics
composing the block body. For example, it can hold the root hash of the Merkle trie which stores an ordered
list of the extrinsics being validated in this block. The extrinsics_root is set by the runtime and its value
is opaque to Polkadot RE. This element is formally referred to as He.

� digest: this �eld is used to store any chain-speci�c auxiliary data, which could help the light clients interact
with the block without the need of accessing the full storage. Polkadot RE does not impose any limitation
or speci�cation for this �eld. Essentially, it can be a byte array of any length. This �eld is indicated asHd

Definition 3.6. The Block Header Hash of Block B, Hh(B), is the hash of the header of block B encoded
by simple codec:�

Hh(B) :=Blake2b(EncSC(Head(B)))

3.3.1.2. Justi�ed Block Header

The Justi�ed Block Header is provided by the consensus engine and presented to the Polkadot RE, for the block
to be appended to the blockchain. It contains the following parts:

� block_header the complete block header as de�ned in Section 3.3.1.1 and denoted by Head(B).

� justi�cation: as de�ned by the consensus speci�cation indicated by Just(B) [link this to its de�nition
from consensus].

� authority Ids: This is the list of the Ids of authorities, which have voted for the block to be stored and
is formally referred to as A(B). An authority Id is 32bit.

3.3.1.3. Block Inherent Data

Block inherent data represent the totality of extrinsics included in each block. In general, these data are collected
or generated by Polkadot RE and handed to Runtime for inclusion in the block. Table 3.1 lists these inherent
data, their identi�ers, and types.

3.3 State Replication 21



Identi�er Type Description
timstap0 u64 Unix epoch time in number of seconds
babeslot u64 Babe Slot Number4.3

Table 3.1. List of inherent data

Definition 3.7. The function Block-Inherents-Data(Bn) return the inherent data de�ned in Table 3.1
corresponding to Block B as a SCALE encoded dictionary as de�ned in De�nition B.5.

3.3.1.4. Block Body

The Block Body consists of array extrinsics each encoded as a byte array. The internal of extrinsics is completely
opaque to Polkadot RE. As such, it forms the point of Polkadot RE, and is simply a SCALE encoded array of
byte arrays. Formally:

Definition 3.8. The body of Block B represented as Body(B) is de�ned to be

Body(B) :=EncSC(E1; :::; En)

Where each Ei2B is a SCALE encoded extrinsic.

3.3.2. Block Submission
Block validation is the process by which the client asserts that a block is �t to be added to the blockchain. This
means that the block is consistent with the world state and transitions from the state of the system to a new
valid state.

Blocks can be handed to the Polkadot RE both from the network stack for example by means of Block
response network message (see Section E.1.3 ) and from the consensus engine.

3.3.3. Block Validation
Both the Runtime and the Polkadot RE need to work together to assure block validity. A block is deemed
valid if the block author had the authorship right for the slot during which the slot was built as well as if the
transactions in the block constitute a valid transition of states. The former criterion is validated by Polkadot
RE according to the block production consensus protocol. The latter can be veri�ed by Polkadot RE invoking
execute_block entry into the Runtime as a part of the validation process.

Polkadot RE implements the following procedure to assure the validity of the block:

Algorithm 3.4. Import-and-Validate-Block(B; Just(B))

1: if Just(B) =/ ;
2: Verify-Block-Justification(B; Just(B))
3: if B is Finalized and P (B) is not Finalized
4: Mark-as-Final(P (B))
5: if Hp(B)2/ PBT
6: return
7: Verify-Authorship-Right(Head(B))
8: S Call-Runtime-Entry(Core_execute_block; B)
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9: Update-World-State(S)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

For the de�nition of the �nality and the �nalized block see Section 4.2. PBT is the pruned block tree de�ned
in De�nition 1.10. Verify-Authorship-Right is part of the block production consensus protocol and is
described in Algorithm 4.5.

3.4. Network Interactions
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Chapter 4

Consensus

Consensus in Polkadot RE is achieved during the execution of two di�erent procedures. The �rst procedure is
block production and the second is �nality. Polkadot RE must run these procedures, if and only if it is running
on a validator node.

4.1. Block Production

Polkadot RE uses BABE protocol [Gro19] for block production designed based on Ouroboros praos [DGKR18].
BABE execution happens in sequential non-overlapping phases known as an epoch . Each epoch on its turn is
divided into a prede�ned number of slots. All slots in each epoch are sequentially indexed starting from 0. At
the beginning of each epoch, the BABE node needs to run Algorithm 4.1 to �nd out in which slots it should
produce a block and gossip to the other block producers. In turn, the block producer node should keep a copy
of the block tree and grow it as it receives valid blocks from other block producers. A block producer prunes
the tree in parallel using Algorithm ?.

4.1.1. Preliminaries

Definition 4.1. A block producer, noted by Pj, is a node running Polkadot RE which is authorized to keep
a transaction queue and which gets a turn in producing blocks.

Definition 4.2. Block authoring session key pair (skjs; pkjs) is an SR25519 key pair which the block
producer Pj signs by their account key (see De�nition 3.3) and is used to sign the produced block as well as to
compute its lottery values in Algorithm 4.1.

Definition 4.3. A block production epoch, formally referred to as E is a period with pre-known starting time
and �xed length during which the set of block producers stays constant. Epochs are indexed sequentially, and
we refer to the nth epoch since genesis by En. Each epoch is divided into equal length periods known as block
production slots, sequentially indexed in each epoch. The index of each slot is called slot number. Each slot
is awarded to a subset of block producers during which they are allowed to generate a block.

Notation 4.4. We refer to the number of slots in epoch En by scn. scn is set to the duration �eld in the
returned data from the call of the Runtime entry BabeApi_epoch (see ?) at the beginning of each epoch. For
a given block B, we use the notation sB to refer to the slot during which B has been produced. Conversely, for
slot s, Bs is the set of Blocks generated at slot s.

De�nition 4.5 provides an iterator over the blocks produced during an speci�c epoch.
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Definition 4.5. By SubChain(En) for epoch En, we refer to the path graph of BT which contains all the
blocks generated during the slots of epoch En. When there is more than one block generated at a slot, we choose
the one which is also on Longest-Chain(BT).

4.1.2. Block Production Lottery

Definition 4.6. Winning threshold denoted by � is the threshold which is used alongside with the result
of Algorirthm 4.1 to decide if a block producer is the winner of a speci�c slot. � is set to result of call into
BabeApi_slot_winning_threshold runtime entry.

A block producer aiming to produce a block during En should run Algorithm 4.1 to identify the slots it is
awarded. These are the slots during which the block producer is allowed to build a block. The sk is the block
producer lottery secret key and n is the index of epoch for whose slots the block producer is running the lottery.

Algorithm 4.1. Block-production-lottery(sk: session secret key of the producer,
n: epoch index)

1: r Epoch-Randomness(n)
2: for i := 1 to scn
3: (d; �) VRF(r; i; sk)
4: A[i] (d; �)

5: return A
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

For any slot i in epoch n where d<� , the block producer is required to produce a block. For the de�nitions
of Epoch-Randomness and VRF functions, see Algorithm 4.4 and Section A.4 respectively.

4.1.3. Slot Number Calculation
It is essential for a block producer to calculate and validate the slot number at a certain point in time. Slots
are dividing the time continuum in an overlapping interval. At a given time, the block producer should be able
to determine the set of slots which can be associated to a valid block generated at that time. We formalize the
notion of validity in the following de�nitions:

Definition 4.7. The slot tail, formally referred to by SlTl represents the number of on-chain blocks that are
used to estimate the slot time of a given slot. This number is set to be 1200.

