
Overture Technical Report Series
No. TR-001

May 2020

VDM-10 Language Manual

by

Peter Gorm Larsen
Kenneth Lausdahl

Nick Battle
John Fitzgerald

Sune Wolff
Shin Sahara

Marcel Verhoef
Peter W. V. Tran-Jørgensen

Tomohiro Oda
Paul Chisholm

Overture – Open-source Tools for Formal Modelling

VDM-10 Language Manual
Document history
Month Year Version Version of Overture.exe Comment
April 2010 0.2
May 2010 1 0.2
February 2011 2 1.0.0
July 2012 3 1.2.2
April 2013 4 2.0.0
March 2014 5 2.0.4 Includes RMs #16, #17, #18, #20
November 2014 6 2.1.2 Includes RMs #25, #26, #29
August 2015 7 2.3.0 Includes RMs #27
April 2016 8 2.3.4 Review inputs from Paul Chisholm
September 2016 9 2.4.0 RMs #35, #36
May 2017 10 2.5.0 RM #39
Feb 2018 11 2.6.0 Includes RM #42
May 2020 12 2.7.4 Includes RM #44,#47,#48
July 2021 13 3.0.2 Includes RC #52

ii

Contents

1 Introduction 1
1.1 The VDM Specification Language (VDM-SL) 1
1.2 The VDM++ Language . 1
1.3 The VDM Real Time Language (VDM-RT) 2
1.4 Purpose of The Document . 2
1.5 Structure of the Document . 2

2 Concrete Syntax Notation 3

3 Data Type Definitions 5
3.1 Basic Data Types . 5

3.1.1 The Boolean Type . 6
3.1.2 The Numeric Types . 8
3.1.3 The Character Type . 11
3.1.4 The Quote Type . 11
3.1.5 The Token Type . 12

3.2 Compound Types . 13
3.2.1 Set Types . 13
3.2.2 Sequence Types . 16
3.2.3 Map Types . 18
3.2.4 Product Types . 22
3.2.5 Composite Types . 23
3.2.6 Union and Optional Types . 26
3.2.7 The Object Reference Type (VDM++ and VDM-RT) 28
3.2.8 Function Types . 29

3.3 Invariants . 31
3.4 Equality . 32
3.5 Order . 35

4 Algorithm Definitions 39

iii

VDM-10 Language Manual

5 Function Definitions 41
5.1 Polymorphic Functions . 47
5.2 Higher Order Functions . 49

6 Expressions 51
6.1 Let Expressions . 51
6.2 The Define Expression . 54
6.3 Unary and Binary Expressions . 55
6.4 Conditional Expressions . 56
6.5 Quantified Expressions . 59
6.6 The Iota Expression . 61
6.7 Set Expressions . 61
6.8 Sequence Expressions . 63
6.9 Map Expressions . 65
6.10 Tuple Constructor Expressions . 66
6.11 Record Expressions . 66
6.12 Apply Expressions . 68
6.13 The New Expression (VDM++ and VDM-RT) 69
6.14 The Self Expression (VDM++ and VDM-RT) 70
6.15 The Threadid Expression (VDM++ and VDM-RT) 71
6.16 The Lambda Expression . 73
6.17 Narrow Expressions . 74
6.18 Is Expressions . 76
6.19 Base Class Membership (VDM++ and VDM-RT) 77
6.20 Class Membership . 77
6.21 Same Base Class Membership (VDM++ and VDM-RT) 78
6.22 Same Class Membership (VDM++ and VDM-RT) 78
6.23 History Expressions (VDM++ and VDM-RT) 79
6.24 The Time Expression (VDM-RT) . 80
6.25 Literals and Names . 81
6.26 The Undefined Expression . 83
6.27 The Precondition Expression . 84

7 Patterns 87
7.1 Object Pattern (VDM++ and VDM-RT) . 92

8 Bindings 95

9 Value (Constant) Definitions 97

10 Declaration of Modifiable State Components 99
10.1 Instance Variables (VDM++ and VDM-RT) 99
10.2 The State Definition (VDM-SL) . 101

iv

CONTENTS

11 Operation Definitions 103
11.1 Constructors (VDM++ and VDM-RT) . 110

12 Statements 111
12.1 Let Statements . 111
12.2 The Define Statement . 113
12.3 The Block Statement . 114
12.4 The Assignment Statement . 115
12.5 Conditional Statements . 119
12.6 For-Loop Statements . 121
12.7 The While-Loop Statement . 123
12.8 The Nondeterministic Statement . 124
12.9 The Call Statement . 126
12.10The Return Statement . 129
12.11Exception Handling Statements . 129
12.12The Error Statement . 133
12.13The Identity Statement . 133
12.14Start and Start List Statements (VDM++ and VDM-RT) 134
12.15Stop and Stop List Statements (VDM++ and VDM-RT) 136
12.16The Specification Statement . 136
12.17The Duration Statement (VDM-RT) . 137
12.18The Cycles Statement (VDM-RT) . 139

13 Top-level Specification in VDM 141
13.1 Top-level Specification in VDM-SL . 141

13.1.1 A Flat Specification . 141
13.1.2 A Structured Specification . 143

13.2 Top-level Specification in VDM++ and VDM-RT 150
13.3 System (VDM-RT) . 150

13.3.1 Classes . 153
13.3.2 Inheritance . 155
13.3.3 Interface and Availability of Class Members 158

14 Synchronization Constraints (VDM++ and VDM-RT) 163
14.1 Permission Predicates . 164

14.1.1 History guards . 166
14.1.2 The object state guard . 166
14.1.3 Queue condition guards . 167
14.1.4 Evaluation of Guards . 168

14.2 Inheritance of Synchronization Constraints 169
14.2.1 Mutex constraints . 169

v

VDM-10 Language Manual

15 Threads (VDM++ and VDM-RT) 171
15.1 Periodic Thread Definitions (VDM-RT) . 171
15.2 Sporadic Thread Definitions (VDM-RT) . 174
15.3 Procedural Thread Definitions (VDM++ and VDM-RT) 175

16 Trace Definitions 179

A The Syntax of the VDM Languages 183
A.1 VDM-SL Document . 183

A.1.1 Modules . 183
A.2 VDM++ and VDM-RT Document . 185
A.3 System (VDM-RT) . 185

A.3.1 Classes . 185
A.4 Definitions . 185

A.4.1 Type Definitions . 185
A.4.2 The VDM-SL State Definition . 187
A.4.3 Value Definitions . 188
A.4.4 Function Definitions . 188
A.4.5 Operation Definitions . 189
A.4.6 Instance Variable Definitions (VDM++ and VDM-RT) 190
A.4.7 Synchronization Definitions (VDM++ and VDM-RT) 191
A.4.8 Thread Definitions (VDM++ and VDM-RT) 191
A.4.9 Trace Definitions . 191

A.5 Expressions . 192
A.5.1 Bracketed Expressions . 193
A.5.2 Local Binding Expressions . 194
A.5.3 Conditional Expressions . 194
A.5.4 Unary Expressions . 194
A.5.5 Binary Expressions . 196
A.5.6 Quantified Expressions . 198
A.5.7 The Iota Expression . 198
A.5.8 Set Expressions . 198
A.5.9 Sequence Expressions . 198
A.5.10 Map Expressions . 198
A.5.11 The Tuple Constructor Expression 199
A.5.12 Record Expressions . 199
A.5.13 Apply Expressions . 199
A.5.14 The Lambda Expression . 199
A.5.15 The narrow Expression . 199
A.5.16 The New Expression (VDM++ and VDM-RT) 199
A.5.17 The Self Expression (VDM++ and VDM-RT) 199
A.5.18 The Threadid Expression (VDM++ and VDM-RT) 199

vi

CONTENTS

A.5.19 The Is Expression . 200
A.5.20 The Undefined Expression . 200
A.5.21 The Precondition Expression . 200
A.5.22 Base Class Membership (VDM++ and VDM-RT) 200
A.5.23 Class Membership (VDM++ and VDM-RT) 200
A.5.24 Same Base Class Membership (VDM++ and VDM-RT) 200
A.5.25 Same Class Membership (VDM++ and VDM-RT) 200
A.5.26 History Expressions (VDM++ and VDM-RT) 200
A.5.27 Time Expressions (VDM-RT) . 201
A.5.28 Names . 201

A.6 State Designators . 201
A.7 Statements . 201

A.7.1 Local Binding Statements . 202
A.7.2 Block and Assignment Statements 202
A.7.3 Conditional Statements . 203
A.7.4 Loop Statements . 203
A.7.5 The Nondeterministic Statement . 203
A.7.6 Call and Return Statements . 203
A.7.7 The Specification Statement . 204
A.7.8 Start and Start List Statements (VDM++ and VDM-RT) 204
A.7.9 Stop and Stop List Statements (VDM++ and VDM-RT) 204
A.7.10 The Duration and Cycles Statements (VDM-RT) 204
A.7.11 Exception Handling Statements . 205
A.7.12 The Error Statement . 205
A.7.13 The Identity Statement . 205

A.8 Patterns and Bindings . 205
A.8.1 Patterns . 205
A.8.2 Bindings . 206

B Lexical Specification 207
B.1 Characters . 207
B.2 Symbols . 209

C Operator Precedence 213
C.1 The Family of Combinators . 214
C.2 The Family of Applicators . 214
C.3 The Family of Evaluators . 214
C.4 The Family of Relations . 216
C.5 The Family of Connectives . 216
C.6 The Family of Constructors . 217
C.7 Grouping . 217
C.8 The Type Operators . 217

vii

VDM-10 Language Manual

D Differences between the Concrete Syntaxes 219

viii

CONTENTS

ix

Chapter 1

Introduction

The Vienna Development Method (VDM) [?, ?, ?] was originally developed at the IBM
laboratories in Vienna in the 1970’s and as such it is one of the longest established formal
methods. This document is a common language manual for the three dialects for VDM-SL,
VDM++ and VDM-RT in the VDM-10 commonly agreed language revision. These dialects
are supported by both VDMTools (minus VDM-RT) [?] (in the appropriate version) as well
as in the Overture open source tool [?] built on top of the Eclipse platform. Whenever a
construct is common to the three different dialects the term “VDM languages” will be used.
Whenever a construct is specific to a subset of the VDM languages the specific dialect term
mentioned above will be mentioned explicitly.

1.1 The VDM Specification Language (VDM-SL)
The syntax and semantics of the VDM-SL language is essentially the standard ISO/VDM-SL
[?] with a modular extension1. Notice that all syntactically correct VDM-SL specifications
are also correct in VDM-SL. Even though we have tried to present the language in a clear
and understandable way the document is not a complete VDM-SL reference manual. For a
more thorough presentation of the language we refer to the existing literature2. Wherever
the VDM-SL notation differs from the VDM-SL standard notation the semantics will of
course be carefully explained.

1.2 The VDM++ Language
VDM++ is a formal specification language intended to specify object oriented systems with
parallel and real-time behaviour, typically in technical environments [?]. The language is
based on VDM-SL [?], and has been extended with class and object concepts, which are also

1A few other extensions are also included.
2A more tutorial like presentation is given in [?, ?] whereas proofs in VDM-SL are treated best in [?] and [?].

1

VDM-10 Language Manual

present in languages like Smalltalk-80 and Java. This combination facilitates the develop-
ment of object oriented formal specifications.

1.3 The VDM Real Time Language (VDM-RT)
The VDM-RT language (formerly called VICE as an acronym for “VDM++ In Constrained
Environments”) is used to appropriately model and analyse Real-Time embedded and dis-
tributed systems [?, ?, ?, ?, ?]. Thus VDM-RT is an extension of the VDM++ language.

1.4 Purpose of The Document
This document is the language reference manual for all the VDM-10 dialects. The syntax
of VDM language constructs is defined using grammar rules. The meaning of each language
construct is explained in an informal manner and some small examples are given. The
description is supposed to be suited for ‘looking up’ information rather than for ‘sequential
reading’; it is a manual rather than a tutorial. The reader is expected be familiar with the
concepts of object oriented programming/design.

We will use the ASCII (also called the interchange) concrete syntax but we will display all
reserved words in a special keyword font. Note that general Unicode identifiers are allowed
so it is for example possible to write Japanese characters directly.

1.5 Structure of the Document
Chapter 2 presents the BNF notation used for the description of syntactic constructs. The
VDM notations are described in Chapter 3 to Chapter 16. The complete syntax of the
language is described in Appendix A, the lexical specification in Appendix B and the operator
precedence in Appendix C. Appendix D presents a list of the differences between symbols in
the mathematical syntax and the ASCII concrete syntax.

2

Chapter 2

Concrete Syntax Notation

Wherever the syntax for parts of the language is presented in the document it will be de-
scribed in a BNF dialect. The BNF notation used employs the following special symbols:

, the concatenate symbol
= the define symbol
| the definition separator symbol (alternatives)
[] enclose optional syntactic items
{ } enclose syntactic items which may occur zero or more

times
‘ ’ single quotes are used to enclose terminal symbols
meta identifier non-terminal symbols are written in lower-case letters

(possibly including spaces)
; terminator symbol to denote the end of a rule
() used for grouping, e.g. “a, (b | c)” is equivalent to “a, b

| a, c”.
– denotes subtraction from a set of terminal symbols (e.g.

“character – (‘”’)” denotes all characters excepting the
double quote character.)

3

VDM-10 Language Manual

4

Chapter 3

Data Type Definitions

As in traditional programming languages it is possible to define data types in the VDM
languages and give them appropriate names. Such an equation might look like:�
types

Amount = nat
� �
Here we have defined a data type with the name “Amount” and stated that the values

which belong to this type are natural numbers (nat is one of the basic types described below).
One general point about the type system of the VDM languages which is worth mentioning
at this point is that equality and inequality can be used between any value. In programming
languages it is often required that the operands have the same type. Because of a construct
called a union type (described below) this is not the case for the VDM languages.

In this chapter we will present the syntax of data type definitions. In addition, we will
show how values belonging to a type can be constructed and manipulated (by means of
built-in operators). We will present the basic data types first and then we will proceed with
the compound types.

3.1 Basic Data Types
In the following a number of basic types will be presented. Each of them will contain:

• Name of the construct.

• Symbol for the construct.

• Special values belonging to the data type.

• Built-in operators for values belonging to the type.

5

VDM-10 Language Manual

• Semantics of the built-in operators.

• Examples illustrating how the built-in operators can be used.1

For each of the built-in operators the name, the symbol used and the type of the operator will
be given together with a description of its semantics (except that the semantics of Equality
and Inequality is not described, since it follows the usual semantics). In the semantics
description identifiers refer to those used in the corresponding definition of operator type,
e.g. a, b, x, y etc.

The basic types are the types defined by the language with distinct values that cannot
be analysed into simpler values. There are five fundamental basic types: booleans, numeric
types, characters, tokens and quote types. The basic types will be explained one by one in
the following.

3.1.1 The Boolean Type
In general the VDM languages allow one to specify systems in which computations may fail
to terminate or to deliver a result. To deal with such potential undefinedness, the VDM
languages employ a three valued logic: values may be true, false or bottom (undefined).
The semantics of the VDM interpreters differs from the ISO/VDM-SL standard in that it
does not have an LPF (Logic of Partial Functions) three valued logic where the order of
the operands is unimportant (see [?]). The and operator, the or operator and the imply
operator, though, have a conditional semantics meaning that if the first operand is sufficient
to determine the final result, the second operand will not be evaluated. In a sense the
semantics of the logic in the VDM interpreter can still be considered to be three-valued as
for ISO/VDM-SL. However, bottom values may either result in infinite computation or a
run-time error in the VDM interpreter.

Name: Boolean

Symbol: bool

Values: true, false

Operators: Assume that a and b in the following denote arbitrary boolean expressions:
Operator Name Type
not b Negation bool → bool
a and b Conjunction bool * bool → bool
a or b Disjunction bool * bool → bool
a => b Implication bool * bool → bool
a <=> b Biimplication bool * bool → bool
a = b Equality bool * bool → bool
a <> b Inequality bool * bool → bool

1In these examples the Meta symbol ‘≡’ will be used to indicate what the given example is equivalent to.

6

CHAPTER 3. DATA TYPE DEFINITIONS

Semantics of Operators: Semantically <=> and = are equivalent when we deal with boolean
values. There is a conditional semantics for and, or and =>.

We denote undefined terms (e.g. applying a map with a key outside its domain) by
⊥. The truth tables for the boolean operators are then2:

Negation not b b true false ⊥
not b false true ⊥

Conjunction a and b

a\b true false ⊥
true true false ⊥
false false false false
⊥ ⊥ ⊥ ⊥

Disjunction a or b

a\b true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

Implication a => b

a\b true false ⊥
true true false ⊥
false true true true
⊥ ⊥ ⊥ ⊥

Biimplication a <=> b

a\b true false ⊥
true true false ⊥
false false true ⊥
⊥ ⊥ ⊥ ⊥

Examples: Let a = true and b = false then:

2Notice that in standard VDM-SL all these truth tables (except =>) would be symmetric.

