
Device Abstraction Layer Page 1 of 145

Draft January 30, 2014

Device Abstraction Layer

Draft

145 Pages

Abstract

Defines a new device abstraction API in OSGi platform. It provides a simple access to the devices and their

functionality.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 2 of 145

Draft January 30, 2014

0 Document Information

0.1 License

DISTRIBUTION AND FEEDBACK LICENSE, Version 2.0

The OSGi Alliance hereby grants you a limited copyright license to copy and display this document (the “Distribution”) in any
medium without fee or royalty. This Distribution license is exclusively for the purpose of reviewing and providing feedback to
the OSGi Alliance. You agree not to modify the Distribution in any way and further agree to not participate in any way in the
making of derivative works thereof, other than as a necessary result of reviewing and providing feedback to the Distribution.
You also agree to cause this notice, along with the accompanying consent, to be included on all copies (or portions thereof) of
the Distribution. The OSGi Alliance also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited
license (without the right to sublicense) under any applicable copyrights, to create and/or distribute an implementation of the
Distribution that: (i) fully implements the Distribution including all its required interfaces and functionality; (ii) does not modify,
subset, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Java
interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the Distribution. An
implementation that does not satisfy limitations (i)-(ii) is not considered an implementation of the Distribution, does not receive
the benefits of this license, and must not be described as an implementation of the Distribution. "OSGi Name Space" shall
mean the public class or interface declarations whose names begin with "org.osgi" or any recognized successors or
replacements thereof. The OSGi Alliance expressly reserves all rights not granted pursuant to these limited copyright licenses
including termination of the license at will at any time.

EXCEPT FOR THE LIMITED COPYRIGHT LICENSES GRANTED ABOVE, THE OSGi ALLIANCE DOES NOT GRANT,
EITHER EXPRESSLY OR IMPLIEDLY, A LICENSE TO ANY INTELLECTUAL PROPERTY IT, OR ANY THIRD PARTIES,
OWN OR CONTROL. Title to the copyright in the Distribution will at all times remain with the OSGi Alliance. The example
companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted therein are
fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or
event is intended or should be inferred.

THE DISTRIBUTION IS PROVIDED "AS IS," AND THE OSGi ALLIANCE (INCLUDING ANY THIRD PARTIES THAT HAVE
CONTRIBUTED TO THE DISTRIBUTION) MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DISTRIBUTION ARE SUITABLE FOR ANY PURPOSE;
NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.
NEITHER THE OSGi ALLIANCE NOR ANY THIRD PARTY WILL BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF
THE DISTRIBUTION.

Implementation of certain elements of this Distribution may be subject to third party intellectual property rights, including
without limitation, patent rights (such a third party may or may not be a member of the OSGi Alliance). The OSGi Alliance is
not responsible and shall not be held responsible in any manner for identifying or failing to identify any or all such third party
intellectual property rights.

The Distribution is a draft. As a result, the final product may change substantially by the time of final publication, and you are
cautioned against relying on the content of this Distribution. You are encouraged to update any implementation of the
Distribution if and when such Distribution becomes a final specification.

The OSGi Alliance is willing to receive input, suggestions and other feedback (“Feedback”) on the Distribution. By providing
such Feedback to the OSGi Alliance, you grant to the OSGi Alliance and all its Members a non-exclusive, non-transferable,

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 3 of 145

Draft January 30, 2014

worldwide, perpetual, irrevocable, royalty-free copyright license to copy, publish, license, modify, sublicense or otherwise
distribute and exploit your Feedback for any purpose. Likewise, if incorporation of your Feedback would cause an
implementation of the Distribution, including as it may be modified, amended, or published at any point in the future (“Future
Specification”), to necessarily infringe a patent or patent application that you own or control, you hereby commit to grant to all
implementers of such Distribution or Future Specification an irrevocable, worldwide, sublicenseable, royalty free license under
such patent or patent application to make, have made, use, sell, offer for sale, import and export products or services that
implement such Distribution or Future Specification. You warrant that (a) to the best of your knowledge you have the right to
provide this Feedback, and if you are providing Feedback on behalf of a company, you have the rights to provide Feedback on
behalf of your company; (b) the Feedback is not confidential to you and does not violate the copyright or trade secret interests
of another; and (c) to the best of your knowledge, use of the Feedback would not cause an implementation of the Distribution
or a Future Specification to necessarily infringe any third-party patent or patent application known to you. You also
acknowledge that the OSGi Alliance is not required to incorporate your Feedback into any version of the Distribution or a
Future Specification.

I HEREBY ACKNOWLEDGE AND AGREE TO THE TERMS AND CONDITIONS DELINEATED ABOVE.

0.2 Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their
respective owners and are hereby recognized.

0.3 Feedback
This document can be downloaded from the OSGi Alliance design repository at https://github.com/osgi/design
The public can provide feedback about this document by opening a bug at https://www.osgi.org/bugzilla/.

0.4 Table of Contents

0 Document Information..2
0.1 License...2
0.2 Trademarks...3
0.3 Feedback..3
0.4 Table of Contents...3
0.5 Terminology and Document Conventions...4
0.6 Revision History..4

1 Introduction...7

2 Application Domain..7

3 Problem Description...9

4 Requirements.. 11

5 Technical Solution..11
5.1 Introduction...11

5.1.1 Entities... 12
5.2 Device Access Category...12
5.3 Device Service..12

5.3.1 Reference Device Services... 16
5.3.2 Device Service Registration.. 17
5.3.3 Device Service Unregistration... 17

5.4 Device Status Transitions...17
5.4.1 Transitions to STATUS_REMOVED...19

Copyright © OSGi Alliance 2014 All Rights Reserved

https://github.com/osgi/design

Device Abstraction Layer Page 4 of 145

Draft January 30, 2014

5.4.2 Transitions to and from STATUS_OFFLINE.................................19
5.4.3 Transitions to and from STATUS_ONLINE................................... 20
5.4.4 Transitions to and from STATUS_PROCESSING........................21
5.4.5 Transitions to and from STATUS_NOT_INITIALIZED..................22
5.4.6 Transitions to and from STATUS_NOT_CONFIGURED..............23

5.5 Device Functions..24
5.5.1 Device Function Interface.. 25
5.5.2 Device Function Operations.. 26
5.5.3 Device Function Properties... 27
5.5.4 Device Function Property Event.. 28

5.6 Basic Device Functions..29
5.6.1 BooleanControl Device Function... 29
5.6.2 BooleanSensor Device Function... 30
5.6.3 MultiLevelControl Device Function.. 30
5.6.4 MultiLevelSensor Device Function.. 30
5.6.5 Meter Device Function... 31
5.6.6 Alarm Device Function.. 31
5.6.7 Keypad Device Function.. 32
5.6.8 WakeUp Device Function.. 32

6 Data Transfer Objects...34

7 Javadoc.. 34

8 Considered Alternatives...142
8.1 Use Configuration Admin to update the Device service properties.................142
8.2 DeviceAdmin interface availability..142
8.3 Access helper methods removal of FunctionalDevice....................................143

9 Security Considerations...143
9.1 Device Permission..143
9.2 Required Permissions...144

10 Document Support..144
10.1 References...144
10.2 Author’s Address..145
10.3 Acronyms and Abbreviations..145
10.4 End of Document..145

0.5 Terminology and Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY" and "OPTIONAL" in this document are to be interpreted as
described in 10.1.

Source code is shown in this typeface.

0.6 Revision History
The last named individual in this history is currently responsible for this document.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 5 of 145

Draft January 30, 2014

Revision Date Comments

Initial Jan 22 2013 Initial draft version.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

2nd draft Feb 13 2013 Updated Considered Alternatives and Security Considerations after F2F
meeting in Austin, TX.

Provide more details about device management.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

3rd draft Mar 08 2013 Remove DeviceAdmin service.

Describe DeviceFunction and FunctionalDevice interfaces.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

4th draft Apr 08 2013 Rename the package and some constants.

Merge the AbstractDevice and FunctionalDevice to FunctionalDevice.

Add Functional Device Permission.

Add Device Function Event.

Minor fixes: renamed Device Access category, fixed unit representation
and some clarifications.

Add a suggestion about Device Functions to be discussed on F2F in
Cologne.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

5th draft Jun 12 2013 Add a basic set of Device Functions.

Include the device status transitions.

Update the illustrations.

Add a status detail mapping.

Add some snippets.

Remove the device helper methods for an access to parent, children
and reference devices.

Add a Functional Device and Device Function descriptions.

Add error codes to DeviceFunctionException.

Update the javadoc.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

Copyright © OSGi Alliance 2014 All Rights Reserved

mailto:e.grigorov@prosyst.com
mailto:e.grigorov@prosyst.com
mailto:e.grigorov@prosyst.com
mailto:e.grigorov@prosyst.com
mailto:e.grigorov@prosyst.com

Device Abstraction Layer Page 6 of 145

Draft January 30, 2014

Revision Date Comments

6th draft Jul 02 2013 Describe the status transitions in detail.

FunctionalDeviceException.CODE_UNKNOW fixed to
CODE_UNKNOWN.

Functional Group is introduced.

Functional Device, Functional Group and Device Function are in the
service registry.

New service properties are introduced.

Parent-child relation is removed.

Add more details to the descriptions.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

7th draft Sept 09 2013 Basic device function set is updated.

Rename FunctionalDevice to Device.

Rename FunctionalDeviceException to DeviceException.

Rename FunctionalDevicePermission to DevicePermission.

Relax the relation between the device and device function.

DeviceExcpetion extends IOException.

Functional group is removed.

Renamed device function metadata properties.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

8th draft Jan 16 2014 Service property names are renamed form PROPERTY_<name> to
SERVICE_<name>.

Status disabled is removed, because it's applicable to small set of
devices like peripherals.

Remove the public methods to update the device properties. They
should be initially configured.

Updated permissions, because of updated device management
operations.

Overview diagram is added.

Diagram with all device statuses is added.

The package is renamed.

Common device function data structure is introduced.

Property and operation metadata structures are introduced.

Device function type is added.

There is a new interface with base set of device function types.

There is a new interface with SI unit symbols.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

Copyright © OSGi Alliance 2014 All Rights Reserved

mailto:e.grigorov@prosyst.com
mailto:e.grigorov@prosyst.com
mailto:e.grigorov@prosyst.com

Device Abstraction Layer Page 7 of 145

Draft January 30, 2014

Revision Date Comments

9th draft Jan 30 2014 Device.setName is removed. The device properties configuration is a
vendor specific.

Minor javadoc fixes and name improvements after the initial reference
implementation.

Device Function must be registered under only one interface.

WakeUp Device Function is introduced to cover bettery-operated
devices.

Evgeni Grigorov, ProSyst Software, e.grigorov@prosyst.com

1 Introduction

OSGi is gaining popularity as enabling technology for building embedded system in residential and M2M markets.
In these contexts it is often necessary to communicate with IP and non-IP devices by using various protocols such
as ZigBee, Z-Wave, KNX, UPnP etc. In order to provide a convenient programming model suitable for the
realization of end-to-end services it is very useful to define and apply an abstraction layer which unifies the work
with devices supporting different protocols.

This RFC defines a new device abstraction API in OSGi.

2 Application Domain

Currently there are several standardization bodies such as OSGi Alliance, HGI, BBF, ETSI M2M which deal with
the deployment of services in an infrastructure based on the usage of a Residential Gateway running OSGi as
Execution Platform. The picture on Illustration 1 shows a reference architecture which is valid in the majority of
cases under consideration.

Copyright © OSGi Alliance 2014 All Rights Reserved

mailto:e.grigorov@prosyst.com

Device Abstraction Layer Page 8 of 145

Draft January 30, 2014

In this architecture the application logic is distributed between:

• Applications running on the residential gateways

• Applications running in the cloud, e.g. on the service provider’s backend

• Applications on the devices providing UI (e.g. tablets, mobile phones, desktops).

In order to realize services which access other IP and non-IP devices connected to the residential gateway, those
applications must be able to read information from the devices and perform operations on them through software
APIs. Such an access is essential for services in the area of smart metering, entertainment, home automation,
assisted living and security.

The existing OSGi specifications which address related topics are:

• Device Access Specification – focuses on the dynamic discovery of the proper driver when a new device
is attached/connected to the residential gateway. The device access is limited to attend the driver
installation needs.

• UPnP™ Device Service Specification – defines among the other OSGi API for work with UPnP devices
accessible from the residential gateway. API is specified in the scope of UPnP Device Access category.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 1

Device Abstraction Layer Page 9 of 145

Draft January 30, 2014

3 Problem Description

Normally the residential gateways operate in heterogeneous environment including devices that support different
protocols. It’s not trivial to provide interoperability of the applications and the devices under such circumstances.
The existing OSGi Device Access Specification solves the driver installation problems but currently there is no
complete API that can be used for accessing the device data and for invoking actions on the devices.

Illustration 2 shows one possible approach for working with heterogeneous devices in an OSGi environment:

In this case each application which accesses devices of a given type must use API specific for this type. One
obvious disadvantage of this model is that when a new device protocol is added the applications must be modified
in order to support this protocol.

Much better is the approach from Illustration 3 which is defined by this RFC.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 2

Device Abstraction Layer Page 10 of 145

Draft January 30, 2014

In this case an additional device abstraction layer is introduced which unifies the work with the devices provided
by the different underlying protocols. Thus the following advantages are achieved:

• The application programmers can work with devices provided by different protocols exactly in the
same way and by applying the same program interface. The protocol adapters and device abstraction
API hide the complexity/differences of the device protocols.

• The applications can work without modification when new hardware controllers and protocol adapters
are dynamically added.

• When remote access to the devices connected to the gateway is necessary (e.g. in m2m and
management scenarios) it’s much easier to provide mapping to one API then to a set of protocol
dependent APIs.

• It is much easier to build UI for remote browsers or for apps running on mobile devices if just one
mapping to one unified device abstraction API is necessary.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 3

Device Abstraction Layer Page 11 of 145

Draft January 30, 2014

4 Requirements

Requirement 1. The solution MUST define API for controlling devices which is applicable for all relevant
device protocols.

Requirement 2. The solution MUST define API for controlling devices which is independent from the
device protocols.

Requirement 3. The solution MUST include device access control based on user and application
permissions compliant with the OSGi security model.

Requirement 4. The solution MUST take advantage of the security features available in the device
protocols.

Requirement 5. The solution MUST include a device protocol independent notification mechanism
realized according to the OSGi event mechanisms.

Requirement 6. The solution SHOULD be mappable to other relevant standards such as HGI, ETSI M2M
and BBF handling the remote access to device networks.

Requirement 7. The solution MUST provide configurable device data and metadata model.

Requirement 8. The solution MUST be applicable to the changeable device behavior. Sleeping/power
saving devices can go and stay offline for a long time, but should be available in the defined API.

Requirement 9. The solution MUST provide an extension mechanism to support devices provided by new
protocols.

Requirement 10. The solution MAY provide means to access the protocol specific device object.

Requirement 11. The solution MUST register device or/and device related instance to the OSGi service
registry.

Requirement 12. The solution MAY update OSGi Device Access Specification.

5 Technical Solution

5.1 Introduction
Remote device control provides opportunity to save energy, to provide better security, to save your time during
daily tasks and many more. The devices can play different roles in their networks as events reporters, controllers
etc. That dynamic behavior is well mappable to the dynamic OSGi service registry. There is a registration of
Device service. It realizes basic set of management operations and provides rich set of properties. The
applications are allowed to track the device status, to read descriptive information and to follow the device
relations. A set of functions can belong to the device. They represents the device operations and related
properties in an atomic way. The device functions can be found in the OSGi service registry. The applications are
allowed to get directly the required functions if they don't need information about the device. For example, light

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 12 of 145

Draft January 30, 2014

device is registered as a Device service and there is a DeviceFunction service to turn on and turn off the
light.

5.1.1 Entities

• Device – represents the device in the OSGi service registry. It's described with a set of service properties
and provides basic management operations.

• DeviceFunction – atomic device functional entity. The device can support a few functions like switch with
a sensor. The function provides a set of properties and operations.

• DeviceFunctionEvent – asynchronous event. It's sent through EventAdmin service and notifies for Device
Function property change.

• DeviceFunctionData – data structure carries DeviceFunction property value with additional metadata.

• PropertyMetadata and OperationMetadata – contains metadata about the DeviceFunction properties and
operations.

5.2 Device Access Category
The device access category is called “DAL”. The category name is defined as a value of
Device.DEVICE_CATEGORY constant. It can be used as a part of
org.osgi.service.device.Constants.DEVICE_CATEGORY service property key value. The category
impose this specification rules.

5.3 Device Service
Device interface is dedicated for a common access to the devices provided by different protocols. It can be
mapped one to one with the physical device, but can be mapped only with a given functional part of the device. In
this scenario, the physical device can be realized with a set of Device services and different relations between
them. Device service can represent pure software unit. For example, it can simulate the real device work. There
are basic management operations for remove, property access and property update. New protocol devices can be
supported with a registration of new Device services.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 4: Device Abstraction Layer Overview

Device Abstraction Layer Page 13 of 145

Draft January 30, 2014

If the underlying protocol and the implementation allow, the Device services must be registered again after the
OSGi framework reboot. The service properties must be restored, the supported device functions must be
provided and Device relations must be visible to the applications.

The OSGi service registry has the advantage of being easily accessible. The services can be filtered and
accessed with their properties. The device service has a rich set of such properties as it is on Illustration 5:

• Device.SERVICE_UID – Specifies the device unique identifier. It's a mandatory property. The value
type is java.lang.String. To simplify the unique identifier generation, the property value must follow
the rule:

UID ::= driver-name ':' device-id

UID - device unique identifier

driver-name - the value of the Device.SERVICE_DRIVER service property

device-id - device unique identifier in the scope of the driver

• Device.SERVICE_REFERENCE_UIDS – Specifies the reference device unique identifiers. It's an optional
property. The value type is java.lang.String[]. It can be used to represent different relationships
between the devices. For example, The ZigBee controller can have a reference to the USB dongle.

• Device.SERVICE_DRIVER – Specifies the device driver name. For example, ZigBee, Z-Wave,
Bluetooth etc. It's a mandatory property. The value type is java.lang.String.

• Device.SERVICE_NAME – Specifies the device name. It's an optional property. The value type is
java.lang.String.

• Device.SERVICE_STATUS – Specifies the current device status. It's a mandatory property. The value
type java.lang.Integer. The possible values are:

• Device.STATUS_REMOVED – Indicates that the device is removed from the network. That status
must be set as the last device status and after that the device service can be unregistered from the
service registry. The status is available for stale device services too. All transitions to and from this
status are described in Transitions to STATUS_REMOVED section.

• Device.STATUS_OFFLINE – Indicates that the device is currently not available for operations.
The end device is still installed in the network and can become online later. The controller is
unplugged or there is no connection. All transitions to and from this status are described in detail in
Transitions to and from STATUS_OFFLINE section.

• Device.STATUS_ONLINE – Indicates that the device is currently available for operations. All
transitions to and from this status are described in detail in Transitions to and from
STATUS_ONLINE section.

• Device.STATUS_PROCESSING – Indicates that the device is currently busy with an operation. All
transitions to and from this status are described in detail in Transitions to and from
STATUS_PROCESSING section.

• Device.STATUS_NOT_INITIALIZED – Indicates that the device is currently not initialized. Some
protocols don't provide device information right after the device is connected. The device can be
initialized later when it's awakened. All transitions to and from this status are described in detail in
Transitions to and from STATUS_NOT_INITIALIZED section.

• Device.STATUS_NOT_CONFIGURED – Indicates that the device is currently not configured. The
device can require additional actions to become completely connected to the network. All
transitions to and from this status are described in detail in Transitions to and from
STATUS_NOT_CONFIGURED section.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 14 of 145

Draft January 30, 2014

• Device.SERVICE_STATUS_DETAIL – Provides the reason for the current device status. It's an optional
property. The property value cannot be externally set or modified. The value type is
java.lang.Integer. There are two value categories. Positive values indicate the reason for the
current status like Device.STATUS_DETAIL_CONNECTING. Negative values indicate errors related to
the current device status like Device.STATUS_DETAIL_DEVICE_BROKEN. The list with defined status
details is:

• Device.STATUS_DETAIL_CONNECTING – The reason for the current device status is that the
device is currently connecting to the network. It indicates the reason with a positive value 1. The
device status must be STATUS_PROCESSING.

• Device.STATUS_DETAIL_INITIALIZING – The reason for the current device status is that the
device is currently in process of initialization. It indicates the reason with a positive value 2. The
network controller initializing means that information about the network is currently read. The
device status must be STATUS_PROCESSING.

• Device.STATUS_DETAIL_REMOVING – The reason for the current device status is that the
device is leaving the network. It indicates the reason with positive value 3. The device status must
be STATUS_PROCESSING.

• Device.STATUS_DETAIL_CONFIGURATION_NOT_APPLIED – The reason for the current device
status is that the device configuration is not applied. It indicates an error with a negative value -1.
The device status must be STATUS_NOT_CONFIGURED.

• Device.STATUS_DETAIL_DEVICE_BROKEN – The reason for the offline device is that the device
is broken. It indicates an error with a negative value -2. The device status must be
STATUS_OFFLINE.

• Device.STATUS_DETAIL_DEVICE_COMMUNICATION_ERROR – The reason for the current
device status is that the device communication is problematic. It indicates an error with a negative
value -3. The device status must be STATUS_ONLINE or STATUS_NOT_INITIALIZED.

• Device.STATUS_DETAIL_DEVICE_DATA_INSUFFICIENT – The reason for the uninitialized
device is that the device doesn't provide enough information and cannot be determined. It indicates
an error with a negative value -4. The device status must be STATUS_NOT_INITIALIZED.

• Device.STATUS_DETAIL_DEVICE_NOT_ACCESSIBLE – The reason for the offline device is that
the device is not accessible and further communication is not possible. It indicates an error with a
negative value -5. The device status must be STATUS_OFFLINE.

• Device.STATUS_DETAIL_ERROR_APPLYING_CONFIGURATION – The reason for the current
device status is that the device cannot be configured. It indicates an error with a negative value -6.
The device status must be STATUS_NOT_CONFIGURED.

• Device.STATUS_DETAIL_IN_DUTY_CYCLE – The reason for the offline device is that the device
is in duty cycle. It indicates an error with a negative value -7. The device status must be
STATUS_OFFLINE.

Custom status details are allowed, but they must not overlap the specified codes. Table 1 contains the
mapping of the status details to the statuses.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 15 of 145

Draft January 30, 2014

Status Detail Status

STATUS_DETAIL_CONNECTING STATUS_PROCESSING

STATUS_DETAIL_INITIALIZING STATUS_PROCESSING

STATUS_DETAIL_REMOVING STATUS_PROCESSING

STATUS_DETAIL_CONFIGURATION_NOT_APPLIED STATUS_NOT_CONFIGURED

STATUS_DETAIL_DEVICE_BROKEN STATUS_OFFLINE

STATUS_DETAIL_DEVICE_COMMUNICATION_ERR
OR

STATUS_ONLINE, STATUS_NOT_INITIALIZED

STATUS_DETAIL_DEVICE_DATA_INSUFFICIENT STATUS_NOT_INITIALIZED

STATUS_DETAIL_DEVICE_NOT_ACCESSIBLE STATUS_OFFLINE

STATUS_DETAIL_ERROR_APPLYING_CONFIGURA
TION

STATUS_NOT_CONFIGURED

STATUS_DETAIL_IN_DUTY_CYCLE STATUS_OFFLINE

Table 1

• Device.SERVICE_HARDWARE_VENDOR – Specifies the device hardware vendor. It's an optional
property. The value type is java.lang.String.

• Device.SERVICE_HARDWARE_VERSION – Specifies the device hardware version. It's an optional
property. The value type is java.lang.String.