Algorithm 4.2 determines the slot time for a future slot based on the block arrival time associated with
blocks in the slot tail de�ned in De�nition 4.8.

Definition 4.8. The block arrival time of block B for node j formally represented by TB
j is the local time of

node j when node j has received the block B for the �rst time. If the node j itself is the producer of B, TB
j is set

equal to the time that the block is produced. The index j in TB
j notation may be dropped and B's arrival time is

referred to by TB when there is no ambiguity about the underlying node.

In addition to the arrival time of block B, the block producer also needs to know how many slots have passed
since the arrival of B. This value is formalized in De�nition 4.9.
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Definition 4.9. Let si and sj be two slots belonging to epochs Ek and El. By Slot-Offset(si; sj) we refer to
the function whose value is equal to the number of slots between si and sj (counting sj) on time continuum. As
such, we have Slot-Offset(si; si) =0.

Algorithm 4.2. Slot-Time(s: the slot number of the slot whose time needs to be determined)

1: Ts fg
2: Bd Deepest-Leaf(BT)
3: for Bi in SubChain(BHn(Bd)¡SITL, Bd)

4: st
Bi TBi+Slot-Offset(sBi; s)�T

5: Ts Ts[ stBi

6: return Median(Ts)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4.1.4. Block Production
At each epoch, each block producer should run Algorithm 4.3 to produce blocks during the slots it has been
awarded during that epoch. The produced blocks need to be broadcasted alongside with the babe header de�ned
in De�nition 4.10.

Definition 4.10. The Babe Header of block B, referred to formally by HBabe(B) is a tuple that consists of
the following components:

(�; d; j ; s; w)

in which:
�; d: are the results of the block lottervrf_output, vrfy for slot s.
j: is the SR25519 session public key associated with the block producer.
s: is the slot at which the block is produced.
w reserved

The block producer includes HBabe(B) as a log in Hd(B) and sign Head(B) as de�ned in De�nition ?

Definition 4.11. The Block Signature noted by SB is computed as SigSR25519;skjs(EncSC(Black2s(Head(B))))

Algorithm 4.3. Invoke-Block-Authoring(sk, pk, n, BT:CurrentBlockTree)

1: A Block-production-lottery(sk, n)
2: for s 1 to scn
3: Wait(until Slot-Time(s))
4: (d; �) A[s]

5: if d< �

6: CBest Longest-Chain(BT)
7: Bs Build-Block(CBest)
8: Broadcast-Block(Bs; HBabe(Bs))

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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4.1.5. Epoch Randomness
At the end of epoch En, each block producer is able to compute the randomness seed it needs in order to
participate in the block production lottery in epoch En+2. The computation of the seed is described in Algorithm
4.4 which uses the concept of epoch subchain described in De�nition 4.5.

Algorithm 4.4. Epoch-Randomness(n> 2: epoch index)

1: � �

2: for B in SubChain(En¡2)
3: � �jjdB
4: return Blake2b(Epoch-Randomness(n¡ 1)||n||�)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

In which value dB is the VRF output computed for slot sB by running Algorithm 4.1.

4.1.6. Verifying Authorship Right

Definition 4.12. Seal Ds [de�ne seal]

When a Polkadot node receives a produced block, it needs to verify if the block producer was entitled to
produce the block in the given slot by running Algorithm 4.5 where:

¡ TB is B's arrival time de�ned in De�nition 4.8.

¡ Hd(B) is the digest sub-component of Head(B) de�ned in De�nition 3.5.

¡ AuthorityDirectoryEc is the set of Authority ID for block producers of epoch Ec.

¡ verify-Slot-Winner is de�ned in Algorithm 4.6.

Algorithm 4.5. Verify-Authorship-Right(Heads(B): The header of the block being veri�ed)

1: s Slot-Number-At-Given-Time(TB)
2: Ec Current-Epoch()
3: (D1; :::; Dlength(Hd(B))) Hd(B)

4: Ds Dlength(Hd(B))

5: Hd(B) (D1; :::; Dlength(Hd(B))¡1) //remove the seal from the digest

6: (id; SigB) DecSC(Ds)

7: if id=/ Seal-Id
8: error �Seal missing�
9: AuthorID  AuthorityDirectoryEc[HBABE(B):SingerIndex]
10: Verify-Signature(AuthorID; Hh(B); SigB)
11: if 9B 02BT:Hh(B)=/ Hh(B) and sB= sB

0 and SignerIndexB=SignerIndexB 0
12: error �Block producer is equivocating�
13: Verify-Slot-Winner((dB; �B); s,AuthorID)
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-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Algorithm 4.6 is run as a part of the veri�cation process, when a node is importing a block, in which:

¡ Epoch-Randomness is de�ned in Algorithm 4.4.

¡ HBABE(B) is the BABE header de�ned in De�nition 4.10.

¡ Verify-VRF is described in Section A.4.

¡ � is the winning threshold de�ned in 4.6.

Algorithm 4.6. Verify-Slot-Winner(B: the block whose winning status to be veri�ed)

1: Ec Current-Epoch
2: � Epoch-Randomness(c)
3: Verify-VRF(�;HBABE(B):(dB ; �B); HBABE(B):s; c)
4: if dB> �
5: error �Block producer is not a winner of the slot�

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

(dB; �B): Block Lottery Result for Block B,
sn: the slot number,
n: Epoch index
AuthorID: The public session key of the block producer

4.1.7. Blocks Building Process
The blocks building process is triggered by Algorithm 4.3 of the consensus engine which runs Alogrithm 4.7.

Algorithm 4.7. Build-Block(CBest: The chain where at its head, the block to be constructed,
s: Slot number)

1: PB Head(CBest)
2: Hh(PB) Call-Runtime-Entry(block_hash_from_id; Hi(PB))

3: Head(B) (Hp Hh(PB); Hi Hi(PB)+ 1; Hr �;He �;Hd �)

4: Call-Runtime-Entry(initialze_block;Head(B))
5: Call-Runtime-Entry(inherent_extrinsics;Block-Inherents-Data)
6: for E in Inherents-Queue
7: R Call-Runtime-Entry(apply_extrinsic; E)
8: while not Block-Is-Full(R) and not End-Of-Slot(s)
9: E Next-Ready-Extrinsic()
10: R Call-Runtime-Entry(apply_extrinsics; E)
11: if not Block-Is-FULL(R)
12: Drop(Ready-Extrinsic-Queue,E)
13: Head(B) Call-Runtime-Entry(finalize_block; E)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Head(B) is de�ned in De�nition 3.5. Block-Inherents-Data, Inherents-Queue, Block-Is-Full and
Next-Ready-Extrinsic are de�ned in De�nition hreferenceji[De�ne these entities]

4.2. Finality

Polkadot RE uses GRANDPA Finality protocol [Ali19] to �nalize blocks. Finality is obtained by consecutive
rounds of voting by validator nodes. Validators execute GRANDPA �nality process in parallel to Block Pro-
duction as an independent service. In this section, we describe the di�erent functions that GRANDPA service
is supposed to perform to successfully participate in the block �nalization process.

