
Buildroot for cross-compiling GNU Radio to embedded boards
July 28, 2020

The Raspberry Pi{3,4} (RPi) is a single board computer designed – for the characteristics we are in-
terested in for Software Defined Radio applications – around a quad-core ARM processor clocked at
1.5 GHz with 1, 2 or 4 GB random access memory. The operating system is stored on a microSD card
and is hence easily updated from the host computer (never ever compile on the target embedded board).
Generating a dedicated toolchain – as opposed to using a readily available binary distribution – allows
for optimizing instructions for the chipset available on the targeted platform.

Our objective is to execute GNU Radio on the RPi in order to run some pre-processing on the
embedded board before sending the processing result to the PC (e.g. receiving a broadcast FM station
on the RPi and send the audio output to the PC through a Zero-MQ link).

1 Buildroot for RPi

Buildroot is a framework providing a consistent set of

• cross-compilation toolchain for the host (usually Intel x86/AMD64 processor)

• libraries and userspace applications for the ARM target,

• Linux kernel for the target,

• bootloader for embedded target board initialization in order to load the Linux kernel in charge of
supervizing userspace applications.

This consistency avoids many pitfalls when cross-compiling target applications or kernel modules on
the host. Obviously the low-computational power target is not designed for intensive computational load
such as compiling GNU Radio, and gcc should actually not even be available on the target, neither is
the SD card with its finite number of write cycles designed for large compilation (at least make /tmp/ a
RAM filesystem if trying such a compiltion on the target).

Installing the result of Buildroot cross-compilation on the Raspberry Pi4 is described at https://

github.com/buildroot/buildroot/tree/master/board/raspberrypi but the documentation on this
web page is not up to date (?!):

1. git clone https://git.busybox.net/buildroot

2. cd buildroot

3. make raspberrypi4 64 defconfig

fetches the Buildroot archive, and configures for the RaspberryPi4 in 64 bit mode (obviously for RPi3,
select raspberrypi3 64 defconfig). Because Python support for GNU Radio will require the glibc

library rather than the default uClibc, we must tune the default configuration

4. make menuconfig

5. Toolchain → C library (uClibc-ng) → glibc

6. Exit

Once the proper C-library has been selected

7. make

builds all tools needed for cross-compilation. This operation will take about 40 min on an 8-core 2.33 GHz
Xeon CPU with fast internet connexion and require 7.4 GB of hard disk space. While compiling,
Buildroot only updates files stored in the output directory. Thus, removing this directory (and sub-
directories) will return to the original Buildroot configuration. All software related to the host computer
– Intel x86/AMD64 architecture most of the time – is located in output/host, while all software related
to the target (here ARM architecture) is stored in output/target. We shall not be interested in the

1



content of the directory in which source files are stored but might have to erase some of its content to
force re-compilation: such files are stored in the output/build directory. Finally, the last compilation
stage will result in a complete image including bootloader, kernel, libraries and userspace applications:
this file is stored in output/images.

After completing buildroot compilation, we find in the output/images directory the file sdcard.img

which holds the binary datastream (about 150 MB) to be stored on the microSD card holding the
operating system to be run on the RPi. Here, “stored” doe not mean copying since we must clone each
byte from the binary file to the storage medium. Such an operation is achieved under GNU/Linux with
the Disk Dump dd command.

The following line might definitely corrupt a hard disk if the wrong storage medium is selected.
Alway check the name of the peripheral associated with the SD card (dmesg | tail) before running
the dd command.

The image resulting from Buildroot compilation is transfered to the microSD card with

sudo dd if=output/images/sdcard.img of=/dev/sdc

where we have on purpose selected the /dev/sdc peripheral name in this example since it is ever hardly
used. Usually, the microSD card is accessed as /dev/sdb (second hard disk storage medium compatible
with the Linux SCSI driver) or /dev/mmcblk0 (internal SD medium interface).