• Device.SERVICE_FIRMWARE_VENDOR – Specifies the device firmware vendor. It's an optional property.
The value type is java.lang.String.

• Device.SERVICE_FIRMWARE_VERSION – Specifies the device firmware version. It's an optional
property. The value type is java.lang.String.

• Device.SERVICE_TYPES – Specified the device types. It's an optional property. The value type is
java.lang.String[].

• Device.SERVICE_MODEL – Specifies the device model. It's an optional property. The value type is
java.lang.String.

• Device.SERVICE_SERIAL_NUMBER – Specifies the device serial number. It's an optional property. The
value type is java.lang.String.

The device services are registered in the OSGi service registry with
org.osgi.services.functionaldevice.Device interface. The next code snippet prints the online devices.

final ServiceReference[] deviceSRefs = context.getServiceReferences(

 Device.class.getName(),

 '(' + Device.SERVICE_STATUS + '=' + Device.STATUS_ONLINE + ')');

if (null == deviceSRefs) {

 return; // no such services

}

for (int i = 0; i < deviceSRefs.length; i++) {

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 16 of 145

Draft January 30, 2014

 printDevice(deviceSRefs[i]);

}

Applications need to have an access to the device properties. For convenience there is a helper method:

• getServiceProperty(String propName) – Returns the current value of the specified property. The
method will return the same value as
org.osgi.framework.ServiceReference.getProperty(String) for the service reference of
this device.

5.3.1 Reference Device Services

Device service can have a reference to other devices. That link can be used to represent different relationships
between devices. For example, the ZigBee dongle can be used as USB Device and ZigBee network controller

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 5

Device Abstraction Layer Page 17 of 145

Draft January 30, 2014

Device. The network controller device can have a reference to the physical USB device as it's depicted on
Illustration 6.

The related service property is Device.SERVICE_REFERENCE_UIDS.

5.3.2 Device Service Registration

The devices are registered as services in the OSGi service registry. The service interface is
org.osgi.services.functionaldevice.Device. There is a registration order. Device services are
registered last. Before their registration, there is DeviceFunction service registration.

5.3.3 Device Service Unregistration

OSGi service registry is only about the read-only access for the services. There are no control operations. The
service provider is responsible to register, update or unregister the services. That design is not very convenient
for the device life cycle. The Device interface provides a callback method remove(). The method can be
optionally implemented by the device provider. java.lang.UnsupportedOperationException can be
thrown if the method is not supported. When the remove callback is called, an appropriate command will be
synchronously send to the device. As a result it can leave the network and device related service will be
unregistered. There is an unregistration order. The registration reverse order is used when the services are
unregistered. Device services are unregistered first before DeviceFunction services.

5.4 Device Status Transitions
The device status uncover the device availability. It can demonstrate that device is currently not available for
operations or that the device requires some additional configuration steps. The status can jump over the different
values according to the rules defined in this section. The status transitions are summarized in Table 2, visualized
in Illustration 7 and described in detail in the next sections. The entry device status is always
STATUS_PROCESSING. When the device info is processed, the device can go to another status. The last possible
device status is STATUS_REMOVED. The status must be set when the device is removed from the network. After
that status, the device service will be unregistered.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 6

Device Abstraction Layer Page 18 of 145

Draft January 30, 2014

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 7

Device Abstraction Layer Page 19 of 145

Draft January 30, 2014

From \ To Status
PROCESSI

NG
ONLINE OFFLINE NOT_INITIALIZ

ED
NOT_CONFIGU

RED
REMOVED

PROCESSING
-

Initial device
data has been
read.

Device is not
accessible.

Initial device
data is partially
read.

Device has a
pending
configuration.

Device is
removed.

ONLINE Device data
is
processing.

-
Device is not
accessible. -

Device has a
new pending
configuration.

Device is
removed.

OFFLINE Device data
is
processing.

Device data
has been
read.

- -
Device has a
pending
configuration.

Device is
removed.

NOT_INITIALIZE
D

Device data
is
processing.

-
Device is not
accessible. - -

Device is
removed.

NOT_CONFIGU
RED

Device data
is
processing.

Device
pending
configuration
is satisfied.

Device is not
accessible. - -

Device is
removed.

REMOVED - - - - - -

Table 2

5.4.1 Transitions to STATUS_REMOVED

The device can go to Device.STATUS_REMOVED from any other status. Once reached, the device status cannot
be updated any more. The device is removed from the network and the device service is unregistered from the
OSGi service registry. If there are stale references to the Device service, their status will be set to
STATUS_REMOVED.

The common way for a given device to be removed is Device.remove(). When the method returns, the device
status will be STATUS_REMOVED. It requires a synchronous execution of the operation.

5.4.2 Transitions to and from STATUS_OFFLINE

The STATUS_OFFLINE indicates that the device is currently not available for operations. That status can be set,
because of different reasons. The network controller can be unplugged, connection to the device is lost etc. This
variety provides an access to that status from any other except STATUS_REMOVED. Transitions to and from this
status are:

• From STATUS_OFFLINE to STATUS_REMOVED – device is removed. The status can be set as a result of
Device.remove() method call.

• From STATUS_OFFLINE to STATUS_PROCESSING – device data is processing.

• From STATUS_OFFLINE to STATUS_NOT_CONFIGURED – device has a pending configuration.

• From STATUS_OFFLINE to STATUS_ONLINE – device data has been read and the device is currently
available for operations.

• From STATUS_OFFLINE to STATUS_NOT_INITIALIZED – That transition is not possible, because the
status have to go through STATUS_PROCESSING. If the processing is unsuccessful,
STATUS_NOT_INITIALIZED will be set.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 20 of 145

Draft January 30, 2014

• To STATUS_OFFLINE from STATUS_REMOVED – That transition is not possible. If device is removed, the
service will be unregistered from the service registry.

• To STATUS_OFFLINE from STATUS_PROCESSING – device is not accessible any more while device data
is processing.

• To STATUS_OFFLINE from STATUS_NOT_CONFIGURED – Not configured device is not accessible any
more.

• To STATUS_OFFLINE from STATUS_ONLINE – Online device is not accessible any more.

• To STATUS_OFFLINE from STATUS_NOT_INITIALIZED – Not initialized device is not accessible any
more.

The possible transitions are summarized on Illustration 8.

5.4.3 Transitions to and from STATUS_ONLINE

The STATUS_ONLINE indicates that the device is currently available for operations. The online devices are
initialized and ready for use. Transitions to and from this status are:

• From STATUS_ONLINE to STATUS_REMOVED – device is removed. The status can be set as a result of
Device.remove() method call.

• From STATUS_ONLINE to STATUS_PROCESSING – device data is processing.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 8

Device Abstraction Layer Page 21 of 145

Draft January 30, 2014

• From STATUS_ONLINE to STATUS_NOT_CONFIGURED – device has a pending configuration.

• From STATUS_ONLINE to STATUS_OFFLINE – Online device is not accessible any more.

• From STATUS_ONLINE to STATUS_NOT_INITIALIZED – That transition is not possible. Online devices
are initialized.

• To STATUS_ONLINE from STATUS_REMOVED – That transition is not possible. If device is removed, the
service will be unregistered from the service registry.

• To STATUS_ONLINE from STATUS_PROCESSING – Initial device data has been read. The device is
available for operations.

• To STATUS_ONLINE from STATUS_NOT_CONFIGURED – The device pending configuration is satisfied.

• To STATUS_ONLINE from STATUS_OFFLINE – device is accessible for operations.

• To STATUS_ONLINE from STATUS_NOT_INITIALIZED – That transition is not possible. The device data
has to be processed and then the device can become online. Intermediate status STATUS_PROCESSING
will be used.

The possible transitions are summarized on Illustration 9.

5.4.4 Transitions to and from STATUS_PROCESSING

The status indicates that the device is currently busy with an operation. It can be time consuming operation and
can result to any other status. The operation processing can be reached by any other status except
STATUS_REMOVED. An example, offline device requires some data processing to become online. It will apply the
statuses STATUS_OFFLINE, STATUS_PROCESSING and STATUS_ONLINE. Transitions to and from this status
are:

• From STATUS_PROCESSING to STATUS_REMOVED – device is removed. The status can be set as a result
of Device.remove() method call.

• From STATUS_PROCESSING to STATUS_ONLINE – Initial device data has been read. The device is
available for operations.

• From STATUS_PROCESSING to STATUS_NOT_CONFIGURED – device has a pending configuration.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 9

Device Abstraction Layer Page 22 of 145

Draft January 30, 2014

• From STATUS_PROCESSING to STATUS_OFFLINE – Online device is not accessible any more.

• From STATUS_PROCESSING to STATUS_NOT_INITIALIZED – device initial data is partially read.

• To STATUS_PROCESSING from STATUS_REMOVED – That transition is not possible. If device is removed,
the service will be unregistered from the service registry.

• To STATUS_PROCESSING from STATUS_ONLINE – device is busy with an operation.

• To STATUS_PROCESSING from STATUS_NOT_CONFIGURED – The device pending configuration is
satisfied and the device is busy with an operation.

• To STATUS_PROCESSING from STATUS_OFFLINE – device is busy with an operation.

• To STATUS_PROCESSING from STATUS_NOT_INITIALIZED – device initial data is processing.

The possible transitions are summarized on Illustration 10.

5.4.5 Transitions to and from STATUS_NOT_INITIALIZED

The status indicates that the device is currently not initialized. Some protocols don't provide device information
right after the device is connected. The device can be initialized later when it's awakened. Not initialized device
requires some data processing to become online. STATUS_PROCESSING is used as an intermediate status.
Transitions to and from this status are:

• From STATUS_NOT_INITIALIZED to STATUS_REMOVED – device is removed. The status can be set as
a result of Device.remove() method call.

• From STATUS_NOT_INITIALIZED to STATUS_PROCESSING – device data is processing.

• From STATUS_NOT_INITIALIZED to STATUS_NOT_CONFIGURED – That transition is not possible.
device requires some data processing.

• From STATUS_NOT_INITIALIZED to STATUS_OFFLINE – device is not accessible any more.

• From STATUS_NOT_INITIALIZED to STATUS_ONLINE – That transition is not possible. Device requires
some data processing to become online.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 10

Device Abstraction Layer Page 23 of 145

Draft January 30, 2014

• To STATUS_NOT_INITIALIZED from STATUS_REMOVED – That transition is not possible. If device is
removed, the service will be unregistered from the service registry.

• To STATUS_NOT_INITIALIZED from STATUS_PROCESSING – device data is partially read.

• To STATUS_NOT_INITIALIZED from STATUS_NOT_CONFIGURED – That transition is not possible.
When device pending configuration is satisfied, the device requires additional data processing.

• To STATUS_NOT_INITIALIZED from STATUS_OFFLINE – That transition is not possible. Device
requires some data processing and then can become not initialized.

• To STATUS_NOT_INITIALIZED from STATUS_ONLINE – That transition is not possible. Online device is
initialized.

The possible transitions are summarized on Illustration 11.

5.4.6 Transitions to and from STATUS_NOT_CONFIGURED
Indicates that the device is currently not configured. The device can require additional actions to become
completely connected to the network. For example, a given device button has to be pushed. That status doesn't
have transitions with STATUS_NOT_INITIALIZED, because some data processing is required. Transitions to and
from this status are:

• From STATUS_NOT_CONFIGURED to STATUS_REMOVED – device is removed. The status can be set as a
result of Device.remove() method call.

• From STATUS_NOT_CONFIGURED to STATUS_PROCESSING – device pending configuration is satisfied
and some additional data processing is required.

• From STATUS_NOT_CONFIGURED to STATUS_ONLINE – device pending configuration is satisfied.

• From STATUS_NOT_CONFIGURED to STATUS_OFFLINE – device is not accessible any more.

• From STATUS_NOT_CONFIGURED to STATUS_NOT_INITIALIZED – That transition is not possible.
When device pending configuration is satisfied, the device requires additional data processing.

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 11

Device Abstraction Layer Page 24 of 145

Draft January 30, 2014

• To STATUS_NOT_CONFIGURED from STATUS_REMOVED – That transition is not possible. If device is
removed, the service will be unregistered from the service registry.

• To STATUS_NOT_CONFIGURED from STATUS_PROCESSING – Initial device data has been read but there
is a pending configuration.

• To STATUS_NOT_CONFIGURED from STATUS_ONLINE – device has a pending configuration.

• To STATUS_NOT_CONFIGURED from STATUS_OFFLINE – device is going to be online, but has a pending
configuration.

• To STATUS_NOT_CONFIGURED from STATUS_NOT_INITIALIZED – That transition is not possible. That
transition is not possible. Device requires some data processing.

The possible transitions are summarized on Illustration 12.

5.5 Device Functions
The user applications can execute the device operations and manage the device properties. That control is
realized with the help of DeviceFunction services. The DeviceFunction service can be registered in the
service registry with those service properties:

• DeviceFunction.SERVICE_UID – mandatory service property. The property value is the device
function unique identifier. The value type is java.lang.String. To simplify the unique identifier
generation, the property value must follow the rule:

function UID ::= device-id ':' function-id

function UID – device function unique identifier

device-id – the value of the Device.SERVICE_UID Device service property

function-id – device function identifier in the scope of the device

Copyright © OSGi Alliance 2014 All Rights Reserved

Illustration 12

Device Abstraction Layer Page 25 of 145

Draft January 30, 2014

• DeviceFunction.SERVICE_TYPE – mandatory service property. The service property value contains
the device function type. For example, the sensor function can have different types like temperature or
pressure etc. It's an optional property. The value type is java.lang.String.

Organizations that want to use device function types that do not clash with OSGi Alliance defined types
should prefix their types in own namespace.

• DeviceFunction.SERVICE_VERSION – optional service property. The service property value contains
the device function version. That version can point to specific implementation version and vary in the
different vendor implementations. The value type is java.lang.String.

• DeviceFunction.SERVICE_DEVICE_UID – optional service property. The property value is the device
identifier. The device function belongs to this device. The value type is java.lang.String.

• DeviceFunction.SERVICE_REFERENCE_UIDS – optional service property. The service property value
contains the reference device function unique identifiers. The value type is java.lang.String[]. It
can be used to represent different relationships between the device functions.

• DeviceFunction.SERVICE_DESCRIPTION – optional service property. The property value is the
device function description. The value type is java.lang.String.

• DeviceFunction.SERVICE_OPERATION_NAMES – optional service property. The property value is the
device function operation names. The value type is java.lang.String[]. It's not possible to exist two
or more Device Function operations with the same name i.e. the operation overloading is not allowed.

• DeviceFunction.SERVICE_PROPERTY_NAMES – optional service property. The property value is the
device function property names. The value type is java.lang.String[]. It's not possible to exist two
or more Device Function properties with the same name.

The DeviceFunction services are registered before the Device service. It's possible that
DeviceFunction.SERVICE_DEVICE_UID points to missing services at the moment of the registration. The
reverse order is used when the services are unregistered. Device service is unregistered before the
DeviceFunction services.

Device Function service must be registered only under concrete Device Function class. It's not allowed to register
Device Function service under more than one class. For example, those registrations are not allowed:

• context.registerService(ManagedService.class.getName(), this, regProps); -
ManagedService interface is not a Device Function interface.

• context.registerService(DeviceFunction.class.getName(), this, regProps); -
DeviceFunction interface is not concrete Device Function interface.

• context.registerService(new String[] {BooleanControl.class.getName(),
BooleanControl.class.getName()}, this, regProps); - more than one device function is
used.

That one is a valid registration: context.registerService(Meter.class.getName(), this,
regProps);. Meter is concrete Device Function interface.

That rule helps to the applications to find the supported Device Function class and to identify the metadata.
Otherwise the Device Function services can be accesses, but it's not clear which are the Device Function classes
and metadata.

5.5.1 Device Function Interface

Device function is built by a set of properties and operations. The function can have unique identifier, type,
version, description, link to the Device service and information about the reference device functions.
DeviceFunction interface must be the base interface for all functions. If the device provider defines custom

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 26 of 145

Draft January 30, 2014

functions, all of them must extend DeviceFunction interface. It provides a common access to the operations
and properties meta data.

There are some general type rules, which unifies the access to the device function data. They make easier the
transfer over different protocols. All properties and operation arguments must use:

• Java primitive type or corresponding reference type.

• java.lang.String

• Java Beans, but their properties must use those rules. Java Beans are defined in JavaBeans specification
[3].

• java.util.Map instances. The map keys can be any reference type of Java primitive types or
java.lang.String. The values must use those rules.

• Arrays of defined types.

In order to provide common behavior, all device functions must follow a set of common rules related to the
implementation of their setters, getters, operations and events:

• The setter method must be executed synchronously. If the underlying protocol can return response to the
setter call, it must be awaited. It simplifies the property value modifications and doesn't require
asynchronous callback.

• The operation method must be executed synchronously. If the underlying protocol can return an operation
confirmation or response, they must be awaited. It simplifies the operation execution and doesn't require
asynchronous callback.

• The getter must return the last know cached property value. The device implementation is responsible to
keep that value up to date. It'll speed up the applications when the Device Function property values are
collected. The same cached value can be shared between a few requests instead of a few calls to the
real device.

• If a given Device Function operation, getter or setter is not supported,
java.lang.UnsupportedOperationException must be thrown. It indicates that Device Function is
partially supported.

• The Device Function operations, getters and setters must not override java.lang.Object and this
interface methods. For example:

• hashCode() – it's java.lang.Object method and invalid device function operation;

• wait() – it's java.lang.Object method and invalid device function operation;

• getClass() – it's java.lang.Object method and invalid device function getter;

• getPropertyMetadata(String propertyName) – it's
org.osgi.service.dal.DeviceFunction method and invalid device function getter.

5.5.2 Device Function Operations

DeviceFunction operations are general callable units. They can perform a specific task on the device like turn
on or turn off. They can be used by the applications to control the device. Operation names are available as a
value of the service property DeviceFunction.SERVICE_OPERATION_NAMES. The operations are identified by
their names. It's not possible to exist two operations with the same name i.e. overloaded operations are not
allowed or to override the property accessor methods. The operations are regular java methods. That implies that
they have zero or more arguments and zero or one return value. The operation arguments and return value must
follow the general type rules.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 27 of 145

Draft January 30, 2014

The operations can be optionally described with a set of meta data properties. Metadata is accessible with
DeviceFunction.getOperationMetadata(String) method. The result provides metadata about the
operation, operation arguments and result value. Operation arguments and result value are using the same
metadata as the Device Function properties. The full details are defined in the next section.

5.5.3 Device Function Properties

DeviceFunction properties are class fields. Their values can be read with getter methods and can be set with
setter methods. The property names are available as a value of the service property
DeviceFunction.SERVICE_PROPERTY_NAMES. The properties are identified by their names. It's not possible
to exist two properties with the same name.

The Device Function properties must be integrated according to these rules:

• Getter methods must be available for all properties with
PropertyMetadata.PROPERTY_ACCESS_READABLE access.

• Getter method must return a subclass of DeviceFunctionData.

• Setter methods must be available for all properties with
PropertyMetadata.PROPERTY_ACCESS_WRITABLE access.

• Setter method must use DeviceFunctionData wrapped type. For example, there is MyFunctionData
with timestamp, unit and BigDecimal value. The setter must accept as an argument the value of type
BigDecimal.

• It's possible to have a second setter method, which accepts the value as a first argument and the unit as
a second argument.

• No methods are required for properties with PropertyMetadata.PROPERTY_ACCESS_EVENTABLE
access.

The accessor method names must be defined according JavaBeans specification [3].

The properties can be optionally described with a set of meta data properties. The property values can be
collected with DeviceFunction.getPropertyMetadata(String) method. The method result is
PropertyMetadata with:

• Minimum value – available through PropertyMetadata.getMinValue(String). The minimum value
can be different for the different units.

• Maximum value – available through PropertyMetadata.getMaxValue(String). The maximum
value can be different for the different units.

• Enumeration of values – available through PropertyMetadata.getEnumValues(String). The array
of the possible values is sorted in increasing order according to the given unit.

• Resolution – available through PropertyMetadata.getResolution(String). For example, if the
range is [0, 100], the resolution can be 10. That's the different between two values in series. The
resolution type depends on the property type. If the property is using data bean like
org.osgi.service.dal.functions.data.LevelData, the resolution will the BigDecimal.

• Property access – available as a value in PropertyMetadata.getMetadata(String) result map. It's
a bitmap of java.lang.Integer type and doesn't depend on the given unit. The access is available
only for the Device Function properties and it's missing for the operation arguments and result metadata.
The bitmap can be any combination of:

◦ PropertyMetadata.PROPERTY_ACCESS_READABLE – Marks the property as a readable. device
function must provide a getter method for this property according to JavaBeans specification [3].
device function operations must not be overridden by this getter method.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 28 of 145

Draft January 30, 2014

◦ PropertyMetadata.PROPERTY_ACCESS_WRITABLE – Marks the property as writable. device
function must provide a setter method for this property according to JavaBeans specification [3].
device function operations must not be overridden by this setter method.

◦ PropertyMetadata.PROPERTY_ACCESS_EVENTABLE – Marks the property as eventable. device
function must not provide special methods because of this access type. DeviceFunctionEvent is
sent on property change. Note that the event can be sent when there is no value change.

• Unit - available as a value in PropertyMetadata.getMetadata() result map. The value contains the
property supported units. The property value type is java.lang.String[]. Each unit must follow those
rules:

◦ The International System of Units must be used where it's applicable. For example, kg for kilogram
and km for kilometre.

◦ If the unit name matches to an Unicode symbol name, the Unicode symbol must be used. For
example, the degree unit matches to the Unicode degree sign (\u00B0).

◦ If the unit name doesn't match to an Unicode symbol, the unit symbol must be built by Unicode Basic
Latin block of characters, superscript and subscript characters. For example, watt per square metre
steradian is built by W/(m\u00B2 sr), where \u00B2 is Unicode superscript two.

If those rules cannot be applied to the unit symbol, custom rules are allowed.

A set of predefined unit symbols are available in Units interface.

• Description – available as a value in PropertyMetadata.getMetadata() result map. The property
value type is java.lang.String and specifies an user readable description. It doesn't depend on the
given unit.

• Vendor custom properties – available as a value in PropertyMetadata.getMetadata() result map
and can depend on the given unit.

5.5.4 Device Function Property Event

The eventable device function properties can trigger a new event on each property value touch. It doesn't require
a modification of the value. For example, the motion sensor can send a few events with no property value change
when motion is detected and continued to be detected. The event must implement DeviceFunctionEvent
interface. The event properties are:

• DeviceFunctionEvent.PROPERTY_FUNCTION_UID – the event source function unique identifier.

• DeviceFunctionEvent.PROPERTY_FUNCTION_PROPERTY_NAME – the property name.

• DeviceFunctionEvent.PROPERTY_FUNCTION_PROPERTY_VALUE – the property value.

For example, there is device function with an eventable boolean property called “state”. When “state” value is
changed to false, device function implementation can post:

DeviceFunctionEvent {

 dal.function.UID=acme.function

 dal.function.property.name=”state”

 dal.function.property.value=ACMEFuntionData(java.lang.Boolean.FALSE...)

}

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 29 of 145

Draft January 30, 2014

5.6 Basic Device Functions
Concrete device function interfaces have to be defined to unify the access and control of the basic operations and
related properties. The current section specifies the minimal basic set of such functionality. It can be reused and
extended to cover more specific scenarios. They are about the control, monitoring and metering information.

5.6.1 BooleanControl Device Function

BooleanControl device function provides a binary control support. The property eventing must follow the
definition in Device Function Property Event. The full function definition is available in the next table.

BooleanControl

Name Description

Operations

reverse Reverses the BooleanControl state. If the current
state represents true value, it'll be reversed to false.
If the current state represents false value, it'll be
reversed to true.

setTrue Sets the BooleanControl state to true value.

setFalse Sets the BooleanControl state to false value.

Properties

data Contains the current state of BooleanControl. The
property access can be: readable, writable and
eventable.