7

VDM-10 Language Manual

not a ≡ false
a and b ≡ false
b and ⊥ ≡ false
a or b ≡ true
a or ⊥ ≡ true
a => b ≡ false
b => b ≡ true
b => ⊥ ≡ true
a <=> b ≡ false
a = b ≡ false
a <> b ≡ true
⊥ or not ⊥ ≡ ⊥
(b and ⊥) or (⊥ and false) ≡ ⊥

3.1.2 The Numeric Types
There are five basic numeric types: positive naturals, naturals, integers, rationals and reals.
Except for three, all the numerical operators can have mixed operands of the three types.
The exceptions are integer division, modulo and the remainder operation.

The five numeric types denote a subset hierarchy where real is the most general type fol-
lowed by rat3, int, nat and nat1. Note that no “casting” like it is done in many programming
languages is needed in the VDM languages.

Type Values
nat1 1, 2, 3, …
nat 0, 1, 2, …
int …, -2, -1, 0, 1, …
real …, -12.78356, …, 0, …, 3, …, 1726.34, …

This means that any number of type int is also automatically of type real but not necessarily
of type nat. Another way to illustrate this is to say that the positive natural numbers are
a subset of the natural numbers which again are a subset of the integers which again are a
subset of the rational numbers which finally are a subset of the real numbers. The following
table shows some numbers and their associated type:

Number Type
3 real, rat, int, nat, nat1
3.0 real, rat, int, nat, nat1
0 real, rat, int, nat
-1 real, rat, int

3.1415 real, rat
Note that all numbers are necessarily of type real (and rat).

3From the VDM interpreter’s point of view there is no difference between real and rat because only rational
numbers can be represented in a computer.

8

CHAPTER 3. DATA TYPE DEFINITIONS

Names: real, rational, integer, natural and positive natural numbers.

Symbols: real, rat, int, nat, nat1

Values: …, -3.89, …, -2, …, 0, …, 4, …, 1074.345, …

Operators: Assume in the following that x and y denote numeric expressions. No assump-
tions are made regarding their type.
Operator Name Type
-x Unary minus real → real
abs x Absolute value real → real
floor x Floor real → int
x + y Sum real * real → real
x - y Difference real * real → real
x * y Product real * real → real
x / y Division real * real → real
x div y Integer division int * int → int
x rem y Remainder int * int → int
x mod y Modulus int * int → int
x**y Power real * real → real
x < y Less than real * real → bool
x > y Greater than real * real → bool
x <= y Less or equal real * real → bool
x >= y Greater or equal real * real → bool
x = y Equal real * real → bool
x <> y Not equal real * real → bool

The types stated for operands are the most general types allowed. This means for
instance that unary minus works for operands of all five types (nat1, nat, int, rat and
real).

Semantics of Operators: The operators Unary minus, Sum, Difference, Product, Division,
Less than, Greater than, Less or equal, Greater or equal, Equal and Not equal have
the usual semantics of such operators.

Operator Name Semantics Description
Floor yields the greatest integer which is equal to or

smaller than x.
Absolute value yields the absolute value of x, i.e. x itself if x >=

0 and -x if x < 0.
Power yields x raised to the y’th power.

There is often confusion on how integer division, remainder and modulus work on neg-

9

VDM-10 Language Manual

ative numbers. In fact, there are two valid answers to -14 div 3: either (the intuitive) -4
as in the VDM interpreters, or -5 as in e.g. Standard ML [?]. It is therefore appropriate
to explain these operations in some detail.
Integer division is defined using floor and real number division:�

x/y < 0 : x d iv y = - f l o o r (abs (- x/y))
x/y >= 0 : x div y = f l o o r (abs (x/y))
� �

Note that the order of floor and abs on the right-hand side makes a difference, the
above example would yield -5 if we changed the order. This is because floor always
yields a smaller (or equal) integer, e.g. floor (14/3) is 4 while floor (-14/3) is -5.
Remainder x rem y and modulus x mod y are the same if the signs of x and y are the
same, otherwise they differ and rem takes the sign of x and mod takes the sign of y.
The formulas for remainder and modulus are:�

x rem y = x - y * (x div y)
x mod y = x - y * f l o o r (x/y)
� �

Hence, -14 rem 3 equals -2 and -14 mod 3 equals 1. One can view these results by
walking the real axis, starting at -14 and making jumps of 3. The remainder will be
the last negative number one visits, because the first argument corresponding to x is
negative, while the modulus will be the first positive number one visits, because the
second argument corresponding to y is positive.

Examples: Let a = 7, b = 3.5, c = 3.1415, d = -3, e = 2 then:

- a ≡ -7
abs a ≡ 7
abs d ≡ 3
floor a <= a ≡ true
a + d ≡ 4
a * b ≡ 24.5
a / b ≡ 2
a div e ≡ 3
a div d ≡ -2
a mod e ≡ 1
a mod d ≡ -2
-a mod d ≡ -1
a rem e ≡ 1
a rem d ≡ 1
-a rem d ≡ -1

10

CHAPTER 3. DATA TYPE DEFINITIONS

3**2 + 4**2 = 5**2 ≡ true
b < c ≡ false
b > c ≡ true
a <= d ≡ false
b >= e ≡ true
a = e ≡ false
a = 7.0 ≡ true
c <> d ≡ true
abs c < 0 ≡ false
(a div e) * e ≡ 6

3.1.3 The Character Type
The character type contains all the single character elements of the VDM character set (see
Table B.1 on page 208).

Name: Char

Symbol: char

Values: ’a’, ’b’, …, ’1’, ’2’, …’+’, ’-’ …

Operators: Assume that c1 and c2 in the following denote arbitrary characters:
Operator Name Type
c1 = c2 Equal char * char → bool
c1 <> c2 Not equal char * char → bool

Examples:
’a’ = ’b’ ≡ false
’1’ = ’c’ ≡ false
’d’ <> ’7’ ≡ true
’e’ = ’e’ ≡ true

3.1.4 The Quote Type
The quote type corresponds to enumerated types in a programming language like Pascal.
However, instead of writing the different quote literals between curly brackets in VDM it is
done by letting a quote type consist of a single quote literal and then let them be a part of
a union type.

Name: Quote

Symbol: e.g. <QuoteLit>

11

VDM-10 Language Manual

Values: <RED>, <CAR>, <QuoteLit>, …

Operators: Assume that q and r in the following denote arbitrary quote values belonging to
an enumerated type T:
Operator Name Type
q = r Equal T * T → bool
q <> r Not equal T * T → bool

Examples: Let T be the type defined as:
T = <France> | <Denmark> | <SouthAfrica> | <SaudiArabia>

If for example a = <France> then:
<France> = <Denmark> ≡ false
<SaudiArabia> <> <SouthAfrica> ≡ true
a <> <France> ≡ false

3.1.5 The Token Type
The token type consists of a countably infinite set of distinct values, called tokens. The only
operations that can be carried out on tokens are equality and inequality. In VDM, tokens
cannot be individually represented whereas they can be written with a mk_token around an
arbitrary expression. This is a way of enabling testing of specifications that contain token
types. However, in order to resemble the ISO/VDM-SL standard these token values cannot
be decomposed by means of any pattern matching and they cannot be used for anything
other than equality and inequality comparisons.

Name: Token

Symbol: token

Values: mk_token(5), mk_token({9, 3}), mk_token([true, {}]), …

Operators: Assume that s and t in the following denote arbitrary token values:
Operator Name Type
s = t Equal token * token → bool
s <> t Not equal token * token → bool

Examples: Let for example s = mk_token(6), let t = mk_token(1) and u =mk_token({1,2})
in:
s = t ≡ false
s <> t ≡ true
s = mk_token(6) ≡ true
u = mk_token({2,1}) ≡ true

12

CHAPTER 3. DATA TYPE DEFINITIONS

3.2 Compound Types
In the following compound types will be presented. Each of them will contain:

• The syntax for the compound type definition.

• An equation illustrating how to use the construct.

• Examples of how to construct values belonging to the type. In most cases there will also
be given a forward reference to the section where the syntax of the basic constructor
expressions is given.

• Built-in operators for values belonging to the type4.

• Semantics of the built-in operators.

• Examples illustrating how the built-in operators can be used.

For each of the built-in operators the name, the symbol used and the type of the operator will
be given together with a description of its semantics (except that the semantics of Equality
and Inequality is not described, since it follows the usual semantics). In the semantics
description identifiers refer to those used in the corresponding definition of operator type,
e.g. m, m1, s, s1 etc.

3.2.1 Set Types
A set is an unordered collection of values, all of the same type5, which is treated as a whole.
All sets in VDM languages are finite, i.e. they contain only a finite number of elements. The
elements of a set type can be arbitrarily complex, they could for example be sets themselves.
Sets may include the empty set (set0 type), or may require at least one element (set1 type).

In the following this convention will be used: A is an arbitrary type, S is a set type, s,
s1, s2 are set values, ss is a set of set values, e, e1, e2 and en are elements from the sets, bd1,
bd2, …, bdm are bindings of identifiers to sets or types, and P is a logical predicate.

Syntax: type = set type
| … ;

set type = set0 type
| set1 type ;

set0 type = ‘set of’, type ;
4These operators are used in either unary or binary expressions which are given with all the operators in
section 6.3.

5Note however that it is always possible to find a common type for two values by the use of a union type (see
section 3.2.6.)

13

VDM-10 Language Manual

set1 type = ‘set1 of’, type ;

Equation: S = set of A or S = set1 of A

Constructors:

Set enumeration: {e1, e2, ..., en} constructs a set of the enumerated elements. The
empty set is denoted by {}.

Set comprehension: {e | bd1, bd2, ..., bdm & P} constructs a set by evaluating the
expression e on all the bindings for which the predicate P evaluates to true. A
binding is either a set binding, a sequence binding, or a type binding6. A set bind
bdn has the form pat1, …, patp in set s, where pati is a pattern (normally simply
an identifier), and s is a set constructed by an expression. A sequence (or type)
binding is similar, in the sense that in set is replaced by in seq (or a colon) and s
is replaced with a sequence (or type) expression.

The syntax and semantics for all set expressions are given in section 6.7.

Operators:
Operator Name Type
e in set s1 Membership A * set of A → bool
e not in set s1 Not membership A * set of A → bool
s1 union s2 Union set of A * set of A → set of A
s1 inter s2 Intersection set of A * set of A → set of A
s1 \ s2 Difference set of A * set of A → set of A
s1 subset s2 Subset set of A * set of A → bool
s1 psubset s2 Proper subset set of A * set of A → bool
s1 = s2 Equality set of A * set of A → bool
s1 <> s2 Inequality set of A * set of A → bool
card s1 Cardinality set of A → nat
dunion ss Distributed union set of set of A → set of A
dinter ss Distributed intersection set1 of set of A → set of A
power s1 Finite power set set of A → set of set of A

Note that the types A, set of A and set of set of A are only meant to illustrate the
structure of the type. For instance it is possible to make a union between two arbitrary
sets s1 and s2 and the type of the resultant set is the union type of the two set types.
Examples of this will be given in section 3.2.6.

Semantics of Operators:

6Notice that type bindings over infinite types (discharging the invariant limitations) cannot be executed by
the VDM interpreters because in general they are not executable (see section 8 for further information about
this).

14

CHAPTER 3. DATA TYPE DEFINITIONS

Operator Name Semantics Description
Membership tests if e is a member of the set s1
Not membership tests if e is not a member of the set s1
Union yields the union of the sets s1 and s2, i.e. the set

containing all the elements of both s1 and s2.
Intersection yields the intersection of sets s1 and s2, i.e. the set

containing the elements that are in both s1 and s2.
Difference yields the set containing all the elements from s1

that are not in s2. s2 need not be a subset of s1.
Subset tests if s1 is a subset of s2, i.e. whether all elements

from s1 are also in s2. Notice that any set is a
subset of itself.

Proper subset tests if s1 is a proper subset of s2, i.e. it is a subset
and s2\s1 is non-empty.

Cardinality yields the number of elements in s1.
Distributed union the resulting set is the union of all the elements

(these are sets themselves) of ss, i.e. it contains all
the elements of all the elements/sets of ss.

Distributes inter-
section

the resulting set is the intersection of all the ele-
ments (these are sets themselves) of ss, i.e. it con-
tains the elements that are in all the elements/sets
of ss. ss must be non-empty.

Finite power set yields the power set of s1, i.e. the set of all subsets
of s1.

Examples: Let s1 = {<France>,<Denmark>,<SouthAfrica>,<SaudiArabia>}, s2 = {2, 4,
6, 8, 11} and s3 = {} then:

<England> in set s1 ≡ false
10 not in set s2 ≡ true
s2 union s3 ≡ {2, 4, 6, 8, 11}
s1 inter s3 ≡ {}
(s2 \ {2,4,8,10}) union {2,4,8,10} = s2 ≡ false
s1 subset s3 ≡ false
s3 subset s1 ≡ true
s2 psubset s2 ≡ false
s2 <> s2 union {2, 4} ≡ false
card s2 union {2, 4} ≡ 5
dunion {s2, {2,4}, {4,5,6}, {0,12}} ≡ {0,2,4,5,6,8,11,12}
dinter {s2, {2,4}, {4,5,6}} ≡ {4}
dunion power {2,4} ≡ {2,4}
dinter power {2,4} ≡ {}

15

VDM-10 Language Manual

3.2.2 Sequence Types
A sequence value is an ordered collection of elements of some type indexed by 1, 2, …, n;
where n is the length of the sequence. A sequence type is the type of finite sequences of
elements of a type, either including the empty sequence (seq0 type) or excluding it (seq1
type). The elements of a sequence type can be arbitrarily complex; they could e.g. be
sequences themselves.

In the following this convention will be used: A is an arbitrary type, L is a sequence
type, S is a set type, l, l1, l2 are sequence values, ll is a sequence of sequence values. e1, e2
and en are elements in these sequences, i will be a natural number, P is a predicate and e is
an arbitrary expression.

Syntax: type = seq type
| … ;

seq type = seq0 type
| seq1 type ;

seq0 type = ‘seq of’, type ;

seq1 type = ‘seq1 of’, type ;

Equation: L = seq of A or L = seq1 of A

Constructors:

Sequence enumeration: [e1, e2,..., en] constructs a sequence of the enumerated ele-
ments. The empty sequence is written as []. A text literal is a shorthand for
enumerating a sequence of characters (e.g. ”ifad” = [’i’,’f’,’a’,’d’]).

Sequence comprehension: [e | id in seq S & P] constructs a sequence by evaluating the
expression e on all the bindings for which the predicate P evaluates to true. The
expression e will use the identifier id. S is a sequence of elements and id will be
matched with the elements preserving the order of S.
[e | id in set S & P] constructs a sequence by evaluating the expression e on all the
bindings for which the predicate P evaluates to true. The expression e will use
the identifier id. S is a set of elements of a type with an order relation (section
3.5) and id will be matched to the elements from the set in increasing order.

The syntax and semantics of all sequence expressions are given in section 6.8.

Operators:

16

CHAPTER 3. DATA TYPE DEFINITIONS

Operator Name Type
hd l Head seq1 of A → A
tl l Tail seq1 of A → seq of A
len l Length seq of A → nat
elems l Elements seq of A → set of A
inds l Indexes seq of A → set of nat1
reverse l Reverse seq of A → seq of A
l1 ^ l2 Concatenation (seq of A) * (seq of A) → seq of A
conc ll Distributed concatenation seq of seq of A → seq of A
l ++ m Sequence modification seq of A * map nat1 to A → seq of A
l(i) Sequence application seq of A * nat1 → A
l1 = l2 Equality (seq of A) * (seq of A) → bool
l1 <> l2 Inequality (seq of A) * (seq of A) → bool

The type A is an arbitrary type and the operands for the concatenation and distributed
concatenation operators do not have to be of the same (A) type. The type of the
resultant sequence will be the union type of the types of the operands. Examples will
be given in section 3.2.6.

Semantics of Operators:

Operator Name Semantics Description
Head yields the first element of l. l must be a non-empty

sequence.
Tail yields the subsequence of l where the first element

is removed. l must be a non-empty sequence.
Length yields the length of l.
Elements yields the set containing all the elements of l.
Indexes yields the set of indexes of l, i.e. the set {1,...,len l}.
Reverse yields a new sequence where the order of the ele-

ments have been reversed.
Concatenation yields the concatenation of l1 and l2, i.e. the se-

quence consisting of the elements of l1 followed by
those of l2, in order.

Distributed con-
catenation

yields the sequence where the elements (these are
sequences themselves) of ll are concatenated: the
first and the second, and then the third, etc.

Sequence modifica-
tion

the elements of l whose indexes are in the domain
of m are modified to the range value that the index
maps into. dom m must be a subset of inds l

Sequence applica-
tion

yields the element of index from l. i must be in
the indexes of l.