4.2.1. Preliminaries

Definition 4.13. A GRANDPA Voter, v, is represented by a key pair (kv
pr; vid) where kv

pr represents its
private key which is an ED25519 private key, is a node running GRANDPA protocol, and broadcasts votes to
�nalize blocks in a Polkadot RE - based chain. The set of all GRANDPA voters is indicated by V. For a
given block B, we have

VB= grandpa_authorities (B)

where grandpa_authorities is the entry into runtime described in Section G.2.6.

Definition 4.14. GRANDPA state, GS, is de�ned as

GS := fV; idV; rg
where:

V: is the set of voters.
Vid: is an incremental counter tracking membership, which changes in V.
r: is the voting round number.

Now we need to de�ne how Polkadot RE counts the number of votes for block B. First a vote is de�ned as:

Definition 4.15. A GRANDPA vote or simply a vote for block B is an ordered pair de�ned as

V (B) := (Hh(B); Hi(B))

where Hh(B) and Hi(B) are the block hash and the block number de�ned in De�nitions 3.5 and 3.6 respectively.

Definition 4.16. Voters engage in a maximum of two sub-rounds of voting for each round r. The �rst sub-
round is called pre-vote and the second sub-round is called pre-commit.

By Vv
r;pv and Vv

r;pc we refer to the vote cast by voter v in round r (for block B) during the pre-vote and
the pre-commit sub-round respectively.

The GRANDPA protocol dictates how an honest voter should vote in each sub-round, which is described in
Algorithm ?. After de�ning what constitues a vote in GRANDPA, we de�ne how GRANDPA counts votes.

Definition 4.17. Voter v equivocates if they broadcast two or more valid votes to blocks not residing on the
same branch of the block tree during one voting sub-round. In such a situation, we say that v is an equivocator
and any vote Vv

r;stage(B) cast by v in that round is an equivocatory vote and

Er;stage
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represents the set of all equivocators voters in sub-round � stage� of round r. When we want to refer to the
number of equivocators whose equivocation has been observed by voter v we refer to it by:

Eobs(v)
r;stage

Definition 4.18. A vote Vv
r;stage=V (B) is invalid if

� H(B) does not correspond to a valid block;

� B is not an (eventual) descendant of a previously �nalized block;

� Mv
r;stage does not bear a valid signature;

� idV does not match the current V;

� If Vv
r;stage is an equivocatory vote.

Definition 4.19. For validator v, the set of observed direct votes for Block B in round r, formally
denoted by VDobs(v)

r;stage(B) is equal to the union of:

� set of valid votes Vvi
r;stage cast in round r and received by v such that Vvi

r;stage=V (B).

Definition 4.20. We refer to the set of total votes observed by voter v in sub-round � stage� of round
r by Vobs(v)

r;stage.
The set of all observed votes by v in the sub-round stage of round r for block B, Vobs(v)

r;stage(B) is
equal to all of the observed direct votes casted for block B and all of the B's descendents de�ned formally as:

Vobs(v)
r;stage(B) :=

[
vi2V;B>B 0

VDobs(v)
r;stage(B 0)

The total number of observed votes for Block B in round r is de�ned to be the size of that set plus the
total number of equivocators voters:

#Vobs(v)
r;stage(B) = jVobs(v)

r;stage(B)j+ jEobs(v)
r;stagej

Definition 4.21. The current pre-voted block Bv
r;pv is the block with

Hn(Bv
r;pv)=Max(Hn(B)j 8B: #Vobs(v)

r;pv (B)> 2/3jVj)

Note that for genesis block Genesis we always have #Vobs(v)
r;pv (B)= jVj.

Finally, we de�ne when a voter v see a round as completable, that is when they are con�dent that Bv
r;pv is

an upper bound for what is going to be �nalised in this round.

Definition 4.22. We say that round r is completable if jVobs(v)
r;pc j+ Eobs(v)

r;pc >
2

3
V and for all B 0>Bv

r;pv:

jVobs(v)
r;pc j ¡ Eobs(v)

r;pc ¡ jVobs(v)
r;pc (B 0)j> 2

3
jVj

Note that in practice we only need to check the inequality for those B 0>Bv
r;pv where jVobs(v)

r;pc (B 0)j> 0.
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4.2.2. Voting Messages Speci�cation
Voting is done by means of broadcasting voting messages to the network. Validators inform their peers about
the block �nalized in round r by broadcasting a �nalization message (see Algorithm ? for more details). These
messages are speci�ed in this section.

Definition 4.23. A vote casted by voter v should be broadcasted as a message Mv
r;stage to the network by

voter v with the following structure:

Mv
r;stage :=EncSC(r; idV;EncSC(stage; Vv

r;stage; SigED25519(EncSC(stage; Vv
r;stage; r; Vid); vid)

Where:
r: round number 64 bit integer

Vid: incremental change tracker counter 64 bit integer
vid: Ed25519 public key of v 32 byte array

stage: 0 if it is the pre-vote sub-round 1 byte
1 if it the pre-commit sub-round

Definition 4.24. The justi�cation for block B in round r of GRANDPA protocol de�ned J r(B) is a vector
of pairs of the type:

(V (B 0); (Signvi
r;pc(B 0); vid))

in which either

B 0>B
or Vvi

r;pc(B 0) is an equivocatory vote.
In all cases, Signvi

r;pc(B 0) is the signature of voter vi broadcasted during the pre-commit sub-round of round r.
We say Jr(B) justi�es the �nalization of B if the number of valid signatures in J r(B) is greater than

2

3
jVB j.

Definition 4.25. GRANDPA �nalizing message for block B in round r represented as Mv
r;Fin(B) is

a message broadcasted by voter v to the network indicating that voter v has �nalized block B in round r. It has
the following structure:

Mv
r;Fin(B) :=EncSC(r; V (B); Jr(B))

in which Jr(B) in the justi�cation de�ned in De�nition 4.24.

4.2.3. Initiating the GRANDPA State
A validator needs to initiate its state and sync it with other validators, to be able to participate coherently in
the voting process. In particular, considering that voting is happening in di�erent rounds and each round of
voting is assigned a unique sequential round number rv, it needs to determine and set its round counter r in
accordance with the current voting round rn, which is currently undergoing in the network.

As instructed in Algorithm 4.8, whenever the membership of GRANDPA voters changes, r is set to 0 and
Vid needs to be incremented.

Algorithm 4.8. Join-Leave-Grandpa-Voters (V)
1: r 0

2: Vid ReadState(0AUTHORITY_SET_KEY0)
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3: Vid Vid+1

4: Execute-One-Grandpa-Round(r)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4.2.4. Voting Process in Round r

For each round r, an honest voter v must participate in the voting process by following Algorithm 4.9.

Algorithm 4.9. Play-Grandpa-round(r)

1: tr;v Time
2: primary Derive-Primary
3: if v=primary

4: Broadcast(Mv
r¡1;Fin(Best-Final-Candidate(r-1)))

5: Receive-Messages(until Time >tr;v+2�T or r is completable)

6: L Best-Final-Candidate(r-1)
7: if Received(Mvprimary

r;pv (B)) and Bv
r;pv>B>L

8: N B

9: else
10: N B 0:Hn(B

0)=max fHn(B
0):B 0>Lg

11: Broadcast(Mv
r;pv(N))

12: Receive-Messages(until Bv
r;pv>L and (Time >tr;v+4�T or r is completable))

13: Broadcast(Mv
r;pc(Bv

r;pv))
14: Attempt-To-Finalize-Round(r)
15: Receive-Messages(until r is completable)
16: Play-Grandpa-round(r+1)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The condition of completablitiy is de�ned in De�nition 4.22. Best-Final-Candidate function is explained
in Algorithm 4.10 and Attempt-To-Finalize-Round(r) is described in Algorithm 4.11.