Types

light, door, window, power, other type defined in org.osgi.service.dal.functions.Types or vendor
specific type.

BooleanData data structure is used to provide information about the function state. That data object contains the
boolean value, the value collecting time and additional metadata. The immutable BooleanData.value field is
accessible with BooleanData.getValue() getter.

The function class diagram is depicted on Illustration 13. The next code snippet sets to true all
BooleanControl functions.

final ServiceReference[] booleanControlSRefs = context.getServiceReferences(

 BooleanControl.class.getName(), null);

if (null == booleanControlSRefs) {

 return; // no such services

}

for (int i = 0; i < booleanControlSRefs.length; i++) {

 final BooleanControl booleanControl = (BooleanControl) context.getService(

 binaryControlSRefs[i]);

 if (null != booleanControl) {

 booleanControl.setTrue();

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 30 of 145

Draft January 30, 2014

 }

}

5.6.2 BooleanSensor Device Function

BooleanSensor device function provides binary sensor monitoring. It reports its state when an important event
is available. There are no operations. The property eventing must follow the definition in Device Function Property
Event. The full function definition is available in the next table.

BooleanSensor

Name Description

Properties

data Contains the current state of BooleanSensor. The
property access can be: readable and eventable.

Types

light, gas, smoke, door, window, power, rain, contact, fire, occupancy, water, motion, other type defined in
org.osgi.service.dal.functions.Types or vendor specific type.

BooleanSensor and BooleanControl are using the same BooleanData data structure to provide information
about the state. For more details see the definition in BooleanControl Device Function. The function class
diagram is depicted on Illustration 13.

5.6.3 MultiLevelControl Device Function

MultiLevelControl device function provides multi-level control support. The property eventing must follow the
definition in Device Function Property Event. The full function definition is available in the next table.

MultiLevelControl

Name Description

Properties

data Contains the current state of MultiLevelControl.
The property access can be: readable, writable and
eventable.

Types

light, temperature, flow, pressure, humidity, gas, smoke, door, window, liquid, power, noisiness, other type
defined in org.osgi.service.dal.functions.Types or vendor specific type.

LevelData data structure is used to provide information about the function level. That data object contains the
BigDecimal value and the value unit. The measurement unit is used as it's defined in Device Function
Properties. The immutable LevelData.unit field is accessible with LevelData.getUnit() getter. The
immutable LevelData.level field is accessible with LevelData.getLevel() getter.

The function class diagram is depicted on Illustration 13.

5.6.4 MultiLevelSensor Device Function

MultiLevelSensor device function provides multi-level sensor monitoring. It reports its state when an important
event is available. There are no operations. The property eventing must follow the definition in Device Function
Property Event. The full function definition is available in the next table.

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 31 of 145

Draft January 30, 2014

MultiLevelSensor

Name Description

Properties

data Contains the current state of MultiLevelSensor.
The property access can be: readable and eventable.

Types

light, temperature, flow, pressure, humidity, gas, smoke, door, window, liquid, power, noisiness, rain, other type
defined in org.osgi.service.dal.functions.Types or vendor specific type.

MultiLevelSensor and MultiLevelControl are using the same LevelData data structure to provide
information about the level. For more details see the definition in MultiLevelControl Device Function. The function
class diagram is depicted on Illustration 13.

5.6.5 Meter Device Function

Meter device function can measure metering information.

Meter

Name Description

Operations

resetTotal Resets the total metering info.

Properties

total Contains the total consumption. It has been measured
since the last call of resetTotal or device initial run. The
property access is readable.

current Contains the current consumption. The property is
readable.

Service Properties

dal.meter.flow Contains the metering flow. Currently, it can be “in” and
“out”.

Types

pressure, gas, power, water, heat, cold, other type defined in org.osgi.service.dal.functions.Types
or vendor specific type.

Meter device function is using the same LevelData data structure as MultiLevelSensor and
MultiLevelControl to provide metering information. For more details see the definition in MultiLevelControl
Device Function. The property eventing must follow the definition in Device Function Property Event. The function
class diagram is depicted on Illustration 13.

5.6.6 Alarm Device Function

Alarm device function provides alarm sensor support. There is only one eventable property and no operations.
The property eventing must follow the definition in Device Function Property Event.

Alarm

Name Description

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 32 of 145

Draft January 30, 2014

Properties

alarm Specifies the alarm property name. The property is
eventable.

AlarmData data structure is used to provide information about the available alarm. That data object contains the
alarm type and severity.

The function class diagram is depicted on Illustration 13.

5.6.7 Keypad Device Function

Keypad device function provides support for keypad control. A keypad typically consists of one or more
keys/buttons, which can be discerned. Different types of key presses like short and long press can typically also
be detected. There is only one eventable property and no operations. The property eventing must follow the
definition in Device Function Property Event.

Keypad

Name Description

Properties

key Specifies a property name for a key from the keypad.
The property is eventable.

KeypadData data structure is used to provide information when a change with some key from device keypad has
occurred. That data object contains the event type, key code and key name. Currently, there are a few predefined
event types:

• EVENT_TYPE_PRESSED – used for a key pressed;

• EVENT_TYPE_PRESSED_LONG – used for a long key pressed;

• EVENT_TYPE_PRESSED_DOUBLE – used for a double key pressed;

• EVENT_TYPE_PRESSED_DOUBLE_LONG – used for a double and long key pressed;

• EVENT_TYPE_RELEASED – used for a key released.

• EVENT_TYPE_UNKNOWN – represents an unknown keypad event type.

The function class diagram is depicted on Illustration 13.

5.6.8 WakeUp Device Function

WakeUp Device Function provides device awake monitoring and management. It's especially applicable to
battery-operated devices. Such device can notify the system that it's awake and can receive commands with an
event to property PROPERTY_AWAKE. The property eventing must follow the definition in Device Function Property
Event.

The device can periodically wake up for commands. The interval can be managed with
PROPERTY_WAKE_UP_INTERVAL property.

The application can minimize the power consumption with sleep() operation. As a result, the device will sleep
and will not receive commands to the next awake.

WakeUp

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 33 of 145

Draft January 30, 2014

Name Description

Properties

awake Specifies the awake eventable property name. If the
device is awake, it will trigger a property event. The
property value type is BooleanData.

wakeUpInterval Specifies the wake up interval. The device can
periodically wake up and receive commands. That
interval is managed by this property. The property can
be readable and writable. The property value type is
LevelData.

Operations

sleep The device is forced to sleep to minimize the power
consumption.

The function class diagram is depicted on Illustration 13.

Copyright © OSGi Alliance 2014 All Rights Reserved
Illustration 13

Device Abstraction Layer Page 34 of 145

Draft January 30, 2014

6 Data Transfer Objects

TODO: Do we need those objects?

7 Javadoc

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 35 of 145

Draft January 30, 2014

OSGi Javadoc
1/30/14 3:20 PM

Package Summary Page

org.osgi.servic
e.dal Device Package Version 1.0. 36

org.osgi.servic
e.dal.functions Device Functions 1.0. 93

org.osgi.servic
e.dal.functions.
data

Device Function Data 1.0. 122

Copyright © OSGi Alliance 2014 All Rights Reserved

Package org.osgi.services.abstractdevice

Package org.osgi.service.dal

Device Package Version 1.0.

See:
Description

Interface Summary Page

Device Represents the device in the OSGi service registry. 37

DeviceFunction Device Function service provides specific device operations and properties. 49

OperationMeta
data Contains metadata about Device Function operation. 66

PropertyMetad
ata

Contains metadata about Device Function property or Device Function operation
parameter.

68

Units Contains the most of the International System of Units unit symbols. 72

Class Summary Page

DeviceFunctio
nData

Abstract DeviceFunction data wrapper. 54

DeviceFunctio
nEvent Asynchronous event, which marks a Device Function property value modification. 58

DevicePermiss
ion

A bundle's authority to perform specific privileged administrative operations on the
devices.

62

Exception Summary Page

DeviceExcepti
on

DeviceException is a special IOException, which is thrown to indicate that there is a
device operation fail.

45

Package org.osgi.service.dal Description

Device Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bundle's manifest.
This package has two types of users: the consumers that use the API in this package and the providers that
implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi.service.dal; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.dal; version="[1.0,1.1)"

OSGi Javadoc -- 1/22/13 Page 36 of 145

Interface AbstractDevice

Interface Device
org.osgi.service.dal

public interface Device

Represents the device in the OSGi service registry. Note that Device services are registered last. Before their
registration, there is DeviceFunction services registration. The reverse order is used when the services are
unregistered. Device services are unregistered first before DeviceFunction services.

Field Summary Pag
e

String DEVICE_CATEGORY

Constant for the value of the org.osgi.service.device.Constants.DEVICE_CATEGORY
service property.

38

String SERVICE_DESCRIPTION

The service property value contains the device description.
41

String SERVICE_DRIVER

The service property value contains the device driver name.
39

String SERVICE_FIRMWARE_VENDOR

The service property value contains the device firmware vendor.
40

String SERVICE_FIRMWARE_VERSION

The service property value contains the device firmware version.
40

String SERVICE_HARDWARE_VENDOR

The service property value contains the device hardware vendor.
40

String SERVICE_HARDWARE_VERSION

The service property value contains the device hardware version.
40

String SERVICE_MODEL

The service property value contains the device model.
40

String SERVICE_NAME

The service property value contains the device name.
39

String SERVICE_REFERENCE_UIDS

The service property value contains the reference device unique identifiers.
39

String SERVICE_SERIAL_NUMBER

The service property value contains the device serial number.
41

String SERVICE_STATUS

The service property value contains the device status.
39

String SERVICE_STATUS_DETAIL

The service property value contains the device status detail.
39

String SERVICE_TYPES

The service property value contains the device types like DVD, TV etc.
40

String SERVICE_UID

The service property value contains the device unique identifier.
38

Integer STATUS_DETAIL_CONFIGURATION_NOT_APPLIED

Device status detail indicates that the device configuration is not applied.
42

Integer STATUS_DETAIL_CONNECTING

Device status detail indicates that the device is currently connecting to the network.
42

Integer STATUS_DETAIL_DEVICE_BROKEN

Device status detail indicates that the device is broken.
42

OSGi Javadoc -- 1/22/13 Page 37 of 145

Interface AbstractDevice

Integer STATUS_DETAIL_DEVICE_COMMUNICATION_ERROR

Device status detail indicates that the device communication is problematic.
42

Integer STATUS_DETAIL_DEVICE_DATA_INSUFFICIENT

Device status detail indicates that the device doesn't provide enough information and
cannot be determined.

43

Integer STATUS_DETAIL_DEVICE_NOT_ACCESSIBLE

Device status detail indicates that the device is not accessible and further communication
is not possible.

43

Integer STATUS_DETAIL_ERROR_APPLYING_CONFIGURATION

Device status detail indicates that the device cannot be configured.
43

Integer STATUS_DETAIL_IN_DUTY_CYCLE

Device status detail indicates that the device is in duty cycle.
43

Integer STATUS_DETAIL_INITIALIZING

Device status detail indicates that the device is currently in process of initialization.
42

Integer STATUS_DETAIL_REMOVING

Device status detail indicates that the device is leaving the network.
42

Integer STATUS_NOT_CONFIGURED

Device status indicates that the device is currently not configured.
42

Integer STATUS_NOT_INITIALIZED

Device status indicates that the device is currently not initialized.
41

Integer STATUS_OFFLINE

Device status indicates that the device is currently not available for operations.
41

Integer STATUS_ONLINE

Device status indicates that the device is currently available for operations.
41

Integer STATUS_PROCESSING

Device status indicates that the device is currently busy with an operation.
41

Integer STATUS_REMOVED

Device status indicates that the device is removed from the network.
41

Method Summary Pag
e

Object getServiceProperty(String propName)

Returns the current value of the specified property.
43

void remove()

Removes this device.
43

Field Detail

DEVICE_CATEGORY

public static final String DEVICE_CATEGORY = "DAL"

Constant for the value of the org.osgi.service.device.Constants.DEVICE_CATEGORY service property.
That category is used by all device services.

See Also:
org.osgi.service.device.Constants.DEVICE_CATEGORY

SERVICE_UID

public static final String SERVICE_UID = "dal.device.UID"

OSGi Javadoc -- 1/22/13 Page 38 of 145

Interface AbstractDevice

The service property value contains the device unique identifier. It's a mandatory property. The value type
is java.lang.String. To simplify the unique identifier generation, the property value must follow the rule:

UID ::= driver-name ':' device-id

UID - device unique identifier

driver-name - the value of the SERVICE_DRIVER service property

device-id - device unique identifier in the scope of the driver

SERVICE_REFERENCE_UIDS

public static final String SERVICE_REFERENCE_UIDS = "dal.device.reference.UIDs"

The service property value contains the reference device unique identifiers. It's an optional property. The
value type is java.lang.String[]. It can be used to represent different relationships between the devices.
For example, the ZigBee controller can have a reference to the USB dongle.

SERVICE_DRIVER

public static final String SERVICE_DRIVER = "dal.device.driver"

The service property value contains the device driver name. For example, ZigBee, Z-Wave, Bluetooth etc.
It's a mandatory property. The value type is java.lang.String.

SERVICE_NAME

public static final String SERVICE_NAME = "dal.device.name"

The service property value contains the device name. It's an optional property. The value type is
java.lang.String.

SERVICE_STATUS

public static final String SERVICE_STATUS = "dal.device.status"

The service property value contains the device status. It's a mandatory property. The value type is
java.lang.Integer. The possible values are:

 STATUS_ONLINE

 STATUS_OFFLINE
 STATUS_REMOVED

 STATUS_PROCESSING
 STATUS_NOT_INITIALIZED

 STATUS_NOT_CONFIGURED

SERVICE_STATUS_DETAIL

public static final String SERVICE_STATUS_DETAIL = "dal.device.status.detail"

The service property value contains the device status detail. It holds the reason for the current device
status. It's an optional property. The value type is java.lang.Integer. There are two value categories:

OSGi Javadoc -- 1/22/13 Page 39 of 145

Interface AbstractDevice

 positive values i.e. > 0
 - Those values contain details related to the current status. Examples:

STATUS_DETAIL_CONNECTING and STATUS_DETAIL_INITIALIZING.
 negative values i.e. 0
 - Those values contain errors related to the current status. Examples:

STATUS_DETAIL_CONFIGURATION_NOT_APPLIED, STATUS_DETAIL_DEVICE_BROKEN and
STATUS_DETAIL_DEVICE_COMMUNICATION_ERROR.

SERVICE_HARDWARE_VENDOR

public static final String SERVICE_HARDWARE_VENDOR = "dal.device.hardware.vendor"

The service property value contains the device hardware vendor. It's an optional property. The value type is
java.lang.String.

SERVICE_HARDWARE_VERSION

public static final String SERVICE_HARDWARE_VERSION = "dal.device.hardware.version"

The service property value contains the device hardware version. It's an optional property. The value type
is java.lang.String.

SERVICE_FIRMWARE_VENDOR

public static final String SERVICE_FIRMWARE_VENDOR = "dal.device.firmware.vendor"

The service property value contains the device firmware vendor. It's an optional property. The value type is
java.lang.String.

SERVICE_FIRMWARE_VERSION

public static final String SERVICE_FIRMWARE_VERSION = "dal.device.firmware.version"

The service property value contains the device firmware version. It's an optional property. The value type is
java.lang.String.

SERVICE_TYPES

public static final String SERVICE_TYPES = "dal.device.types"

The service property value contains the device types like DVD, TV etc. It's an optional property. The value
type is java.lang.String[].

SERVICE_MODEL

public static final String SERVICE_MODEL = "dal.device.model"

The service property value contains the device model. It's an optional property. The value type is
java.lang.String.

OSGi Javadoc -- 1/22/13 Page 40 of 145

Interface AbstractDevice

SERVICE_SERIAL_NUMBER

public static final String SERVICE_SERIAL_NUMBER = "dal.device.serial.number"

The service property value contains the device serial number. It's an optional property. The value type is
java.lang.String.

SERVICE_DESCRIPTION

public static final String SERVICE_DESCRIPTION = "dal.device.description"

The service property value contains the device description. It's an optional property. The value type is
java.lang.String.

STATUS_REMOVED

public static final Integer STATUS_REMOVED

Device status indicates that the device is removed from the network. That status must be set as the last
device status and after that the device service can be unregistered from the service registry. It can be used
as a value of SERVICE_STATUS service property.

STATUS_OFFLINE

public static final Integer STATUS_OFFLINE

Device status indicates that the device is currently not available for operations. It can be used as a value of
SERVICE_STATUS service property.

STATUS_ONLINE

public static final Integer STATUS_ONLINE

Device status indicates that the device is currently available for operations. It can be used as a value of
SERVICE_STATUS service property.

STATUS_PROCESSING

public static final Integer STATUS_PROCESSING

Device status indicates that the device is currently busy with an operation. It can be used as a value of
SERVICE_STATUS service property.

STATUS_NOT_INITIALIZED

public static final Integer STATUS_NOT_INITIALIZED

Device status indicates that the device is currently not initialized. Some protocols don't provide device
information right after the device is connected. The device can be initialized later when it's awakened. It
can be used as a value of SERVICE_STATUS service property.

OSGi Javadoc -- 1/22/13 Page 41 of 145

Interface AbstractDevice

STATUS_NOT_CONFIGURED

public static final Integer STATUS_NOT_CONFIGURED

Device status indicates that the device is currently not configured. The device can require additional
actions to become completely connected to the network. It can be used as a value of SERVICE_STATUS
service property.

STATUS_DETAIL_CONNECTING

public static final Integer STATUS_DETAIL_CONNECTING

Device status detail indicates that the device is currently connecting to the network. It can be used as a
value of SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

STATUS_DETAIL_INITIALIZING

public static final Integer STATUS_DETAIL_INITIALIZING

Device status detail indicates that the device is currently in process of initialization. It can be used as a
value of SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

STATUS_DETAIL_REMOVING

public static final Integer STATUS_DETAIL_REMOVING

Device status detail indicates that the device is leaving the network. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

STATUS_DETAIL_CONFIGURATION_NOT_APPLIED

public static final Integer STATUS_DETAIL_CONFIGURATION_NOT_APPLIED

Device status detail indicates that the device configuration is not applied. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_NOT_CONFIGURED.

STATUS_DETAIL_DEVICE_BROKEN

public static final Integer STATUS_DETAIL_DEVICE_BROKEN

Device status detail indicates that the device is broken. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_OFFLINE.

STATUS_DETAIL_DEVICE_COMMUNICATION_ERROR

public static final Integer STATUS_DETAIL_DEVICE_COMMUNICATION_ERROR

Device status detail indicates that the device communication is problematic. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_ONLINE or
STATUS_NOT_INITIALIZED.

OSGi Javadoc -- 1/22/13 Page 42 of 145

Interface AbstractDevice

STATUS_DETAIL_DEVICE_DATA_INSUFFICIENT

public static final Integer STATUS_DETAIL_DEVICE_DATA_INSUFFICIENT

Device status detail indicates that the device doesn't provide enough information and cannot be
determined. It can be used as a value of SERVICE_STATUS_DETAIL service property. The device status
must be STATUS_NOT_INITIALIZED.

STATUS_DETAIL_DEVICE_NOT_ACCESSIBLE

public static final Integer STATUS_DETAIL_DEVICE_NOT_ACCESSIBLE

Device status detail indicates that the device is not accessible and further communication is not possible. It
can be used as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_OFFLINE.

STATUS_DETAIL_ERROR_APPLYING_CONFIGURATION

public static final Integer STATUS_DETAIL_ERROR_APPLYING_CONFIGURATION

Device status detail indicates that the device cannot be configured. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_NOT_CONFIGURED.

STATUS_DETAIL_IN_DUTY_CYCLE

public static final Integer STATUS_DETAIL_IN_DUTY_CYCLE

Device status detail indicates that the device is in duty cycle. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_OFFLINE.

Method Detail

getServiceProperty

Object getServiceProperty(String propName)

Returns the current value of the specified property. The method will return the same value as
org.osgi.framework.ServiceReference.getProperty(String) for the service reference of this device.

This method must continue to return property values after the device service has been unregistered.

Parameters:
propName - The property name.

Returns:
The property value or null if the property name cannot be mapped to a value.

remove

void remove()
 throws DeviceException,
 UnsupportedOperationException,
 SecurityException,
 IllegalStateException

OSGi Javadoc -- 1/22/13 Page 43 of 145

Interface AbstractDevice

Removes this device. The method must synchronously remove the device from the device network.

Throws:
DeviceException - If an operation error is available.
UnsupportedOperationException - If the operation is not supported over this device.
SecurityException - If the caller does not have the appropriate
FunctionalDevicePermission[this device, DevicePermission.ACTION_REMOVE] and the Java
Runtime Environment supports permissions.
IllegalStateException - If this device service object has already been unregistered.

OSGi Javadoc -- 1/22/13 Page 44 of 145

Interface AbstractDeviceAdmin

Class DeviceException
org.osgi.service.dal

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.io.IOException

 org.osgi.service.dal.DeviceException

All Implemented Interfaces:
Serializable

public class DeviceException
extends IOException

DeviceException is a special IOException, which is thrown to indicate that there is a device operation fail. The
error reason can be located with getCode() method. The cause is available with getCause().

Field Summary Pag
e

static int CODE_COMMUNICATION_ERROR

An exception code indicates that there is an error in the communication.
46

static int CODE_NO_DATA

An exception code indicates that the requested value is currently not available.
46

static int CODE_NOT_INITIALIZED

An exception code indicates that the device is not initialized.
46

static int CODE_TIMEOUT

An exception code indicates that there is expired timeout without any processing.
46

static int CODE_UNKNOWN

An exception code indicates that the error is unknown.
46

Constructor Summary Pag
e

DeviceException()

Construct a new device exception with null message.
46

DeviceException(String message)

Constructs a new device exception with the given message.
46

DeviceException(String message, Throwable cause)

Constructs a new device exception with the given message and cause.
47

DeviceException(String message, Throwable cause, int code)

Constructs a new device exception with the given message, cause and code.
47

Method Summary Pag
e

Throwable getCause()

Returns the cause for this exception or null if the cause is missing.
47

int getCode()

Returns the exception error code.
47

void printStackTrace()

Prints the exception stack trace to the standard error stream.
48

OSGi Javadoc -- 1/22/13 Page 45 of 145

Interface AbstractDeviceAdmin

void printStackTrace(PrintStream s)

Prints the exception stack trace to the given stream.
48

void printStackTrace(PrintWriter s)

Prints the exception stack trace to the given writer.
48

Field Detail

CODE_UNKNOWN

public static final int CODE_UNKNOWN = 1

An exception code indicates that the error is unknown.

CODE_COMMUNICATION_ERROR

public static final int CODE_COMMUNICATION_ERROR = 2

An exception code indicates that there is an error in the communication.

CODE_TIMEOUT

public static final int CODE_TIMEOUT = 3

An exception code indicates that there is expired timeout without any processing.

CODE_NOT_INITIALIZED

public static final int CODE_NOT_INITIALIZED = 4

An exception code indicates that the device is not initialized. The device status is
Device.STATUS_NOT_INITIALIZED or Device.STATUS_PROCESSING.

CODE_NO_DATA

public static final int CODE_NO_DATA = 5

An exception code indicates that the requested value is currently not available.

Constructor Detail

DeviceException

public DeviceException()

Construct a new device exception with null message. The cause is not initialized and the exception code
is set to CODE_UNKNOWN.

DeviceException

public DeviceException(String message)

OSGi Javadoc -- 1/22/13 Page 46 of 145

Interface AbstractDeviceAdmin

Constructs a new device exception with the given message. The cause is not initialized and the exception
code is set to CODE_UNKNOWN.

Parameters:
message - The excpetion message.