17

VDM-10 Language Manual

Examples: Let l1 = [3,1,4,1,5,9,2], l2 = [2,7,1,8],
l3 = [<England>, <Rumania>, <Colombia>, <Tunisia>] then:

len l1 ≡ 7
hd (l1^l2) ≡ 3
tl (l1^l2) ≡ [1,4,1,5,9,2,2,7,1,8]
l3(len l3) ≡ <Tunisia>
”England”(2) ≡ ’n’
reverse l1 ≡ [2,9,5,1,4,1,3]
conc [l1,l2] = l1^l2 ≡ true
conc [l1,l1,l2] = l1^l2 ≡ false
elems l3 ≡ { <England>, <Rumania>,

<Colombia>,<Tunisia>}
(elems l1) inter (elems l2) ≡ {1,2}
inds l1 ≡ {1,2,3,4,5,6,7}
(inds l1) inter (inds l2) ≡ {1,2,3,4}
l3 ++ {2 |-> <Germany>,4 |-> <Nigeria>} ≡ [<England>, <Germany>,

<Colombia>, <Nigeria>]

3.2.3 Map Types
A map type from a type A to a type B is a type that associates with each element of A (or
a subset of A) an element of B. A map value can be thought of as an unordered collection
of pairs. The first element in each pair is called a key, because it can be used as a key to
get the second element (called the information part) in that pair. All key elements in a map
must therefore be unique. The set of all key elements is called the domain of the map, while
the set of all information values is called the range of the map. All maps in VDM languages
are finite. The domain and range elements of a map type can be arbitrarily complex, they
could e.g. be maps themselves.

A special kind of map is the injective map. An injective map is one for which no element
of the range is associated with more than one element of the domain. For an injective map
it is possible to invert the map.

In the following this convention will be used: m, m1 and m2 are maps from an arbitrary
type A to another arbitrary type B, ms is a set of map values, a, a1, a2 and an are elements
from A while b, b1, b2 and bn are elements from B and P is a logic predicate. e1 and e2 are
arbitrary expressions and s is an arbitrary set.

Syntax: type = map type
| … ;

map type = general map type
| injective map type ;

general map type = ‘map’, type, ‘to’, type ;

18

CHAPTER 3. DATA TYPE DEFINITIONS

injective map type = ‘inmap’, type, ‘to’, type ;

Equation: M = map A to B or M = inmap A to B

Constructors:

Map enumeration: {a1 |-> b1, a2 |-> b2, …, an |-> bn} constructs a mapping of the
enumerated maplets. The empty map is written as {|->}.

Map comprehension: {ed |-> er | bd1, …, bdn & P} constructs a mapping by evaluating
the expressions ed and er on all the possible bindings for which the predicate P
evaluates to true. bd1, …, bdn are bindings of free identifiers from the expressions
ed and er to sets, sequences or types.

The syntax and semantics of all map expressions are given in section 6.9.

Operators:
Operator Name Type
dom m Domain (map A to B) → set of A
rng m Range (map A to B) → set of B
m1 munion m2 Merge (map A to B) * (map A to B) → map A to B
m1 ++ m2 Override (map A to B) * (map A to B) → map A to B
merge ms Distributed merge set of (map A to B) → map A to B
s <: m Domain restrict to (set of A) * (map A to B) → map A to B
s <-: m Domain restrict by (set of A) * (map A to B) → map A to B
m :> s Range restrict to (map A to B) * (set of B) → map A to B
m :-> s Range restrict by (map A to B) * (set of B) → map A to B
m(d) Map apply (map A to B) * A → B
m1 comp m2 Map composition (map B to C) * (map A to B) → map A to C
m ** n Map iteration (map A to A) * nat → map A to A
m1 = m2 Equality (map A to B) * (map A to B) → bool
m1 <> m2 Inequality (map A to B) * (map A to B) → bool
inverse m Map inverse inmap A to B → inmap B to A

Semantics of Operators: Two maps m1 and m2 are compatible if any common element of
dom m1 and dom m2 is mapped to the same value by both maps.

Operator Name Semantics Description
Domain yields the domain (the set of keys) of m.
Range yields the range (the set of information values) of

m.

19

VDM-10 Language Manual

Operator Name Semantics Description
Merge yields a map combined by m1 and m2 such that

the resulting map maps the elements of dom m1
as does m1, and the elements of dom m2 as does
m2. The two maps must be compatible.

Override overrides and merges m1 with m2, i.e. it is like a
merge except that m1 and m2 need not be com-
patible; any common elements are mapped as by
m2 (so m2 overrides m1).

Distributed merge yields the map that is constructed by merging all
the maps in ms. The maps in ms must be compat-
ible.

Domain restrict to creates the map consisting of the elements in m
whose key is in s. s need not be a subset of dom
m.

Domain restrict by creates the map consisting of the elements in m
whose key is not in s. s need not be a subset of
dom m.

Range restrict to creates the map consisting of the elements in m
whose information value is in s. s need not be a
subset of rng m.

Range restrict by creates the map consisting of the elements in m
whose information value is not in s. s need not be
a subset of rng m.

Map apply yields the information value whose key is d. d must
be in the domain of m.

Map composition yields the map that is created by composing m2
elements with m1 elements. The resulting map is
a map with the same domain as m2. The informa-
tion value corresponding to a key is the one found
by first applying m2 to the key and then applying
m1 to the result. rng m2 must be a subset of dom
m1.

Map iteration yields the map where m is composed with itself
n times. n=0 yields the identity map where each
element of dom m is map into itself; n=1 yields m
itself. For n>1, the range of m must be a subset
of dom m.

Map inverse yields the inverse map of m. m must be a 1-to-1
mapping.

20

CHAPTER 3. DATA TYPE DEFINITIONS

Examples: Let
m1 = { <France> |-> 9, <Denmark> |-> 4,

<SouthAfrica> |-> 2, <SaudiArabia> |-> 1},
m2 = { 1 |-> 2, 2 |-> 3, 3 |-> 4, 4 |-> 1 },
Europe = { <France>, <England>, <Denmark>, <Spain> }

then:

dom m1 ≡ {<France>, <Denmark>,
<SouthAfrica>, <SaudiAra-
bia>}

rng m1 ≡ {1,2,4,9}

m1 munion {<England> |-> 3} ≡ {<France> |-> 9,
<Denmark> |-> 4,
<England> |-> 3,
<SaudiArabia> |-> 1,
<SouthAfrica> |-> 2}

m1 ++ {<France> |-> 8,
<England> |-> 4}

≡ {<France> |-> 8,
<Denmark> |-> 4,
<SouthAfrica> |-> 2,
<SaudiArabia> |-> 1,
<England> |-> 4}

merge{ {<France> |-> 9,
<Spain> |-> 4}
{<France> |-> 9,
<England> |-> 3,
<UnitedStates> |-> 1}}

≡ {<France> |-> 9,
<England> |-> 3,
<Spain> |-> 4,
<UnitedStates> |-> 1}

Europe <: m1 ≡ {<France> |-> 9,
<Denmark> |-> 4}

Europe <-: m1 ≡ {<SouthAfrica> |-> 2,
<SaudiArabia> |-> 1}

m1 :> {2,...,10} ≡ {<France> |-> 9,
<Denmark> |-> 4,
<SouthAfrica> |-> 2}

m1 :-> {2,...,10} ≡ {<SaudiArabia> |-> 1}

21

VDM-10 Language Manual

m1 comp ({”France” |-> <France>}) ≡ {”France” |-> 9}

m2 ** 3 ≡ {1 |-> 4, 2 |-> 1,
3 |-> 2, 4 |-> 3 }

inverse m2 ≡ {2 |-> 1, 3 |-> 2,
4 |-> 3, 1 |-> 4 }

m2 comp (inverse m2) ≡ {1 |-> 1, 2 |-> 2,
3 |-> 3, 4 |-> 4 }

3.2.4 Product Types
The values of a product type are called tuples. A tuple is a fixed length list where the i’th
element of the tuple must belong to the i’th element of the product type.

Syntax: type = product type
| … ;

product type = type, ‘*’, type, { ‘*’, type } ;

A product type consists of at least two subtypes.

Equation: T = A1 * A2 * … * An

Constructors: The tuple constructor: mk_(a1, a2, …, an)
The syntax and semantics for the tuple constructor are given in section 6.10.

Operators:
Operator Name Type
t.#n Select T * nat → Ti
t1 = t2 Equality T * T → bool
t1 <> t2 Inequality T * T → bool

The only operators working on tuples are component select, equality and inequality.
Tuple components may be accessed using the select operator or by matching against
a tuple pattern. Details of the semantics of the tuple select operator and an example
of its use are given in section 6.12.

Examples: Let a = mk_(1, 4, 8), b = mk_(2, 4, 8) then:
a = b ≡ false
a <> b ≡ true
a = mk_(2,4) ≡ false

22

CHAPTER 3. DATA TYPE DEFINITIONS

3.2.5 Composite Types
Composite types correspond to record types in programming languages. Thus, elements of
this type are somewhat similar to the tuples described in the section about product types
above. The difference between the record type and the product type is that the different
components of a record can be directly selected by means of corresponding selector functions.
In addition records are tagged with an identifier which must be used when manipulating the
record. The only way to tag a type is by defining it as a record. It is therefore common
usage to define records with only one field in order to give it a tag. This is another difference
to tuples as a tuple must have at least two entries whereas records can be empty.

In VDM languages, is_ is a reserved prefix for names and it is used in an is expression.
This is a built-in operator which is used to determine which record type a record value
belongs to. It is often used to discriminate between the subtypes of a union type and will
therefore be explained further in section 3.2.6. In addition to record types the is_ operator
can also determine if a value is of one of the basic types.

In the following this convention will be used: A is a record type, A1, …, Am are arbitrary
types, r, r1, and r2 are record values, i1, …, im are selectors from the r record value (and these
must be unique entrances inside one record definition), e1, …, em are arbitrary expressions.

Syntax: type = composite type
| … ;

composite type = ‘compose’, identifier, ‘of’, field list, ‘end’ ;

field list = { field } ;

field = [identifier, ‘:’], type
| [identifier, ‘:-’], type ;

or the shorthand notation

composite type = identifier, ‘::’, field list ;

where identifier denotes both the type name and the tag name.

Equation:�
A : : s e l f i r s t : A1

s e l s e c : A2
� �
or�

A : : s e l f i r s t : A1
s e l s e c : - A2
� �

23

VDM-10 Language Manual

or�
A : : A1 A2
� �

In the second notation, an equality abstraction field is used for the second field selsec.
The minus indicates that such a field is ignored when comparing records using the
equality operator. In the last notation the fields of A can only be accessed by pattern
matching (like it is done for tuples) as the fields have not been named.
The shorthand notation :: used in the two previous examples where the tag name
equals the type name, is the notation most used. The more general compose notation
is typically used if a composite type has to be specified directly as a component of a
more complex type:�

T = map S to compose A o f A1 A2 end
� �
It should be noted however that composite types can only be used in type definitions,
and not e.g. in signatures to functions or operations.
Typically composite types are used as alternatives in a union type definition (see
section 3.2.6) such as:�

MasterA = A | B | . . .
� �
where A and B are defined as composite types themselves. In this situation the is_
predicate can be used to distinguish the alternatives.

Constructors: The record constructor: mk_A(a, b) where a belongs to the type A1 and b
belongs to the type A2.
The syntax and semantics for all record expressions are given in section 6.11.

Operators:
Operator Name Type
r.i Field select A * Id → Ai
r1 = r2 Equality A * A → bool
r1 <> r2 Inequality A * A → bool
is_A(r1) Is Id * MasterA → bool

Semantics of Operators:

24

CHAPTER 3. DATA TYPE DEFINITIONS

Operator Name Semantics Description
Field select yields the value of the field with fieldname i in the

record value r. r must have a field with name i.
Equality7 Structural equality over the record. That is, field-

by-field equality, recursively applying equality to
the constituent fields.

Examples: Let Score be defined as�
Score : : team : Team

won : nat
drawn : nat
l o s t : nat
po i n t s : nat ;

Team = <Braz i l > | <France> | . . .
� �
and let
sc1 = mk_Score (<France>, 3, 0, 0, 9),
sc2 = mk_Score (<Denmark>, 1, 1, 1, 4),
sc3 = mk_Score (<SouthAfrica>, 0, 2, 1, 2) and
sc4 = mk_Score (<SaudiArabia>, 0, 1, 2, 1).

Then
sc1.team ≡ <France>
sc4.points ≡ 1
sc2.points > sc3.points ≡ true
is_Score(sc4) ≡ true
is_bool(sc3) ≡ false
is_int(sc1.won) ≡ true
sc4 = sc1 ≡ false
sc4 <> sc2 ≡ true

The equality abstraction field, written using ‘:-’ instead of ‘:’, may be useful, for ex-
ample, when working with lower level models of an abstract syntax of a programming
language. For example, one may wish to add a position information field to a type of
identifiers without affecting the true identity of identifiers:�

Id : : name : seq o f char
pos : - nat
� �

7This equality is implicitly provided with the type. It is possible to override the primitive equality – see
Section 3.4

25

VDM-10 Language Manual

The effect of this will be that the pos field is ignored in equality comparisons, e.g. the
following would evaluate to true:�

mk_Id(”x” , 7) = mk_Id(”x” , 9)
� �
In particular this can be useful when looking up in an environment which is typically
modelled as a map of the following form:�

Env = map Id to Val
� �
Such a map will contain at most one index for a specific identifier, and a map lookup
will be independent of the pos field.
Moreover, the equality abstraction field will affect set expressions. For example,�

{mk_Id(”x” , 7) ,mk_Id(”y” , 8) ,mk_Id(”x” ,9)}
� �
will be equal to�

{mk_Id(”x” , ?) ,mk_Id(”y” ,8)}
� �
where the question mark stands for 7 or 9.
Finally, note that for equality abstraction fields valid patterns are limited to don’t care
and identifier patterns. Since equality abstraction fields are ignored when comparing
two values, it does not make sense to use more complicated patterns.

3.2.6 Union and Optional Types
The union type corresponds to a set-theoretic union, i.e. the type defined by means of a
union type will contain all the elements from each of the components of the union type.
It is possible to use types that are not disjoint in the union type, even though such usage
would be bad practice. However, the union type is normally used when something belongs
to one type from a set of possible types. The types which constitute the union type are often
composite types. This makes it possible, using the is_ operator, to decide which of these
types a given value of the union type belongs to.

The optional type [T] is a kind of shorthand for a union type T | nil, where nil is used
to denote the absence of a value. However, it is not possible to use the set {nil} as a type
so the only types nil will belong to will be optional types.

Syntax: type = union type

26

CHAPTER 3. DATA TYPE DEFINITIONS

| optional type
| … ;

union type = type, ‘|’, type, { ‘|’, type } ;

optional type = ‘[’, type, ‘]’ ;

Equation: B = A1 | A2 | … | [An]

Constructors: None.

Operators:
Operator Name Type
t1 = t2 Equality A * A → bool
t1 <> t2 Inequality A * A → bool

Examples: In this example Expr is a union type whereas Const, Var, Infix and Cond are
composite types defined using the shorthand :: notation.�

Expr = Const | Var | I n f i x | Cond ;
Const : : nat | boo l ;
Var : : i d : Id

tp : [<Bool> | <Nat >] ;
I n f i x : : Expr * Op * Expr ;
Cond : : t e s t : Expr

cons : Expr
a l t n : Expr
� �

and let expr = mk_Cond(mk_Var(”b”,<Bool>),mk_Const(3),
mk_Var(”v”,nil)) then:
is_Cond(expr) ≡ true
is_Const(expr.cons) ≡ true
is_Var(expr.altn) ≡ true
is_Infix(expr.test) ≡ false
expr.altn.tp = nil ≡ true

Using union types we can extend the use of previously defined operators. For instance,
interpreting = as a test over bool | nat we have
1 = false ≡ false

Similarly we can take use union types for taking unions of sets and concatenating
sequences:

27

VDM-10 Language Manual

{1,2} union {false,true} ≡ {1,2, false,true}
[’a’,’b’]^[<c>,<d>] ≡ [’a’,’b’, <c>,<d>]

In the set union, we take the union over sets of type nat | bool; for the sequence
concatenation we are manipulating sequences of type char | <c> | <d>.

3.2.7 The Object Reference Type (VDM++ and VDM-RT)
The object reference type has been added as part of the standard VDM-SL types. Therefore
there is no direct way of restricting the use of object reference types (and thus of objects) in a
way that conforms to pure object oriented principles; no additional structuring mechanisms
than classes are foreseen. From these principles it follows that the use of an object reference
type in combination with a type constructor (record, map, set, etc.) should be treated with
caution.

A value of the object reference type can be regarded as a reference to an object. If, for
example, an instance variable (see section 10.1) is defined to be of this type, this makes the
class in which that instance variable is defined, a ‘client’ of the class in the object reference
type; a clientship relation is established between the two classes.

An object reference type is denoted by a class name. The class name in the object
reference type must be the name of a class defined in the specification.

The only operators defined for values of this type is the test for equality (‘=’) and
inequality (‘<>’). Equality is based on references rather than values. That is, if o1 and o2
are two distinct objects which happen to have the same contents, o1 = o2 will yield false.

Constructors Object references are constructed using the new expression (see section 6.13).