Algorithm 4.10. Best-Final-Candidate(r)

1: C fB 0jB 06Bvr;pv: jVvr;pcj ¡#Vvr;pc(B 0)6 1/3jVjg
2: if C= �

3: return �

4: else
5: return E 2C:Hn(E)=max fHn(B

0):B 02Cg
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Algorithm 4.11. Attempt-To-Finalize-Round(r)

1: L Last-Finalized-Block
2: E Best-Final-Candidate(r)
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3: if E>L and Vobs(v)
r;pc (E)> 2/3jVj

4: Last-Finalized-Block E
5: if Mv

r;Fin(E)2/ Received-Messages

6: Broadcast(Mv
r;Fin(E))

7: return
8: schedule-call Attempt-To-Finalize-Round(r) when Receive-Messages

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4.3. Block Finalization

Definition 4.26. A Polkadot relay chain node n should consider block B as �nalized if any of the following
criteria holds for B 0>B:
� Vobs(n)

r;pc (B 0)> 2/3jVB 0j.

� it receives a Mv
r;Fin(B 0) message in which J r(B) justi�es the �nalization (according to De�nition 4.24).

� it receives a block data message for B 0 with Just(B 0) de�ned in Section ? which justi�es the �nalization.

for

� any round r if the node n is not a GRANDPA voter.

� only for rounds r for which the the node n has invoked Algorithm 4.9 if n is a GRANDPA voter.

Note that all Polkadot relay chain nodes are supposed to listen to GRANDPA �nalizing messages regardless if
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they are GRANDPA voters.

Appendix A

Cryptographic Algorithms

A.1. Hash Functions

A.2. BLAKE2

BLAKE2 is a collection of cryptographic hash functions known for their high speed. their design closely resem-
bles BLAKE which has been a �nalist in SHA-3 competition.

Polkadot is using Blake2b variant which is optimized for 64bit platforms. Unless otherwise speci�ed, Blake2b
hash function with 256bit output is used whenever Blake2b is invoked in this document. The detailed speci�-
cation and sample implementations of all variants of Blake2 hash functions can be found in RFC 7693 [SA15].

A.3. Randomness

A.4. VRF
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Appendix B

Auxiliary Encodings

B.1. SCALE Codec

Polkadot RE uses Simple Concatenated Aggregate Little-Endian� (SCALE) codec to encode byte arrays as well
as other data structures. SCALE provides a canonical encoding to produce consistent hash values across their
implementation, including the Merkle hash proof for the State Storage.

Definition B.1. The SCALE codec for Byte array A such that

A := b1 b2 ::: bn

such that n< 2536 is a byte array refered to EncSC(A) and de�ned as:

EncSC(A) :=EncSCLen(kAk)jjA

where EncSCLen is de�ned in De�nition B.8.

Definition B.2. The SCALE codec for Tuple T such that:

T := (A1; :::; An)

Where Ai's are values of di�erent types, is de�ned as:

EncSC(T ) :=EncSC(A1)jjEncSC(A2)jj:::jjEncSC(An)

In case of a tuple (or struct), the knowledge of the shape of data is not encoded even though it is necessary
for decoding. The decoder needs to derive that information from the context where the encoding/decoding is
happenning.

Definition B.3. We de�ne a varying data type to be an ordered set of data types

T = fT1; :::; Tng

A value A of varying date type is a pair (AType;AValue) where AType=Ti for some Ti2T and AValue is its value
of type Ti. We de�ne idx(Ti)= i¡ 1:

In particular, we de�ne optional type to be O = fNone; T2g for some data type T2 where idx(None) = 0
(None; �) is the only possible value, when the data is of type None and a codec value is one byte of 0 value.

Definition B.4. Scale coded for value A=(AType; AValue) of varying data type T = fT1; :::; Tng

EncSC(A) :=EncSC(Idx(AType))jjEncSC(AValue)

Where Idx is encoded in a �xed length integer determining the type of A.
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In particular, for the optional type de�ned in De�nition B.3, we have:

EncSC((None; �)) := 0B1

SCALE codec does not encode the correspondence between the value of Idx de�ned in De�nition B.4 and
the data type it represents; the decoder needs prior knowledge of such correspondence to decode the data.

Definition B.5. The SCALE codec for sequence S such that:

S :=A1; :::; An

where Ai's are values of the same type (and the decoder is unable to infer value of n from the context) is
de�ned as:

EncSC(S) :=EncSCLen(kSk)EncSC(A1)jEncSC(A2)j:::jEncSC(An)

where EncSCLen is de�ned in De�nition B.8. SCALE codec for dictionary or hashtable D with key-value pairs
(ki; vi)s such that:

D := f(k1; v1); :::; (k1; vn)g

is de�ned the SCALE codec of D as a sequence of key value pairs (as tuples):

EncSC(D) :=EncSCLen(kDk)EncSC((k1; v1))jEncSC((k2; v2))j:::jEncSC((kn; vn))

Definition B.6. The SCALE codec for boolean value b de�ned as a byte as follows:

EncSC: fFalse;Trueg!B1

b!
�
0 b=False
1 b=True

Definition B.7. The SCALE codec, EncSC for other types such as �xed length integers not de�ned here
otherwise, is equal to little endian encoding of those values de�ned in De�nition 1.7.

B.1.1. Length Encoding
SCALE Length encoding is used to encode integer numbers of variying sizes prominently in an encoding length
of arrays:

Definition B.8. SCALE Length Encoding, EncSCLen also known as compact encoding of a non-negative
integer number n is de�ned as follows:

EncSCLen: N!B

n! b :=

8>>>>>><>>>>>>:
l1 06n< 26

i1 i2 266n< 214

j1 j2 j3 2146n< 230

k1 k2 ::: km 2306n
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in where the least signi�cant bits of the �rst byte of byte array b are de�ned as follows:

l1
1 l1
0 = 00

i1
1 i1
0 = 01

j1
1 j1

0 = 10
k1
1 k1

0 = 11

and the rest of the bits of b store the value of n in little-endian format in base-2 as follows:

l1
7 ::: l1

3 l1
2 n< 26

i2
7 ::: i2

0 i1
7 ::: i1

2 266n< 214

j4
7 ::: j4

0 j3
7 ::: j1

7 ::: j1
2 2146n< 230

k2+ k3 2
8+ k4 2

2�8+ ���+ km 2
(m¡2)8 2306n

9>>>>>>=>>>>>>; :=n

such that:

k1
7 ::: k1

3 k1
2: =m¡ 4

B.2. Frequently SCALEd Object

In this section, we will specify the objects which are frequently used in transmitting data between PDRE,
Runtime and other clients and their SCALE encodings.

B.2.1. Result
[Spec Result Object]

B.2.2. Error
[Spec Error Object]

B.3. Hex Encoding

Practically, it is more convenient and e�cient to store and process data which is stored in a byte array. On the
other hand, the Trie keys are broken into 4-bits nibbles. Accordingly, we need a method to encode sequences
of 4-bits nibbles into byte arrays canonically:

Definition B.9. Suppose that PK=(k1; :::; kn) is a sequence of nibbles, then
EncHE(PK) :=8>>>><>>>>:

Nibbles4 ! B

PK=(k1; :::; kn) 7!
(

(16k1+ k2; :::; 16k2i¡1+ k2i) n=2 i
(k1; 16k2+ k3; :::; 16k2i+ k2i+1) n=2 i+1
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Appendix E
Network Messages

In this section, we will specify various types of messages which Polkadot RE receives from the network. Fur-
thermore, we also explain the appropriate responses to those messages.