In case a Desktop Manager or a File Manager is used, make sure the SD card is unmounted before
executing dd, as these tools will interfere with the cloning process.

Warning: the content of the SD card, or any storage medium associated with the last argument
of this command, will be definitely lost. Make sure, double check, the name of the peripheral on which
the Buildroot image will be stored.

Once the image has been flashed on the SD card, we can see two partitions: the first one is a VFAT
(format compatible with Microsoft Windows) with the devicetree, the Linux kernel and the bootloader,
and a second one holding the GNU/Linux userspace filesystem (rootfs).

This basic image is missing basic functionalities such as secure network connection over ssh or text
editing on the remote target. We find most convenient to activate Target Packages→Text editors

and viewers→nano as text editor, Target Packages→Shell and utilities→screen and Target

Packages→Networking applications→dropbear as ssh server. Since Dropbear expects a password
when logging in the target system, we must define the root password (and not leave it empty as is the
default configuration) using System configuration→Root password

2 Adding packages (GNU Radio)

So far we have compiled a standard Buildroot image without dedicated GNU Radio support. Dedicated
packages not selected in the default configuration can be activated. This is achieved from the Buildroot
directory with make menuconfig and selecting Target packages. Searching (“/” command as in vi)
allows for quickly finding the appropriate package, such as GNU Radio.

1. make menuconfig

2. /eudev

3. Select the last item indicating BR2 ROOTFS DEVICE CREATION DYNAMIC EUDEV and replace /dev

management with Dynamic using devtmpfs + eudev

4. /python3

5. Select item (4) indicating BR2 PACKAGE PYTHON3

6. /gnuradio

7. Select item (1) indicating BR2 PACKAGE GNURADIO

8. Select additional GNU Radio functionalities as needed (we will need gr-zeromq support and
python support)

2



9. /osmosdr

10. Select BR2 PACKAGE GR OSMOSDR (with Python support and Osmocom RTLSDR support)

The resulting file will be about 550 MB, requiring increasing the configuration in .config with
BR2 TARGET ROOTFS EXT2 SIZE="1000M".

Tuning the configuration prior to dd the SD card is possible by adding files in output/target, e.g.
a etc/network/interfaces network configuration with a static IP for example, or copying the USRP
firmware from the host PC in the usr/share/uhd/images subdirectory of output/target for these files
to be available later on the target embedded board. After tuning the content of output/target, execute
make in the Buildroot directory to re-build the output/images/sdcard.img file.

Finally, a graphical display of Python processing results can be activated using matplotlib which de-
pends on Qt5: first activate BR2 PACKAGE QT5 (accessible from Graphic libraries and applications

in Target packages): now the qt display option from python-matplotlib in External python

modules is active and both should be selected.

3 Adding custom packages (gnss-sdr, PlutoSDR/UHD)

Up to now we have only worked with “official” Buildroot packages properly maintained by the Buildroot
community. Some packages are not yet integrated in the official repository but can nevertheless be
appended as external packages thanks to the BR2 EXTERNAL mechanism. As an example of supporting
the PlutoSDR thanks to gr-iio, this support is available thanks to the BR2 EXTERNAL repository found
at https://github.com/oscimp/PlutoSDR and most significantly its for next branch. Hence, after
going to any directory out of the Buildroot source tree:

1. git clone https://github.com/oscimp/PlutoSDR

2. cd PlutoSDR

3. git checkout for_next

4. source sourceme.ggm

Now that the BR2 EXTERNAL has been cloned, the appropriate branch selected, and the environment
variables set (last command), return to the Buildroot directory and make menuconfig. Running make

menuconfig will now show a new menu named External options including gr-iio, libuhd:

• in External options select uhd and for the B210 b200 support and python API support,

• in External options select gr-iio for PlutoSDR support.

Including gnss-sdr requires activating Fortran in the Toolchain options for compiling Lapack which
as needed for Armadillo, a dependence to gnss-sdr (clapack will not work with gnss-sdr).