Operators
Operator Name Type
t1 = t2 Equality A * A → bool
t1 <> t2 Inequality A * A → bool

Examples An example of the use of object references is in the definition of the class of binary
trees:�
c l a s s Tree

types

p ro t e c t ed t r e e = <Empty> | node ;

pub l i c node : : l t : Tree
nva l : i n t
r t : Tree

28

CHAPTER 3. DATA TYPE DEFINITIONS

in s t an c e v a r i a b l e s

p ro t e c t ed roo t : t r e e := <Empty>;
end Tree
� �
Here we define the type of nodes, which consist of a node value, and references to left
and right tree objects. Details of access specifiers may be found in section 13.3.3.

3.2.8 Function Types
In the VDM languages function types can also be used in type definitions. A function type
from a type A (actually a list of types as a tuple type) to a type B is a type that associates
with each element of A an element of B. A function value can be thought of as a function in
a programming language which has no side-effects (i.e. it does not use any global variables).

Such usage can be considered advanced in the sense that functions are used as values (thus
this section may be skipped during the first reading). Function values may be created by
lambda expressions (see below), or by function definitions, which are described in section 5.
Function values can be of higher order in the sense that they can take functions as arguments
or return functions as results. In this way functions can be Curried such that a new function
is returned when the first set of parameters are supplied (see the examples below).

Syntax: type = function type
| … ;

function type = partial function type
| total function type ;

partial function type = discretionary type, ‘->’, type ;

total function type = discretionary type, ‘+>’, type ;

discretionary type = type | ‘(’,‘)’ ;

Equation: F = A +> B or F = A -> B

Constructors: In addition to the traditional function definitions the only way to construct
functions is by the lambda expression: lambda pat1 : T1, …, patn : Tn & body where
the patj are patterns, the Tj are type expressions, and body is the body expression
which may use the pattern identifiers from all the patterns.

The syntax and semantics for the lambda expression are given in section 6.16.

29

VDM-10 Language Manual

Operators:
Operator Name Type
f(a1,…,an) Function apply A1 * · · · * An → B
f1 comp f2 Function composition (B → C) * (A → B) → (A → C)
f ** n Function iteration (A → A) * nat → (A → A)
t1 = t2 Equality A * A → bool
t1 <> t2 Inequality A * A → bool

Note that equality and inequality between type values should be used with great care.
In the VDM languages this corresponds to the mathematical equality (and inequality)
which is not computable for infinite values like general functions. Thus, in the VDM
interpreters the equality is on the abstract syntax of the function value (see inc1 and
inc2 below).

Semantics of Operators:

Operator Name Semantics Description
Function apply yields the result of applying the function f to the

values of aj. See the definition of apply expressions
in Section 6.12.

Function composi-
tion

it yields the function equivalent to applying first
f2 and then applying f1 to the result. f1, but not
f2 may be Curried.

Function iteration yields the function equivalent to applying f n times.
n=0 yields the identity function which just returns
the value of its parameter; n=1 yields the function
itself. For n>1, the result of f must be contained
in its parameter type.

Examples: Let the following function values be defined:�
f 1 = lambda x : nat & lambda y : nat & x + y
f2 = lambda x : nat & x + 2
inc1 = lambda x : nat & x + 1
inc2 = lambda y : nat & y + 1
� �

then the following holds:
f1(5) ≡ lambda y :nat & 5 + y
f2(4) ≡ 6
f1 comp f2 ≡ lambda x :nat & lambda y :nat & (x + 2) + y
f2 ** 4 ≡ lambda x :nat & x + 8
inc1 = inc2 ≡ false

30

CHAPTER 3. DATA TYPE DEFINITIONS

Notice that the equality test does not yield the expected result with respect to the
semantics of the VDM languages. Thus, one should be very careful with the usage of
equality for infinite values like functions.

3.3 Invariants
If the data types specified by means of equations as described above contain values which
should not be allowed, then it is possible to restrict the values in a type by means of an
invariant. The result is that the type is restricted to a subset of its original values. Thus,
by means of a predicate the acceptable values of the defined type are limited to those where
this expression is true.

The general scheme for using invariants looks like this:�
Id = Type
inv pat == expr
� �

where pat is a pattern matching the values belonging to the type Id, and expr is a truth-
valued expression, involving some or all of the identifiers from the pattern pat.

If an invariant is defined, a new (total) function is implicitly created with the signature:�
inv_Id : Type +> boo l
� �

This function can be used within other invariant, function or operation definitions.
For instance, recall the record type Score defined on page 25. We can ensure that the

number of points awarded is consistent with the number of games won and drawn using an
invariant:�

Score : : team : Team
won : nat
drawn : nat
l o s t : nat
po i n t s : nat

inv sc == sc . po i n t s = 3 * sc . won + sc . drawn ;
� �
The invariant function implicitly created for this type is:�

inv_Score : Score +> boo l
inv_Score (s c) ==

sc . po i n t s = 3 * sc . won + sc . drawn ;
� �
31

VDM-10 Language Manual

Note that where the compose form is used to define a composite type with an invariant,
a distinction must be drawn. Consider:�
Range = compose Rng o f low : nat high : nat end

inv mk_Rng(l , h) == l <= h ;
� �
This defines two types, Range and Rng, where Rng is a pair of natural numbers with no
constraint, while Range is structurally the same as Rng but must additionally satisfy the
invariant. For example, the following definitions are valid�
r : Range = mk_Rng(1 , 2) ;
r2 : Rng = mk_Rng(2 , 1) ;
r3 = mk_Rng(2 , 1) ;
� �
r2 and r3 need not satisfy the invariant (in the absence of explicit declaration, r3 is of type
Rng). On the other hand,�
r4 : Range = mk_Rng(2 , 1) ;
� �
is invalid since r4 of type Range violates the invariant.

3.4 Equality
Every type defined in VDM, both basic and compound types, is provided with an equality
relation by default as described earlier. The primitive equality is not always that which is
desired. If the values of a data type are normalised then structural equality is adequate,
but this is not always the case. Consider for example a data type that represents times
and includes time zones. The same point in time is represented differently in different time
zones. A type definition allows an equality relation to be defined explicitly for a type. In
such a case the explicit equality relation is employed when comparing values of the type in
preference to the primitive equality. The general scheme for defining an equality relation is:�
Id = Type

eq pat1 = pat2 == expr
� �
or�
Id : : f i e l d s

eq pat1 = pat2 == expr
� �
32

CHAPTER 3. DATA TYPE DEFINITIONS

pat1 and pat2 are patterns for two values of the type (or composite type), and expr is a
boolean expression that is true exactly when the expressions represented by pat1 and pat2
are equal.

When defined, the explicit equality relation is also employed for inequality comparison
with <>. If an eq clause is defined, a new (total) function is created implicitly with the
signature:�
eq_T : T * T +> boo l
� �
such that eq_T(t1,t2) denotes the same value as t1 = t2.

Examples: Flight matching�
F l i gh t : : i d : seq1 o f char

depar ture : seq1 o f char
depTime : DateTime
d e s t i n a t i o n : seq1 o f char

eq mk_Flight (i1 , d1 , dt1 , a1) = mk_Flight (i2 , d2 , dt2 , a2) ==
i 1 = i 2 and d1 = d2 and a1 = a2 and
wi th in (dt1 , dt2 , mk_Minute (1 0)) ;
� �

A simplified definition of a flight consisting of an identifier, departure location, depar-
ture date/time, and destination location. Two records refer to the same flight if they
have the same identifier, same departure location, same destination location, and a de-
parture time within 10 minutes of each other; it is the last item that renders structural
equality inadequate.8 Given�
f 1 = mk_Flight (”QF5” , ”YSSY” , ’ 17 -04 -01 12 :20 ’ , ”WSSS”)
f 2 = mk_Flight (”QF5” , ”YSSY” , ’ 17 -04 -01 12 :28 ’ , ”WSSS”)
f 3 = mk_Flight (”VOZ42” , ”YSSY” , ’ 16 -12 -25 02 :21 ’ , ”YBBN”)
f 4 = mk_Flight (”VOZ42” , ”YSSY” , ’ 16 -12 -24 02 :21 ’ , ”YBBN”)
f 5 = mk_Flight (”VOZ42” , ”YSSY” , ’ 16 -12 -24 02 :21 ’ , ”YMML”)
� �
We have
f1 = f2 ≡ true
f3 = f4 ≡ false
f1 = f3 ≡ false
f2 <> f4 ≡ true
eq_Flight(f4, f5) ≡ false

8We assume a type DateTime, a type Minute, and a function within.

33

VDM-10 Language Manual

A proof obligation is a condition that needs to be satisfied to verify a specification is
consistent. Whenever an equality relation is defined, the proof obligation requires the
relation to be an equivalence relation; that is, it is reflexive, symmetric and transitive9.
For a type T we have:

Reflexive:�
f o r a l l x :T & x = x
� �

Symmetric:�
f o r a l l x , y :T & x = y => y = x
� �

Transitive:�
f o r a l l x , y , z :T & x = y and y = z => x = z
� �

The equality relation employed when evaluating an expression depends on the type
that is determined for the expression statically; i.e. when type checking occurs, not
during expression evaluation. Consider the type definition�
NATPAIR = nat * nat
eq e1 = e2 == e1 .#1 = e2 .#1;
� �
and the value definitions�
x1 :NATPAIR = mk_(1 , 2) ;
x2 :NATPAIR = mk_(1 , 3) ;
x3 = mk_(1 , 2) ;
x4 = mk_(1 , 3) ;
� �
The following expressions all evaluate to true.

9https://en.wikipedia.org/wiki/Equivalence_relation gives a quick introduction to equivalence relation.

34

https://en.wikipedia.org/wiki/Equivalence_relation

CHAPTER 3. DATA TYPE DEFINITIONS

x1 = x2
x1 = mk_(1,42)
x1 <> mk_(2,2)
x1 = x3
x1 = x4
x3 <> x4
x3 = mk_(1,2)

Note for example x1 = x2 because statically they are of type NATPAIR whose equality
relation states they are equal if their first elements are equal. On the other hand x3
<> x4 because statically they are of type nat * nat whose implicit equality requires
both the first and second elements to be equal. x1 = x4 is true because statically x4
is interpreted as type NATPAIR due to the explicit declaration of x1:NATPAIR.

3.5 Order
Numeric types (section 3.1.2) have a primitive order relation. An order relation can be
defined explicitly for other types as part of the type definition. The general scheme for
defining an order (strict less than) relation is:�
Id = Type

ord pat1 < pat2 == expr
� �
or�
Id : : f i e l d s

ord pat1 < pat2 == expr
� �
pat1 and pat2 are patterns for two values of the type (or composite type), and expr is a
boolean expression that is true exactly when the expression represented by pat1 is less than
the expression represented by pat2 in the required order relation.

If an ord clause is defined, three new functions are created implicitly with the signatures:�
ord_T : T * T +> boo l
max_T : T * T +> T
min_T : T * T +> T
� �
such that

ord_T(t1,t2) ≡ t1 < t2
max_T(t1,t2) ≡ if ord_T(t1,t2) or t1 = t2 then t2 else t1
min_T(t1, t2) ≡ if ord_T(t1, t2) or t1 = t2 then t1 else t2

35

VDM-10 Language Manual

If an ord clause is defined for a type, then the infix operators <, <=, > and >= can be
employed with expressions of that type.

The equality relation for a type is defined (either explicitly or implicitly), and if the order
relation for a type is also defined (explicitly), we have

x <= y <=> x < y or x = y
x > y <=> not (x = y or x < y)
x >= y <=> x = y or not x < y

The proof obligation for an order relation is that it be a strict partial order; that is, it is
irreflexive and transitive10.

Irreflexive:�
f o r a l l x :T & not x < x
� �

Transitive:�
f o r a l l x , y , z :T & x < y and y < z => x < z
� �
The conditions relating <, <=, > and >= stated above are only guaranteed to hold
for an order relation that satisfies the proof obligation. Note a strict partial order must
be asymmetric�
f o r a l l x , y :T & x < y => not y < x
� �
However, asymmetry is derivable from irreflexivity and transitivity.

Example: Score revisited�
Score : : team : Team

won : nat
drawn : nat
l o s t : nat
po i n t s : nat

inv sc == sc . po i n t s = 3 * sc . won + sc . drawn
ord mk_Score (t1 , w1 , - , - , p1) < mk_Score (t2 , w2 , - , - , p2) ==

p1 < p2 or
p1 = p2 and w1 < w2 or
p1 = p2 and w1 = w2 and t1 < t2 ;
� �

10https://en.wikipedia.org/wiki/Partially_ordered_set gives a quick introduction to ordering relation.

36

https://en.wikipedia.org/wiki/Partially_ordered_set

CHAPTER 3. DATA TYPE DEFINITIONS

In this case the order is as might be presented in a league table (with greatest element
at top):

• Most points first;
• If equal on points, most wins first;
• Otherwise alphabetic ordering of team name (not defined here).

Given�
sc1 = mk_Score (<France >, 2 , 2 , 0 , 8) ;
s c2 = mk_Score (<Scot land >, 3 , 0 , 0 , 9) ;
s c3 = mk_Score (<SouthAfr ica >, 0 , 3 , 0 , 3) ;
s c4 = mk_Score (<SaudiArabia >, 1 , 0 , 2 , 3) ;
� �
We have
sc1 < sc2 ≡ true
sc1 <= sc3 ≡ false
sc2 > sc3 ≡ true
sc4 >= sc3 ≡ true
sc4 < sc3 ≡ false
ord_Score(sc1, sc2) ≡ true

The type argument of a polymorphic function can depend on an order relation. For
example, the following specifies a function that determines if a sequence is ordered:�
ascend ing [@a] : seq o f @a -> boo l
a scend ing (s) ==

f o r a l l i i n s e t { 1 , . . . , l e n s - 1} & s (i) <= s (i +1);
� �
The specification compares for order values of the type argument @a. There is no way
to express that @a admits an order relation so the function is partial. A type error
would be thrown at runtime if the function was executed with a type that does not
admit an order relation (such as bool).

37

VDM-10 Language Manual

38

Chapter 4

Algorithm Definitions

In the VDM languages algorithms can be defined by both functions and operations. However,
they do not directly correspond to functions in traditional programming languages. What
separates functions from operations in the VDM languages is the use of local and global
variables. Operations can manipulate both the global variables and any local variables.
Both local and global variables will be described later. Functions are pure in the sense that
they cannot access global variables and they are not allowed to define local variables. Thus,
functions are purely applicative while operations are imperative.

Functions and operations can be defined both explicitly (by means of an explicit algorithm
definition) or implicitly (by means of a pre-condition and/or a post condition). An explicit
algorithm definition for a function is called an expression while for an operation it is called
a statement. A pre-condition is a truth-valued expression which specifies what must hold
before the function/operation is evaluated. A pre-condition can only refer to parameter
values and global variables (if it is an operation). A post-condition is also a truth valued
expression which specifies what must hold after the function/operation is evaluated. A post-
condition can refer to the result identifier, the parameter values, the current values of global
variables and the old values of global variables. The old values of global variables are the
values of the variables as they were before the operation was evaluated. Only operations can
refer to the old values of global variables in a post-condition as functions are not allowed
access to the global variables in any way.

However, in order to be able to execute both functions and operations by the VDM
interpreters they must be defined explicitly1. In the VDM languages it is also possible for
explicit function and operation definitions to specify an additional pre- and a post-condition.
In the post-condition of explicit function and operation definitions the result value must be
referred to by the reserved word RESULT.

1Implicitly specified functions and operations cannot in general be executed because their post-condition does
not need to directly relate the output to the input. Often it is done by specifying the properties the output
must satisfy.

39

VDM-10 Language Manual

40

Chapter 5

Function Definitions

In the VDM languages we can define first order and higher order functions. A higher order
function is either a Curried function (a function that returns a function as result), or a
function that takes functions as arguments. Furthermore, both first order and higher order
functions can be polymorphic.

In VDM++ and VDM-RT functions are automatically available in a static form (i.e.
without having an instance of the defining class). Thus there is no need to use the static
keyword that can be used for operations in VDM++ and VDM-RT. Functions are executed
atomically - which is consistent with them being able to read instance variables of objects
passed, and there being no sync clauses (see Chapter 14) for functions. In general, the syntax
for the definition of a function is:

function definitions = ‘functions’, [access function definition,
{ ‘;’ }, access function definition function definition, [‘;’]] ;

access function definition = [access], function definition ;

access = ‘public’
| ‘private’
| ‘protected’ ;

function definition = explicit function definition
| implicit function definition
| extended explicit function definition ;

explicit function definition = identifier,
[type variable list], ‘:’, function type,
identifier, parameters list, ‘==’,
function body,
[‘pre’, expression],
[‘post’, expression],
[‘measure’, measure body] ;

41

VDM-10 Language Manual

implicit function definition = identifier, [type variable list],
parameter types, identifier type pair list,
[‘pre’, expression],
‘post’, expression ;

extended explicit function definition = identifier, [type variable list],
parameter types,
identifier type pair list,
‘==’, function body,
[‘pre’, expression],
[‘post’, expression],
[‘measure’, measure body] ;

type variable list = ‘[’, type variable identifier,
{ ‘,’, type variable identifier }, ‘]’ ;

identifier type pair list = identifier type pair, { ‘,’, identifier type pair } ;

parameter types = ‘(’, [pattern type pair list], ‘)’ ;

pattern type pair list = pattern list, ‘:’, type,
{ ‘,’, pattern list,‘:’, type } ;

function type = partial function type
| total function type ;

partial function type = discretionary type, ‘->’, type ;

total function type = discretionary type, ‘+>’, type ;

discretionary type = type | ‘(’,‘)’ ;

parameters = ‘(’, [pattern list], ‘)’ ;

pattern list = pattern,{ ‘,’, pattern } ;

function body = expression
| ‘is not yet specified’
| ‘is subclass responsibility’ ;

measure body = expression
| ‘is not yet specified’ ;

42

CHAPTER 5. FUNCTION DEFINITIONS

Here is not yet specified may be used as the function body during development of a model;
whereas the is subclass responsibility indicates that implementation of this body must be
undertaken by any subclasses so that can only be used in VDM++ and VDM-RT.