Definition E.1. A network message is a byte array, M of length kM k such that:

M1 MessageType Indicator
M2:::MkMk EncSC(MessageBody)

The body of each message consists of di�erent components based on its type. The di�erent possible message
types are listed below in Table E.1. We describe the sub-components of each message type individually in Section
E.1.

M1 Message Type Description
0 Status E.1.1
1 Block Request E.1.2
2 Block Response E.1.3
3 Block Announce E.1.4
4 Transactions E.1.5
5 Consensus E.1.6
6 Remote Call Request
7 Remote Call Response
8 Remote Read Request
9 Remote Read Response
10 Remote Header Request
11 Remote Header Response
12 Remote Changes Request
13 Remote Changes Response
14 FinalityProofRequest
15 FinalityProofResponse
255 Chain Speci�c

Table E.1. List of possible network message types.

E.1. Detailed Message Structure
This section disucsses the detailed structure of each network message.

E.1.1. Status Message
A Status Message represented by MS is sent after a connection with a neighbouring node is established and has
the following structure:

MS :=EncSC(v; r;NB;HashB;HashG; CS)
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Where:
v: Protocol version 32 bit integer

vmin: Minimum supported version 32 bit integer
r: Roles 1 byte

NB: Best Block Number 64 bit integer
HashB Best block Hash B32
HashG Genesis Hash B32

CS Chain Status Byte array

In which, Role is a bitmap value whose bits represent di�erent roles for the sender node as speci�ed in Table
E.2:

Value Binary representation Role
0 00000000 No network
1 00000001 Full node, does not participate in consensus
2 00000010 Light client node
4 00000100 Act as an authority

Table E.2. Node role representation in the status message.

E.1.2. Block Request Message
A Block request message, represented by MBR, is sent to request block data for a range of blocks from a peer
and has the following structure:

MBR :=EncSC(id; AB; SB;HashE ; d;Max)
where:

id: Unique request id 32 bit integer
AB: Requested data 1 byte
SB: Starting Block Varying {B32; 64bit integer}

HashE End block Hash B32 optional type
d Block sequence direction 1 byte

Max Maximum number of blocks to return 32 bit integer optional type

in which

¡ AB, the requested data, is a bitmap value, whose bits represent the part of the block data requested, as
explained in Table E.3:

Value Binary representation Requested Attribute
1 00000001 Block header
2 00000010 Block Body
4 00000100 Receipt
8 00001000 Message queue

16 00010000 Justi�cation

Table E.3. Bit values for block attribute AB, to indicate the requested parts of the data.

¡ SB is SCALE encoded varying data type (see De�nition B.4) of either B32 representing the block hash,
HB, or 64bit integer representing the block number of the starting block of the requested range of blocks.
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¡ HashE is optionally the block hash of the last block in the range.

¡ d is a �ag; it de�nes the direction on the block chain where the block range should be considered (starting
with the starting block), as follows

d=

�
0 child to parent direction
1 parent to child direction

Optional data type is de�ned in De�nition B.3.

E.1.3. Block Response Message
A block response message represented by MBS is sent in a response to a requested block message (see Section
E.1.2). It has the following structure:

MBS :=EncSC(id; D)

where:
id: Unique id of the requested response was made for 32 bit integer
D: Block data for the requested sequence of Block Array of block data

In which block data is de�ned in De�nition E.2.

Definition E.2. Block Data is de�ned as the follownig tuple:[Block Data de�nition should go to block format
section]

(HB;HeaderB;Body;Receipt;MessageQueue; Justi�cation)

Whose elements, with the exception of HB, are all of the following optional type (see De�nition B.3) and are
de�ned as follows:

HB: Block header hash B32
HeaderB: Block header 5-tuple (De�nition 3.5)

Body Array of extrinsics Array of Byte arrays (Section 3.2)
Receipt Block Receipt Byte array

Message Queue Block message queue Byte array
Justi�cation Block Justi�cation Byte array

E.1.4. Block Announce Message
A block announce message represented by MBA is sent when a node becomes aware of a new complete block on
the network and has the following structure:

MBA :=EncSC(HeaderB)

Where:
HeaderB: Header of new block B 5-tuple header (De�nition 3.5)

E.1.5. Transactions
The transactions Message is represented by MT and is de�ned as follows:

MT :=EncSC(C1; :::; Cn)
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in which:

Ci :=EncSC(Ei)

Where each Ei is a byte array and represents a sepearate extrinsic. Polkadot RE is indi�erent about the content
of an extrinsic and treats it as a blob of data.

E.1.6. Consensus Message
A consensus message represented by MC is sent to communicate messages related to consensus process:

MC :=EncSC(Eid; D)

Where:
Eid: The consensus engine unique identi�er B4

D Consensus message payload B

in which

Eid :=

(
00BABE00 Formessages related toBABEprotocol
00FRNK00 Formessages related toGRANDPAprotocol

The network agent should hand over D to approperiate consensus engine which identi�ed by Eid.
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Appendix F
Runtime Environment API

The Runtime Environment API is a set of functions that Polkadot RE exposes to Runtime to access external
functions needed for various reasons, such as the Storage of the content, access and manipulation, memory
allocation, and also e�ciency. We introduce Notation F.1 to emphasize that the result of some of the API
functions depends on the content of state storage.

Notation F.1. By REB we refer to the API exposed by Polkadot RE which interact, manipulate and response
based on the state storage whose state is set at the end of the execution of block B.

The functions are speci�ed in each subsequent subsection for each category of those functions.

F.1. Storage

F.1.1. eeeeeeeeexxxxxxxxxttttttttt_________ssssssssseeeeeeeeettttttttt_________ssssssssstttttttttooooooooorrrrrrrrraaaaaaaaagggggggggeeeeeeeee

Sets the value of a speci�c key in the state storage.
Prototype:
(func $ext_storage
(param $key_data i32) (param $key_len i32) (param $value_data i32)
(param $value_len i32))

Arguments:

� key: a pointer indicating the bu�er containing the key.

� key_len: the key length in bytes.

� value: a pointer indicating the bu�er containing the value to be stored under the key.

� value_len: the length of the value bu�er in bytes.

F.1.2. eeeeeeeeexxxxxxxxxttttttttt_________ssssssssstttttttttooooooooorrrrrrrrraaaaaaaaagggggggggeeeeeeeee_________rrrrrrrrroooooooooooooooooottttttttt

Retrieves the root of the state storage.

Prototype:
(func $ext_storage_root
(param $result_ptr i32))

Arguments:

� result_ptr: a memory address pointing at a byte array which contains the root of the state storage
after the function concludes.
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F.1.2.1. eeeeeeeeexxxxxxxxxttttttttt_________bbbbbbbbblllllllllaaaaaaaaakkkkkkkkkeeeeeeeee222222222_________222222222555555555666666666_________eeeeeeeeennnnnnnnnuuuuuuuuummmmmmmmmeeeeeeeeerrrrrrrrraaaaaaaaattttttttteeeeeeeeeddddddddd_________tttttttttrrrrrrrrriiiiiiiiieeeeeeeee_________rrrrrrrrroooooooooooooooooottttttttt

Given an array of byte arrays, it arranges them in a Merkle trie, de�ned in Section 2.1.4, where the key under
which the values are stored is the 0-based index of that value in the array. It computes and returns the root
hash of the constructed trie.