DeviceException

public DeviceException(String message,
 Throwable cause)

Constructs a new device exception with the given message and cause. The exception code is set to
CODE_UNKNOWN.

Parameters:
message - The exception message.
cause - The exception cause.

DeviceException

public DeviceException(String message,
 Throwable cause,
 int code)

Constructs a new device exception with the given message, cause and code.

Parameters:
message - The exception message.
cause - The exception cause.
code - The exception code.

Method Detail

getCode

public int getCode()

Returns the exception error code. It indicates the reason for this exception.

Returns:
An exception code.

getCause

public Throwable getCause()

Returns the cause for this exception or null if the cause is missing. The cause can be protocol specific
exception with an appropriate message and error code.

Overrides:
getCause in class Throwable

Returns:
An throwable cause.

OSGi Javadoc -- 1/22/13 Page 47 of 145

Interface AbstractDeviceAdmin

printStackTrace

public void printStackTrace()

Prints the exception stack trace to the standard error stream.

Overrides:
printStackTrace in class Throwable

See Also:
Throwable.printStackTrace()

printStackTrace

public void printStackTrace(PrintStream s)

Prints the exception stack trace to the given stream.

Overrides:
printStackTrace in class Throwable

Parameters:
s - The stream used for the output.

See Also:
Throwable.printStackTrace(java.io.PrintStream)

printStackTrace

public void printStackTrace(PrintWriter s)

Prints the exception stack trace to the given writer.

Overrides:
printStackTrace in class Throwable

Parameters:
s - The writer used for the output.

See Also:
Throwable.printStackTrace(java.io.PrintWriter)

OSGi Javadoc -- 1/22/13 Page 48 of 145

Class AbstractDeviceException

Interface DeviceFunction
org.osgi.service.dal

All Known Subinterfaces:
Alarm, BooleanControl, BooleanSensor, Keypad, Meter, MultiLevelControl, MultiLevelSensor, WakeUp

public interface DeviceFunction

Device Function service provides specific device operations and properties. Each Device Function service must
implement this interface. In additional to this interface, the implementation can provide own:

 properties;
 operations.

The Device Function service can be registered in the service registry with those service properties:

 SERVICE_UID - mandatory service property. The property value contains the device function unique
identifier.

 SERVICE_DEVICE_UID - optional service property. The property value is the Functional Device identifiers.
The Device Function belongs to those devices.

 SERVICE_REFERENCE_UIDS - optional service property. The property value contains the reference device
function unique identifiers.

 SERVICE_TYPE - mandatory service property. The property value is the function type.
 SERVICE_VERSION - optional service property. The property value contains the function version.
 SERVICE_DESCRIPTION - optional service property. The property value is the device function description.
 SERVICE_OPERATION_NAMES - optional service property. The property value is the Device Function

operation names.
 SERVICE_PROPERTY_NAMES - optional service property. The property value is the Device Function property

names.

The DeviceFunction services are registered before the Device services. It's possible that SERVICE_DEVICE_UID
point to missing services at the moment of the registration. The reverse order is used when the services are
unregistered. DeviceFunction services are unregistered last after Device services.

Device Function service must be registered only under concrete Device Function class. It's not allowed to register
Device Function service under more than one class. For example, those registrations are not allowed:

 context.registerService(ManagedService.class.getName(), this, regProps); - ManagedService
interface is not a Device Function interface.

 context.registerService(DeviceFunction.class.getName(), this, regProps); - DeviceFunction
interface is not concrete Device Function interface.

 context.registerService(new String[] {BooleanControl.class.getName(), BooleanControl.class.getName()},
this, regProps); - more than one device function is used.

That one is a valid registration: context.registerService(Meter.class.getName(), this, regProps);. Meter is concrete
Device Function interface.

That rule helps to the applications to find the supported Device Function class and to identify the metadata.
Otherwise the Device Function services can be accesses, but it's not clear which are the Device Function classes
and metadata.

The Device Function properties must be integrated according to these rules:

 Getter methods must be available for all properties with PropertyMetadata.PROPERTY_ACCESS_READABLE
access.

 Getter method must return a subclass of DeviceFunctionData.
 Setter methods must be available for all properties with PropertyMetadata.PROPERTY_ACCESS_WRITABLE

access.

OSGi Javadoc -- 1/22/13 Page 49 of 145

Class AbstractDeviceException

 Setter method must use DeviceFunctionData wrapped type. For example, there is MyFunctionData with
timestamp, unit and BigDecimal value. The setter must accept as an argument the value of type
BigDecimal.

 It's possible to have a second setter method, which accepts the value as a first argument and the unit as a
second argument.

 No methods are required for properties with PropertyMetadata.PROPERTY_ACCESS_EVENTABLE access.

The accessor method names must be defined according JavaBeans specification.

The Device Function operations are java methods, which cannot override the property accessor methods. They can
have zero or more parameters and zero or one return value.

Operation arguments and Device Function properties are restricted by the same set of rules. The data type can be
one of the following types:

 Java primitive type or corresponding reference type.
 java.lang.String.
 Beans, but the beans properties must use those rules. Java Beans are defined in JavaBeans specification.
 java.util.Maps. The keys can be any reference type of Java primitive types or java.lang.String. The values

must use those rules.
 Arrays of defined types.

The properties metadata is accessible with getPropertyMetadata(String). The operations metadata is
accessible with getOperationMetadata(String). In order to provide common behavior, all Device Functions must
follow a set of common rules related to the implementation of their setters, getters, operations and events:

 The setter method must be executed synchronously. If the underlying protocol can return response
to the setter call, it must be awaited. It simplifies the property value modifications and doesn't
require asynchronous callback.

 The operation method must be executed synchronously. If the underlying protocol can return an
operation confirmation or response, they must be awaited. It simplifies the operation execution and
doesn't require asynchronous callback.

 The getter must return the last know cached property value. The device implementation is
responsible to keep that value up to date. It'll speed up the applications when the Device Function
property values are collected. The same cached value can be shared between a few requests
instead of a few calls to the real device.

 If a given Device Function operation, getter or setter is not supported,
java.lang.UnsupportedOperationException must be thrown. It indicates that Device Function is
partially supported.

 The Device Function operations, getters and setters must not override java.lang.Object and this
interface methods.

Field Summary Pag
e

String SERVICE_DESCRIPTION

The service property value contains the device function description.
52

String SERVICE_DEVICE_UID

The service property value contains the device unique identifier.
52

String SERVICE_OPERATION_NAMES

The service property value contains the device function operation names.
52

String SERVICE_PROPERTY_NAMES

The service property value contains the device function property names.
52

String SERVICE_REFERENCE_UIDS

The service property value contains the reference device function unique identifiers.
52

String SERVICE_TYPE

The service property value contains the device function type.
51

OSGi Javadoc -- 1/22/13 Page 50 of 145

Class AbstractDeviceException

String SERVICE_UID

The service property value contains the device function unique identifier.
51

String SERVICE_VERSION

The service property value contains the device function version.
51

Method Summary Pag
e

OperationM
etadata

getOperationMetadata(String operationName)

Provides metadata about the Device Function operation.
53

PropertyMe
tadata

getPropertyMetadata(String propertyName)

Provides metadata about the Device Function property specified with the name argument.
52

Object getServiceProperty(String propName)

Returns the current value of the specified property.
53

Field Detail

SERVICE_UID

public static final String SERVICE_UID = "dal.function.UID"

The service property value contains the device function unique identifier. It's a mandatory property. The
value type is java.lang.String. To simplify the unique identifier generation, the property value must
follow the rule:

function UID ::= device-id ':' function-id

function UID - device function unique identifier

device-id - the value of the Device.SERVICE_UID Functional Device service property

function-id - device function identifier in the scope of the device

SERVICE_TYPE

public static final String SERVICE_TYPE = "dal.function.type"

The service property value contains the device function type. It's an optional property. For example, the
sensor function can have different types like temperature or pressure etc. The value type is
java.lang.String.

Organizations that want to use device function types that do not clash with OSGi Alliance defined types
should prefix their types in own namespace.

The type does'nt mandate specific device function interface. It can be used with different functions.

SERVICE_VERSION

public static final String SERVICE_VERSION = "dal.function.version"

The service property value contains the device function version. That version can point to specific
implementation version and vary in the different vendor implementations. It's an optional property. The
value type is java.lang.String.

OSGi Javadoc -- 1/22/13 Page 51 of 145

Class AbstractDeviceException

SERVICE_DEVICE_UID

public static final String SERVICE_DEVICE_UID = "dal.function.device.UID"

The service property value contains the device unique identifier. The function belongs to this device. It's an
optional property. The value type is java.lang.String.

SERVICE_REFERENCE_UIDS

public static final String SERVICE_REFERENCE_UIDS = "dal.function.reference.UIDs"

The service property value contains the reference device function unique identifiers. It's an optional
property. The value type is java.lang.String[]. It can be used to represent different relationships
between the device functions.

SERVICE_DESCRIPTION

public static final String SERVICE_DESCRIPTION = "dal.function.description"

The service property value contains the device function description. It's an optional property. The value
type is java.lang.String.

SERVICE_OPERATION_NAMES

public static final String SERVICE_OPERATION_NAMES = "dal.function.operation.names"

The service property value contains the device function operation names. It's an optional property. The
value type is java.lang.String[]. It's not possible to exist two or more Device Function operations with
the same name i.e. the operation overloading is not allowed.

SERVICE_PROPERTY_NAMES

public static final String SERVICE_PROPERTY_NAMES = "dal.function.property.names"

The service property value contains the device function property names. It's an optional property. The
value type is java.lang.String[]. It's not possible to exist two or more Device Function properties with
the same name.

Method Detail

getPropertyMetadata

PropertyMetadata getPropertyMetadata(String propertyName)
 throws IllegalArgumentException

Provides metadata about the Device Function property specified with the name argument.

This method must continue to return the property metadata after the Device Function service has been
unregistered.

Parameters:
propertyName - The function property name, which metadata is requested.

OSGi Javadoc -- 1/22/13 Page 52 of 145

Class AbstractDeviceException

Returns:
The property metadata for the given property name. null if the property metadata is not supported.

Throws:
IllegalArgumentException - If the function property with the specified name is not supported.

getOperationMetadata

OperationMetadata getOperationMetadata(String operationName)
 throws IllegalArgumentException

Provides metadata about the Device Function operation.

This method must continue to return the operation metadata after the Device Function service has been
unregistered.

Parameters:
operationName - The function operation name, which metadata is requested.

Returns:
The operation metadata for the given operation name. null if the operation metadata is not
supported.

Throws:
IllegalArgumentException - If the function operation with the specified name is not supported.

getServiceProperty

Object getServiceProperty(String propName)

Returns the current value of the specified property. The method will return the same value as
org.osgi.framework.ServiceReference.getProperty(String) for the service reference of this device
function.

This method must continue to return property values after the device function service has been
unregistered.

Parameters:
propName - The property name.

Returns:
The property value or null if the property name cannot be mapped to a value.

OSGi Javadoc -- 1/22/13 Page 53 of 145

Interface BaseDevice

Class DeviceFunctionData
org.osgi.service.dal

java.lang.Object

 org.osgi.service.dal.DeviceFunctionData

All Implemented Interfaces:
Comparable

Direct Known Subclasses:
AlarmData, BooleanData, KeypadData, LevelData

abstract public class DeviceFunctionData
extends Object
implements Comparable

Abstract DeviceFunction data wrapper. A subclass must be used for an access to the property values by all
Device Functions. It takes care about the timestamp and additional metadata. The subclasses are responsible to
provide concrete value and unit if required.

The subclass is responsible to provide correct implementation of Comparable.compareTo(Object) method.

Field Summary Pag
e

static
String

FIELD_METADATA

Represents the metadata field name.
55

static
String

FIELD_TIMESTAMP

Represents the timestamp field name.
55

static
String

META_INFO_DESCRIPTION

Metadata key, which value represents the data description.
55

Map metadata

Contains DeviceFunctionData metadata.
55

long timestamp

Contains DeviceFunctionData timestamp.
55

Constructor Summary Pag
e

DeviceFunctionData(Map fields)

Constructs new DeviceFunctionData instance with the specified field values.
55

DeviceFunctionData(long timestamp, Map metadata)

Constructs new DeviceFunctionData instance with the specified arguments.
56

Method Summary Pag
e

boolean equals(Object other)

Two DeviceFunctionData instances are equal if their metadata and timestamp are
equivalent.

57

Map getMetadata()

Returns DeviceFunctionData metadata.
56

long getTimestamp()

Returns DeviceFunctionData timestamp.
56

OSGi Javadoc -- 1/22/13 Page 54 of 145

Interface BaseDevice

int hashCode()

Returns the hash code of this DeviceFunctionData.
57

Field Detail

FIELD_TIMESTAMP

public static final String FIELD_TIMESTAMP = "timestamp"

Represents the timestamp field name. The field value is available with timestamp and getTimestamp().
The field type is long. The constant can be used as a key to DeviceFunctionData(Map).

FIELD_METADATA

public static final String FIELD_METADATA = "metadata"

Represents the metadata field name. The field value is available with metadata and getMetadata(). The
field type is Map. The constant can be used as a key to DeviceFunctionData(Map).

META_INFO_DESCRIPTION

public static final String META_INFO_DESCRIPTION = "description"

Metadata key, which value represents the data description. The property value type is java.lang.String.

timestamp

public final long timestamp

Contains DeviceFunctionData timestamp. The timestamp is the difference between the value collecting
time and midnight, January 1, 1970 UTC. It's measured in milliseconds. The device driver is responsible to
generate that value when the value is received from the device. Long.MIN_VALUE value means no
timestamp.

metadata

public final Map metadata

Contains DeviceFunctionData metadata. It's dynamic metadata related only to this specific value.
Possible keys:

 META_INFO_DESCRIPTION

 custom key

Constructor Detail

DeviceFunctionData

public DeviceFunctionData(Map fields)

OSGi Javadoc -- 1/22/13 Page 55 of 145

Interface BaseDevice

Constructs new DeviceFunctionData instance with the specified field values. The map keys must match
to the field names. The map values will be assigned to the appropriate class fields. For example, the maps
can be: {"timestamp"=Long(1384440775495)}. That map will initialize the FIELD_TIMESTAMP field with
1384440775495. If timestamp is missing, Long.MIN_VALUE is used.

FIELD_TIMESTAMP field value type must be Long. FIELD_METADATA field value type must be Map.

Parameters:
fields - Contains the new DeviceFunctionData instance field values.

Throws:
ClassCastException - If the field value types are not expected.
NullPointerException - If the fields map is null.

DeviceFunctionData

public DeviceFunctionData(long timestamp,
 Map metadata)

Constructs new DeviceFunctionData instance with the specified arguments.

Parameters:
timestamp - The data timestamp.
metadata - The data metadata.

Method Detail

getTimestamp

public long getTimestamp()

Returns DeviceFunctionData timestamp. The timestamp is the difference between the value collecting
time and midnight, January 1, 1970 UTC. It's measured in milliseconds. The device driver is responsible to
generate that value when the value is received from the device. Long.MIN_VALUE value means no
timestamp.

Returns:
DeviceFunctionData timestamp.

getMetadata

public Map getMetadata()

Returns DeviceFunctionData metadata. It's dynamic metadata related only to this specific value. Possible
keys:

 META_INFO_DESCRIPTION

 custom key

Returns:
DeviceFunctionData metadata or null is there is no metadata.

OSGi Javadoc -- 1/22/13 Page 56 of 145

Interface BaseDevice

equals

public boolean equals(Object other)

Two DeviceFunctionData instances are equal if their metadata and timestamp are equivalent.

Overrides:
equals in class Object

Parameters:
other - The other instance to compare. It must be of DeviceFunctionData type.

Returns:
true if this instance and argument have equivalent metadata and timestamp, false otherwise.

See Also:
Object.equals(java.lang.Object)

hashCode

public int hashCode()

Returns the hash code of this DeviceFunctionData.

Overrides:
hashCode in class Object

Returns:
DeviceFunctionData hash code.

See Also:
Object.hashCode()

OSGi Javadoc -- 1/22/13 Page 57 of 145

Interface DeviceFunction

Class DeviceFunctionEvent
org.osgi.service.dal

java.lang.Object

 org.osgi.service.event.Event

 org.osgi.service.dal.DeviceFunctionEvent

final public class DeviceFunctionEvent
extends org.osgi.service.event.Event

Asynchronous event, which marks a Device Function property value modification. The event can be triggered when
there is a new property value, but it's possible to have events in series with no value change. The event properties
must contain:

 PROPERTY_FUNCTION_UID - the event source function unique identifier.
 PROPERTY_FUNCTION_PROPERTY_NAME - the property name.
 PROPERTY_FUNCTION_PROPERTY_VALUE - the property value. The property value type must be a

subclass of DeviceFunctionData.

Field Summary Pag
e

static
String

EVENT_CLASS

Represents the event class.
59

static
String

EVENT_PACKAGE

Represents the event package.
59

static
String

PROPERTY_FUNCTION_PROPERTY_NAME

Represents an event property key for the Device Function property name.
59

static
String

PROPERTY_FUNCTION_PROPERTY_VALUE

Represents an event property key for the Device Function property value.
59

static
String

PROPERTY_FUNCTION_UID

Represents an event property key for Device Function UID.
59

static
String

TOPIC_PROPERTY_CHANGED

Represents the event topic for the Device Function property changed.
59

Constructor Summary Pag
e

DeviceFunctionEvent(String topic, String funtionUID, String propName, DeviceFunctionData
propValue)

Constructs a new event with the specified topic, function UID, property name and property value.
60

DeviceFunctionEvent(String topic, Dictionary properties)

Constructs a new event with the specified topic and properties.
60

DeviceFunctionEvent(String topic, Map properties)

Constructs a new event with the specified topic and properties.
60

Method Summary Pag
e

String getFunctionPropertyName()

Returns the property name.
61

DeviceFunc
tionData

getFunctionPropertyValue()

Returns the property value.
61

String getFunctionUID()

Returns the property value change source function identifier.
60

OSGi Javadoc -- 1/22/13 Page 58 of 145

Interface DeviceFunction

Methods inherited from class org.osgi.service.event.Event

equals, getProperty, getPropertyNames, getTopic, hashCode, matches, toString

Field Detail

EVENT_PACKAGE

public static final String EVENT_PACKAGE = "org/osgi/services/dal/"

Represents the event package. That constant can be useful for the event handlers depending on the event
filters.

EVENT_CLASS

public static final String EVENT_CLASS = "org/osgi/services/dal/DeviceFunctionEvent/"

Represents the event class. That constant can be useful for the event handlers depending on the event
filters.

TOPIC_PROPERTY_CHANGED

public static final String TOPIC_PROPERTY_CHANGED =
"org/osgi/services/dal/DeviceFunctionEvent/PROPERTY_CHANGED"

Represents the event topic for the Device Function property changed.

PROPERTY_FUNCTION_UID

public static final String PROPERTY_FUNCTION_UID = "dal.function.UID"

Represents an event property key for Device Function UID. The property value type is java.lang.String.
The value represents the property value change source function identifier.

PROPERTY_FUNCTION_PROPERTY_NAME

public static final String PROPERTY_FUNCTION_PROPERTY_NAME = "dal.function.property.name"

Represents an event property key for the Device Function property name. The property value type is
java.lang.String. The value represents the property name.

PROPERTY_FUNCTION_PROPERTY_VALUE

public static final String PROPERTY_FUNCTION_PROPERTY_VALUE = "dal.function.property.value"

Represents an event property key for the Device Function property value. The property value type is a
subclass of DeviceFunctionData. The value represents the property value.

OSGi Javadoc -- 1/22/13 Page 59 of 145

Interface DeviceFunction

Constructor Detail

DeviceFunctionEvent

public DeviceFunctionEvent(String topic,
 Dictionary properties)

Constructs a new event with the specified topic and properties.

Parameters:
topic - The event topic.
properties - The event properties.

DeviceFunctionEvent

public DeviceFunctionEvent(String topic,
 Map properties)

Constructs a new event with the specified topic and properties.

Parameters:
topic - The event topic.
properties - The event properties.

DeviceFunctionEvent

public DeviceFunctionEvent(String topic,
 String funtionUID,
 String propName,
 DeviceFunctionData propValue)

Constructs a new event with the specified topic, function UID, property name and property value.

Parameters:
topic - The event topic.
funtionUID - The event source function UID.
propName - The event source property name.
propValue - The event source property value.

Method Detail

getFunctionUID

public String getFunctionUID()

Returns the property value change source function identifier. The value is same as the value of
PROPERTY_FUNCTION_UID property.

Returns:
The property value change source function.

OSGi Javadoc -- 1/22/13 Page 60 of 145

Interface DeviceFunction

getFunctionPropertyName

public String getFunctionPropertyName()

Returns the property name. The value is same as the value of PROPERTY_FUNCTION_PROPERTY_NAME.

Returns:
The property name.

getFunctionPropertyValue

public DeviceFunctionData getFunctionPropertyValue()

Returns the property value. The value is same as the value of PROPERTY_FUNCTION_PROPERTY_VALUE.

Returns:
The property value.

OSGi Javadoc -- 1/22/13 Page 61 of 145

Interface FunctionalDevice

Class DevicePermission
org.osgi.service.dal

java.lang.Object

 java.security.Permission

 java.security.BasicPermission

 org.osgi.service.dal.DevicePermission

All Implemented Interfaces:
Guard, Serializable

final public class DevicePermission
extends BasicPermission

A bundle's authority to perform specific privileged administrative operations on the devices. The actions for this
permission are:
Action Method
ACTION_REMOVE Device.remove()
The name of the permission is a filter based. See OSGi Core Specification, Filter Based Permissions. The filter
gives an access to all device service properties. The service property names are case insensitive. The filter
attribute names are processed in a case insensitive manner.

Field Summary Pag
e

static
String

ACTION_REMOVE

A permission action to remove the device.
63

Constructor Summary Pag
e

DevicePermission(String filter, String action)

Creates a new FunctionalDevicePermission with the given filter and actions.
63

DevicePermission(Device device, String action)

Creates a new FunctionalDevicePermission with the given device and actions.
63

Method Summary Pag
e

boolean equals(Object obj)

Two FunctionalDevicePermission instances are equal if:

 represents the same filter and actions
 represents the same device and actions

63

String getActions()

Returns the canonical string representation of ACTION_REMOVE action.
64

int hashCode()

Returns the hash code value for this object.
64

boolean implies(Permission p)

Determines if the specified permission is implied by this object.
64

Permission
Collection

newPermissionCollection()

Returns a new PermissionCollection suitable for storing
FunctionalDevicePermission instances.

64

OSGi Javadoc -- 1/22/13 Page 62 of 145

Interface FunctionalDevice

Field Detail

ACTION_REMOVE

public static final String ACTION_REMOVE = "remove"

A permission action to remove the device.

Constructor Detail

DevicePermission

public DevicePermission(String filter,
 String action)

Creates a new FunctionalDevicePermission with the given filter and actions. The constructor must only
be used to create a permission that is going to be checked.

An filter example: (dal.device.hardware.vendor=acme)

An action list example: property, remove

Parameters:
filter - A filter expression that can use any device service property. The filter attribute names are
processed in a case insensitive manner. A special value of "*" can be used to match all devices.
action - ACTION_REMOVE action.

Throws:
IllegalArgumentException - If the filter syntax is not correct or invalid actions are specified.

DevicePermission

public DevicePermission(Device device,
 String action)

Creates a new FunctionalDevicePermission with the given device and actions. The permission must be
used for the security checks like:

securityManager.checkPermission(new FunctionalDevicePermission(this, "remove")); . The
permissions constructed by this constructor must not be added to the FunctionalDevicePermission
permission collections.

Parameters:
device - The permission device.
action - ACTION_REMOVE action.