A simple example of an explicit function definition is the function map_inter which takes
two compatible maps over natural numbers and returns those maplets common to both�
map_inter : (map nat to nat) * (map nat to nat) -> map nat to nat
map_inter (m1,m2) ==

(dom m1 i n t e r dom m2) <: m1
pre f o r a l l d in s e t dom m1 i n t e r dom m2 & m1(d) = m2(d)
� �
Note that we could also use the optional post condition to allow assertions about the result
of the function:�
map_inter : (map nat to nat) * (map nat to nat) -> map nat to nat
map_inter (m1,m2) ==

(dom m1 i n t e r dom m2) <: m1
pre f o r a l l d in s e t dom m1 i n t e r dom m2 & m1(d) = m2(d)
post dom RESULT = dom m1 i n t e r dom m2
� �

The same function can also be defined implicitly:�
map_inter2 (m1,m2 : map nat to nat) m: map nat to nat
pre f o r a l l d in s e t dom m1 i n t e r dom m2 & m1(d) = m2(d)
post dom m = dom m1 i n t e r dom m2 and

f o r a l l d in s e t dom m & m(d) = m1(d) ;
� �
Note that implicitly functions are considered total. Thus if they are exported in VDM-SL
they need to be exported using the total function type.

A simple example of an extended explicit function definition is the function map_disj
which takes a pair of compatible maps over natural numbers and returns the map consisting
of those maplets unique to one or other of the given maps:�
map_disj (m1 :map nat to nat ,m2 :map nat to nat)

r e s : map nat to nat ==
(dom m1 i n t e r dom m2) < -: m1 munion
(dom m1 i n t e r dom m2) < -: m2

pre f o r a l l d in s e t dom m1 i n t e r dom m2 & m1(d) = m2(d)
post dom r e s = (dom m1 union dom m2) \ (dom m1 i n t e r dom m2)

and
f o r a l l d in s e t dom r e s & r e s (d) = m1(d) or r e s (d) = m2(d)

43

VDM-10 Language Manual

� �
(Note here that an attempt to interpret the post-condition could potentially result in a

run-time error since m1(d) and m2(d) need not both be defined simultaneously.)
The functions map_inter and map_disj can be evaluated by the VDM interpreters,

but the implicit function map_inter2 cannot be evaluated. However, in all three cases the
pre- and post-conditions can be used in other functions; for instance from the definition
of map_inter2 we get functions pre_map_inter2 and post_map_inter2 with the following
signatures:�

pre_map_inter2 : (map nat to nat) * (map nat to nat) +> boo l
post_map_inter2 : (map nat to nat) * (map nat to nat) *

(map nat to nat) +> boo l
� �
These kinds of functions are automatically created by the VDM interpreters and they can
be used in other definitions (this technique is called quoting). In general, for a function f
with signature�

f : T1 * . . . * Tn -> Tr
� �
defining a pre-condition for the function causes creation of a function pre_f with signature�

pre_f : T1 * . . . * Tn +> boo l
� �
and defining a post-condition for the function causes creation of a function post_f with
signature�

post_f : T1 * . . . * Tn * Tr +> boo l
� �
Functions can be defined using recursion (i.e. by calling themselves). When recursion is

used one is recommended to add a ‘measure’ clause that can be used in the proof obligations
generated from the model such that termination proofs can be carried out. A measure clause
has one of two forms:

1. The identifier of a function whose argument type is that of the function being defined
and result type is nat.

2. An expression of type nat that may include free instances of the argument variables in
the function definition.

A slightly more general form is described later.
Consider the definition of the factorial function:

44

CHAPTER 5. FUNCTION DEFINITIONS

�
f a c : nat +> nat
f a c (n) ==

i f n = 0
then 1
e l s e n* f a c (n - 1) ;
� �

A measure clause (of the first type) could be added by appending�
measure id
� �

where�
i d : nat +> nat
id (n) == n ;
� �

giving�
f a c : nat +> nat
f a c (n) ==

i f n = 0
then 1
e l s e n* f a c (n - 1)

measure id ;
� �
The proof obligation becomes�

f o r a l l n : nat &
(not (n=0) =>

id (n) > id (n - 1)) ;
� �
Verifying the proof obligation ensures the recursive function will terminate; the value of

the measure function is smaller on each recursive call, and being of type nat the value cannot
go below 0.

The second form of measure clause employs an expression of type nat�
measure n
� �

Note in this case the n in the measure clause is the argument variable n in the definition
of fac. The full definition is

45

VDM-10 Language Manual

�
f a c : nat +> nat
f a c (n) ==

i f n = 0
then 1
e l s e n* f a c (n - 1)

measure n ;
� �
An example on sequences�

dupe [@a] : seq o f @a +> seq o f @a
dupe (s) == ca s e s s :

[] -> [] ,
[x] -> [x , x] ,
t^u -> dupe t ^ dupe u

end
measure l en s ;
� �

As before the s in the measure clause is the argument variable in the definition of dupe.
The measure function reduces because the semantics of concatenation patterns ensure that
the sequence s is split into t and u such that t and u contain at least one element each.

A measure clause is recommended for recursive functions, but not mandatory. VDM
implementations typically issue a warning if a recursive function is defined without a measure
clause. If one explicitly does not want to provide a measure clause and avoid a warning the
is not yet specified expression can be used.�
f a c : nat +> nat
f a c (n) ==

i f n = 0
then 1
e l s e n* f a c (n - 1)

measure i s not yet s p e c i f i e d ;
� �
In some situations a measure clause that evaluates to a single nat is not adequate. More

generally a measure clause can be a function that returns a nat product, or an expression
whose type is a nat product. Consider the Ackermann function�
ackermann : nat * nat +> nat
ackermann (m, n) == ca s e s mk_(m, n) :

mk_(0 , q) -> q+1,
mk_(p , 0) -> ackermann (p - 1 , 1) ,

46

CHAPTER 5. FUNCTION DEFINITIONS

mk_(p , q) -> ackermann (p - 1 , ackermann (p , q - 1))
end ;
� �

Note that in the recursive calls either the first or the second argument reduces, but not
both. The measure clause is�
measure mk_(m, n)
� �

Order is lexicographic ordering on the nat tuple: in each recursive call either the first
argument reduces, or the first argument is unchanged and the second argument reduces.
Generally an arbitrary tuple can be expressed as the value in a measure clause.

Defining a measure for a function f with signature f : T1 * …* Tn -> T causes creation
of a function measure_f with signature measure_f : T1 * …* Tn +> nat or measure_f : T1
* …* Tn +> nat * …* nat.

5.1 Polymorphic Functions
Functions can also be polymorphic in VDM. This means that we can create generic functions
that can be used on values of several different types. For this purpose type parameters (or
type variables which are written like normal identifiers prefixed with a @ sign) are used.
Consider the polymorphic function to create an empty bag:1�
empty_bag [@elem] : () +> (map @elem to nat1)
empty_bag () ==

{ | -> }
� �
Before we can use the above function, we have to instantiate the function empty_bag with
a type, for example integers (see also section 6.12):�
emptyInt = empty_bag [i n t]
� �
Now we can use the function emptyInt to create a new bag to store integers. More examples
of polymorphic functions are:�
num_bag [@elem] : @elem * (map @elem to nat1) +> nat
num_bag(e , m) ==

i f e in s e t dom m
1The examples for polymorphic functions are taken from [?]. Bags are modelled as maps from the elements to
their multiplicity in the bag. The multiplicity is at least 1, i.e. a non-element is not part of the map, rather
than being mapped to 0.

47

VDM-10 Language Manual

then m(e)
e l s e 0 ;

plus_bag [@elem] : @elem * (map @elem to nat1) +>
(map @elem to nat1)

plus_bag (e , m) ==
m ++ { e | -> num_bag [@elem] (e , m) + 1 }
� �

If pre- and or post-conditions are defined for polymorphic functions, the corresponding pred-
icate functions are also polymorphic. For instance if num_bag was defined as�

num_bag [@elem] : @elem * (map @elem to nat1) +> nat
num_bag(e , m) ==

m(e)
pre e in s e t dom m
� �

then the pre-condition function would be�
pre_num_bag [@elem] : @elem * (map @elem to nat1) +> boo l
� �

Finally, VDM makes no assumptions about the type bound to a type parameter. This
binding must be made explicitly, either by making an assertion as part of the pre-condition
of the function, or by making a test before the part of the function body that restricts the
type parameter. For example, consider the function given below:�
pub l i c f [@T] : seq o f @T -> seq o f @T
f (s) ==

i f is_ (s , seq o f r e a l) then
[r + 1 | r in seq s]

e l s e
r e v e r s e s ;
� �

Here the type parameter @T denotes the element type of the sequence s passed to the
function. Note how the body of the function assumes the type parameter to be defined for
the + operator. This only works since the if-clause explicitly states that the parameter s is of
type seq of real. Without the if-clause use of the + operator would fail due to @T not being
of a numeric type. Alternatively, the assumption could be stated using a pre-condition e.g.
using is_real. This puts a restriction on the type parameter that applies to the entire body
of the function, though with simple examples like this the effect is the same as explicitly
declaring the type of the parameter in the function signature.

48

CHAPTER 5. FUNCTION DEFINITIONS

Polymorphic functions can also be recursive and in those cases it also makes sense to
include a measure function. For example:�
dlen [@A] : seq o f seq o f @A -> nat
d len (l) ==

i f l = []
then 0
e l s e l en hd l + dlen [@A] (t l l)

measure Len ;

Len [@A] : seq o f seq o f @A -> nat
Len (l) == l en l ;
� �
where a proof obligation ensuring termination of this recursive function as:�
(f o r a l l l : seq o f (seq o f (@A)) & ((not (l = [])) =>
(Len [@A] (l) > Len [@A] (t l l))))
� �
5.2 Higher Order Functions
Functions are allowed to receive other functions as arguments. A simple example of this
is the function nat_filter which takes a sequence of natural numbers, and a predicate, and
returns the subsequence that satisfies this predicate:�

n a t_ f i l t e r : (nat -> boo l) * seq o f nat -> seq o f nat
n a t_ f i l t e r (p , ns) ==

[n | n in seq ns & p(n)] ;
� �
Then nat_filter (lambda x:nat & x mod 2 = 0, [1,2,3,4,5]) ≡ [2,4]. In fact, this algorithm is
not specific to natural numbers, so we may define a polymorphic version of this function:�

f i l t e r [@elem] : (@elem -> boo l) * seq o f @elem -> seq o f @elem
f i l t e r (p , l) ==

[i | i i n seq l & p(i)] ;
� �
so filter[real](lambda x:real & floor x = x, [2.3,0.7,-2.1,3]) ≡ [3].

Functions may also return functions as results. An example of this is the function fmap:�
fmap [@elem] : (@elem +> @elem) +> seq o f @elem +> seq o f @elem

49

VDM-10 Language Manual

fmap (f) (l) ==
i f l = []
then []
e l s e [f (hd l)] ^ (fmap [@elem] (f) (t l l)) ;
� �

So fmap[nat](lambda x:nat & x * x)([1,2,3,4,5]) ≡ [1,4,9,16,25].
Since the fmap function is recursive, it ought to have a measure function defined. In the case
of curried functions, the measure function’s parameters are the same as a de-curried version
of the recursive function’s parameters. For the fmap example, this would be:�

m[@elem] : (@elem -> @elem) * seq o f @elem -> nat
m(- , l) == l en l ;
� �

Note that the measure function is also polymorphic, and must have the same type parameters
as the function it measures. The proof obligation will also be polymorphic:�
(f o r a l l f : (@elem -> @elem) , l : seq o f (@elem) &

(not (l = []) =>
m[@elem] (f , l) > m[@elem] (f , (t l l))))
� �

50

Chapter 6

Expressions

In this chapter we will describe the different kinds of expressions one by one. Each of them
will be described by means of:

• A syntax description in BNF.

• An informal semantics description.

• An example illustrating its usage.

6.1 Let Expressions
Syntax: expression = let expression

| let be expression
| … ;

let expression = ‘let’, local definition { ‘,’, local definition },
‘in’, expression ;

let be expression = ‘let’, multiple bind, [‘be’, ‘st’, expression], ‘in’,
expression ;

local definition = value definition
| function definition ;

value definition = pattern, [‘:’, type], ‘=’, expression ;

where the “function definition” component is described in section 5.

Semantics: A simple let expression has the form:�
l e t p1 = e1 , . . . , pn = en in e
� �

51

VDM-10 Language Manual

where p1, …, pn are patterns, e1, …, en are expressions which match the corresponding
pattern pi, and e is an expression, of any type, involving the pattern identifiers of p1,
…, pn. It denotes the value of the expression e in the context in which the patterns p1,
…, pn are matched against the corresponding expressions e1, …, en.
More advanced let expressions can also be made by using local function definitions.
The semantics of doing so is simply that the scope of such locally defined functions is
restricted to the body of the let expression.
In standard VDM-SL the collection of definitions may be mutually recursive. However,
in the VDM languages this is not supported by the VDM interpreters. Furthermore,
the definitions must be ordered such that all constructs are defined before they are
used.
A let-be-such-that expression has the form:�

l e t mb be s t e1 in e2
� �
where mb is a multi-binding of one or more patterns (mostly just one pattern) to a set
value (or a sequence or a type), e1 is a boolean expression, and e2 is an expression, of
any type, involving the pattern identifiers of the patterns from mb. The be st e1 part
is optional. The expression denotes the value of the expression e2 in the context in
which all the patterns from mb have been matched against either an element in the set
from mb, or an element in the sequence from mb, or against a value from the type in
mb1. If the st e1 expression is present, only such bindings where e1 evaluates to true
in the matching context are used.

Examples: Let expressions are useful for improving readability especially by contracting com-
plicated expressions used more than once. For instance, we can improve the function
map_disj from page 44:�
map_disj : (map nat to nat) * (map nat to nat) ->

map nat to nat
map_disj (m1,m2) ==

l e t inter_dom = dom m1 i n t e r dom m2
in

inter_dom <-: m1 munion inter_dom <-: m2
pre f o r a l l d in s e t dom m1 i n t e r dom m2 & m1(d) = m2(d)
� �
They are also convenient for decomposing complex structures into their components.
For instance, using the previously defined record type Score (see page 25) we can test
whether one score is greater than another:

1Remember that only the set and sequence bindings can be executed by means of the VDM interpreters.

52

CHAPTER 6. EXPRESSIONS

�
l e t mk_Score (- ,w1 , - , - , p1) = sc1 ,

mk_Score (- ,w2 , - , - , p2) = sc2
in (p1 > p2) or (p1 = p2 and w1 > w2)
� �

In this particular example we extract the second and fifth components of the two scores.
Note that don’t care patterns (see page 87) are used to indicate that the remaining
components are irrelevant for the processing done in the body of this expression.
Let-be-such-that expressions are useful for abstracting away the non-essential choice
of an element from a set, in particular in formulating recursive definitions over sets.
An example of this is a version of the sequence filter function (see page 49) over sets:�
s e t _ f i l t e r [@elem] : (@elem -> boo l) -> (s e t o f @elem) ->

(s e t o f @elem)
s e t _ f i l t e r (p) (s) ==

i f s = {}
then {}
e l s e l e t x in s e t s

in (i f p (x) then {x} e l s e {}) union
s e t _ f i l t e r [@elem] (p) (s \ {x }) ;
� �

We could alternatively have defined this function using a set comprehension (described
in section 6.7):�

s e t _ f i l t e r [@elem] : (@elem -> boo l) -> (s e t o f @elem) ->
(s e t o f @elem)

s e t _ f i l t e r (p) (s) ==
{ x | x in s e t s & p(x) } ;
� �

The last example shows how the optional “be such that” part (be st) can be used. This
part is especially useful when it is known that an element with some property exists
but an explicit expression for such an element is not known or difficult to write. For
instance we can exploit this expression to write a selection sort algorithm:�

remove : nat * seq o f nat -> seq o f nat
remove (x , l) ==

l e t i i n s e t inds l be s t l (i) = x
in

l (1 , . . . , i - 1) ^ l (i + 1 , . . . , l e n l)
pre x in s e t e lems l ;

53

VDM-10 Language Manual

s e l e c t i o n_ s o r t : seq o f nat -> seq o f nat
s e l e c t i o n_ s o r t (l) ==

i f l = []
then []
e l s e l e t m in seq l be s t

f o r a l l x in seq l & m <= x
in

[m] ^ (s e l e c t i o n_ s o r t (remove (m, l)))
� �
Here the first function removes a given element from the given list; the second function
repeatedly removes the least element in the unsorted portion of the list, and places it
at the head of the sorted portion of the list.