Prototype:
(func $ext_blake2_256_enumerated_trie_root

(param $values_data i32) (param $lens_data i32) (param $lens_len i32)
(param $result i32))

Arguments:

� values_data: a memory address pointing at the bu�er containing the array where byte arrays are stored
consecutively.

� lens_data: an array of i32 elements each stores the length of each byte array stored in value_data.

� lens_len: the number of i32 elements in lens_data.

� result: a memory address pointing at the beginning of a 32-byte byte array containing the root of the
Merkle trie corresponding to elements of values_data.

F.1.3. eeeeeeeeexxxxxxxxxttttttttt_________cccccccccllllllllleeeeeeeeeaaaaaaaaarrrrrrrrr_________ppppppppprrrrrrrrreeeeeeeeefffffffffiiiiiiiiixxxxxxxxx
Given a byte array, this function removes all storage entries whose key matches the pre�x speci�ed in the array.

Prototype:
(func $ext_clear_prefix

(param $prefix_data i32) (param $prefix_len i32))

Arguments:

� prefix_data: a memory address pointing at the bu�er containing the byte array containing the pre�x.

� prefix_len: the length of the byte array in number of bytes.

F.1.4. eeeeeeeeexxxxxxxxxttttttttt_________cccccccccllllllllleeeeeeeeeaaaaaaaaarrrrrrrrr_________ssssssssstttttttttooooooooorrrrrrrrraaaaaaaaagggggggggeeeeeeeee
Given a byte array, this function removes the storage entry whose key is speci�ed in the array.

Prototype:
(func $ext_clear_storage

(param $key_data i32) (param $key_len i32))

Arguments:

� key_data: a memory address pointing at the bu�er containing the byte array containing the key value.

� key_len: the length of the byte array in number of bytes.

F.1.4.1. eeeeeeeeexxxxxxxxxttttttttt_________eeeeeeeeexxxxxxxxxiiiiiiiiissssssssstttttttttsssssssss_________ssssssssstttttttttooooooooorrrrrrrrraaaaaaaaagggggggggeeeeeeeee

Given a byte array, this function checks if the storage entry corresponding to the key speci�ed in the array exists.
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Prototype:
(func $ext_exists_storage

(param $key_data i32) (param $key_len i32) (result i32)
)

Arguments:

� key_data: a memory address pointing at the bu�er containing the byte array containing the key value.

� key_len: the length of the byte array in number of bytes.

� result: An i32 integer which is equal to 1 veri�es if an entry with the given key exists in the storage
or 0 if the key storage does not contain an entry with the given key.

F.1.5. eeeeeeeeexxxxxxxxxttttttttt_________gggggggggeeeeeeeeettttttttt_________aaaaaaaaallllllllllllllllllooooooooocccccccccaaaaaaaaattttttttteeeeeeeeeddddddddd_________ssssssssstttttttttooooooooorrrrrrrrraaaaaaaaagggggggggeeeeeeeee

Given a byte array, this function allocates a large enough bu�er in the memory and retrieves the value stored
under the key that is speci�ed in the array. Then, it stores it in the allocated bu�er if the entry exists in the
storage.

Prototype:
(func $get_allocated_storage
(param $key_data i32) (param $key_len i32) (param $written_out i32) (result i32))

Arguments:

� key_data: a memory address pointing at the bu�er containing the byte array containing the key value.

� key_len: the length of the byte array in number of bytes.

� written_out: the function stores the length of the retrieved value in number of bytes if the enty exists.
If the entry does not exist, it returns 232¡ 1.

� result: A pointer to the bu�er in which the function allocates and stores the value corresponding to the
given key if such an entry exist; otherwise it is equal to 0.

F.1.6. eeeeeeeeexxxxxxxxxttttttttt_________gggggggggeeeeeeeeettttttttt_________ssssssssstttttttttooooooooorrrrrrrrraaaaaaaaagggggggggeeeeeeeee_________iiiiiiiiinnnnnnnnntttttttttooooooooo

Given a byte array, this function retrieves the value stored under the key speci�ed in the array and stores a
speci�ed chunk of it in the provided bu�er, if the entry exists in the storage.

Prototype:
(func $ext_get_storage_into
(param $key_data i32) (param $key_len i32) (param $value_data i32)
(param $value_len i32) (param $value_offset i32) (result i32))

Arguments:

� key_data: a memory address pointing at the bu�er containing the byte array containing the key value.

� key_len: the length of the byte array in number of bytes.
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� value_data: a pointer to the bu�er in which the function stores the chunk of the value it retrieves.

� value_len: the (maximum) length of the chunk in bytes the function will read of the value and will store
in the value_data bu�er.

� value_offset: the o�set of the chunk where the function should start storing the value in the provided
bu�er, i.e. the number of bytes the functions should skip from the retrieved value before storing the data
in the value_data in number of bytes.

� result: The number of bytes the function writes in value_data if the value exists or 232¡1 if the entry
does not exist under the speci�ed key.

F.1.7. To Be Specced
� ext_clear_child_storage

� ext_exists_child_storage

� ext_get_allocated_child_storage

� ext_get_child_storage_into

� ext_kill_child_storage

� ext_set_child_storage

� ext_storage_changes_root

F.1.8. Memory

F.1.8.1. eeeeeeeeexxxxxxxxxttttttttt_________mmmmmmmmmaaaaaaaaalllllllllllllllllloooooooooccccccccc

Allocates memory of a requested size in the heap.

Prototype:
(func $ext_malloc
(param $size i32) (result i32))

Arguments:

� size: the size of the bu�er to be allocated in number of bytes.

Result:

a memory address pointing at the beginning of the allocated bu�er.

F.1.8.2. eeeeeeeeexxxxxxxxxttttttttt_________fffffffffrrrrrrrrreeeeeeeeeeeeeeeeee

Deallocates a previously allocated memory.

Prototype:
(func $ext_free

(param $addr i32))
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Arguments:

� addr: a 32bit memory address pointing at the allocated memory.

F.1.8.3. Input/Output

� ext_print_hex

� ext_print_num

� ext_print_utf8

F.1.9. Cryptograhpic Auxiliary Functions

F.1.9.1. eeeeeeeeexxxxxxxxxttttttttt_________bbbbbbbbblllllllllaaaaaaaaakkkkkkkkkeeeeeeeee222222222_________222222222555555555666666666

Computes the Blake2b 256bit hash of a given byte array.

Prototype:
(func (export "ext_blake2_256")

(param $data i32) (param $len i32) (param $out i32))

Arguments:

� data: a memory address pointing at the bu�er containing the byte array to be hashed.

� len: the length of the byte array in bytes.

� out: a memory address pointing at the beginning of a 32-byte byte array contanining the Blake2b hash
of the data.

F.1.9.2. eeeeeeeeexxxxxxxxxttttttttt_________kkkkkkkkkeeeeeeeeeccccccccccccccccccaaaaaaaaakkkkkkkkk_________222222222555555555666666666

Computes the Keccak-256 hash of a given byte array.