Method Detail

equals

public boolean equals(Object obj)

Two FunctionalDevicePermission instances are equal if:

 represents the same filter and actions
 represents the same device and actions

OSGi Javadoc -- 1/22/13 Page 63 of 145

Interface FunctionalDevice

Overrides:
equals in class BasicPermission

Parameters:
obj - The object being compared for equality with this object.

Returns:
true if two permissions are equal, false otherwise.

hashCode

public int hashCode()

Returns the hash code value for this object.

Overrides:
hashCode in class BasicPermission

Returns:
Hash code value for this object.

getActions

public String getActions()

Returns the canonical string representation of ACTION_REMOVE action.

Overrides:
getActions in class BasicPermission

Returns:
The canonical string representation of the actions.

implies

public boolean implies(Permission p)

Determines if the specified permission is implied by this object. The method will throw an exception if the
specified permission was not constructed by DevicePermission(Device, String). Returns true if the
specified permission is a FunctionalDevicePermission and this permission filter matches the specified
permission device properties.

Overrides:
implies in class BasicPermission

Parameters:
p - The permission to be implied. It must be constructed by DevicePermission(Device, String).

Returns:
true if the specified permission is implied by this permission, false otherwise.

Throws:
IllegalArgumentException - If the specified permission is not constructed by
DevicePermission(Device, String).

newPermissionCollection

public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection suitable for storing FunctionalDevicePermission instances.

OSGi Javadoc -- 1/22/13 Page 64 of 145

Interface FunctionalDevice

Overrides:
newPermissionCollection in class BasicPermission

Returns:
A new PermissionCollection instance.

OSGi Javadoc -- 1/22/13 Page 65 of 145

Interface BinarySensor

Interface OperationMetadata
org.osgi.service.dal

public interface OperationMetadata

Contains metadata about Device Function operation.

See Also:
DeviceFunction, PropertyMetadata

Field Summary Pag
e

String META_INFO_DESCRIPTION

Metadata key, which value represents the operation description.
66

Method Summary Pag
e

Map getMetadata()

Returns metadata about the Device Function operation.
66

PropertyMe
tadata[]

getParametersMetadata()

Returns metadata about the operation parameters or null if no such medatadata is
available.

67

PropertyMe
tadata

getReturnValueMetadata()

Returns metadata about the operation return value or null if no such metadata is
available.

67

Field Detail

META_INFO_DESCRIPTION

public static final String META_INFO_DESCRIPTION = "description"

Metadata key, which value represents the operation description. The property value type is
java.lang.String.

Method Detail

getMetadata

Map getMetadata()

Returns metadata about the Device Function operation. The keys of the java.util.Map result must be of
java.lang.String type. Possible keys:

 META_INFO_DESCRIPTION
 custom key

Returns:
The operation metadata or null if no such metadata is available.

OSGi Javadoc -- 4/8/13 Page 66 of 145

Interface BinarySensor

getReturnValueMetadata

PropertyMetadata getReturnValueMetadata()

Returns metadata about the operation return value or null if no such metadata is available.

Returns:
Operation return value metadata.

getParametersMetadata

PropertyMetadata[] getParametersMetadata()

Returns metadata about the operation parameters or null if no such medatadata is available.

Returns:
Operation parameters medata.

OSGi Javadoc -- 4/8/13 Page 67 of 145

Interface BinarySwitch

Interface PropertyMetadata
org.osgi.service.dal

public interface PropertyMetadata

Contains metadata about Device Function property or Device Function operation parameter. The access to the
Device Function properties is a bitmap value of PROPERTY_ACCESS metadata key. Device Function properties can
be accessed in three ways. Any combinations between them are possible:

 PROPERTY_ACCESS_READABLE - available for all properties, which can be read. Device Function
must provide a getter method for an access to the property value.

 PROPERTY_ACCESS_WRITABLE - available for all properties, which can be modified. Device Function
must provide a setter method for a modification of the property value.

 PROPERTY_ACCESS_EVENTABLE - available for all properties, which can report the property value.
DeviceFunctionEvents are sent on property change.

See Also:
DeviceFunction, PropertyMetadata

Field Summary Pag
e

String DESCRIPTION

Metadata key, which value represents the property description.
69

String PROPERTY_ACCESS

Metadata key, which value represents the access to the Device Function property.
69

int PROPERTY_ACCESS_EVENTABLE

Marks the eventable Device Function properties.
69

int PROPERTY_ACCESS_READABLE

Marks the readable Device Function properties.
69

int PROPERTY_ACCESS_WRITABLE

Marks the writable Device Function properties.
69

String UNITS

Metadata key, which value represents the property supported units.
70

Method Summary Pag
e

DeviceFunc
tionData[]

getEnumValues(String unit)

Returns the property possible values according to the specified unit.
71

DeviceFunc
tionData

getMaxValue(String unit)

Returns the property maximum value according to the specified unit.
71

Map getMetadata(String unit)

Returns metadata about the Device Function property or operation parameter.
70

DeviceFunc
tionData

getMinValue(String unit)

Returns the property minimum value according to the specified unit.
71

Object getResolution(String unit)

Returns the resolution value of specific range.
70

OSGi Javadoc -- 4/8/13 Page 68 of 145

Interface BinarySwitch

Field Detail

PROPERTY_ACCESS_READABLE

public static final int PROPERTY_ACCESS_READABLE = 1

Marks the readable Device Function properties. The flag can be used as a part of bitmap value of
PROPERTY_ACCESS. The readable access mandates Device Function to provide a property getter method.

See Also:
DeviceFunction

PROPERTY_ACCESS_WRITABLE

public static final int PROPERTY_ACCESS_WRITABLE = 2

Marks the writable Device Function properties. The flag can be used as a part of bitmap value of
PROPERTY_ACCESS. The writable access mandates Device Function to provide a property setter methods.

See Also:
DeviceFunction

PROPERTY_ACCESS_EVENTABLE

public static final int PROPERTY_ACCESS_EVENTABLE = 4

Marks the eventable Device Function properties. The flag can be used as a part of bitmap value of
PROPERTY_ACCESS.

See Also:
DeviceFunction

PROPERTY_ACCESS

public static final String PROPERTY_ACCESS = "property.access"

Metadata key, which value represents the access to the Device Function property. The property value is a
bitmap of Integer type. The bitmap can be any combination of:

 PROPERTY_ACCESS_READABLE

 PROPERTY_ACCESS_WRITABLE
 PROPERTY_ACCESS_EVENTABLE

For example, value Integer(3) means that the property is readable and writable, but not eventable.

The property access is available only for Device Function properties and it's missing for the operation
parameters.

DESCRIPTION

public static final String DESCRIPTION = "description"

OSGi Javadoc -- 4/8/13 Page 69 of 145

Interface BinarySwitch

Metadata key, which value represents the property description. The property value type is
java.lang.String.

UNITS

public static final String UNITS = "units"

Metadata key, which value represents the property supported units. The property value type is
java.lang.String[]. Each unit must follow those rules:

 The International System of Units must be used where it's applicable. For example, kg for kilogram and km
for kilometre.

 If the unit name matches to an Unicode symbol name, the Unicode symbol must be used. For example, the
degree unit matches to the Unicode degree sign (°).

 If the unit name doesn't match to an Unicode symbol, the unit symbol must be built by Unicode Basic Latin
block of characters, superscript and subscript characters. For example, watt per square metre steradian is
built by W/(m² sr), where ² is Unicode superscript two.

If those rules cannot be applied to the unit symbol, custom rules are allowed. A set of predefined unit
symbols are available in Units interface.

Method Detail

getMetadata

Map getMetadata(String unit)

Returns metadata about the Device Function property or operation parameter. The keys of the
java.util.Map result must be of java.lang.String type. Possible keys:

 DESCRIPTION - doesn't depend on the given unit.
 PROPERTY_ACCESS - available only for Device Function property and missing for Device FUnction

operation parameters. It doesn't depend on the given unit.
 UNITS - doesn't depend on the given unit.
 custom key - can depend on the unit.

Parameters:
unit - The unit to align the metadata if it's applicable. It can be null, which means that the default
unit will be used.

Returns:
The property metadata or null if no such metadata is available.

getResolution

Object getResolution(String unit)
 throws IllegalArgumentException

Returns the resolution value of specific range. For example, if the range is [0, 100], the resolution can be
10. That's the different between two values in series. The resolution type depends on the property type. If
the property is using data bean like LevelData, the resolution will the BigDecimal.

Parameters:
unit - The unit to align the resolution, can be null.

Returns:
The resolution according to the specified unit or null if no resolution is supported.

OSGi Javadoc -- 4/8/13 Page 70 of 145

Interface BinarySwitch

Throws:
IllegalArgumentException - If the unit is not supported.

getEnumValues

DeviceFunctionData[] getEnumValues(String unit)
 throws IllegalArgumentException

Returns the property possible values according to the specified unit. If the unit is null, the values set is
aligned to the default unit. If there is no such set of supported values, null is returned. The values must be
sorted in increasing order.

Parameters:
unit - The unit to align the supported values, can be null.

Returns:
The supported values according to the specified unit or null if no such values are supported. The
values must be sorted in increasing order.

Throws:
IllegalArgumentException - If the unit is not supported.

getMinValue

DeviceFunctionData getMinValue(String unit)
 throws IllegalArgumentException

Returns the property minimum value according to the specified unit. If the unit is null, the minimum value
is aligned to the default unit. If there is no minimum value, null is returned.

Parameters:
unit - The unit to align the minimum value, can be null .

Returns:
The minimum value according to the specified unit or null if no minimum value is supported.

Throws:
IllegalArgumentException - If the unit is not supported.

getMaxValue

DeviceFunctionData getMaxValue(String unit)
 throws IllegalArgumentException

Returns the property maximum value according to the specified unit. If the unit is null, the maximum value
is aligned to the default unit. If there is no maximum value, null is returned.

Parameters:
unit - The unit to align the maximum value, can be null .

Returns:
The maximum value according to the specified unit or null if no maximum value is supported.

Throws:
IllegalArgumentException - If the unit is not supported.

OSGi Javadoc -- 4/8/13 Page 71 of 145

Interface LockUnlock

Interface Units
org.osgi.service.dal

public interface Units

Contains the most of the International System of Units unit symbols. The constant name represents the unit name.
The constant value represents the unit symbol as it's defined in PropertyMetadata.UNITS.

Field Summary Pag
e

String AMPERE

Unit of electric current defined by the International System of Units (SI).
77

String AMPERE_PER_METRE

Unit of magnetic field strength.
79

String AMPERE_PER_SQUARE_METRE

Unit of current density.
78

String ANGSTROM

Unit of length.
87

String BAR

Unit of pressure.
87

String BARN

Unit of area.
87

String BECQUEREL

Unit of activity referred to a radionuclide.
82

String BEL

Unit of logarithmic ratio quantities.
88

String CANDELA

Unit of luminous intensity defined by the International System of Units (SI).
77

String CANDELA_PER_SQUARE_METRE

Unit of luminance.
79

String COULOMB

Unit of electronic charge, amount of electricity.
80

String COULOMB_PER_CUBIC_METRE

Unit of electric charge density.
84

String COULOMB_PER_KILOGRAM

Unit of exposure (x- and gamma-rays).
85

String COULOMB_PER_SQUARE_METRE

Unit of surface charge density, electric flux density, electric displacement.
84

String CUBIC_METRE

Unit of volume.
77

String CUBIC_METRE_PER_KILOGRAM

Unit of specific volume.
78

String DAY

Unit of time.
86

String DECIBEL

Unit of logarithmic ratio quantities.
88

String DEGREE

Unit of plane angle.
86

OSGi Javadoc -- 4/8/13 Page 72 of 145

Interface LockUnlock

String DEGREE_CELSIUS

Unit of Celsius temperature.
81

String DYNE

Unit of force.
88

String ERG

Unit of energy.
88

String FARAD

Unit of capacitance.
80

String FARAD_PER_METRE

Unit of permittivity.
84

String GAL

Unit of acceleration.
89

String GAUSS

Unit of magnetic flux density.
89

String GRAY

Unit of absorbed dose, specific energy (imparted), kerma.
82

String GRAY_PER_SECOND

Unit of absorbed dose rate.
85

String HECTARE

Unit of area.
86

String HENRY

Unit of inductance.
81

String HENRY_PER_METRE

Unit of permeability.
84

String HERTZ

Unit of frequency.
79

String HOUR

Unit of time.
86

String JOULE

Unit of energy, work, amount of electricity.
80

String JOULE_PER_CUBIC_METRE

Unit of energy density.
84

String JOULE_PER_KELVIN

Unit of heat capacity, entropy.
83

String JOULE_PER_KILOGRAM

Unit of specific energy.
83

String JOULE_PER_KILOGRAM_KELVIN

Unit of specific heat capacity, specific entropy.
83

String JOULE_PER_MOLE

Unit of molar energy.
84

String JOULE_PER_MOLE_KELVIN

Unit of molar entropy, molar heat capacity.
85

String KATAL

Unit of catalytic activity.
82

String KATAL_PER_CUBIC_METRE

Unit of catalytic activity concentration.
85

String KELVIN

Unit of thermodynamic temperature defined by the International System of Units (SI).
77

String KILOGRAM

Unit of mass defined by the International System of Units (SI).
76

OSGi Javadoc -- 4/8/13 Page 73 of 145

Interface LockUnlock

String KILOGRAM_PER_CUBIC_METRE

Unit of density, mass density, mass concentration.
78

String KILOGRAM_PER_SQUARE_METRE

Unit of surface density.
78

String KNOT

Unit of speed.
87

String LITRE

Unit of volume.
86

String LUMEN

Unit of luminous flux.
81

String LUX

Unit of illuminance.
81

String MAXWELL

Unit of magnetic flux.
89

String METRE

Unit of length defined by the International System of Units (SI).
76

String METRE_PER_SECOND

Unit of speed, velocity.
78

String METRE_PER_SECOND_SQUARED

Unit of acceleration.
78

String MILLIMETRE_OF_MERCURY

Unit of pressure.
87

String MOLE

Unit of amount of substance defined by the International System of Units (SI).
77

String MOLE_PER_CUBIC_METRE

Unit of amount concentration, concentration.
79

String NAUTICAL_MILE

Unit of distance.
87

String NEPER

Unit of logarithmic ratio quantities.
87

String NEWTON

Unit of force.
79

String NEWTON_METRE

Unit of moment of force.
82

String NEWTON_PER_METRE

Unit of surface tension.
82

String OERSTED

Unit of magnetic field.
89

String OHM

Unit of electric resistance.
80

String PASCAL

Unit of pressure, stress.
80

String PASCAL_SECOND

Unit of dynamic viscosity.
82

String PHOT

Unit of illuminance.
88

String PLANE_ANGLE_MINUTE

Unit of plane angle.
86

String PLANE_ANGLE_SECOND

Unit of plane angle.
86

OSGi Javadoc -- 4/8/13 Page 74 of 145

Interface LockUnlock

String POISE

Unit of dynamic viscosity.
88

String PREFIX_ATTO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_CENTI

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
90

String PREFIX_DECA

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
89

String PREFIX_DECI

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
90

String PREFIX_EXA

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
90

String PREFIX_FEMTO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_GIGA

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
90

String PREFIX_HECTO

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
89

String PREFIX_KILO

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
89

String PREFIX_MEGA

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
90

String PREFIX_MICRO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_MILLI

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_NANO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_PICO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_YOCTO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
92

String PREFIX_YOTTA

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
90

String PREFIX_ZEPTO

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units.
91

String PREFIX_ZETTA

Adopted prefix symbol to form the symbols of the decimal multiples of SI units.
90

String RADIAN

Unit of plane angle.
79

String RADIAN_PER_SECOND

Unit of angular velocity.
83

String RADIAN_PER_SECOND_SQUARED

Unit of angular acceleration.
83

String RECIPROCAL_METRE

Unit of wavenumber.
78

String SECOND

Unit of time defined by the International System of Units (SI).
77

String SIEMENS

Unit of electric conductance.
81

OSGi Javadoc -- 4/8/13 Page 75 of 145

Interface LockUnlock

String SIEVERT

Unit of dose equivalent, ambient dose equivalent, directional dose equivalent, personal
dose equivalent.

82

String SQUARE_METRE

Unit of area.
77

String STERADIAN

Unit of solid angle.
79

String STILB

Unit of luminance.
88

String STOKES

Unit of kinematic viscosity.
88

String TESLA

Unit of magnetic flux density.
81

String TIME_MINUTE

Unit of time.
85

String TONNE

Unit of mass.
87

String VOLT

Unit of electric potential difference, electromotive force.
80

String VOLT_PER_METRE

Unit of electric field strength.
84

String WATT

Unit of power, radiant flux.
80

String WATT_PER_METRE_KELVIN

Unit of thermal conductivity.
83

String WATT_PER_SQUARE_METRE

Unit of heat flux density, irradiance.
83

String WATT_PER_SQUARE_METRE_STERADIAN

Unit of radiance.
85

String WATT_PER_STERADIAN

Unit of radiant intensity.
85

String WEBER

Unit of magnetic flux.
81

Field Detail

METRE

public static final String METRE = "m"

Unit of length defined by the International System of Units (SI). It's one of be base units called metre.

KILOGRAM

public static final String KILOGRAM = "kg"

Unit of mass defined by the International System of Units (SI). It's one of be base units called kilogram.

OSGi Javadoc -- 4/8/13 Page 76 of 145

Interface LockUnlock

SECOND

public static final String SECOND = "s"

Unit of time defined by the International System of Units (SI). It's one of be base units called second.

AMPERE

public static final String AMPERE = "A"

Unit of electric current defined by the International System of Units (SI). It's one of be base units called
ampere.

KELVIN

public static final String KELVIN = "\u212a"

Unit of thermodynamic temperature defined by the International System of Units (SI). It's one of be base
units called kelvin.

MOLE

public static final String MOLE = "mol"

Unit of amount of substance defined by the International System of Units (SI). It's one of be base units
called mole.

CANDELA

public static final String CANDELA = "cd"

Unit of luminous intensity defined by the International System of Units (SI). It's one of be base units called
candela.

SQUARE_METRE

public static final String SQUARE_METRE = "m\u00b2"

Unit of area. It's one of coherent derived units in the SI expressed in terms of base units. The unit is called
square metre.

CUBIC_METRE

public static final String CUBIC_METRE = "m\u00b3"

Unit of volume. It's one of coherent derived units in the SI expressed in terms of base units. The unit is
called cubic metre.

OSGi Javadoc -- 4/8/13 Page 77 of 145

Interface LockUnlock

METRE_PER_SECOND

public static final String METRE_PER_SECOND = "m/s"

Unit of speed, velocity. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called metre per second.

METRE_PER_SECOND_SQUARED

public static final String METRE_PER_SECOND_SQUARED = "m/s\u00b2"

Unit of acceleration. It's one of coherent derived units in the SI expressed in terms of base units. The unit is
called metre per second squared.

RECIPROCAL_METRE

public static final String RECIPROCAL_METRE = "m\u207b\u00b9"

Unit of wavenumber. It's one of coherent derived units in the SI expressed in terms of base units. The unit
is called reciprocal metre.

KILOGRAM_PER_CUBIC_METRE

public static final String KILOGRAM_PER_CUBIC_METRE = "kg/m\u00b3"

Unit of density, mass density, mass concentration. It's one of coherent derived units in the SI expressed in
terms of base units. The unit is called kilogram per cubic metre.

KILOGRAM_PER_SQUARE_METRE

public static final String KILOGRAM_PER_SQUARE_METRE = "kg/m\u00b2"

Unit of surface density. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called kilogram per square metre.

CUBIC_METRE_PER_KILOGRAM

public static final String CUBIC_METRE_PER_KILOGRAM = "m\u00b3/kg"

Unit of specific volume. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called cubic metre per kilogram.

AMPERE_PER_SQUARE_METRE

public static final String AMPERE_PER_SQUARE_METRE = "A/m\u00b2"

Unit of current density. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called ampere per square metre.

OSGi Javadoc -- 4/8/13 Page 78 of 145

Interface LockUnlock

AMPERE_PER_METRE

public static final String AMPERE_PER_METRE = "A/m"

Unit of magnetic field strength. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called ampere per metre.

MOLE_PER_CUBIC_METRE

public static final String MOLE_PER_CUBIC_METRE = "mol/m\u00b3"

Unit of amount concentration, concentration. It's one of coherent derived units in the SI expressed in terms
of base units. The unit is called mole per cubic metre.

CANDELA_PER_SQUARE_METRE

public static final String CANDELA_PER_SQUARE_METRE = "cd/m\u00b2"

Unit of luminance. It's one of coherent derived units in the SI expressed in terms of base units. The unit is
called candela per square metre.

RADIAN

public static final String RADIAN = "rad"

Unit of plane angle. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called radian.

STERADIAN

public static final String STERADIAN = "sr"

Unit of solid angle. It's one of the coherent derived units in the SI with special names and symbols. The unit
is called steradian.

HERTZ

public static final String HERTZ = "Hz"

Unit of frequency. It's one of the coherent derived units in the SI with special names and symbols. The unit
is called hertz.

NEWTON

public static final String NEWTON = "N"

Unit of force. It's one of the coherent derived units in the SI with special names and symbols. The unit is
called newton.

OSGi Javadoc -- 4/8/13 Page 79 of 145

Interface LockUnlock

PASCAL

public static final String PASCAL = "Pa"

Unit of pressure, stress. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called pascal.

JOULE

public static final String JOULE = "J"

Unit of energy, work, amount of electricity. It's one of the coherent derived units in the SI with special
names and symbols. The unit is called joule.

WATT

public static final String WATT = "W"

Unit of power, radiant flux. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called watt.

COULOMB

public static final String COULOMB = "C"

Unit of electronic charge, amount of electricity. It's one of the coherent derived units in the SI with special
names and symbols. The unit is called coulomb.

VOLT

public static final String VOLT = "V"

Unit of electric potential difference, electromotive force. It's one of the coherent derived units in the SI with
special names and symbols. The unit is called volt.

FARAD

public static final String FARAD = "F"

Unit of capacitance. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called farad.

OHM

public static final String OHM = "\u2126"

Unit of electric resistance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called ohm.

OSGi Javadoc -- 4/8/13 Page 80 of 145

Interface LockUnlock

SIEMENS

public static final String SIEMENS = "S"

Unit of electric conductance. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called siemens.

WEBER

public static final String WEBER = "Wb"

Unit of magnetic flux. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called weber.

TESLA

public static final String TESLA = "T"

Unit of magnetic flux density. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called tesla.

HENRY

public static final String HENRY = "H"

Unit of inductance. It's one of the coherent derived units in the SI with special names and symbols. The unit
is called henry.

DEGREE_CELSIUS

public static final String DEGREE_CELSIUS = "\u2103"

Unit of Celsius temperature. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called degree Celsius.

LUMEN

public static final String LUMEN = "lm"

Unit of luminous flux. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called lumen.

LUX

public static final String LUX = "lx"

Unit of illuminance. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called lux.

OSGi Javadoc -- 4/8/13 Page 81 of 145

Interface LockUnlock

BECQUEREL

public static final String BECQUEREL = "Bq"

Unit of activity referred to a radionuclide. It's one of the coherent derived units in the SI with special names
and symbols. The unit is called becquerel.

GRAY

public static final String GRAY = "Gy"

Unit of absorbed dose, specific energy (imparted), kerma. It's one of the coherent derived units in the SI
with special names and symbols. The unit is called gray.

SIEVERT

public static final String SIEVERT = "Sv"

Unit of dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equivalent. It's
one of the coherent derived units in the SI with special names and symbols. The unit is called sievert.

KATAL

public static final String KATAL = "kat"

Unit of catalytic activity. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called katal.

PASCAL_SECOND

public static final String PASCAL_SECOND = "Pa s"

Unit of dynamic viscosity. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called pascal second.

NEWTON_METRE

public static final String NEWTON_METRE = "N m"

Unit of moment of force. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called newton metre.

NEWTON_PER_METRE

public static final String NEWTON_PER_METRE = "N/m"

Unit of surface tension. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called newton per metre.