6.2 The Define Expression
This expression can only be used inside operations which will be described in section 11. In
order to deal with global variables inside the expression part an extra expression construct
is available inside operations.

Syntax: expression = …
| def expression
| … ;

def expression = ‘def’, pattern bind, ‘=’, expression,
{ ‘;’, pattern bind, ‘=’, expression }, [‘;’],
‘in’, expression ;

Semantics: A define expression has the form:�
de f pb1 = e1 ;

. . .
pbn = en

in
e
� �

The define expression corresponds to a let expression except that the right hand side
expressions may depend on the value of the local and/or global variable and that it
may not be mutually recursive. It denotes the value of the expression e in the context

54

CHAPTER 6. EXPRESSIONS

in which the patterns (or binds) pb1, …, pbn are matched against the corresponding
expressions e1, …, en2.

Examples: The define expression is used in a pragmatic way, in order to make the reader
aware of the fact that the value of the expression depends upon the global variable.
This can be illustrated by a small example:�

de f u s e r = l i b (copy)
in

i f u s e r = <OUT>
then t rue
e l s e f a l s e
� �

where copy is defined in the context, lib is global variable (thus lib(copy) can be
considered as looking up the contents of a part of the variable).
The operation GroupRunnerUp_expl in section 12.1 also gives an example of a define
expression.

6.3 Unary and Binary Expressions
Syntax: expression = …

| unary expression
| binary expression
| … ;

unary expression = prefix expression
| map inverse ;

prefix expression = unary operator, expression ;

unary operator = ‘+’ | ‘-’ | ‘abs’ | ‘floor’ | ‘not’ | ‘reverse’
| ‘card’ | ‘power’ | ‘dunion’ | ‘dinter’
| ‘hd’ | ‘tl’ | ‘len’ | ‘elems’ | ‘inds’ | ‘conc’
| ‘dom’ | ‘rng’ | ‘merge’ ;

map inverse = ‘inverse’, expression ;

binary expression = expression, binary operator, expression ;
2If binds are used, it simply means that the values which can match the pattern are further constrained by
the type, sequence, or set expression as explained in Chapter 7.

55

VDM-10 Language Manual

binary operator = ‘+’ | ‘-’ | ‘*’ | ‘/’
| ‘rem’ | ‘div’ | ‘mod’ | ‘**’
| ‘union’ | ‘inter’ | ‘\’ | ‘subset’
| ‘psubset’ | ‘in set’ | ‘not in set’
| ‘^’
| ‘++’ | ‘munion’ | ‘<:’ | ‘<-:’ | ‘:>’ | ‘:->’
| ‘and’ | ‘or’
| ‘=>’ | ‘<=>’ | ‘=’ | ‘<>’
| ‘<’ | ‘<=’ | ‘>’ | ‘>=’
| ‘comp’ ;

Semantics: Unary and binary expressions are a combination of operands and operators de-
noting a value of a specific type. The signature of all these operators is already given
in Chapter 3, so no further explanation will be provided here. The map inverse unary
operator is treated separately because it is written with postfix notation in the math-
ematical syntax.

Examples: Examples using these operators were given in Chapter 3, so none will be provided
here.

6.4 Conditional Expressions
Syntax: expression = …

| if expression
| cases expression
| … ;

if expression = ‘if’, expression, ‘then’, expression,
{ elseif expression }, ‘else’, expression ;

elseif expression = ‘elseif’, expression, ‘then’, expression ;

cases expression = ‘cases’, expression, ‘:’,
cases expression alternatives,
[‘,’, others expression], ‘end’ ;

cases expression alternatives = cases expression alternative,
{ ‘,’, cases expression alternative } ;

cases expression alternative = pattern list, ‘->’, expression ;

others expression = ‘others’, ‘->’, expression ;

56

CHAPTER 6. EXPRESSIONS

Semantics: If expressions and cases expressions allow the choice of one from a number of
expressions on the basis of the value of a particular expression.
The if expression has the form:�

i f e1
then e2
e l s e e3
� �

where e1 is a boolean expression, while e2 and e3 are expressions of any type. The if
expression denotes the value of e2 evaluated in the given context if e1 evaluates to true
in the given context. Otherwise the if expression denotes the value of e3 evaluated in
the given context. The use of an elseif expression is simply a shorthand for a nested if
then else expression in the else part of the expression.
The cases expression has the form�

c a s e s e :
p11 , p12 , . . . , p1n -> e1 ,
. . . -> . . . ,
pm1 , pm2 , . . . , pmk -> em,
o th e r s -> emplus1

end
� �
where e is an expression of any type, all pij’s are patterns which are matched one by
one against the expression e. The ei’s are expressions of any type, and the keyword
others and the corresponding expression emplus1 are optional. The cases expression
denotes the value of the ei expression evaluated in the context in which one of the pij
patterns has been matched against e. The chosen ei is the first entry where it has been
possible to match the expression e against one of the patterns. If none of the patterns
match e an others clause must be present, and then the cases expression denotes the
value of emplus1 evaluated in the given context.

Examples: The if expression in the VDM languages corresponds to what is used in most
programming languages, while the cases expression in the VDM languages is more
general than most programming languages. This is shown by the fact that real pattern
matching is taking place, but also because the patterns do not have to be constants as
in most programming languages.
An example of the use of conditional expressions is provided by the specification of the
mergesort algorithm:�

lmerge : seq o f nat * seq o f nat -> seq o f nat

57

VDM-10 Language Manual

lmerge (s1 , s2) ==
i f s1 = []
then s2
e l s e i f s2 = []
then s1
e l s e i f (hd s1) < (hd s2)
then [hd s1] ^ (lmerge (t l s1 , s2))
e l s e [hd s2] ^ (lmerge (s1 , t l s2)) ;

mergesor t : seq o f nat -> seq o f nat
mergesor t (l) ==

ca s e s l :
[] -> [] ,
[x] -> [x] ,
l 1 ^ l 2 -> lmerge (mergesor t (l 1) , mergesor t (l 2))

end
� �
The pattern matching provided by cases expressions is useful for manipulating members
of type unions. For instance, using the type definition Expr from page 27 we have:�
print_Expr : Expr -> seq1 o f char
print_Expr (e) ==

ca s e s e :
mk_Const (-) -> ”Const o f ” ^ (print_Const (e)) ,
mk_Var(id , -) -> ”Var o f ” ^ id ,
mk_Infix (mk_(e1 , op , e2)) -> ” I n f i x o f ” ^ print_Expr (e1)^ ” , ”

^ print_Op (op) ^ ” , ”
^ print_Expr (e2) ,

mk_Cond(t , c , a) -> ”Cond o f ” ^ print_Expr (t) ^ ” , ”
^ print_Expr (c) ^ ” , ”
^ print_Expr (a)

end ;

print_Const : Const -> seq1 o f char
print_Const (mk_Const (c)) ==

i f i s_nat (c)
then ” nat ”
e l s e - - must be boo l

” boo l ” ;
� �
The function print_Op would be defined similarly.

58

CHAPTER 6. EXPRESSIONS

6.5 Quantified Expressions
Syntax: expression = …

| quantified expression
| … ;

quantified expression = all expression
| exists expression
| exists unique expression ;

all expression = ‘forall’, bind list, ‘&’, expression ;

exists expression = ‘exists’, bind list, ‘&’, expression ;

bind list = multiple bind, { ‘,’, multiple bind } ;

exists unique expression = ‘exists1’, bind, ‘&’, expression ;

Semantics: There are three forms of quantified expressions: universal (written as forall),
existential (written as exists), and unique existential (written as exists1). Each yields
a boolean value true or false, as explained in the following.
The universal quantification has the form:�

f o r a l l mbd1 , mbd2 , … , mbdn & e
� �
where each mbdi is a multiple bind pi in set s, pi in seq s, or if it is a type bind pi :
type, and e is a boolean expression involving the pattern identifiers of the mbdi’s. It
has the value true if e is true when evaluated in the context of every choice of bindings
from mbd1, mbd2, …, mbdn and false otherwise.
The existential quantification has the form:�

e x i s t s mbd1 , mbd2 , … , mbdn & e
� �
where the mbdi’s and the e are as for a universal quantification. It has the value true
if e is true when evaluated in the context of at least one choice of bindings from mbd1,
mbd2, …, mbdn, and false otherwise.
The unique existential quantification has the form:�

e x i s t s 1 bd & e
� �
59

VDM-10 Language Manual

where bd is either a set bind, a sequence bind, or a type bind and e is a boolean
expression involving the pattern identifiers of bd. It has the value true if e is true
when evaluated in the context of exactly one choice of bindings, and false otherwise.

All quantified expressions have the lowest possible precedence. This means that the
longest possible constituent expression is taken. The expression is continued to the
right as far as it is syntactically possible.

Examples: An example of an existential quantification is given in the function shown below,
QualificationOk. This function, taken from the specification of a nuclear tracking
system in [?], checks whether a set of experts has a required qualification.�

types

ExpertId = token ;
Expert : : e xp e r t i d : ExpertId

qua l i : s e t o f Qu a l i f i c a t i o n
inv ex == ex . q u a l i <> {} ;
Qu a l i f i c a t i o n = <Elec> | <Mech> | <Bio> | <Chem>

fun c t i o n s

Qua l i f i ca t ionOK : s e t o f Expert * Qu a l i f i c a t i o n -> boo l
Qua l i f i ca t ionOK (exs , r e q qu a l i) ==

e x i s t s ex in s e t exs & r e q qu a l i i n s e t ex . q u a l i
� �
The function min gives us an example of a universal quantification:�

min (s : s e t o f nat) x : nat
pre s <> {}
post f o r a l l y in s e t s & x <= y
� �

We can use unique existential quantification to state the functional property satisfied
by all maps m:�

f o r a l l d in s e t dom m &
ex i s t s 1 r in s e t rng m & m(d) = r
� �

60

CHAPTER 6. EXPRESSIONS

6.6 The Iota Expression
Syntax: expression = …

| iota expression
| … ;

iota expression = ‘iota’, bind, ‘&’, expression ;

Semantics: An iota expression has the form:�
i o t a bd & e
� �

where bd is either a set bind, a sequence bind, or a type bind, and e is a boolean
expression involving the pattern identifiers of bd. The iota operator can only be used
if a unique value exists which matches the bind and makes the body expression e yield
true (i.e. exists1 bd & e must be true). The semantics of the iota expression is such
that it returns the unique value which satisfies the body expression (e).

Examples: Using the values sc1,...,sc4 defined by�
sc1 = mk_Score (<France >, 3 , 0 , 0 , 9) ;
s c2 = mk_Score (<Denmark>, 1 , 1 , 1 , 4) ;
s c3 = mk_Score (<SouthAfr ica >, 0 , 2 , 1 , 2) ;
s c4 = mk_Score (<SaudiArabia >, 0 , 1 , 2 , 1) ;
� �

we have
iota x in set {sc1,sc2,sc3,sc4} & x.team = <France> ≡ sc1
iota x in set {sc1,sc2,sc3,sc4} & x.points > 3 ≡ ⊥
iota x : Score & x.points < x.won ≡ ⊥

Notice that the last example cannot be executed and that the last two expressions
are undefined - in the former case because there is more than value satisfying the
expression, and in the latter because no value satisfies the expression.

6.7 Set Expressions
Syntax: expression = …

| set enumeration
| set comprehension
| set range expression
| … ;

61

VDM-10 Language Manual

set enumeration = ‘{’, [expression list], ‘}’ ;

expression list = expression, { ‘,’, expression } ;

set comprehension = ‘{’, expression, ‘|’, bind list,
[‘&’, expression], ‘}’ ;

set range expression = ‘{’, expression, ‘,’, ‘…’, ‘,’,
expression, ‘}’ ;

Semantics: A Set enumeration has the form:�
{e1 , e2 , e3 , … , en}
� �

where e1 up to en are general expressions. It constructs a set of the values of the
enumerated expressions. The empty set is written as {}.

The set comprehension expression has the form:�
{e | mbd1 , mbd2 , … , mbdn & P}
� �

It constructs a set by evaluating the expression e on all the bindings for which the
predicate P evaluates to true. A multiple binding can contain set bindings, sequence
bindings, and type bindings. Thus mbdn will look like pat1 in set s1, pat2 : tp1, pat3
in seq q1, …in set s2, where pati is a pattern (normally simply an identifier), s1 and s2
are sets constructed by expressions, and q1 is a sequence constructed by an expression
(whereas tp1 is used to illustrate that type binds can also be used). Notice however
that type binds can only be executed by the VDM interpreters in case the types can
be statically declared as finite.

The set range expression is a special case of a set comprehension. It has the form�
{e1 , … , e2}
� �

where e1 and e2 are numeric expressions. The set range expression denotes the set
of integers from e1 to e2 inclusive. If e2 is smaller than e1 the set range expression
denotes the empty set.

Examples: Using the values Europe={<France>,<England>,<Denmark>,<Spain>} and
GroupC = {sc1,sc2,sc3,sc4} (where sc1,...,sc4 are as defined in the preceding example)
we have

62

CHAPTER 6. EXPRESSIONS

{<France>, <Spain>} subset Europe ≡ true
{<Brazil>, <Chile>, <England>}

subset Europe
≡ false

{<France>, <Spain>, ”France”}
subset Europe

≡ false

{sc.team | sc in set GroupC
& sc.points > 2}

≡ {<France>,
<Denmark>}

{sc.team | sc in set GroupC
& sc.lost > sc.won }

≡ {<SouthAfrica>,
<SaudiArabia>}

{2.718,...,3.141} ≡ {3}
{3.141,...,2.718} ≡ {}
{1,...,5} ≡ {1,2,3,4,5}
{ x | x:nat & x < 10 and x mod 2 = 0} ≡ {0,2,4,6,8}

6.8 Sequence Expressions
Syntax: expression = …

| sequence enumeration
| sequence comprehension
| subsequence
| … ;

sequence enumeration = ‘[’, [expression list], ‘]’ ;

sequence comprehension = ‘[’, expression, ‘|’, bind, [‘&’, expression], ‘]’ ;

subsequence = expression, ‘(’, expression, ‘,’, ‘…’, ‘,’, expression, ‘)’ ;

Semantics: A sequence enumeration has the form:�
[e1 , e2 , … , en]
� �

where e1 through en are general expressions. It constructs a sequence of the enumerated
elements. The empty sequence is written as [].
A sequence comprehension over sequences has the form:�

[e | pat in seq S & P]
� �
where the expression e may refer to the identifiers introduced by the one pattern pat.
S is a sequence of values. It constructs a sequence by evaluating the expression e on
all the bindings for which the predicate P evaluates to true, preserving the order of
elements in S.

63

VDM-10 Language Manual

A sequence comprehension over sets has the form:�
[e | pat in s e t S & P]
� �

where the expression e will use the identifiers from the pattern pat (normally this
pattern will simply be an identifier, but the only real requirement is that exactly one
pattern identifier must be present in the pattern). S is a set of values. The bindings of
the pattern identifier must be to a type that admits an order relation, which dictates
the ordering of the elements in the resulting sequence. It constructs a sequence by
evaluating the expression e on all the (ordered) bindings for which the predicate P
evaluates to true. Note it is not the result sequence that is ordered, but the sequence
of values of the pattern identifier.

A subsequence of a sequence l is a sequence formed from consecutive elements of l;
from index n1 up to and including index n2. It has the form:�

l (n1 , . . . , n2)
� �

where n1 and n2 are positive integer expressions. If the lower bound n1 is smaller
than 1 (the first index in a non-empty sequence) the subsequence expression will start
from the first element of the sequence. If the upper bound n2 is larger than the length
of the sequence (the largest index which can be used for a non-empty sequence) the
subsequence expression will end at the last element of the sequence.