Prototype:
(func $ext_keccak_256

(param $data i32) (param $len i32) (param $out i32))

Arguments:

� data: a memory address pointing at the bu�er containing the byte array to be hashed.

� len: the length of the byte array in bytes.

� out: a memory address pointing at the beginning of a 32-byte byte array contanining the Keccak-256
hash of the data.

F.1.9.3. eeeeeeeeexxxxxxxxxttttttttt_________tttttttttwwwwwwwwwoooooooooxxxxxxxxx_________111111111222222222888888888

Computes the xxHash64 algorithm (see [Col19]) twice initiated with seeds 0 and 1 and applied on a given byte
array and outputs the concatenated result.

Prototype:
(func $ext_twox_128
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(param $data i32) (param $len i32) (param $out i32))

Arguments:

� data: a memory address pointing at the bu�er containing the byte array to be hashed.

� len: the length of the byte array in bytes.

� out: a memory address pointing at the beginning of a 16-byte byte array containing
xxhash640(data)||xxhash641(data) where xxhash64i is the xxhash64 function initiated with seed i as
a 64bit unsigned integer.

F.1.9.4. eeeeeeeeexxxxxxxxxttttttttt_________eeeeeeeeeddddddddd222222222555555555555555555111111111999999999_________vvvvvvvvveeeeeeeeerrrrrrrrriiiiiiiiifffffffffyyyyyyyyy

Given a message signed by the ED25519 signature algorithm alongside with its signature and the allegedly signer
public key, it veri�es the validity of the signature by the provided public key.

Prototype:
(func $ext_ed25519_verify

(param $msg_data i32) (param $msg_len i32) (param $sig_data i32)
(param $pubkey_data i32) (result i32))

Arguments:

� msg_data: a pointer to the bu�er containing the message body.

� msg_len: an i32 integer indicating the size of the message bu�er in bytes.

� sig_data: a pointer to the 64 byte memory bu�er containing the ED25519 signature corresponding to
the message.

� pubkey_data: a pointer to the 32 byte bu�er containing the public key and corresponding to the secret
key which has signed the message.

� result: an integer value equal to 0 indicating the validity of the signature or a nonzero value otherwise.

F.1.9.5. eeeeeeeeexxxxxxxxxttttttttt_________sssssssssrrrrrrrrr222222222555555555555555555111111111999999999_________vvvvvvvvveeeeeeeeerrrrrrrrriiiiiiiiifffffffffyyyyyyyyy

Given a message signed by the SR25519 signature algorithm alongside with its signature and the allegedly signer
public key, it veri�es the validity of the signature by the provided public key.

Prototype:
(func $ext_sr25519_verify

(param $msg_data i32) (param $msg_len i32) (param $sig_data i32)
(param $pubkey_data i32) (result i32))

Arguments:

� msg_data: a pointer to the bu�er containing the message body.

� msg_len: an i32 integer indicating the size of the message bu�er in bytes.

� sig_data: a pointer to the 64 byte memory bu�er containing the SR25519 signature corresponding to
the message.
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� pubkey_data: a pointer to the 32 byte bu�er containing the public key and corresponding to the secret
key which has signed the message.

� result: an integer value equal to 0 indicating the validity of the signature or a nonzero value otherwise.

F.1.9.6. To be Specced

� ext_twox_256

F.1.10. O�chain Worker

F.1.10.1. eeeeeeeeexxxxxxxxxttttttttt_________sssssssssuuuuuuuuubbbbbbbbbmmmmmmmmmiiiiiiiiittttttttt_________tttttttttrrrrrrrrraaaaaaaaannnnnnnnnsssssssssaaaaaaaaaccccccccctttttttttiiiiiiiiiooooooooonnnnnnnnn

Given an extrinsic as a SCALE encoded byte array, the system decodes the byte array and submits the extrinsic
in the inherent pool as an extrinsic to be included in the next produced block.

Prototype:
(func $ext_submit_transaction

(param $data i32) (param $len i32) (result i32))

Arguments:

� data: a pointer to the bu�er containing the byte array storing the encoded extrinsic.

� len: an i32 integer indicating the size of the encoded extrinsic.

� result: an integer value equal to 0 indicates that the extrinsic is successfully added to the pool or a
nonzero value otherwise.

F.1.11. Sandboxing

F.1.11.1. To be Specced

� ext_sandbox_instance_teardown

� ext_sandbox_instantiate

� ext_sandbox_invoke

� ext_sandbox_memory_get

� ext_sandbox_memory_new

� ext_sandbox_memory_set

� ext_sandbox_memory_teardown

F.1.12. Auxillary Debugging API

F.1.12.1. eeeeeeeeexxxxxxxxxttttttttt_________ppppppppprrrrrrrrriiiiiiiiinnnnnnnnnttttttttt_________hhhhhhhhheeeeeeeeexxxxxxxxx

Prints out the content of the given bu�er on the host's debugging console. Each byte is represented as a two-
digit hexadecimal number.
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Prototype:
(func $ext_print_hex
(param $data i32) (parm $len i32))

Arguments:

� data: a pointer to the bu�er containing the data that needs to be printed.

� len: an i32 integer indicating the size of the bu�er containing the data in bytes.

F.1.12.2. eeeeeeeeexxxxxxxxxttttttttt_________ppppppppprrrrrrrrriiiiiiiiinnnnnnnnnttttttttt_________uuuuuuuuutttttttttfffffffff888888888

Prints out the content of the given bu�er on the host's debugging console. The bu�er content is interpreted as
a UTF-8 string if it represents a valid UTF-8 string, otherwise does nothing and returns.

Prototype:o
(func $ext_print_utf8
(param $utf8_data i32) (param $utf8_len i32))

Arguments:

� utf8_data: a pointer to the bu�er containing the utf8-encoded string to be printed.

� utf8_len: an i32 integer indicating the size of the bu�er containing the UTF-8 string in bytes.

F.1.13. Misc

F.1.13.1. To be Specced

� ext_chain_id

F.1.14. Block Production

F.2. Validation
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Appendix G

Runtime Entries

G.1. List of Runtime Entries

Polkadot RE assumes that at least the following functions are implemented in the Runtime Wasm blob and
have been exported as shown in Snippet G.1:

(export "Core_version" (func $Core_version))
(export "Core_execute_block" (func $Core_execute_block))
(export "Core_initialize_block" (func $Core_initialize_block))
(export "Metadata_metadata" (func $Metadata_metadata))
(export "BlockBuilder_apply_extrinsic" (func $BlockBuilder_apply_extrinsic))
(export "BlockBuilder_finalize_block" (func $BlockBuilder_finalize_block))
(export "BlockBuilder_inherent_extrinsics"

(func $BlockBuilder_inherent_extrinsics))
(export "BlockBuilder_check_inherents" (func $BlockBuilder_check_inherents))
(export "BlockBuilder_random_seed" (func $BlockBuilder_random_seed))
(export "TaggedTransactionQueue_validate_transaction"

(func $TaggedTransactionQueue_validate_transaction))
(export "OffchainWorkerApi_offchain_worker"

(func $OffchainWorkerApi_offchain_worker))
(export "ParachainHost_validators" (func $ParachainHost_validators))
(export "ParachainHost_duty_roster" (func $ParachainHost_duty_roster))
(export "ParachainHost_active_parachains"

(func $ParachainHost_active_parachains))
(export "ParachainHost_parachain_status" (func $ParachainHost_parachain_status))
(export "ParachainHost_parachain_code" (func $ParachainHost_parachain_code))
(export "ParachainHost_ingress" (func $ParachainHost_ingress))
(export "GrandpaApi_grandpa_pending_change"

(func $GrandpaApi_grandpa_pending_change))
(export "GrandpaApi_grandpa_forced_change"

(func $GrandpaApi_grandpa_forced_change))
(export "GrandpaApi_grandpa_authorities" (func $GrandpaApi_grandpa_authorities))
(export "BabeApi_startup_data" (func $BabeApi_startup_data))
(export "BabeApi_epoch" (func $BabeApi_epoch))
(export "SessionKeys_generate_session_keys"

(func $SessionKeys_generate_session_keys))

Snippet G.1. Snippet to export entries into tho Wasm runtime module.
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The following sections describe the standard based on which Polkadot RE communicates with each runtime
entry.