OSGi Javadoc -- 4/8/13 Page 82 of 145

Interface LockUnlock

RADIAN_PER_SECOND

public static final String RADIAN_PER_SECOND = "rad/s"

Unit of angular velocity. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called radian per second.

RADIAN_PER_SECOND_SQUARED

public static final String RADIAN_PER_SECOND_SQUARED = "rad/s\u00b2"

Unit of angular acceleration. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called radian per second squared.

WATT_PER_SQUARE_METRE

public static final String WATT_PER_SQUARE_METRE = "W/m\u00b2"

Unit of heat flux density, irradiance. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called watt per square metre.

JOULE_PER_KELVIN

public static final String JOULE_PER_KELVIN = "J/K"

Unit of heat capacity, entropy. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called joule per kelvin.

JOULE_PER_KILOGRAM_KELVIN

public static final String JOULE_PER_KILOGRAM_KELVIN = "J/(kg K)"

Unit of specific heat capacity, specific entropy. It's one of coherent derived units whose names and
symbols include SI coherent derived units with special names and symbols. The unit is called joule per
kilogram kelvin.

JOULE_PER_KILOGRAM

public static final String JOULE_PER_KILOGRAM = "J/kg"

Unit of specific energy. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called joule per kilogram.

WATT_PER_METRE_KELVIN

public static final String WATT_PER_METRE_KELVIN = "W/(m K)"

Unit of thermal conductivity. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called watt per metre kelvin.

OSGi Javadoc -- 4/8/13 Page 83 of 145

Interface LockUnlock

JOULE_PER_CUBIC_METRE

public static final String JOULE_PER_CUBIC_METRE = "J/m\u00b3"

Unit of energy density. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called joule per cubic metre.

VOLT_PER_METRE

public static final String VOLT_PER_METRE = "V/m"

Unit of electric field strength. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called volt per metre.

COULOMB_PER_CUBIC_METRE

public static final String COULOMB_PER_CUBIC_METRE = "C/m\u00b3"

Unit of electric charge density. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called coulomb per cubic metre.

COULOMB_PER_SQUARE_METRE

public static final String COULOMB_PER_SQUARE_METRE = "C/m\u00b2"

Unit of surface charge density, electric flux density, electric displacement. It's one of coherent derived units
whose names and symbols include SI coherent derived units with special names and symbols. The unit is
called coulomb per square metre.

FARAD_PER_METRE

public static final String FARAD_PER_METRE = "F/m"

Unit of permittivity. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called farad per metre.

HENRY_PER_METRE

public static final String HENRY_PER_METRE = "H/m"

Unit of permeability. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called henry per metre.

JOULE_PER_MOLE

public static final String JOULE_PER_MOLE = "J/mol"

Unit of molar energy. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called joule per mole.

OSGi Javadoc -- 4/8/13 Page 84 of 145

Interface LockUnlock

JOULE_PER_MOLE_KELVIN

public static final String JOULE_PER_MOLE_KELVIN = "J/(mol K)"

Unit of molar entropy, molar heat capacity. It's one of coherent derived units whose names and symbols
include SI coherent derived units with special names and symbols. The unit is called joule per mole kelvin.

COULOMB_PER_KILOGRAM

public static final String COULOMB_PER_KILOGRAM = "C/kg"

Unit of exposure (x- and gamma-rays). It's one of coherent derived units whose names and symbols
include SI coherent derived units with special names and symbols. The unit is called coulomb per kilogram.

GRAY_PER_SECOND

public static final String GRAY_PER_SECOND = "Gy/s"

Unit of absorbed dose rate. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called gray per second.

WATT_PER_STERADIAN

public static final String WATT_PER_STERADIAN = "W/sr"

Unit of radiant intensity. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called watt per steradian.

WATT_PER_SQUARE_METRE_STERADIAN

public static final String WATT_PER_SQUARE_METRE_STERADIAN = "W/(m\u00b2 sr)"

Unit of radiance. It's one of coherent derived units whose names and symbols include SI coherent derived
units with special names and symbols. The unit is called watt per square metre steradian.

KATAL_PER_CUBIC_METRE

public static final String KATAL_PER_CUBIC_METRE = "kat/m\u00b3"

Unit of catalytic activity concentration. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called katal per cubic metre.

TIME_MINUTE

public static final String TIME_MINUTE = "min"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The unit is
called minute.

OSGi Javadoc -- 4/8/13 Page 85 of 145

Interface LockUnlock

HOUR

public static final String HOUR = "h"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The unit is
called hour.

DAY

public static final String DAY = "d"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The unit is
called day.

DEGREE

public static final String DEGREE = "\u00b0"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units. The unit
is called degree.

PLANE_ANGLE_MINUTE

public static final String PLANE_ANGLE_MINUTE = "\u2032"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units. The unit
is called minute.

PLANE_ANGLE_SECOND

public static final String PLANE_ANGLE_SECOND = "\u2033"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units. The unit
is called second.

HECTARE

public static final String HECTARE = "ha"

Unit of area. It's one of non-SI units accepted for use with the International System of Units. The unit is
called hectare.

LITRE

public static final String LITRE = "l"

Unit of volume. It's one of non-SI units accepted for use with the International System of Units. The unit is
called litre. International System of Units accepts two symbols: lower-case l and capital L. That constant
value is using the lower-case l.

OSGi Javadoc -- 4/8/13 Page 86 of 145

Interface LockUnlock

TONNE

public static final String TONNE = "t"

Unit of mass. It's one of non-SI units accepted for use with the International System of Units. The unit is
called tonne.

BAR

public static final String BAR = "bar"

Unit of pressure. It's one of other non-SI units. The unit is called bar.

MILLIMETRE_OF_MERCURY

public static final String MILLIMETRE_OF_MERCURY = "mmHg"

Unit of pressure. It's one of other non-SI units. The unit is called millimetre of mercury.

ANGSTROM

public static final String ANGSTROM = "\u212b"

Unit of length. It's one of other non-SI units. The unit is called angstrom.

NAUTICAL_MILE

public static final String NAUTICAL_MILE = "M"

Unit of distance. It's one of other non-SI units. The unit is called nautical mile.

BARN

public static final String BARN = "b"

Unit of area. It's one of other non-SI units. The unit is called barn.

KNOT

public static final String KNOT = "kn"

Unit of speed. It's one of other non-SI units. The unit is called knot.

NEPER

public static final String NEPER = "Np"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called neper.

OSGi Javadoc -- 4/8/13 Page 87 of 145

Interface LockUnlock

BEL

public static final String BEL = "B"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called bel.

DECIBEL

public static final String DECIBEL = "dB"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called decibel.

ERG

public static final String ERG = "erg"

Unit of energy. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of units.
The unit is called erg.

DYNE

public static final String DYNE = "dyn"

Unit of force. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of units. The
unit is called dyne.

POISE

public static final String POISE = "P"

Unit of dynamic viscosity. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called poise.

STOKES

public static final String STOKES = "St"

Unit of kinematic viscosity. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called stokes.

STILB

public static final String STILB = "sb"

Unit of luminance. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of units.
The unit is called stilb.

PHOT

public static final String PHOT = "ph"

OSGi Javadoc -- 4/8/13 Page 88 of 145

Interface LockUnlock

Unit of illuminance. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called phot.

GAL

public static final String GAL = "Gal"

Unit of acceleration. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called gal.

MAXWELL

public static final String MAXWELL = "Mx"

Unit of magnetic flux. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called maxwell.

GAUSS

public static final String GAUSS = "G"

Unit of magnetic flux density. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called gauss.

OERSTED

public static final String OERSTED = "Oe"

Unit of magnetic field. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called oersted.

PREFIX_DECA

public static final String PREFIX_DECA = "da"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called deca and
represents the 1st power of ten.

PREFIX_HECTO

public static final String PREFIX_HECTO = "h"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called hecto and
represents the 2nd power of ten.

PREFIX_KILO

public static final String PREFIX_KILO = "k"

OSGi Javadoc -- 4/8/13 Page 89 of 145

Interface LockUnlock

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called kilo and
represents the 3rd power of ten.

PREFIX_MEGA

public static final String PREFIX_MEGA = "M"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called mega and
represents the 6th power of ten.

PREFIX_GIGA

public static final String PREFIX_GIGA = "G"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called giga and
represents the 9th power of ten.

PREFIX_EXA

public static final String PREFIX_EXA = "E"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called exa and
represents the 18th power of ten.

PREFIX_ZETTA

public static final String PREFIX_ZETTA = "Z"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called zetta and
represents the 21th power of ten.

PREFIX_YOTTA

public static final String PREFIX_YOTTA = "Y"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called yotta and
represents the 24th power of ten.

PREFIX_DECI

public static final String PREFIX_DECI = "d"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called deci and
represents the 1st negative power of ten.

PREFIX_CENTI

public static final String PREFIX_CENTI = "c"

OSGi Javadoc -- 4/8/13 Page 90 of 145

Interface LockUnlock

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called centi and
represents the 2nd negative power of ten.

PREFIX_MILLI

public static final String PREFIX_MILLI = "m"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called milli and
represents the 3rd negative power of ten.

PREFIX_MICRO

public static final String PREFIX_MICRO = "\u00b5"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called micro and
represents the 6th negative power of ten.

PREFIX_NANO

public static final String PREFIX_NANO = "n"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called nano and
represents the 9th negative power of ten.

PREFIX_PICO

public static final String PREFIX_PICO = "p"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called pico and
represents the 12th negative power of ten.

PREFIX_FEMTO

public static final String PREFIX_FEMTO = "f"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called femto and
represents the 15th negative power of ten.

PREFIX_ATTO

public static final String PREFIX_ATTO = "a"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called atto and
represents the 18th negative power of ten.

PREFIX_ZEPTO

public static final String PREFIX_ZEPTO = "z"

OSGi Javadoc -- 4/8/13 Page 91 of 145

Interface LockUnlock

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called zepto and
represents the 21th negative power of ten.

PREFIX_YOCTO

public static final String PREFIX_YOCTO = "y"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called yocto and
represents the 24th negative power of ten.

OSGi Javadoc -- 4/8/13 Page 92 of 145

Interface Meter

Package org.osgi.service.dal.functions

Device Functions 1.0.

See:
Description

Interface Summary Page

Alarm Alarm Device Function provides alarm sensor support. 94

BooleanContro
l

BooleanControl Device Function provides a boolean control support. 95

BooleanSensor BooleanSensor Device Function provides boolean sensor monitoring. 99

Keypad Keypad Device Function provides support for keypad control. 101

Meter Meter Device Function can measure metering information. 102

MultiLevelCont
rol

MultiLevelControl Device Function provides multi-level control support. 106

MultiLevelSens
or

MultiLevelSensor Device Function provides multi-level sensor monitoring. 109

Types Shares common constants for all device functions defined in this package. 111

WakeUp WakeUp Device Function provides device awake monitoring and management. 119

Package org.osgi.service.dal.functions Description

Device Functions 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bundle's manifest.
This package has two types of users: the consumers that use the API in this package and the providers that
implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi.service.dal.functions; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.dal.functions; version="[1.0,1.1)"

OSGi Javadoc -- 4/8/13 Page 93 of 145

Interface MultiLevelSensor

Interface Alarm
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface Alarm
extends DeviceFunction

Alarm Device Function provides alarm sensor support. There is only one eventable property and no operations.

See Also:
AlarmData

Field Summary Pag
e

String PROPERTY_ALARM

Specifies the alarm property name.
94

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

Field Detail

PROPERTY_ALARM

public static final String PROPERTY_ALARM = "alarm"

Specifies the alarm property name. The property is eventable.

See Also:
AlarmData

OSGi Javadoc -- 4/8/13 Page 94 of 145

Interface MultiLevelSwitch

Interface BooleanControl
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface BooleanControl
extends DeviceFunction

BooleanControl Device Function provides a boolean control support. The function state is accessible with
getData() getter and setData(boolean) setter. The state can be reversed with reverse() method, can be set to
true value with setTrue() method and can be set to false value with setFalse() method.

As an example, the function is easily mappable to ZigBee OnOff cluster and Z-Wave Binary Switch command
class. The control type can be:

 Types.TYPE_LIGHT

 Types.TYPE_DOOR
 Types.TYPE_WINDOW

 Types.TYPE_POWER
 other type defined in Types
 custom - vendor specific type

See Also:
BooleanData

Field Summary Pag
e

String OPERATION_REVERSE

Specifies the reverse operation name.
96

String OPERATION_SET_FALSE

Specifies the operation name, which sets the control state to false value.
96

String OPERATION_SET_TRUE

Specifies the operation name, which sets the control state to true value.
96

String PROPERTY_DATA

Specifies the state property name.
96

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Method Summary Pag
e

BooleanDat
a
getData()

Returns the current state of BooleanControl.
96

void reverse()

Reverses the BooleanControl state.
97

void setData(boolean data)

Sets the BooleanControl state to the specified value.
97

void setFalse()

Sets the BooleanControl state to false value.
98

OSGi Javadoc -- 4/8/13 Page 95 of 145

Interface MultiLevelSwitch

void setTrue()

Sets the BooleanControl state to true value.
97

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

Field Detail

OPERATION_REVERSE

public static final String OPERATION_REVERSE = "reverse"

Specifies the reverse operation name. The operation can be executed with reverse() method.

OPERATION_SET_TRUE

public static final String OPERATION_SET_TRUE = "setTrue"

Specifies the operation name, which sets the control state to true value. The operation can be executed
with setTrue() method.

OPERATION_SET_FALSE

public static final String OPERATION_SET_FALSE = "setFalse"

Specifies the operation name, which sets the control state to false value. The operation can be executed
with setFalse() method.

PROPERTY_DATA

public static final String PROPERTY_DATA = "data"

Specifies the state property name. The property value is accessible with getData() method.

See Also:
BooleanData

Method Detail

getData

BooleanData getData()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns the current state of BooleanControl. It's a getter method for PROPERTY_DATA property.

Returns:
The current state of BooleanControl.

Throws:
UnsupportedOperationException - If the operation is not supported.

OSGi Javadoc -- 4/8/13 Page 96 of 145

Interface MultiLevelSwitch

IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
BooleanData, PROPERTY_DATA

setData

void setData(boolean data)
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException,
 IllegalArgumentException

Sets the BooleanControl state to the specified value. It's setter method for PROPERTY_DATA property.

Parameters:
data - The new function value.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.
IllegalArgumentException - If there is an invalid argument.

See Also:
PROPERTY_DATA

reverse

void reverse()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Reverses the BooleanControl state. If the current state represents true value, it'll be reversed to false. If
the current state represents false value, it'll be reversed to true. The operation name is
OPERATION_REVERSE.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

setTrue

void setTrue()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Sets the BooleanControl state to true value. The operation name is OPERATION_SET_TRUE.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

OSGi Javadoc -- 4/8/13 Page 97 of 145

Interface MultiLevelSwitch

setFalse

void setFalse()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Sets the BooleanControl state to false value. The operation name is OPERATION_SET_FALSE.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

OSGi Javadoc -- 4/8/13 Page 98 of 145

Interface OnOff

Interface BooleanSensor
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface BooleanSensor
extends DeviceFunction

BooleanSensor Device Function provides boolean sensor monitoring. It reports its state when an important event is
available. The state is accessible with getData() getter. There are no operations.

As an example, the function is easily mappable to ZigBee Occupancy Sensing cluster and Z-Wave Binary Sensor
command class. The sensor type can be:

 Types.TYPE_LIGHT

 Types.TYPE_GAS
 Types.TYPE_SMOKE

 Types.TYPE_DOOR
 Types.TYPE_WINDOW

 Types.TYPE_POWER
 Types.TYPE_RAIN

 Types.TYPE_CONTACT
 Types.TYPE_FIRE

 Types.TYPE_OCCUPANCY
 Types.TYPE_WATER

 Types.TYPE_MOTION
 other type defined in Types
 custom - vendor specific type

See Also:
BooleanData

Field Summary Pag
e

String PROPERTY_DATA

Specifies the state property name.
100

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Method Summary Pag
e

BooleanDat
a
getData()

Returns the BooleanSensorcurrent state.
100

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

OSGi Javadoc -- 4/8/13 Page 99 of 145

Interface OnOff

Field Detail

PROPERTY_DATA

public static final String PROPERTY_DATA = "data"

Specifies the state property name. The property value is accessible with getData() getter.

Method Detail

getData

BooleanData getData()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns the BooleanSensorcurrent state. It's a getter method for PROPERTY_DATA property.

Returns:
The BooleanSensor current state.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
BooleanData

OSGi Javadoc -- 4/8/13 Page 100 of 145

Interface OpenClose

Interface Keypad
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface Keypad
extends DeviceFunction

Keypad Device Function provides support for keypad control. A keypad typically consists of one or more
keys/buttons, which can be discerned. Different types of key presses like short and long press can typically also be
detected. There is only one eventable property and no operations.

Keypad can enumerate all supported keys in the key property metadata,
PropertyMetadata.getEnumValues(String). KeypadData event type will be KeypadData.EVENT_TYPE_UNKNOWN
in this case.

See Also:
KeypadData

Field Summary Pag
e

String PROPERTY_KEY

Specifies a property name for a key from the keypad.
101

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

Field Detail

PROPERTY_KEY

public static final String PROPERTY_KEY = "key"

Specifies a property name for a key from the keypad. The property is eventable.

See Also:
KeypadData

OSGi Javadoc -- 4/8/13 Page 101 of 145

Interface OpenClose

Interface Meter
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface Meter
extends DeviceFunction

Meter Device Function can measure metering information. The function provides three properties and one
operation:

 PROPERTY_CURRENT

 - property accessible with getCurrent() getter;
 PROPERTY_TOTAL

 - property accessible with getTotal() getter;
 SERVICE_FLOW

 - property accessible with getTotal() getter;
 OPERATION_RESET_TOTAL

 - operation can be executed with resetTotal().

As an example, the function is easily mappable to ZigBee Simple Metering cluster and Z-Wave Meter command
class. The sensor type can be:

 Types.TYPE_PRESSURE

 Types.TYPE_GAS
 Types.TYPE_POWER

 Types.TYPE_WATER
 Types.TYPE_HEAT

 Types.TYPE_COLD
 other type defined in Types
 custom - vendor specific type

See Also:
LevelData

Field Summary Pag
e

String FLOW_IN

Represents the metering consumption flow.
103

String FLOW_OUT

Represents the metering generation flow.
103

String OPERATION_RESET_TOTAL

Specifies the reset total operation name.
104

String PROPERTY_CURRENT

Specifies the current consumption property name.
103

String PROPERTY_TOTAL

Specifies the total consumption property name.
103

String SERVICE_FLOW

The service property value contains the metering flow.
103

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,

OSGi Javadoc -- 7/2/13 Page 102 of 145

Interface OpenClose

SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Method Summary Pag
e

LevelData getCurrent()

Returns the current metering info.
104

LevelData getTotal()

Returns the total metering info.
104

void resetTotal()

Resets the total metering info.
104

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

Field Detail

FLOW_IN

public static final String FLOW_IN = "in"

Represents the metering consumption flow. It can be used as SERVICE_FLOW property value.

FLOW_OUT

public static final String FLOW_OUT = "out"

Represents the metering generation flow. It can be used as SERVICE_FLOW property value.

SERVICE_FLOW

public static final String SERVICE_FLOW = "dal.meter.flow"

The service property value contains the metering flow. It's an optional property and available only if it's
supported by the meter. The value type is java.lang.String. Possible property values:

 FLOW_IN

 FLOW_OUT

PROPERTY_CURRENT

public static final String PROPERTY_CURRENT = "current"

Specifies the current consumption property name. The property can be read with getCurrent() getter.

PROPERTY_TOTAL

public static final String PROPERTY_TOTAL = "total"

Specifies the total consumption property name. It has been measured since the last call of resetTotal()
or device initial run. The property can be read with getTotal() getter.

OSGi Javadoc -- 7/2/13 Page 103 of 145

Interface OpenClose

OPERATION_RESET_TOTAL

public static final String OPERATION_RESET_TOTAL = "resetTotal"

Specifies the reset total operation name. The operation can be executed with resetTotal() method.

Method Detail

getCurrent

LevelData getCurrent()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns the current metering info. It's a getter method for PROPERTY_CURRENT property.

Returns:
The current metering info.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
LevelData

getTotal

LevelData getTotal()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns the total metering info. It's a getter method for PROPERTY_TOTAL property.

Returns:
The total metering info.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
LevelData

resetTotal

void resetTotal()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Resets the total metering info.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.

OSGi Javadoc -- 7/2/13 Page 104 of 145

Interface OpenClose

DeviceException - If an operation error is available.

OSGi Javadoc -- 7/2/13 Page 105 of 145

Class MultiLevelData

Interface MultiLevelControl
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface MultiLevelControl
extends DeviceFunction

MultiLevelControl Device Function provides multi-level control support. The function level is accessible with
getData() getter, setData(BigDecimal) setter and setData(BigDecimal, String) setter.

As an example, the function is easily mappable to ZigBee Level Control and Z-Wave Multilevel Switch command
class. The control type can be:

 Types.TYPE_LIGHT

 Types.TYPE_TEMPERATURE
 Types.TYPE_FLOW

 Types.TYPE_PRESSURE
 Types.TYPE_HUMIDITY

 Types.TYPE_GAS
 Types.TYPE_SMOKE

 Types.TYPE_DOOR
 Types.TYPE_WINDOW

 Types.TYPE_LIQUID
 Types.TYPE_POWER

 Types.TYPE_NOISINESS
 other type defined in Types
 custom - vendor specific type

See Also:
LevelData

Field Summary Pag
e

String PROPERTY_DATA

Specifies the level property name.
107

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Method Summary Pag
e

LevelData getData()

Returns MultiLevelControl level.
107

void setData(BigDecimal level)

Sets MultiLevelControl level to the specified value.
107

void setData(BigDecimal level, String unit)

Sets MultiLevelControl level according to the specified unit.
108

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

OSGi Javadoc -- 9/9/13 Page 106 of 145

Class MultiLevelData

Field Detail

PROPERTY_DATA

public static final String PROPERTY_DATA = "data"

Specifies the level property name. The property can be read with getData() getter and can be set with
setData(BigDecimal) or setData(BigDecimal, String) setters.

Method Detail

getData

LevelData getData()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns MultiLevelControl level. It's a getter method for PROPERTY_DATA property.

Returns:
MultiLevelControl level.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
LevelData

setData

void setData(BigDecimal level)
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException,
 IllegalArgumentException

Sets MultiLevelControl level to the specified value. It's a setter method for PROPERTY_DATA property.

Parameters:
level - The new control level.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.
IllegalArgumentException - If there is an invalid argument.

OSGi Javadoc -- 9/9/13 Page 107 of 145

Class MultiLevelData

setData

void setData(BigDecimal level,
 String unit)
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException,
 IllegalArgumentException

Sets MultiLevelControl level according to the specified unit. It's a setter method for PROPERTY_DATA
property.

Parameters:
level - The new control level.
unit - The level unit.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.
IllegalArgumentException - If there is an invalid argument.

OSGi Javadoc -- 9/9/13 Page 108 of 145

Interface MultiLevelSensor

Interface MultiLevelSensor
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface MultiLevelSensor
extends DeviceFunction

MultiLevelSensor Device Function provides multi-level sensor monitoring. It reports its state when an important
event is available. The state is accessible with getData() getter. There are no operations.