Controlling the Raspberry Pi 4 GPIO is most easily achieved using the PiGPIO library, whose
functioalitities are activated by setting PIGPIO and PYTHON3 PIGPIO for calling from Python3 scripts.

4 GNU Radio on RPi

As a demonstration of the proper operation of GNU Radio on the embedded board, we generate using
GNU Radio Companion on the host computer a command line interface (“No GUI”) processing flow
since obviously no graphical interface is running on the embedded target, and will execute the resulting
Python3 script on the Raspberry Pi. The audio stream resulting from broadcast FM demodulation will
be streamed to the host PC for playing on the sound card.

On the host computer, run GNU Radio Companion (as part of GNU Radio 3.8) and generate the
following chart:

3



48000*24

input rate=samp_rate/6

cutoff=samp_rate/12

Adapt IP @ to you embedded 
board network configuration

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 1.152M

WBFM Receive

Quadrature Rate: 192k

Audio Decimation: 4

Low Pass Filter

Decimation: 6

Gain: 1

Sample Rate: 1.152M

Cutoff Freq: 96k

Transition Width: 48k

Window: Hamming

Beta: 6.76

osmocom Source

Sync: Unknown PPS

Number Channels: 1

Sample Rate (sps): 1.152M

Ch0: Frequency (Hz): 96.9M

Ch0: Frequency Correction (ppm): 0

Ch0: DC Offset Mode: 0

Ch0: IQ Balance Mode: 0

Ch0: Gain Mode: False

Ch0: RF Gain (dB): 10

Ch0: IF Gain (dB): 20

Ch0: BB Gain (dB): 20

ZMQ PUB Sink

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

The generated Python script will be transfered and run on the RPi platform. Make sure to adapt
the 0-MQ TCP IP address to the RPi address: the server is running on the embedded board and being
a Publish-Subscribe (like UDP broadcast) configuration, any client connecting to the server running on
the embedded board will be streamed the dataflow. The IP address must match the subnet of the host
PC for easier routing configuration, and the port might be anything above 1024. The only constraints
on this flowgraph is to achieve a final sampling rate matching the PC sound card sampling rate (here
48 kHz) following an integer decimation, here tuned with an initial sampling rate of 48 kS/s. The first
low-pass filter selects a unique FM broadcast station while still keeping enough bandwidth (≥200 kHz)
for wideband FM demodulation, and the FM demodulator add the second decimation stage.

5 Communication RPi to PC

After processing the raw RF (I/Q) signal collected from the FM broadcast band by the RPi, and pre-
processing FM demodulation on the embedded target board, the audio stream is sent PC over 0-MQ.

IP is the embedded board
network address

Options

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 48k

Audio Sink

Sample Rate: 48k

ZMQ SUB Source

Address: tcp://1...1.200:5555

Timeout (msec): 100

Pass Tags: No

Left: client flowchart, fetching a 0-MQ subscribe datastream and feeding the sound card of the host PC. Right:
experimental testbed, with the RPi4 connected though virtual serial port and Ethernet to the laptop PC. The RPi4

collects an I/Q stream from the DVB-T dongle tuned to an FM-broadcast station, streams the demodulated audio flow to

4



the PC, allowing to listen to the program on the headset connected to the sound card output. Not heard on this figure is
the excellent sound quality heard on the headset, demonstrating perfect functional capability of this setup.

6 Software development

We are interested in tuning the gnss-sdr functionalities. The source code of the software has been
downloaded in the output/build directory if selected and installed. The build directory for the target
system is found in
output/build/gnss-sdr-0.0.12/buildroot-build/

while a separate output/build/gnss-sdr-0.0.12/build allows for simultaneously testing source code
modifications on the host PC. The output of compiling (make), either in buildroot-build (ARM target)
or build (x86 target), is found in src/main/gnss-sdr.

5