Examples: Given that GroupA is equal to the sequence�
[mk_Score(<Braz i l > ,2 ,0 , 1 , 6) ,

mk_Score(<Norway > ,1 ,2 ,0 , 5) ,
mk_Score(<Morocco > ,1 ,1 ,1 , 4) ,
mk_Score(<Scot land > ,0 ,1 ,2 ,1)]
� �

then:

64

CHAPTER 6. EXPRESSIONS

[a.team
| a in seq GroupA
& a.won <> 0]

≡ [<Brazil>,
<Norway>,
<Morocco>]

[a
| a in seq GroupA
& a.won = 0]

≡ [mk_Score(<Scotland>,0,1,2,1)]

GroupA(1,...,2) ≡ [mk_Score(<Brazil>,2,0,1,6),
mk_Score(<Norway>,1,2,0,5)]

[a
| a in seq GroupA
& a.points = 9]

≡ []

6.9 Map Expressions
Syntax: expression = …

| map enumeration
| map comprehension
| … ;

map enumeration = ‘{’, maplet, { ‘,’, maplet }, ‘}’
| ‘{’, ‘|->’, ‘}’ ;

maplet = expression, ‘|->’, expression ;

map comprehension = ‘{’, maplet, ‘|’, bind list,
[‘&’, expression], ‘}’ ;

Semantics: A map enumeration has the form:�
{d1 | -> r1 , d2 | -> r2 , … , dn | -> rn}
� �

where all the domain expressions di and range expressions ri are general expressions
and all di’s must be different unless they point to the same value. The empty map is
written as {|->}.
A map comprehension has the form:�

{ed | -> er | mbd1 , … , mbdn & P}
� �
where constructs mbd1, …, mbdn are multiple bindings of variables from the expres-
sions ed and er to sets (or types). The map comprehension constructs a mapping by
evaluating the expressions ed and er on all the possible bindings for which the predicate
P evaluates to true.

65

VDM-10 Language Manual

Examples: Given that GroupG is equal to the map�
{ <Romania> | -> mk_(2 , 1 , 0) , <England> | -> mk_(2 , 0 , 1) ,

<Colombia> | -> mk_(1 , 0 , 2) , <Tunis ia> | -> mk_(0 , 1 , 2) }
� �
then:
{ t |-> let mk_(w,d,-) = GroupG(t)

in w * 3 + d
| t in set dom GroupG}

≡ {<Romania> |-> 7,
<England> |-> 6,
<Colombia> |-> 3,
<Tunisia> |-> 1}

{ t |-> w * 3 + d
| t in set dom GroupG, w,d,l:nat
& mk_(w,d,l) = GroupG(t)
and w > l}

≡ {<Romania> |-> 7,
<England> |-> 6}

6.10 Tuple Constructor Expressions
Syntax: expression = …

| tuple constructor
| … ;

tuple constructor = ‘mk_’, ‘(’, expression, ‘,’, expression list, ‘)’ ;

Semantics: The tuple constructor expression has the form:�
mk_(e1 , e2 , … , en)
� �

where ei is a general expression. It can only be used by the equality and inequality
operators.

Examples: Using the map GroupG defined in the preceding example, we have:
mk_(2,1,0) in set rng GroupG ≡ true
mk_(”Romania”,2,1,0) not in set rng GroupG ≡ true
mk_(<Romania>,2,1,0) <> mk_(”Romania”,2,1,0) ≡ true

6.11 Record Expressions
Syntax: expression = …

| record constructor
| record modifier
| … ;

66

CHAPTER 6. EXPRESSIONS

record constructor = ‘mk_’, name, ‘(’, [expression list], ‘)’ ;

record modifier = ‘mu’, ‘(’, expression, ‘,’, record modification,
{ ‘,’, record modification } ‘)’ ;

record modification = identifier, ‘|->’, expression ;

Semantics: The record constructor has the form:�
mk_T(e1 , e2 , … , en)
� �

where the type of the expressions (e1, e2, …, en) matches the type of the corresponding
entrances in the composite type T. Note that the reason why a name (and not an
identifier) is used here is to take into account that one would like to be able to refer
also to a class or a module where the record type is defined (see Chapter 13) this would
look like mk_MC‘T(e1, e2, …, en) where MC will be the name of a module or a class.
The record modification has the form:�

mu (e , id1 | -> e1 , id2 | -> e2 , … , idn | -> en)
� �
where the evaluation of the expression e returns the record value to be modified. All
the identifiers idi must be distinct named entrances in the record type of e.

Examples: If sc is the value mk_Score(<France>,3,0,0,9) then�
mu (sc , drawn | -> sc . drawn + 1 , po i n t s | -> sc . po i n t s + 1)
≡ mk_Score(<France > ,3 ,1 ,0 ,10)
� �

Further examples are demonstrated in the function win. This function takes two teams
and a set of scores. From the set of scores it locates the scores corresponding to the
given teams (wsc and lsc for the winning and losing team respectively), then updates
these using the mu operator. The set of teams is then updated with the new scores
replacing the original ones.�

win : Team * Team * s e t o f Score -> s e t o f Score
win (wt , l t , gp) ==

l e t wsc = i o t a sc in s e t gp & sc . team = wt ,
l s c = i o t a sc in s e t gp & sc . team = l t

in
l e t new_wsc = mu (wsc , won | -> wsc . won + 1 ,

67

VDM-10 Language Manual

po i n t s | -> wsc . po i n t s + 3) ,
new_lsc = mu (l s c , l o s t | -> l s c . l o s t + 1)

in
(gp \ {wsc , l s c }) union {new_wsc , new_lsc}

pre f o r a l l sc1 , s c2 in s e t gp &
((sc1 <> sc2) <=> (sc1 . team <> sc2 . team))
and {wt , l t } subse t { sc . team | sc in s e t gp}
� �

6.12 Apply Expressions
Syntax: expression = …

| apply
| field select
| tuple select
| function type instantiation
| … ;

apply = expression, ‘(’, [expression list], ‘)’ ;

field select = expression, ‘.’, identifier ;

tuple select = expression, ‘.#’, numeral ;

function type instantiation = name, ‘[’, type, { ‘,’, type }, ‘]’ ;

Semantics: The field select expression can be used for records and it has already been ex-
plained in section 3.2.5 so no further explanation will be given here.
The apply is used for looking up in a map, indexing in a sequence, and finally for
calling a function. In section 3.2.3 it has already been shown what it means to look
up in a map. Similarly in section 3.2.2 it is illustrated how indexing in a sequence is
performed. Function calls are using a call by value semantics meaning that the values
are passed as arguments. The only exception to this is in the VDM++ and VDM-RT
dialects where object references are passed as call by reference but since the functions
cannot adjust any instance variable this make no semantic difference.
In the VDM languages an operation can also be called here. This is not allowed
in standard VDM-SL and because this kind of operation call can modify the state
such usage should be done with care in complex expressions. Note however that such
operation calls are not allowed to throw exceptions.
With such operation calls the order of evaluation can become important. Therefore the
type checker will allow the user to enable or disable operation calls inside expressions.

68

CHAPTER 6. EXPRESSIONS

The tuple select expression is used to extract a particular component from a tuple.
The meaning of the expression is if e evaluates to some tuple mk_(v1,...,vN) and M is
an integer in the range {1,...,N} then e.#M yields vM. If M lies outside {1,...,N} the
expression is undefined.

The function type instantiation is used for instantiating polymorphic functions with
the proper types. It has the form:�

pf [t1 , . . . , tn]
� �
where pf is the name of a polymorphic function, and t1, …, tn are types. The resulting
function uses the types t1, …, tn instead of the variable type names given in the function
definition.

Examples: Recall that GroupA is a sequence (see page 64), GroupG is a map (see page 66)
and selection_sort is a function (see page 54):

GroupA(1) ≡ mk_Score(<Brazil>,2,0,1,6)
GroupG(<Romania>) ≡ mk_(2,1,0)
GroupG(<Romania>).#2 ≡ 1
selection_sort([3,2,9,1,3]) ≡ [1,2,3,3,9]

As an example of the use of polymorphic functions and function type instantiation, we
use the example functions from section 5:�

l e t emptyInt = empty_bag [i n t]
i n

plus_bag [i n t] (- 1 , emptyInt ())

≡

{ -1 | -> 1 }
� �

6.13 The New Expression (VDM++ and VDM-RT)
Syntax: expression = …

| new expression ;

new expression = ‘new’, name, ‘(’, [expression list], ‘)’ ;

Semantics: The new expression has the form:

69

VDM-10 Language Manual

�
new classname (e1 , e2 , . . . , en)
� �

An object can be created (also called instantiated) from its class description using
a new expression. The effect of a new expression is that a ‘new’, unique object as
described in class classname is created. The value of the new expression is a reference
to the new object.
If the new expression is invoked with no parameters, an object is created in which all
instance variables take their “default” values (i.e. the values defined by their initiali-
sation conditions). With parameters, the new expression represents a constructor (see
Section 11.1) and creates customised instances (i.e. where the instance variables may
take values which are different from their default values).

Examples: Suppose we have a class called Queue and that default instances of Queue are
empty. Suppose also that this class contains a constructor (which will also be called
Queue) which takes a single parameter which is a list of values representing an arbitrary
starting queue. Then we can create default instances of Queue in which the actual
queue is empty using the expression�

new Queue ()
� �
and an instance of Queue in which the actual queue is, say, e1, e2, e3 using the
expression�

new Queue ([e1 , e2 , e3])
� �
Using the class Tree defined on page 29 we create new Tree instances to construct
nodes:�
mk_node(new Tree () , x , new Tree ())
� �

6.14 The Self Expression (VDM++ and VDM-RT)
Syntax: expression = …

| self expression ;

self expression = ‘self’ ;

Semantics: The self expression has the form:

70

CHAPTER 6. EXPRESSIONS

�
s e l f
� �

The self expression returns a reference to the object currently being executed. It can
be used to simplify the name space in chains of inheritance.

Examples: Using the class Tree defined on page 29 we can specify a subclass called BST
which stores data using the binary search tree approach. We can then specify an
operation which performs a binary search tree insertion:�

I n s e r t : i n t ==> ()
I n s e r t (x) ==

(dc l curr_node : Tree := s e l f ;

wh i l e not curr_node . isEmpty () do
i f curr_node . r o o t v a l () < x
then curr_node := curr_node . r ightBranch ()
e l s e curr_node := curr_node . l e f tB ranch () ;

curr_node . addRoot (x) ;
)
� �

This operation uses a self expression to find the root at which to being traversal prior
to insertion. Further examples are given in section 12.9.

6.15 The Threadid Expression (VDM++ and VDM-RT)
Syntax: expression = …

| threadid expression ;

threadid expression = ‘threadid’ ;

Semantics: The threadid expression has the form:�
th r ead id
� �

The threadid expression returns a natural number which uniquely identifies the thread
in which the expression is executed. Note that periodic threads gets a new threadid at
the start of each new period.

71

VDM-10 Language Manual

Examples: Using threadid’s it is possible to provide a VDM++ base class that implements a
Java-style wait-notify in VDM++ using permission predicates. Any object that should
be available for the wait-notify mechanism must derive from this base class.�
c l a s s WaitNoti fy

i n s t an c e v a r i a b l e s
wa i t s e t : s e t o f nat := {} ;

op e r a t i on s
p ro t e c t ed wait : () ==> ()
wait () ==

l e t p = thr ead id
in (

AddToWaitSet (p) ;
Awake () ;
) ;

AddToWaitSet : nat ==> ()
AddToWaitSet (p) ==

wa i t s e t := wa i t s e t union { p } ;

Awake : () ==> ()
Awake () ==

sk ip ;

p r o t e c t ed n o t i f y : () ==> ()
n o t i f y () ==

i f wa i t s e t <> {}
then l e t a rb i t r a r y_p ro c e s s in s e t wa i t s e t

in wa i t s e t := wa i t s e t \ { a rb i t r a r y_pro c e s s } ;

p r o t e c t ed n o t i f yA l l : () ==> ()
n o t i f yA l l () ==

wa i t s e t := {} ;

sync
mutex (n o t i f yA l l , AddToWaitSet , n o t i f y) ;
per Awake => thread id not in s e t wa i t s e t ;

end WaitNoti fy
� �
72

CHAPTER 6. EXPRESSIONS

In this example the threadid expression is used in two places:

• In the Wait operation for threads to register interest in this object.
• In the permission predicate for Awake. An interested thread should call Awake

following registration using Wait. It will then be blocked until its threadid is
removed from the waitset following another thread’s call to notify.

6.16 The Lambda Expression
Syntax: expression = …

| lambda expression
| … ;

lambda expression = ‘lambda’, type bind list, ‘&’, expression ;

type bind list = type bind, { ‘,’, type bind } ;

type bind = pattern, ‘:’, type ;

Semantics: A lambda expression is of the form:�
lambda pat1 : T1 , … , patn : Tn & e
� �

where the pati are patterns, the Ti are type expressions, and e is the body expression.
The scope of the pattern identifiers in the patterns pati is the body expression. A
lambda expression cannot be polymorphic, but apart from that, it corresponds seman-
tically to an explicit function definition as explained in chapter 5. A function defined
by a lambda expression can be Curried by using a new nested lambda expression in
the body. When lambda expressions are bound to an identifier they can also define a
recursive function.

Examples: An increment function can be defined by means of a lambda expression like:�
Inc = lambda n : nat & n + 1
� �

and an addition function can be Curried by:�
Add = lambda a : nat & lambda b : nat & a + b
� �

which will return a new lambda expression if it is applied to only one argument:

73

VDM-10 Language Manual

�
Add(5) ≡ lambda b : nat & 5 + b
� �

Lambda expression can be useful when used in conjunction with higher-order functions.
For instance using the function set_filter defined on page 53:�

s e t _ f i l t e r [nat] (lambda n : nat & n mod 2 = 0) ({ 1 , . . . , 1 0 })
≡ {2 ,4 , 6 , 8 , 10}
� �

6.17 Narrow Expressions
Syntax: expression = …

| narrow expression
| … ;

narrow expression = ‘narrow_’, ‘(’, expression, ‘,’, type, ‘)’ ;

Semantics: The narrow expression converts the given expression value into the given type,
returning a value of that type. It is legal to downcast a class to one of its subclasses,
and it is legal to narrow an expression of a union type to one of its subtypes. However,
a conversions between two completely unrelated types is a type error. Note that a
narrow expression does not guarantee that its argument will be of the correct type at
runtime, but using narrow gives extra type information to the specification.

Examples: In following examples, the Test() and Test’() operations should give the same
results, but there is a type error in Test() which is resolved in Test’ using a narrow
expression.�
c l a s s S
end S

c l a s s C1 i s s ub c l a s s o f S

i n s t an c e v a r i a b l e s
pub l i c a : nat := 1 ;

end C1

c l a s s C2 i s s ub c l a s s o f S

74

CHAPTER 6. EXPRESSIONS

in s t an c e v a r i a b l e s
pub l i c b : nat := 2 ;

end C2

c l a s s A

ope r a t i o n s
pub l i c
Test : () ==> seq o f nat
Test () ==
l e t l i s t : seq o f S = [new C1 () , new C2 ()]
in

r e tu rn [l e t e = l i s t (i)
in c a s e s t rue :

(i s o f c l a s s (C1 , e)) -> e . a ,
(i s o f c l a s s (C2 , e)) -> e . b

end | i i n s e t inds l i s t] ;

pub l i c
Test ’ : () ==> seq o f nat
Test ’ () ==
l e t l i s t : seq o f S = [new C1 () , new C2 ()]
in

r e tu rn [l e t e = l i s t (i)
in c a s e s t rue :

(i s o f c l a s s (C1 , e)) -> narrow_ (e , C1) . a ,
(i s o f c l a s s (C2 , e)) -> narrow_ (e , C2) . b

end | i i n s e t inds l i s t] ;
end A
� �
�
c l a s s A

types
pub l i c C1 : : a : nat ;
pub l i c C2 : : b : nat ;
pub l i c S = C1 | C2 ;

op e r a t i o n s
pub l i c
Test : () ==> nat

75

VDM-10 Language Manual

Test () ==
l e t s : S = mk_C1(1)
in

l e t c : C1 = s
in

r e tu rn c . a ;

pub l i c
Test ’ : () ==> nat
Test ’ () ==
l e t s : S = mk_C1(1)
in

l e t c : C1 = narrow_ (s , C1)
in

r e tu rn c . a ;
end A
� �

6.18 Is Expressions
Syntax: expression = …

| general is expression
| … ;

general is expression = is expression
| type judgement ;

is expression = ‘is_’, (name | basic type), ‘(’, expression, ‘)’ ;

type judgement = ‘is_’, ‘(’, expression, ‘,’, type, ‘)’ ;

Semantics: The is expression can be used with values that are either basic or record values
(tagged values belonging to some composite type). The is expression yields true if the
given value belongs to the basic type indicated or if the value has the indicated tag.
Otherwise it yields false.

A type judgement is a more general form which can be used for expressions whose
types cannot be statically determined. The expression is_(e,t) is equal to true if and
only if e is of type t.

Examples: Using the record type Score defined on page 25 we have:

76

CHAPTER 6. EXPRESSIONS

is_Score(mk_Score(<France>,3,0,0,9)) ≡ true
is_bool(mk_Score(<France>,3,0,0,9)) ≡ false
is_real(0) ≡ true
is_nat1(0) ≡ false

An example of a type judgement:�
Domain : map nat to nat | seq o f (nat * nat) -> s e t o f nat
Domain (m) ==

i f is_ (m, map nat to nat)
then dom m
e l s e {d | mk_(d , -) in s e t e lems m}
� �

In addition there are examples on page 27.

6.19 Base Class Membership (VDM++ and VDM-RT)
Syntax: expression = …

| isofbaseclass expression
| … ;

isofbaseclass expression = ‘isofbaseclass’, ‘(’, name, ‘,’, expression, ‘)’ ;

Semantic: The function isofbaseclass when applied to an object reference expression and a
class name name yields the boolean value true if and only if name is a root superclass
in the inheritance chain of the object referenced to by expression, and false otherwise.

