
 1

Eliminating Memory Errors in C

Karsten Pedersen
10/06/2020

 2

Existing solutions
● Valgrind
● ElectricFence
● Debug runtimes (I.e MSVC)
● AddressSanitizer (Clang)

– Older Mudflap (GCC)

 3

Introducing libstent
● A "weak pointer" for C

– Only enabled at debug time

● A "templated vector" for C
● Header-only library

– C89+ compatible

 4

Getting started (current)
#include <stdlib.h>

struct Employee
{
 int id;
};

int main()
{
 struct Employee *emp = calloc(1, sizeof(struct Employee));
 free(emp);

 return 0;
}

 5

Getting started (libstent)
#define STENT_IMPLEMENTATION
#include <stent.h>

struct Employee
{
 int id;
};

int main()
{
 ref(Employee) emp = allocate(Employee);
 release(emp);

 return 0;
}

 6

Accessing members
ref(Employee) emp = allocate(Employee);

_(emp).id = 2 * 2;

printf("ID: %i\n", _(emp).id);

Result:
ID: 4

 7

Detecting leaks
int main()
{
 ref(Employee) emp = allocate(Employee);

 return 0;
}

Result:
Warning: Allocated memory [main.c:16] persisted after application exit [Employee]
Aborted

 8

Use after free (simple)
int main()
{
 ref(Employee) emp = allocate(Employee);
 release(emp);

 printf("ID: %i\n", _(emp).id);

 return 0;
}

Result:
Error: Employee pointer no longer valid in main.c:17
Aborted

 9

Use after free (continued)
ref(Employee) curr;

int main()
{
 ref(Employee) emp = allocate(Employee);
 curr = emp;
 release(emp);

 printf("ID: %i\n", _(curr).id);

 return 0;
}

Result:
Error: Employee pointer no longer valid in main.c:19
Aborted

 10

Use ref for members
struct Employee
{
 int id;
 ref(Department) dept;
 ref(Employee) mgr;
};

ref(Employee) EmployeeCreate(ref(Department) dept, ref(Employee) mgr)
{
 ref(Employee) rtn = allocate(Employee);
 _(rtn).dept = dept;
 _(rtn).mgr = mgr;

 return rtn;
}

 11

Assume raw to refer to stack
struct Employee
{
 int id;
 ref(Department) dept;
 ref(Employee) mgr;
 struct Work *work; /* Avoid raw pointers in structures */
};

void EmployeeWork(ref(Employee) ctx, struct Work *work)
{
 /* work is stack memory so guaranteed be valid in this function */

 if(work->type == WORK_JUMP) { ... }
}

 12

Using vectors (simple)
int main()
{
 vector(int) ids = vector_new(int);

 vector_push(ids, 9);
 vector_push(ids, 5);
 vector_push(ids, 3);

 printf("ID: %i\n", vector_at(ids, 1));

 vector_delete(ids);

 return 0;
}

 13

Using vectors (continued)
int main()
{
 vector(ref(Employee)) emps = vector_new(ref(Employee));

 vector_push(emps, EmployeeCreate());
 vector_push(emps, EmployeeCreate());
 vector_push(emps, EmployeeCreate());

 printf("ID: %i\n", EmployeeId(vector_at(emps, 1)));

 vector_delete(emps);

 return 0;
}

 14

We just leaked memory!
Result:
Warning: Allocated memory persisted after application exit [Employee]
Warning: Allocated memory persisted after application exit [Employee]
Warning: Allocated memory persisted after application exit [Employee]
Aborted

Note: If you forget to call vector_delete, you would also see:
Warning: Allocated memory persisted after application exit [vector(ref(Employee))]

 15

The quick fix (using foreach)

/*
 * Free employees before deleting the vector
 */
foreach(ref(Employee) emp, emps,
 release(emp);
)

vector_delete(emps);

 16

Standard iteration through vectors
size_t i = 0;

/*
 * Free employees before deleting the vector
 */
for(; i < vector_size(emps); ++i)
{
 release(vector_at(emps, i));
}

vector_delete(emps);

 17

Detecting vector out of bounds
vector(int) ids = vector_new(int);
vector_push(ids, 0);
vector_push(ids, 1);
vector_push(ids, 2);

printf("ID: %i\n", vector_at(ids, 3));

Result:
Error: Index [index=3] out of bounds [size=3]
Aborted

 18

Additional vector functionality
● vector_resize
● vector_clear
● vector_insert
● vector_erase

 19

Type-checked cast from voidref
void Callback(refvoid userdata)
{
 ref(Department) dpt = cast(Department, userdata);
 ...
}

ref(Employee) emp = allocate(Employee);
Callback(void_cast(emp));

Result:
Error: Attempt to cast [Employee] to incompatible type [Department]
Aborted

 20

Additional libstent features
● Thread-safe access
● Some additional facilities

– sstream_new()
– ifstream_open(...)
– dir_open(...)

 21

Overhead free release builds
● Simply undefine STENT_ENABLE
● Pointers aren’t checked

– ref(Employee) --> struct Employee *

● Vector bounds aren’t checked

 22

Some of our projects using libstent

 23

Questions?

● kpedersen@thamessoftware.co.uk
● https://github.com/osen/stent

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