G.2. Argument Specification

As a wasm functions, all runtime entries have the following prototype signature:
(func $generic_runtime_entry
(param $data i32) (parm $len i32) (reslut i64))

where data points to the SCALE encoded paramaters sent to the function and len is the length of the data.
result can similarly either point to the SCALE encoded data the function returns or represent a boolean value
(See Sections 3.1.2.2 and 3.1.2.3).

In this section, we describe the function of each of the entries alongside with the details of the SCALE
encoded arguments and the return values for each one of these enteries.

G.2.1. CCCCCCCCCooooooooorrrrrrrrreeeeeeeee_________vvvvvvvvveeeeeeeeerrrrrrrrrsssssssssiiiiiiiiiooooooooonnnnnnnnn

This entry receives no argument; it returns the version data encoded in ABI format described in Section 3.1.2.3
containing the following information:

Name Type Description
spec_name String Runtime identi�er
impl_name String the name of the implementation (e.g. C++)
authoring_version UINT32 the version of the authorship interface
spec_version UINT32 the version of the Runtime speci�cation
impl_version UINT32 the version of the Runtime implementation
apis ApisVec List of supported AP

Table G.1. Detail of the version data type returns from runtime version function.

G.2.2. CCCCCCCCCooooooooorrrrrrrrreeeeeeeee_________eeeeeeeeexxxxxxxxxeeeeeeeeecccccccccuuuuuuuuuttttttttteeeeeeeee_________bbbbbbbbbllllllllloooooooooccccccccckkkkkkkkk

This entry is responsible for executing all extrinsics in the block and reporting back if the block was successfully
executed.

Arguments:

� The entry accepts the block data de�ned in De�nition E.2 as the only argument.

Return:
A Boolean value indicates if the execution was successful.

G.2.3. CCCCCCCCCooooooooorrrrrrrrreeeeeeeee_________iiiiiiiiinnnnnnnnniiiiiiiiitttttttttiiiiiiiiiaaaaaaaaallllllllliiiiiiiiissssssssseeeeeeeee_________bbbbbbbbbllllllllloooooooooccccccccckkkkkkkkk

[Spec initialize block]

G.2.4. hhhhhhhhhaaaaaaaaassssssssshhhhhhhhh_________aaaaaaaaannnnnnnnnddddddddd_________llllllllleeeeeeeeennnnnnnnngggggggggttttttttthhhhhhhhh

An auxilarry function which returns hash and encoding length of an extrinsics.
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Arguments:

� A SCALE encoded blob of an extrinsic.

Return:
Pair of Blake2Hash of the blob as element of B32 and its length as 64 bit integer.

G.2.5. BBBBBBBBBaaaaaaaaabbbbbbbbbeeeeeeeeeAAAAAAAAApppppppppiiiiiiiii_________eeeeeeeeepppppppppoooooooooccccccccchhhhhhhhh

This entry is called to obtain the current con�guration of BABE consensus protocol.
Arguments:

� Hn(B): the block number at whose �nal state the epoch con�guration should be obtained.

Return:
A tuple

(En; s0n; scn; A; �; Sec)

where:
En: epoch index (see De�nition 4.3) 64-bit integer
s0
n: The index of the starting slot of En 64-bit integer

scn: Slot count of En (see De�nition 4.3) 1 byte
A: The list of authorities and their weights Array of (PA;WA)
� Randomness used in En (see Section 4.1.5) B32

Sec To be specced Boolean

in which:
PA: The public key of authority A B32
WA: The weight of the authority A 64 bit integer

G.2.6. GGGGGGGGGrrrrrrrrraaaaaaaaannnnnnnnndddddddddpppppppppaaaaaaaaa_________aaaaaaaaauuuuuuuuuttttttttthhhhhhhhhooooooooorrrrrrrrriiiiiiiiitttttttttiiiiiiiiieeeeeeeeesssssssss

This entry is to report the set of GRANDPA voters at a given block. It receives block_id as an argument; it
returns an array of authority_id's.

G.2.7. TTTTTTTTTaaaaaaaaaggggggggggggggggggeeeeeeeeedddddddddTTTTTTTTTrrrrrrrrraaaaaaaaannnnnnnnnsssssssssaaaaaaaaaccccccccctttttttttiiiiiiiiiooooooooonnnnnnnnnQQQQQQQQQuuuuuuuuueeeeeeeeeuuuuuuuuueeeeeeeee_________vvvvvvvvvaaaaaaaaallllllllliiiiiiiiidddddddddaaaaaaaaattttttttteeeeeeeee_________tttttttttrrrrrrrrraaaaaaaaannnnnnnnnsssssssssaaaaaaaaaccccccccctttttttttiiiiiiiiiooooooooonnnnnnnnn

This entry is invoked against extrinsics submitted through the Transaction network message E.1.5 and indicates
if the submitted blob represents a valid extrinsics applied to the speci�ed block.

Arguments:

� Hn(B): the block number whose �nal state is where the transaction should apply the system state.

� UTX: A byte array that contains the SCALE encoded transaction.

Return:
A varying type Result object which has type of TransactionValidity in case no error occurs in course of its

execution. TransactionValidity is of varying type described in the Table G.2:
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Type Index Data type Description
0 Byte Indicating invalid extrinsic and bearing the error code concerning

the cause of invalidity of the transaction.
1 A Quin-tuple Indicating whether the extrinsic is valid and providing guidance for

Polkadot RE on how to proceed with the extrinsic (see below)
2 Byte The Validity of the extrinsic cannot be determined

Table G.2. Type variation for the return value of TaggedTransactionQueue_transaction_validity.

In which the quintuple of type for valid extrinsics consists of the following parts:

(priority; requires; provides; longevity; propagate)

Name Description Type
Priority Determines the ordering of two transactions that have 64bit integer

all their dependencies (required tags) satis�ed.
Requires List of tags specifying extrinsics which should be applied Array of

before the current exrinsics can be applied. Transaction Tags
Provides Informs Runtime of the extrinsics depending on the tags in Array of

the list that can be applied after current extrinsics are being applied. Transaction Tags
Describes the minimum number of blocks for the validity to be correct

Longevity After this period, the transaction should be removed from the 64 bit integer
pool or revalidated.

Propagate A �ag indicating if the transaction should be propagated to Boolean
other peers.

Table G.3. The quintuple provided by TaggedTransactionQueue_transaction_validity
in the case the transaction is judged to be valid.

Note that if Propagate is set to false the transaction will still be considered for including in blocks that
are authored on the current node, but will never be sent to other peers.
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