As an example, the function is easily mappable to ZigBee Illuminance Measurement, Temperature Measurement,
Pressure Measurement, Flow Measurement and Relative Humidity Measurement cluster and Z-Wave Multilevel
Sensor command class. The sensor type can be:

 Types.TYPE_LIGHT

 Types.TYPE_TEMPERATURE
 Types.TYPE_FLOW

 Types.TYPE_PRESSURE
 Types.TYPE_HUMIDITY

 Types.TYPE_GAS
 Types.TYPE_SMOKE

 Types.TYPE_DOOR
 Types.TYPE_WINDOW

 Types.TYPE_LIQUID
 Types.TYPE_POWER

 Types.TYPE_NOISINESS
 Types.TYPE_RAIN

 other type defined in Types
 custom - vendor specific type

See Also:
LevelData

Field Summary Pag
e

String PROPERTY_DATA

Specifies the state property name.
110

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Method Summary Pag
e

LevelData getData()

Returns the MultiLevelSensor current state.
110

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

OSGi Javadoc -- 9/9/13 Page 109 of 145

Interface MultiLevelSensor

Field Detail

PROPERTY_DATA

public static final String PROPERTY_DATA = "data"

Specifies the state property name. The property can be read with getData() getter.

See Also:
LevelData

Method Detail

getData

LevelData getData()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns the MultiLevelSensor current state. It's a getter method for PROPERTY_DATA property.

Returns:
The MultiLevelSensor current state.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
LevelData

OSGi Javadoc -- 9/9/13 Page 110 of 145

Interface Types

Interface Types
org.osgi.service.dal.functions

public interface Types

Shares common constants for all device functions defined in this package. The defined device function types are
mapped as follow:

 TYPE_LIGHT - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
 TYPE_TEMPERATURE - MultiLevelControl and MultiLevelSensor
 TYPE_FLOW - MultiLevelControl and MultiLevelSensor
 TYPE_PRESSURE - MultiLevelControl, MultiLevelSensor and Meter
 TYPE_HUMIDITY - MultiLevelControl and MultiLevelSensor
 TYPE_GAS - MultiLevelControl, MultiLevelSensor, BooleanSensor and Meter
 TYPE_SMOKE - MultiLevelControl, MultiLevelSensor and BooleanSensor
 TYPE_DOOR - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
 TYPE_WINDOW - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
 TYPE_LIQUID - MultiLevelControl and MultiLevelSensor
 TYPE_POWER - MultiLevelControl, MultiLevelSensor, BooleanSensor, BooleanControl and Meter
 TYPE_NOISINESS - MultiLevelControl and MultiLevelSensor
 TYPE_RAIN - MultiLevelSensor and BooleanSensor
 TYPE_CONTACT - BooleanSensor
 TYPE_FIRE - BooleanSensor
 TYPE_OCCUPANCY - BooleanSensor
 TYPE_WATER - BooleanSensor and Meter
 TYPE_MOTION - BooleanSensor
 TYPE_HEAT - Meter
 TYPE_COLD - Meter

The mapping is not mandatory. The device function can use custom defined types.

Field Summary Pag
e

String TYPE_COLD

The device function type is applicable to:

 Meter - indicates that the Meter measures thermal energy provided by a
source.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

118

String TYPE_CONTACT

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect contact.
117

String TYPE_DOOR

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the door position.

115

OSGi Javadoc -- 1/16/14 Page 111 of 145

Interface Types

String TYPE_FIRE

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect fire.
117

String TYPE_FLOW

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the flow level.

114

String TYPE_GAS

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the gas level.

115

String TYPE_HEAT

The device function type is applicable to:

 Meter - indicates that the Meter measures thermal energy provided by a
source.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

118

String TYPE_HUMIDITY

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the humidity level.

114

String TYPE_LIGHT

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
light devices.

113

String TYPE_LIQUID

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the liquid level.

116

String TYPE_MOTION

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect motion.
118

String TYPE_NOISINESS

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the noise level.

116

String TYPE_OCCUPANCY

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect presence.
117

OSGi Javadoc -- 1/16/14 Page 112 of 145

Interface Types

String TYPE_POWER

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the power level.

116

String TYPE_PRESSURE

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the pressure level.

114

String TYPE_RAIN

The device function type is applicable to:

 MultiLevelSensor - indicates that the MultiLevelSensor can monitor
the rain rate.

117

String TYPE_SMOKE

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the smoke level.

115

String TYPE_TEMPERATURE

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
temperature devices.

114

String TYPE_WATER

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect water leak.
118

String TYPE_WINDOW

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control
the window position.

116

Field Detail

TYPE_LIGHT

public static final String TYPE_LIGHT = "light"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control light devices. Usually,
such devices are called dimmable. MultiLevelControl minimum value can switch off the device
and MultiLevelControl maximum value can increase the device light to the maximum possible
value.

 MultiLevelSensor - indicates that the sensor can monitor the light level.
 BinarySensor - indicates that the BinarySensor can detected light. true state means that there is

light. false state means that there is no light.

OSGi Javadoc -- 1/16/14 Page 113 of 145

Interface Types

 BinaryControl - indicates that there is a light device control. true state means that the light
device will be turned on. false state means that the light device will be turned off.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_TEMPERATURE

public static final String TYPE_TEMPERATURE = "temperature"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control temperature devices. For
example, such device can be thermostat. MultiLevelControl minimum value is the lowest
supported temperature. MultiLevelControl maximum value is the highest supported
temperature.

 MultiLevelSensor - indicates that the sensor can monitor the temperature.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_FLOW

public static final String TYPE_FLOW = "flow"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the flow level.
MultiLevelControl minimum value is the minimum supported flow level. MultiLevelControl
maximum value is the maximum supported flow level.

 MultiLevelSensor - indicates that the sensor can monitor the flow level.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_PRESSURE

public static final String TYPE_PRESSURE = "pressure"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the pressure level.
MultiLevelControl minimum value is the lowest supported pressure level. MultiLevelControl
maximum value is the highest supported pressure level.

 MultiLevelSensor - indicates that the sensor can monitor the pressure level.
 Meter - Indicates that the Meter measures pressure.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_HUMIDITY

public static final String TYPE_HUMIDITY = "humidity"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the humidity level. It's
typical functionality for HVAC (heating, ventilation, and air conditioning) devices.

OSGi Javadoc -- 1/16/14 Page 114 of 145

Interface Types

MultiLevelControl minimum value is the lowest supported humidity level. MultiLevelControl
maximum value is the highest supported humidity level.

 MultiLevelSensor - indicates that the sensor can monitor the humidity level.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_GAS

public static final String TYPE_GAS = "gas"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the gas level.
MultiLevelControl minimum value is the lowest supported gas level. MultiLevelControl
maximum value is the highest supported gas level.

 MultiLevelSensor - indicates that the sensor can monitor the gas level.
 BinarySensor - indicates that the BinarySensor supports gas detection. true state means there

is gas. false state means that there is no gas.
 Meter - indicates that the Meter measures the gas consumption.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_SMOKE

public static final String TYPE_SMOKE = "smoke"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the smoke level.
MultiLevelControl minimum value is the lowest supported smoke level. MultiLevelControl
maximum value is the highest supported smoke level.

 MultiLevelSensor - indicates that the sensor can monitor the smoke level.
 BinarySensor - indicates that the BinarySensor can detect smoke. true state means that there is

smoke. false state means that there is no rain.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_DOOR

public static final String TYPE_DOOR = "door"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the door position.
MultiLevelControl minimum value can completely close the door. MultiLevelControl
maximum value can open the door to the maximum allowed position.

 MultiLevelSensor - indicates that the sensor can monitor the door position.
 BinarySensor - indicates that the BinarySensor can detect the door state. true state means that

the door is opened. false state means that the door is closed.
 BinaryControl - indicates that there is a door position control. true state means that the door will

be opened. false state means that the the door will be closed.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

OSGi Javadoc -- 1/16/14 Page 115 of 145

Interface Types

TYPE_WINDOW

public static final String TYPE_WINDOW = "window"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the window position.
MultiLevelControl minimum value can completely close the window. MultiLevelControl
maximum value can open the window to the maximum allowed position.

 MultiLevelSensor - indicates that the sensor can monitor the window position.
 BinarySensor - indicates that the BinarySensor can window state. true state means that the

window is opened. false state means that the window is closed.
 BinaryControl - indicates that there is a window position control. true state means that the

window will be opened. false state means that the the window will be closed.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_LIQUID

public static final String TYPE_LIQUID = "liquid"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the liquid level.
MultiLevelControl minimum value is the lowest supported liquid level. MultiLevelControl
maximum value is the highest supported liquid level.

 MultiLevelSensor - indicates that the sensor can monitor the liquid level.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_POWER

public static final String TYPE_POWER = "power"

The device function type is applicable to:

 MultiLevelControl - indicates that the MultiLevelControl can control the power level.
MultiLevelControl minimum value is the lowest supported power level. MultiLevelControl
maximum value is the highest supported power level.

 MultiLevelSensor - indicates that the sensor can monitor the power level.
 BinarySensor - indicates that the BinarySensor can detect motion. true state means that there is

power restore. false state means that there is power cut.
 BinaryControl - indicates that there is electricity control. true state means that the power will be

restored. false state means that the power will be cut.
 Meter - indicates that the Meter measures the power consumption.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_NOISINESS

public static final String TYPE_NOISINESS = "noisiness"

The device function type is applicable to:

OSGi Javadoc -- 1/16/14 Page 116 of 145

Interface Types

 MultiLevelControl - indicates that the MultiLevelControl can control the noise level.
MultiLevelControl minimum value is the lowest supported noise level. MultiLevelControl
maximum value is the highest supported noise level.

 MultiLevelSensor - indicates that the sensor can monitor the noise level.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_RAIN

public static final String TYPE_RAIN = "rain"

The device function type is applicable to:

 MultiLevelSensor - indicates that the MultiLevelSensor can monitor the rain rate. It's not
applicable to MultiLevelControl.

 BinarySensor - indicates that the BinarySensor can detect rain. true state means that there is
rain. false state means that there is no rain.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_CONTACT

public static final String TYPE_CONTACT = "contact"

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect contact. true state means that there
is contact. false state means that there is no contact.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_FIRE

public static final String TYPE_FIRE = "fire"

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect fire. true state means that there is
fire. false state means that there is no fire.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_OCCUPANCY

public static final String TYPE_OCCUPANCY = "occupancy"

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect presence. true state means that
someone is detected. false state means that nobody is detected.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

OSGi Javadoc -- 1/16/14 Page 117 of 145

Interface Types

TYPE_WATER

public static final String TYPE_WATER = "water"

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect water leak. true state means that
there is water leak. false state means that there is no water leak.

 Meter - indicates that the Meter measures water consumption.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_MOTION

public static final String TYPE_MOTION = "motion"

The device function type is applicable to:

 BinarySensor - indicates that the BinarySensor can detect motion. true state means that there is
motion detection. false state means that there is no motion detection.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_HEAT

public static final String TYPE_HEAT = "heat"

The device function type is applicable to:

 Meter - indicates that the Meter measures thermal energy provided by a source.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

TYPE_COLD

public static final String TYPE_COLD = "cold"

The device function type is applicable to:

 Meter - indicates that the Meter measures thermal energy provided by a source.

This type can be specified as a value of DeviceFunction.SERVICE_TYPE.

OSGi Javadoc -- 1/16/14 Page 118 of 145

Package org.osgi.service.dal.functions.data

Interface WakeUp
org.osgi.service.dal.functions

All Superinterfaces:
DeviceFunction

public interface WakeUp
extends DeviceFunction

WakeUp Device Function provides device awake monitoring and management. It's especially applicable to battery-
operated devices. Such device can notify the system that it's awake and can receive commands with an event to
property PROPERTY_AWAKE.

The device can periodically wake up for commands. The interval can be managed with
PROPERTY_WAKE_UP_INTERVAL property.

The application can minimize the power consumption with sleep() operation. As a result, the device will sleep and
will not receive commands to the next awake.

See Also:
LevelData, BooleanData

Field Summary Pag
e

String OPERATION_SLEEP

Specifies the sleep operation name.
120

String PROPERTY_AWAKE

Specifies the awake property name.
120

String PROPERTY_WAKE_UP_INTERVAL

Specifies the wake up interval.
120

Fields inherited from interface org.osgi.service.dal.DeviceFunction

SERVICE_DESCRIPTION, SERVICE_DEVICE_UID, SERVICE_OPERATION_NAMES, SERVICE_PROPERTY_NAMES,
SERVICE_REFERENCE_UIDS, SERVICE_TYPE, SERVICE_UID, SERVICE_VERSION

Method Summary Pag
e

LevelData getWakeUpInterval()

Returns the current wake up interval.
120

void setWakeUpInterval(BigDecimal interval)

Sets wake up interval according to the default unit.
121

void setWakeUpInterval(BigDecimal interval, String unit)

Sets wake up interval according to the specified unit.
121

void sleep()

The device is forced to sleep to minimize the power consumption.
121

Methods inherited from interface org.osgi.service.dal.DeviceFunction

getOperationMetadata, getPropertyMetadata, getServiceProperty

OSGi Javadoc -- 1/16/14 Page 119 of 145

Package org.osgi.service.dal.functions.data

Field Detail

PROPERTY_AWAKE

public static final String PROPERTY_AWAKE = "awake"

Specifies the awake property name. The property access type can be
PropertyMetadata.PROPERTY_ACCESS_EVENTABLE. If the device is awake, it will trigger a property event.

The property value type is BooleanData. The boolean data is always true. It marks that the device is
awake.

PROPERTY_WAKE_UP_INTERVAL

public static final String PROPERTY_WAKE_UP_INTERVAL = "wakeUpInterval"

Specifies the wake up interval. The device can periodically wake up and receive commands. That interval
is managed by this property. The current property value is available with getWakeUpInterval() and can
be modified with setWakeUpInterval(BigDecimal) and setWakeUpInterval(BigDecimal, String).

OPERATION_SLEEP

public static final String OPERATION_SLEEP = "sleep"

Specifies the sleep operation name. The operation can be executed with sleep() method.

Method Detail

getWakeUpInterval

LevelData getWakeUpInterval()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

Returns the current wake up interval. It's a getter method for PROPERTY_WAKE_UP_INTERVAL property. The
device can periodically wake up and receive command based on this interval.

The interval can be measured in different units like hours, minutes, seconds etc. The unit is specified in
LevelData instance.

Returns:
The current wake up interval.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

See Also:
LevelData

OSGi Javadoc -- 1/16/14 Page 120 of 145

Package org.osgi.service.dal.functions.data

setWakeUpInterval

void setWakeUpInterval(BigDecimal interval)
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException,
 IllegalArgumentException

Sets wake up interval according to the default unit. It's a setter method for PROPERTY_WAKE_UP_INTERVAL
property. The device can periodically wake up and receive command based on this interval.

Parameters:
interval - The new wake up interval.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.
IllegalArgumentException - If there is an invalid argument.

setWakeUpInterval

void setWakeUpInterval(BigDecimal interval,
 String unit)
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException,
 IllegalArgumentException

Sets wake up interval according to the specified unit. It's a setter method for PROPERTY_WAKE_UP_INTERVAL
property. The device can periodically wake up and receive command based on this interval.

Parameters:
interval - The new wake up interval.
unit - The interval unit.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.
IllegalArgumentException - If there is an invalid argument.

sleep

void sleep()
 throws UnsupportedOperationException,
 IllegalStateException,
 DeviceException

The device is forced to sleep to minimize the power consumption.

Throws:
UnsupportedOperationException - If the operation is not supported.
IllegalStateException - If this device function service object has already been unregistered.
DeviceException - If an operation error is available.

OSGi Javadoc -- 1/16/14 Page 121 of 145

Class AlarmData

Package org.osgi.service.dal.functions.data

Device Function Data 1.0.

See:
Description

Class Summary Page

AlarmData Device Function alarm data. 123

BooleanData Device Function boolean data wrapper. 129

KeypadData Represents a keypad event data that is collected when a change with some key from
device keypad has occurred.

133

LevelData Device Function level data wrapper. 138

Package org.osgi.service.dal.functions.data Description

Device Function Data 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bundle's manifest.
This package has two types of users: the consumers that use the API in this package and the providers that
implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi.service.dal.functions.data; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.dal.functions.data; version="[1.0,1.1)"

OSGi Javadoc -- 1/16/14 Page 122 of 145

Class BooleanData

Class AlarmData
org.osgi.service.dal.functions.data

java.lang.Object

 org.osgi.service.dal.DeviceFunctionData

 org.osgi.service.dal.functions.data.AlarmData

All Implemented Interfaces:
Comparable

public class AlarmData
extends DeviceFunctionData

Device Function alarm data. It cares about the alarm type, severity, timestamp and additional metadata. It doesn't
support unit. The alarm type is mapped to DeviceFunctionData value.

See Also:
Alarm, DeviceFunctionData

Field Summary Pag
e

static
String

FIELD_SEVERITY

Represents the severity field name.
124

static
String

FIELD_TYPE

Represents the type field name.
124

int severity

Represents the alarm severity.
126

static int SEVERITY_HIGH

The severity rating indicates that there is an alarm with high priority.
126

static int SEVERITY_LOW

The severity rating indicates that there is an alarm with lowest priority.
126

static int SEVERITY_MEDIUM

The severity rating indicates that there is an alarm with medium priority.
126

static int SEVERITY_NONE

The severity constant indicates that there is no severity rating for this alarm.
126

static int SEVERITY_URGENT

The severity rating indicates that there an urgent alarm.
126

int type

Represents the alarm type.
126

static int TYPE_COLD

The alarm type indicates that temperature is too low.
125

static int TYPE_GAS_CO

The alarm type indicates that carbon monoxide is detected.
125

static int TYPE_GAS_CO2

The alarm type indicates that carbon dioxide is detected.
125

static int TYPE_HEAT

The alarm type indicates that temperature is too high.
125

static int TYPE_HW_FAIL

The alarm type indicates that there is hardware failure.
125

static int TYPE_POWER_FAIL

The alarm type indicates a power cut.
125

OSGi Javadoc -- 1/16/14 Page 123 of 145

Class BooleanData

static int TYPE_SMOKE

The alarm type indicates that smoke is detected.
124

static int TYPE_SW_FAIL

The alarm type indicates that there is software failure.
125

static int TYPE_WATER

The alarm type indicates that water leak is detected.
125

Fields inherited from class org.osgi.service.dal.DeviceFunctionData

FIELD_METADATA, FIELD_TIMESTAMP, META_INFO_DESCRIPTION, metadata, timestamp

Constructor Summary Pag
e

AlarmData(Map fields)

Constructs new AlarmData instance with the specified field values.
127

AlarmData(long timestamp, Map metadata, int severity, int type)

Constructs new AlarmData instance with the specified arguments.
127

Method Summary Pag
e

int compareTo(Object o) 128
int getSeverity()

Returns the alarm severity.
128

int getType()

Returns the alarm type.
127

Methods inherited from class org.osgi.service.dal.DeviceFunctionData

equals, getMetadata, getTimestamp, hashCode

Field Detail

FIELD_SEVERITY

public static final String FIELD_SEVERITY = "severity"

Represents the severity field name. The field value is available with severity and getSeverity(). The
field type is int. The constant can be used as a key to AlarmData(Map).

FIELD_TYPE

public static final String FIELD_TYPE = "type"

Represents the type field name. The field value is available with type and getType(). The field type is int.
The constant can be used as a key to AlarmData(Map).

TYPE_SMOKE

public static final int TYPE_SMOKE = 1

The alarm type indicates that smoke is detected.

OSGi Javadoc -- 1/16/14 Page 124 of 145

Class BooleanData

TYPE_HEAT

public static final int TYPE_HEAT = 2

The alarm type indicates that temperature is too high.

TYPE_COLD

public static final int TYPE_COLD = 3

The alarm type indicates that temperature is too low.

TYPE_GAS_CO2

public static final int TYPE_GAS_CO2 = 4

The alarm type indicates that carbon dioxide is detected.

TYPE_GAS_CO

public static final int TYPE_GAS_CO = 5

The alarm type indicates that carbon monoxide is detected.

TYPE_WATER

public static final int TYPE_WATER = 6

The alarm type indicates that water leak is detected.

TYPE_POWER_FAIL

public static final int TYPE_POWER_FAIL = 7

The alarm type indicates a power cut.

TYPE_HW_FAIL

public static final int TYPE_HW_FAIL = 8

The alarm type indicates that there is hardware failure.

TYPE_SW_FAIL

public static final int TYPE_SW_FAIL = 9

The alarm type indicates that there is software failure.

OSGi Javadoc -- 1/16/14 Page 125 of 145

Class BooleanData

SEVERITY_NONE

public static final int SEVERITY_NONE = 0

The severity constant indicates that there is no severity rating for this alarm.

SEVERITY_LOW

public static final int SEVERITY_LOW = 1

The severity rating indicates that there is an alarm with lowest priority.

SEVERITY_MEDIUM

public static final int SEVERITY_MEDIUM = 2

The severity rating indicates that there is an alarm with medium priority. The severity priority is higher than
SEVERITY_LOW and lower than SEVERITY_HIGH.

SEVERITY_HIGH

public static final int SEVERITY_HIGH = 3

The severity rating indicates that there is an alarm with high priority. The severity priority is higher than
SEVERITY_MEDIUM and lower than SEVERITY_URGENT.

SEVERITY_URGENT

public static final int SEVERITY_URGENT = 4

The severity rating indicates that there an urgent alarm. That severity has highest priority.

severity

public final int severity

Represents the alarm severity. The field is accessible with getSeverity() getter. The vendor can define
own alarm severity ratings with negative values.

type

public final int type

Represents the alarm type. The field is accessible with getType() getter. The vendor can define own
alarm types with negative values.

OSGi Javadoc -- 1/16/14 Page 126 of 145

Class BooleanData

Constructor Detail

AlarmData

public AlarmData(Map fields)

Constructs new AlarmData instance with the specified field values. The map keys must match to the field
names. The map values will be assigned to the appropriate class fields. For example, the maps can be:
{"severity"=Integer(1)...}. That map will initialize the FIELD_SEVERITY field with 1. If severity is missing,
SEVERITY_NONE is used.

FIELD_SEVERITY field value type must be Integer. FIELD_TYPE field value type must be Integer.

Parameters:
fields - Contains the new AlarmData instance field values.

Throws:
ClassCastException - If the field value types are not expected.
IllegalArgumentException - If the alarm type is missing.
NullPointerException - If the fields map is null.

AlarmData

public AlarmData(long timestamp,
 Map metadata,
 int severity,
 int type)

Constructs new AlarmData instance with the specified arguments.

Parameters:
timestamp - The alarm data timestamp.
metadata - The alarm data metadata.
severity - The alarm data severity.
type - The alarm data type.

Method Detail

getType

public int getType()

Returns the alarm type. The type can be one of the predefined:

 TYPE_SMOKE

 TYPE_HEAT
 TYPE_COLD

 TYPE_GAS_CO
 TYPE_GAS_CO2

 TYPE_WATER
 TYPE_POWER_FAIL

 TYPE_HW_FAIL
 TYPE_SW_FAIL

The vendor can define own alarm types with negative values.

OSGi Javadoc -- 1/16/14 Page 127 of 145

Class BooleanData

Returns:
The alarm type.

getSeverity

public int getSeverity()

Returns the alarm severity.

Returns:
The alarm severity.

compareTo

public int compareTo(Object o)

Specified by:
compareTo in interface Comparable

OSGi Javadoc -- 1/16/14 Page 128 of 145

Class KeypadData

Class BooleanData
org.osgi.service.dal.functions.data

java.lang.Object

 org.osgi.service.dal.DeviceFunctionData

 org.osgi.service.dal.functions.data.BooleanData

All Implemented Interfaces:
Comparable

public class BooleanData
extends DeviceFunctionData

Device Function boolean data wrapper. It can contain a boolean value, timestamp and additional metadata. It
doesn't support measurement unit.

See Also:
BooleanControl, BooleanSensor, DeviceFunctionData

Field Summary Pag
e

static
String

FIELD_VALUE

Represents the value field name.
130

boolean value

Represents the boolean value.
130

Fields inherited from class org.osgi.service.dal.DeviceFunctionData

FIELD_METADATA, FIELD_TIMESTAMP, META_INFO_DESCRIPTION, metadata, timestamp

Constructor Summary Pag
e

BooleanData(Map fields)

Constructs new BooleanData instance with the specified field values.
130

BooleanData(long timestamp, Map metadata, boolean value)

Constructs new BooleanData instance with the specified arguments.
130

Method Summary Pag
e

int compareTo(Object o)

Compares this BooleanData instance with the given argument.
131

boolean equals(Object other)

Two BooleanData instances are equal if they contain equal metadata, timestamp and
boolean value.

131

boolean getValue()

Returns BooleanData value.
130

int hashCode()

Returns the hash code for this BooleanData object.
131

Methods inherited from class org.osgi.service.dal.DeviceFunctionData

getMetadata, getTimestamp

OSGi Javadoc -- 1/16/14 Page 129 of 145

Class KeypadData

Field Detail

FIELD_VALUE

public static final String FIELD_VALUE = "value"

Represents the value field name. The field value is available with value and getValue(). The field type is
boolean. The constant can be used as a key to BooleanData(Map).

value

public final boolean value

Represents the boolean value. The field is accessible with getValue() getter.

Constructor Detail

BooleanData

public BooleanData(Map fields)

Constructs new BooleanData instance with the specified field values. The map keys must match to the
field names. The map values will be assigned to the appropriate class fields. For example, the maps can
be: {"value"=Boolean(true)...}. That map will initialize the FIELD_VALUE field with true.

FIELD_VALUE field value type must be Boolean.

Parameters:
fields - Contains the new BooleanData instance field values.

Throws:
ClassCastException - If the field value types are not expected.
IllegalArgumentException - If the value is missing.
NullPointerException - If the fields map is null.

BooleanData

public BooleanData(long timestamp,
 Map metadata,
 boolean value)

Constructs new BooleanData instance with the specified arguments.

Parameters:
timestamp - The boolean data timestamp.
metadata - The boolean data metadata.
value - The boolean value.

Method Detail

getValue

public boolean getValue()

OSGi Javadoc -- 1/16/14 Page 130 of 145

Class KeypadData

Returns BooleanData value.

Returns:
BooleanData value.

equals

public boolean equals(Object other)

Two BooleanData instances are equal if they contain equal metadata, timestamp and boolean value.

Overrides:
equals in class DeviceFunctionData

Parameters:
other - The object to compare this data.

Returns:
true if this object is equivalent to the specified one.

See Also:
DeviceFunctionData.equals(java.lang.Object)

hashCode

public int hashCode()

Returns the hash code for this BooleanData object. The hash code is a sum of
DeviceFunctionData.hashCode() and Boolean.hashCode(), where Boolean.hashCode() represents
the boolean value hash code.

Overrides:
hashCode in class DeviceFunctionData

Returns:
The hash code of this BooleanData object.

See Also:
DeviceFunctionData.hashCode()

compareTo

public int compareTo(Object o)

Compares this BooleanData instance with the given argument. The argument can be:

 Boolean - the method returns 0 if this instance contains equivalent boolean value. -1 if this
instance contains false and the argument is true. 1 if this instance contains true and the
argument is false.

 BooleanData - the method returns -1 if metadata or timestamp are not equivalent. Otherwise, the
boolean value is compared with the same rules as Boolean argument.

 Map - the map must be built according the rules of BooleanData(Map). Metadata, timestamp and
value are compared according BooleanData and Boolean argument rules.

Specified by:
compareTo in interface Comparable

Parameters:
o - An argument to be compared.

OSGi Javadoc -- 1/16/14 Page 131 of 145

Class KeypadData

Returns:
-1, 0 or 1 depending on the comparison rules.

Throws:
ClassCastException - If the method is called with Map and field value types are not expected.
IllegalArgumentException - If the method is called with Map and the value is missing.
NullPointerException - If the argument is null.

See Also:
Comparable.compareTo(java.lang.Object)

OSGi Javadoc -- 1/16/14 Page 132 of 145

Class LevelData

Class KeypadData
org.osgi.service.dal.functions.data

java.lang.Object

 org.osgi.service.dal.DeviceFunctionData

 org.osgi.service.dal.functions.data.KeypadData

All Implemented Interfaces:
Comparable

public class KeypadData
extends DeviceFunctionData

Represents a keypad event data that is collected when a change with some key from device keypad has occurred.
The key code is mapped to DeviceFunctionData value.

See Also:
Keypad, DeviceFunctionData

Field Summary Pag
e

static int EVENT_TYPE_PRESSED

Represents a keypad event type for a key pressed.
135

static int EVENT_TYPE_PRESSED_DOUBLE

Represents a keypad event type for a double key pressed.
135

static int EVENT_TYPE_PRESSED_DOUBLE_LONG

Represents a keypad event type for a double and long key pressed.
135

static int EVENT_TYPE_PRESSED_LONG

Represents a keypad event type for a long key pressed.
135

static int EVENT_TYPE_RELEASED

Represents a keypad event type for a key released.
135

static int EVENT_TYPE_UNKNOWN

Represents an unknown keypad event type.
134

int eventType

Represents the keypad event type.
135

static
String

FIELD_EVENT_TYPE

Represents the event type field name.
134

static
String

FIELD_KEY_CODE

Represents the key code field name.
134

static
String

FIELD_KEY_NAME

Represents the key name field name.
134

int keyCode

Represents the key code.
135

String keyName

Represents the key name, if it's available.
135

Fields inherited from class org.osgi.service.dal.DeviceFunctionData

FIELD_METADATA, FIELD_TIMESTAMP, META_INFO_DESCRIPTION, metadata, timestamp

OSGi Javadoc -- 1/16/14 Page 133 of 145

Class LevelData

Constructor Summary Pag
e

KeypadData(Map fields)

Constructs new KeypadData instance with the specified field values.
136

KeypadData(long timestamp, Map metadata, int eventType, int keyCode, String keyName)

Constructs new KeypadData instance with the specified arguments.
136

Method Summary Pag
e

int compareTo(Object o) 137
int getEventType()

Returns the event type.
136

int getKeyCode()

The code of the key.
136

String getKeyName()

Represents a human readable name of the corresponding key code.
137

Methods inherited from class org.osgi.service.dal.DeviceFunctionData

equals, getMetadata, getTimestamp, hashCode

Field Detail

FIELD_KEY_NAME

public static final String FIELD_KEY_NAME = "keyName"

Represents the key name field name. The field value is available with keyName and getKeyName(). The
field type is String. The constant can be used as a key to KeypadData(Map).

FIELD_EVENT_TYPE

public static final String FIELD_EVENT_TYPE = "eventType"

Represents the event type field name. The field value is available with eventType and getEventType().
The field type is int. The constant can be used as a key to KeypadData(Map).

FIELD_KEY_CODE

public static final String FIELD_KEY_CODE = "keyCode"

Represents the key code field name. The field value is available with keyCode and getKeyCode(). The field
type is int. The constant can be used as a key to KeypadData(Map).

EVENT_TYPE_UNKNOWN

public static final int EVENT_TYPE_UNKNOWN = 0

Represents an unknown keypad event type.

OSGi Javadoc -- 1/16/14 Page 134 of 145

Class LevelData

EVENT_TYPE_PRESSED

public static final int EVENT_TYPE_PRESSED = 1

Represents a keypad event type for a key pressed.

EVENT_TYPE_PRESSED_LONG

public static final int EVENT_TYPE_PRESSED_LONG = 2

Represents a keypad event type for a long key pressed.

EVENT_TYPE_PRESSED_DOUBLE

public static final int EVENT_TYPE_PRESSED_DOUBLE = 3

Represents a keypad event type for a double key pressed.

EVENT_TYPE_PRESSED_DOUBLE_LONG

public static final int EVENT_TYPE_PRESSED_DOUBLE_LONG = 4

Represents a keypad event type for a double and long key pressed.

EVENT_TYPE_RELEASED

public static final int EVENT_TYPE_RELEASED = 5

Represents a keypad event type for a key released.

eventType

public final int eventType

Represents the keypad event type. The vendor can define own event types with negative values. The field
is accessible with getEventType() getter.

keyName

public final String keyName

Represents the key name, if it's available. The field is accessible with getKeyName() getter.

keyCode

public final int keyCode

Represents the key code. This field is mandatory and it holds the semantics(meaning) of the key. The field
is accessible with getKeyCode() getter.

OSGi Javadoc -- 1/16/14 Page 135 of 145

Class LevelData

Constructor Detail

KeypadData

public KeypadData(Map fields)

Constructs new KeypadData instance with the specified field values. The map keys must match to the field
names. The map values will be assigned to the appropriate class fields. For example, the maps can be:
{"eventType"=Integer(1)...}. That map will initialize the FIELD_EVENT_TYPE field with 1.

FIELD_EVENT_TYPE field value type must be Integer. FIELD_KEY_CODE field value type must be Integer.
FIELD_KEY_NAME field value type must be String.

Parameters:
fields - Contains the new KeypadData instance field values.

Throws:
ClassCastException - If the field value types are not expected.
IllegalArgumentException - If the event type or key code is missing.
NullPointerException - If the fields map is null.

KeypadData

public KeypadData(long timestamp,
 Map metadata,
 int eventType,
 int keyCode,
 String keyName)

Constructs new KeypadData instance with the specified arguments.

Parameters:
timestamp - The data timestamp.
metadata - The data metadata.
eventType - The data event type.
keyCode - The data key code.
keyName - The data key name.

Method Detail

getEventType

public int getEventType()

Returns the event type. The vendor can define own event types with negative values.

Returns:
The event type.

getKeyCode

public int getKeyCode()

The code of the key. This field is mandatory and it holds the semantics(meaning) of the key.

OSGi Javadoc -- 1/16/14 Page 136 of 145

Class LevelData

Returns:
The key code.

getKeyName

public String getKeyName()

Represents a human readable name of the corresponding key code. This field is optional and sometimes it
could be missed(might be null).

Returns:
A string with the name of the key or null if not specified.

compareTo

public int compareTo(Object o)

Specified by:
compareTo in interface Comparable

OSGi Javadoc -- 1/16/14 Page 137 of 145

Class LevelData

Class LevelData
org.osgi.service.dal.functions.data

java.lang.Object

 org.osgi.service.dal.DeviceFunctionData

 org.osgi.service.dal.functions.data.LevelData

All Implemented Interfaces:
Comparable

public class LevelData
extends DeviceFunctionData

Device Function level data wrapper. It supports all properties defined in DeviceFunctionData.

See Also:
MultiLevelControl, MultiLevelSensor, Meter, DeviceFunctionData

Field Summary Pag
e

static
String

FIELD_LEVEL

Represents the level field name.
139

static
String

FIELD_UNIT

Represents the unit field name.
139

BigDecimal level

Represents the current level.
139

String unit

Represent the unit as it's defined in PropertyMetadata.UNITS.
139

Fields inherited from class org.osgi.service.dal.DeviceFunctionData

FIELD_METADATA, FIELD_TIMESTAMP, META_INFO_DESCRIPTION, metadata, timestamp

Constructor Summary Pag
e

LevelData(Map fields)

Constructs new LevelData instance with the specified field values.
139

LevelData(long timestamp, Map metadata, String unit, BigDecimal level)

Constructs new LevelData instance with the specified arguments.
140

Method Summary Pag
e

int compareTo(Object o)

Compares this LevelData instance with the given argument.
141

boolean equals(Object other)

Two LevelData instances are equal if they contain equal metadata, timestamp, unit and
level.

140

BigDecimal getLevel()

Returns LevelData value.
140

String getUnit()

Returns LevelData unit as it's specified in PropertyMetadata.UNITS or null if the unit is
missing.

140

OSGi Javadoc -- 1/30/14 Page 138 of 145

Class LevelData

int hashCode()

Returns the hash code for this LevelData object.
141

Methods inherited from class org.osgi.service.dal.DeviceFunctionData

getMetadata, getTimestamp

Field Detail

FIELD_LEVEL

public static final String FIELD_LEVEL = "level"

Represents the level field name. The field value is available with level and getLevel(). The field type is
BigDecimal. The constant can be used as a key to LevelData(Map).

FIELD_UNIT

public static final String FIELD_UNIT = "unit"

Represents the unit field name. The field value is available with unit and getUnit(). The field type is
String. The constant can be used as a key to LevelData(Map).

unit

public final String unit

Represent the unit as it's defined in PropertyMetadata.UNITS. The field is optional. The field is accessible
with getUnit() getter.

level

public final BigDecimal level

Represents the current level. It's mandatory field. The field is accessible with getLevel() getter.

Constructor Detail

LevelData

public LevelData(Map fields)

Constructs new LevelData instance with the specified field values. The map keys must match to the field
names. The map values will be assigned to the appropriate class fields. For example, the maps can be:
{"level"=BigDecimal(1)...}. That map will initialize the FIELD_LEVEL field with 1.

FIELD_UNIT field value type must be String. FIELD_LEVEL field value type must be BigDecimal.

Parameters:
fields - Contains the new LevelData instance field values.

Throws:
ClassCastException - If the field value types are not expected.
IllegalArgumentException - If the level is missing.

OSGi Javadoc -- 1/30/14 Page 139 of 145

Class LevelData

NullPointerException - If the fields map is null.

LevelData

public LevelData(long timestamp,
 Map metadata,
 String unit,
 BigDecimal level)

Constructs new LevelData instance with the specified arguments.

Parameters:
timestamp - The data timestamp.
metadata - The data metadata.
unit - The data unit.
level - The level value.

Method Detail

getLevel

public BigDecimal getLevel()

Returns LevelData value. The value type is BigDecimal instead of double to guarantee value accuracy.

Returns:
The LevelData value.

getUnit

public String getUnit()

Returns LevelData unit as it's specified in PropertyMetadata.UNITS or null if the unit is missing.

Returns:
The value unit or null if the unit is missing.

equals

public boolean equals(Object other)

Two LevelData instances are equal if they contain equal metadata, timestamp, unit and level.

Overrides:
equals in class DeviceFunctionData

Parameters:
other - The object to compare this data.

Returns:
true if this object is equivalent to the specified one.

See Also:
DeviceFunctionData.equals(java.lang.Object)

OSGi Javadoc -- 1/30/14 Page 140 of 145

Class LevelData

hashCode

public int hashCode()

Returns the hash code for this LevelData object. The hash code is a sum of
DeviceFunctionData.hashCode(), String.hashCode() and BigDecimal.hashCode(), where
String.hashCode() represents the unit hash code and BigDecimal.hashCode() represents the level
hash code.

Overrides:
hashCode in class DeviceFunctionData

Returns:
The hash code of this LevelData object.

See Also:
DeviceFunctionData.hashCode()

compareTo

public int compareTo(Object o)

Compares this LevelData instance with the given argument. The argument can be:

 BigDecimal - the method returns the result of BigDecimal.compareTo(Object) for this instance
level and the specified argument.

 LevelData - the method returns -1 if metadata, timestamp or unit are not equivalent. Otherwise,
the level is compared with the same rules as BigDecimal argument.

 Map - the map must be built according the rules of LevelData(Map). Metadata, timestamp, unit and
level are compared according BigDecimal and LevelData argument rules.

Specified by:
compareTo in interface Comparable

Parameters:
o - An argument to be compared.

Returns:
-1, 0 or 1 depending on the comparison rules.

Throws:
ClassCastException - If the method is called with Map and the field value types are not expected.
IllegalArgumentException - If the method is called with Map and the level is missing.
NullPointerException - If the argument is null.

See Also:
Comparable.compareTo(java.lang.Object)

Java API documentation generated with DocFlex/Doclet v1.5.6

DocFlex/Doclet is both a multi-format Javadoc doclet and a free edition of DocFlex/Javadoc. If you need to customize your Javadoc without
writing a full-blown doclet from scratch, DocFlex/Javadoc may be the only tool able to help you! Find out more at www.docflex.com

OSGi Javadoc -- 1/30/14 Page 141 of 145

http://www.docflex.com/
http://www.filigris.com/products/docflex_javadoc/
http://www.filigris.com/products/docflex_javadoc/#docflex-doclet

Device Abstraction Layer Page 142 of 145

Draft January 30, 2014

8 Considered Alternatives

8.1 Use Configuration Admin to update the Device service properties
OSGi service properties are used to represent the Device service properties. The properties can be updated with
the help of org.osgi.framework.ServiceRegistration.setProperties(Dictionary) method. The
service registration is intended for a private usage and should not be shared between the bundles.

The current design provides set methods, which can be used when an external application wants to modify the
Device service properties. It's simple and a part of Device interface. We have to define a new permission check,
because there is no such protection to org.osgi.framework.ServiceRegistration.setProperties
method.

Considered alternative was about property update based on configuration update in the Configuration Admin
service. The Device service properties can be updated when the corresponding configuration properties are
updated. The disadvantages here are:

• Device properties duplication – they are stored in the device configuration and in the Device service
properties.

• Possible performance issue when a lot of devices are used.

8.2 DeviceAdmin interface availability
DeviceAdmin service was removed from the current RFC document. That management functionality can be
provided by a different specification document. That considered alternative is kept for completeness.

DeviceAdmin service can simplify the device service registration. It hides the implementation details i.e. realize
program to an interface rather than to an implementation.

The considered alternative is not to use that interface and to register the Device service implementation to the
OSGi service registry. Here are two code snippets, which demonstrates positives and negatives:

1. Without DeviceAdmin

Map ipCameraProps = new HashMap(3, 1F);

ipCameraProps.put("IP.Camera.Address", "192.168.0.21");

ipCameraProps.put("IP.Camera.Username", "test");

ipCameraProps.put("IP.Camera.Password", "test");

//WARNING - an access to implementation class, which should be bundle private

IPCameraDeviceImpl ipCameraImpl = new IPCameraDeviceImpl(ipCameraProps);

ipCameraImpl.register(bundleContext);

// play the video stream...

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 143 of 145

Draft January 30, 2014

// remove the device

ipCameraImpl.unregister();

That snippet demonstrate program to implementation rather than an interface, which break basic OOP
rule.

2. With DeviceAdmin

Map ipCameraProps = new HashMap(3, 1F);

ipCameraProps.put("IP.Camera.Address", "192.168.0.21");

ipCameraProps.put("IP.Camera.Username", "test");

ipCameraProps.put("IP.Camera.Password", "test");

DeviceAdmin ipCameraDeviceAdmin = getIPCameraDeviceAdmin();

Device ipCamera = ipCameraDeviceAdmin.add(ipCameraProps);

// play the device video stream

// remove the device

ipCamera.remove();

It demonstrate program to interface rather than an implementation, which is the correct approach.

8.3 Access helper methods removal of FunctionalDevice
org.osgi.service.functionaldevice.FunctionalDevice.getChildren(),
org.osgi.service.functionaldevice.FunctionalDevice.getParent() and
org.osgi.service.functionaldevice.FunctionalDevice.getReferences() were removed, because they provided
access to the FunctionalDevice services outside the OSGi service registry. It can be problematic in various
scenarios like:

• The service Find Hook can be ignored.

• No service unget is possible for such shared service instances.

• The dependency tools based on the service registry cannot track such sharings.

9 Security Considerations

9.1 Device Permission
The device permission controls the bundle's authority to perform specific privileged administrative operations on
the devices. The action for this permission is:

Action Method

ACTION_REMOVE
Device.remove()

Copyright © OSGi Alliance 2014 All Rights Reserved

Device Abstraction Layer Page 144 of 145

Draft January 30, 2014

 The name of the permission is a filter based. For more details about filter based permissions, see OSGi Core
Specification, Filter Based Permissions. The filter provides an access to all device service properties. The service
property names are case insensitive. The filter attribute names are processed in a case insensitive manner. For
example, the operator can give a bundle the permission to only manage devices of vendor “acme”:

org.osgi.service.dal.DevicePermission(“dal.device.hardware.vendor=acme”, …)

The permission action allows the operator to assign only the necessary permissions to the bundle. For example,
the management bundle can have permission to remove all registered devices:

org.osgi.service.dal.DevicePermission(“*”, “remove”)

The code that needs to check the device permission must always use the constructor that takes the device as a
parameter DevicePermission(Device, String) with a single action. For example, the implementation of
org.osgi.service.dal.Device.remove() method must check that the caller has an access to the
operation:

public class DeviceImpl implements Device {

 public void start() {

 securityManager.checkPermission(new DevicePermission(this, “remove”));

 }

}

9.2 Required Permissions
The Functional Device implementation must check the caller for the appropriate Functional Device Permission
before execution of the real operation actions like remove. Once the Functional Device Permission is checked
against the caller the implementation will proceed with the actual operation. The operation can require a number
of other permissions to complete. The implementation must isolate the caller from such permission checks by use
of proper privileged blocks.

10 Document Support

10.1 References
[1]. Bradner, S., Key words for use in RFCs to Indicate Requirement Levels, RFC2119, March 1997.

[2]. Software Requirements & Specifications. Michael Jackson. ISBN 0-201-87712-0

[3]. JavaBeans Spec, http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

[4]. Unicode Standard Annex #15, Unicode Normalization Forms

Copyright © OSGi Alliance 2014 All Rights Reserved

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Device Abstraction Layer Page 145 of 145

Draft January 30, 2014

10.2 Author’s Address

Name Evgeni Grigorov

Company ProSyst Software

Address Aachenerstr. 222, 50935 Cologne, Germany

Voice +49 221 6604 501

e-mail e.grigorov@prosyst.com

10.3 Acronyms and Abbreviations

Item Description

Device Abstraction
Layer

Unifies the work with devices provided by different protocols.

Device Abstraction
API

Unified API for management of devices provided by different protocols.

Device Abstraction
Adapter

Examples for such adapters are ZigBee Adapter, Z-Wave Adapter etc. Provides support
for a particular device protocol to Device Abstraction Layer. The adapter integrates the
protocol specific driver devices.

10.4 End of Document

Copyright © OSGi Alliance 2014 All Rights Reserved

	0 Document Information
	0.1 License
	0.2 Trademarks
	0.3 Feedback
	0.4 Table of Contents
	0.5 Terminology and Document Conventions
	0.6 Revision History

	1 Introduction
	2 Application Domain
	3 Problem Description
	4 Requirements
	5 Technical Solution
	5.1 Introduction
	5.1.1 Entities

	5.2 Device Access Category
	5.3 Device Service
	5.3.1 Reference Device Services
	5.3.2 Device Service Registration
	5.3.3 Device Service Unregistration

	5.4 Device Status Transitions
	5.4.1 Transitions to STATUS_REMOVED
	5.4.2 Transitions to and from STATUS_OFFLINE
	5.4.3 Transitions to and from STATUS_ONLINE
	5.4.4 Transitions to and from STATUS_PROCESSING
	5.4.5 Transitions to and from STATUS_NOT_INITIALIZED
	5.4.6 Transitions to and from STATUS_NOT_CONFIGURED

	5.5 Device Functions
	5.5.1 Device Function Interface
	5.5.2 Device Function Operations
	5.5.3 Device Function Properties
	5.5.4 Device Function Property Event

	5.6 Basic Device Functions
	5.6.1 BooleanControl Device Function
	5.6.2 BooleanSensor Device Function
	5.6.3 MultiLevelControl Device Function
	5.6.4 MultiLevelSensor Device Function
	5.6.5 Meter Device Function
	5.6.6 Alarm Device Function
	5.6.7 Keypad Device Function
	5.6.8 WakeUp Device Function

	6 Data Transfer Objects
	7 Javadoc
	8 Considered Alternatives
	8.1 Use Configuration Admin to update the Device service properties
	8.2 DeviceAdmin interface availability
	8.3 Access helper methods removal of FunctionalDevice

	9 Security Considerations
	9.1 Device Permission
	9.2 Required Permissions

	10 Document Support
	10.1 References
	10.2 Author’s Address
	10.3 Acronyms and Abbreviations
	10.4 End of Document