Examples: Suppose that BinarySearchTree is a subclass of Tree, Tree is not a subclass of any
other class and Queue is not related by inheritance to either Tree or BinarySearchTree.
Let t be an instance of Tree, b is an instance of BinarySearchTree and q is an instance
of Queue. Then:
isofbaseclass(Tree, t) ≡ true
isofbaseclass(BinarySearchTree, b) ≡ false
isofbaseclass(Queue, q) ≡ true
isofbaseclass(Tree, b) ≡ true
isofbaseclass(Tree, q) ≡ false

6.20 Class Membership
Syntax expression = …

| isofclass expression
| … ;

77

VDM-10 Language Manual

isofclass expression = ‘isofclass’, ‘(’, name, ‘,’, expression, ‘)’ ;

Semantics: The function isofclass when applied to an object reference expression and a class
name name yields the boolean value true if and only if expression refers to an object
of class name or to an object of any of the subclasses of name, and false otherwise.

Examples: Assuming the classes Tree, BinarySearchTree, Queue, and identifiers t, b, q as in
the previous example, we have:
isofclass(Tree,t) ≡ true
isofclass(Tree,b) ≡ true
isofclass(Tree,q) ≡ false
isofclass(Queue,q) ≡ true
isofclass(BinarySearchTree,t) ≡ false
isofclass(BinarySearchTree,b) ≡ true

6.21 Same Base Class Membership (VDM++ and VDM-RT)
Syntax: expression = …

| samebaseclass expression
| … ;

samebaseclass expression = ‘samebaseclass’,
‘(’, expression, ‘,’, expression, ‘)’ ;

Semantics: The function samebaseclass when applied to object references expression1 and
expression2 yields the boolean value true if and only if the objects denoted by expres-
sion1 and expression2 are instances of classes that can be derived from the same root
superclass, and false otherwise.

Examples: Assuming the classes Tree, BinarySearchTree, Queue, and identifiers t, b, q as in
the previous example, suppose that AVLTree is another subclass of Tree, BalancedBST
is a subclass of BinarySearchTree, a is an instance of AVLTree and bb is an instance
of BalancedBST :
samebaseclass(a,b) ≡ true
samebaseclass(a,bb) ≡ true
samebaseclass(b,bb) ≡ true
samebaseclass(t,bb) ≡ true
samebaseclass(q,a) ≡ false

6.22 Same Class Membership (VDM++ and VDM-RT)
Syntax: expression = …

78

CHAPTER 6. EXPRESSIONS

| sameclass expression
| … ;

sameclass expression = ‘sameclass’,
‘(’, expression, ‘,’, expression, ‘)’ ;

Semantics: The function sameclass when applied to object references expression1 and expres-
sion2 yields the boolean value true if and only if the objects denoted by expression1
and expression2 are instances of the same class, and false otherwise.

Examples: Assuming the classes Tree, BinarySearchTree, Queue, and identifiers t, b, q from
section 6.19, and assuming b’ is another instance of BinarySearchTree we have:
sameclass(b,t) ≡ false
sameclass(b,b’) ≡ true
sameclass(q,t) ≡ false

6.23 History Expressions (VDM++ and VDM-RT)
Syntax: expression = …

| act expression
| fin expression
| active expression
| req expression
| waiting expression
| … ;

act expression = ‘#act’, ‘(’, name list, ‘)’ ;

fin expression = ‘#fin’, ‘(’, name list, ‘)’ ;

active expression = ‘#active’, ‘(’, name list, ‘)’ ;

req expression = ‘#req’, ‘(’, name list, ‘)’ ;

waiting expression = ‘#waiting’, ‘(’, name list, ‘)’ ;

Semantics: History expressions can only be used in permission predicates (see section 14.1).
History expressions may contain one or more of the following expressions:

• #act(operation name). The number of times that operation name operation has
been activated.

• #fin(operation name). The number of times that the operation name operation
has been completed.

79

VDM-10 Language Manual

• #active(operation name). The number of operation name operations that are
currently active.
Thus: #active(operation name) =#act(operation name) -#fin(operation name).

• #req(operation name). The number of requests that has been issued for the
operation name operation.

• #waiting(operation name). The number of outstanding requests for the opera-
tion name operation.
Thus: #waiting(operation name)=#req(operation name) -#act(operation name).

For all of these operators, the name list version #history op(op1,. . .,opN) is simply
shorthand for #history op(op1) + · · · +#history op(opN).

Examples: Suppose at a point in the execution of a particular thread, three operations, A,
B and C may be executed. A sequence of requests, activations and completions occur
during this thread. This is shown graphically in figure 6.1.

Figure 6.1: History Expressions

Here we use the notation rA to indicate a request for an execution of operation A,
aA indicates an activation of A, fA indicates completion of an execution of operation
A, and likewise for operations B and C. The respective history expressions have the
following values after the interval [S,T]:

#act(A) = 1 #act(B) = 1 #act(C) = 1 #act(A,B,C) = 3
#fin(A) = 1 #fin(B) = 1 #fin(C) = 0 #fin(A,B,C) = 2
#active(A) = 0 #active(B) = 0 #active(C) = 1 #active(A,B,C) = 1
#req(A) = 2 #req(B) = 1 #req(C) = 3 #req(A,B,C) = 6
#waiting(A) = 1 #waiting(B) = 0 #waiting(C) = 2 #waiting(A,B,C) = 3

6.24 The Time Expression (VDM-RT)
Syntax: time expression = ‘time’ ;

Semantics: This is simply an easy way to refer to the current time on a given CPU. The
time is provided as a natural number, with a resolution of 1 nsec.

80

CHAPTER 6. EXPRESSIONS

Examples: If for example one would like to log when a certain operation takes place one can
create an operation such as logEnvToSys below.�

pub l i c logEnvToSys : nat ==> ()
logEnvToSys (pev) == e2s := e2s munion {pev | -> time } ;
� �

6.25 Literals and Names
Syntax: expression = …

| name
| old name
| symbolic literal
| … ;

name = identifier, [“’, identifier] ;

name list = name, { ‘,’, name } ;

old name = identifier, ‘~’ ;

Semantics: Names and old names are used to access definitions of functions, operations,
values and state components. A name has the form:�

id1 ‘ id2
� �
where id1 and id2 are simple identifiers. If a name consists of only one identifier, the
identifier is defined within scope, i.e. it is defined either locally as a pattern identifier
or variable, or globally within the current module as a function, operation, value or
global variable. Otherwise, the identifier id1 indicates the module/class name where
the construct is defined (see also section 13.1 and section 13.3.1 and appendix B.)
An old name is used to access the old value of global variables in the post condition
of an operation definition (see chapter 11) and in the post condition of specification
statements (see section 12.16). It has the form:�

i d ~
� �
where id is a state component.
Symbolic literals are constant values of some basic type.

81

VDM-10 Language Manual

Examples: Names and symbolic literals are used throughout all examples in this document
(see appendix B.2).

For an example of the use of old names, consider the VDM-SL state defined as:�
s t a t e sigma o f

numbers : seq o f nat
index : nat

inv mk_sigma(numbers , index) ==
index not in s e t e lems numbers

i n i t s == s = mk_sigma ([] , 1)
end
� �
For an example of the use of old names, consider the VDM++/VDM-RT instance
variables defined as:�

i n s t an c e v a r i a b l e s
numbers : seq o f nat := [] ;
index : nat := 1 ;

inv index not in s e t e lems numbers ;
� �
We can define an operation that increases the variable index in an implicit manner:�

Inc Index ()
ext wr index : nat
post index = index~ + 1
� �

The operation IncIndex manipulates the variable index, indicated with the ext wr
clause. In the post condition, the new value of index is equal to the old value of index
plus 1. (See more about operations in chapter 11).

For a simple example of module/class names, suppose that a function called build_rel
is defined (and exported) in a module/class called CGRel as follows:�

types

Cg = <A> | | <C> | <D> | <E> | <F> |
<G> | <H> | <J> | <K> | <L> | <S>;

CompatRel = map Cg to s e t o f Cg

f un c t i o n s

82

CHAPTER 6. EXPRESSIONS

bu i l d_r e l : s e t o f (Cg * Cg) -> CompatRel
bu i l d_r e l (s) == {| ->}
� �

In another module/class we can access this function by in VDM-SL first importing the
module CGRel then by using the following call�

CGRel ‘ bu i l d_r e l ({mk_(<A>,)})
� �
Note that in VDM++ and VDM-RT the build_rel function can additionally have an
access modifier allowing access to it outside the defining class.

6.26 The Undefined Expression
Syntax: expression = …

| undefined expression ;

undefined expression = ‘undefined’ ;

Semantics: The undefined expression is used to state explicitly that the result of an expres-
sion is undefined. This could for instance be used if it has not been decided what the
result of evaluating the else-branch of an if-then-else expression should be. When an
undefined expression is evaluated the VDM interpreters will terminate the execution
and report that an undefined expression was evaluated.

Pragmatically use of undefined expressions differs from pre-conditions: use of a pre-
condition means it is the caller’s responsibility to ensure that the pre-condition is
satisfied when the function is called; if an undefined expression is used it is the called
function’s responsibility to deal with error handling.

Examples: We can check that the type invariant holds before building Score values:�
bu i ld_sco r e : Team * nat * nat * nat * nat -> Score
bu i ld_sco r e (t ,w, d , l , p) ==

i f 3 * w + d = p
then mk_Score (t ,w, d , l , p)
e l s e unde f ined
� �

83

VDM-10 Language Manual

6.27 The Precondition Expression
Syntax: expression = …

| precondition expression ;

precondition expression = ‘pre_’, ‘(’, expression list, ‘)’ ;

Semantics: Assuming e is of function type the expression pre_(e,e1,...,en) is true if and only
if the pre-condition of e is true for arguments e1,...,em where m is the arity of the
pre-condition of e. If e is not a function or m > n then the result is true. If e has no
pre-condition then the expression equals true.

Examples: Consider the functions f and g defined below�
f : nat * nat -> nat
f (m, n) == m div n
pre n <> 0 ;

g (n : nat) s q r t : nat
pre n >= 0
post s q r t * s q r t <= n and

(s q r t +1) * (s q r t +1) > n
� �
Then the expression�

pre_ (l e t h in s e t { f , g , lambda mk_(x , y) : nat * nat & x div y}
in h , 1 , 0 , - 1)
� �

is equal to

• false if h is bound to f since this equates to pre_f(1,0);
• true if h is bound to g since this equates to pre_g(1);
• true if h is bound to lambda mk_(x,y):nat * nat & x div y since there is no

pre-condition defined for this function.

Note that however h is bound, the last argument (-1) is never used.
When a function is defined to be total, that totality is with respect to the pre-condition.
Consider an alternative definition of ‘f’�
f : nat * nat +> nat
f (m, n) == m div n
pre n <> 0 ;
� �

84

CHAPTER 6. EXPRESSIONS

The definition states the function is total for all values of type nat*nat where the
second element of the pair is non-zero. Therefore, even though the function is not
defined for values such as mk_(4,0) it is still a total function. On the other hand, the
definition�
f : nat * nat +> nat
f (m, n) == m div n ;
� �
is incorrect because it is not defined for values such as mk_(4,0) hence not total.

85

VDM-10 Language Manual

86

Chapter 7

Patterns

Syntax: pattern bind = pattern | bind ;

pattern = pattern identifier
| match value
| set enum pattern
| set union pattern
| seq enum pattern
| seq conc pattern
| map enumeration pattern
| map munion pattern
| tuple pattern
| record pattern
| object pattern ;

pattern identifier = identifier | ‘-’ ;

match value = symbolic literal
| ‘(’, expression, ‘)’ ;

set enum pattern = ‘{’, [pattern list], ‘}’ ;

set union pattern = pattern, ‘union’, pattern ;

seq enum pattern = ‘[’, [pattern list], ‘]’ ;

seq conc pattern = pattern, ‘^’, pattern ;

map enumeration pattern = ‘{’, [maplet pattern list], ‘}’
| ‘{’, ‘|->’, ‘}’ ;

maplet pattern list = maplet pattern, { ‘,’, maplet pattern } ;

87

VDM-10 Language Manual

maplet pattern = pattern, ‘|->’, pattern ;

map munion pattern = pattern, ‘munion’, pattern ;

tuple pattern = ‘mk_(’, pattern, ‘,’, pattern list, ‘)’ ;

record pattern = ‘mk_’, name, ‘(’, [pattern list], ‘)’ ;

object pattern = ‘obj_’, identifier, ‘(’, [field pattern list], ‘)’1;

field pattern list = field pattern, { ‘,’, field pattern } ;

field pattern = identifier, ‘|->’, pattern ;

pattern list = pattern, { ‘,’, pattern } ;

Semantics: A pattern is always used in a context where it is matched to a value of a particular
type. Matching consists of checking that the pattern can be matched to the value, and
binding any pattern identifiers in the pattern to the corresponding values, i.e. making
the identifiers denote those values throughout their scope. In some cases where a
pattern can be used, a bind can be used as well (see next chapter). If a bind is used
it simply means that additional information (a type or a set expression) is used to
constrain the possible values which can match the given pattern.
Matching is defined as follows

1. A pattern identifier fits any type and can be matched to any value. If it is an
identifier, that identifier is bound to the value; if it is the don’t-care symbol ‘-’,
no binding occurs.

2. A match value can only be matched against the value of itself; no binding occurs.
If a match value is not a literal like e.g. 7 or <RED> it must be an expression
enclosed in parentheses in order to discriminate it to a pattern identifier.

3. A set enumeration pattern fits only set values. The patterns are matched to
distinct elements of a set; all elements must be matched.

4. A set union pattern fits only set values. The two patterns are matched to a
partition of two subsets of a set. In the VDM interpreters the two subsets will
always be chosen such that they are non-empty and disjoint.

5. A sequence enumeration pattern fits only sequence values. Each pattern is matched
against its corresponding element in the sequence value; the length of the sequence
value and the number of patterns must be equal.

1Note: object pattern is only be used in VDM++ and VDM-RT. The object pattern is explained in 7.1

88

CHAPTER 7. PATTERNS

6. A sequence concatenation pattern fits only sequence values. The two patterns are
matched against two subsequences which together can be concatenated to form
the original sequence value. In the VDM interpreters the two subsequences will
always be chosen so that they are non-empty.

7. A map enumeration pattern fits only map values.
8. A maplet pattern list are matched to distinct elements of a map; all elements

must be matched.
9. A map munion pattern fits only map values. The two patterns are matched to a

partition of two sub maps of a map. In the VDM interpreters the two sub maps
will always be chosen such that they are non-empty and disjoint.

10. A tuple pattern fits only tuples with the same number of elements. Each of the
patterns are matched against the corresponding element in the tuple value.

11. A record pattern fits only record values with the same tag. Each of the patterns
are matched against the field of the record value. All the fields of the record must
be matched.

12. An object pattern is explained in section 7.1

Examples: The simplest kind of pattern is the pattern identifier. An example of this is given
in the following let expression:�

l e t top = GroupA (1)
in top . s c
� �

Here the identifier top is bound to the head of the sequence GroupA and the identifier
may then be used in the body of the let expression.
In the following examples we use match values:�

l e t a = <France>
in c a s e s GroupA (1) . team :

<Braz i l > -> ” B r a z i l a re winners ” ,
(a) -> ”France are winners ” ,
o th e r s -> ” Ne i the r France nor B r a z i l a re winners ”

end ;
� �
Match values can only match against their own values, so here if the team at the head
of GroupA is <Brazil> then the first clause is matched; if the team at the head of
GroupA is <France> then the second clause is matched. Otherwise the others clause
is matched. Note here that the use of brackets around a forces a to be considered as
a match value.

89

VDM-10 Language Manual

Set enumerations match patterns to elements of a set. For instance in:�
l e t { sc1 , sc2 , sc3 , s c4 } = elems GroupA
in

sc1 . po i n t s + sc2 . po i n t s + sc3 . po i n t s + sc4 . po i n t s ;
� �
the identifiers sc1, sc2, sc3 and sc4 are bound to the four elements of GroupA. Note
that the choice of binding is loose – for instance sc1 may be bound to any element of
elems GroupA. In this case if elems GroupA does not contain precisely four elements,
then the expression is not well-formed.
A set union pattern can be used to decompose a set for recursive function calls. An
example of this is the function set2seq which converts a set into a sequence (with
arbitrary order):�
s e t 2 s e q [@elem] : s e t o f @elem -> seq o f @elem
s e t 2 s e q (s) ==

ca s e s s :
{} -> [] ,
{x} -> [x] ,
s1 union s2 -> (s e t 2 s e q [@elem] (s1))^ (s e t 2 s e q [@elem] (s2))

end
� �
In the third cases alternative we see the use of a set union pattern. This binds s1 and
s2 to arbitrary subsets of s such that they partition s. The VDM interpreters always
ensure a disjoint partition.
Sequence enumeration patterns can be used to extract specific elements from a se-
quence. An example of this is the function promoted which extracts the first two
elements of a sequence of scores and returns the corresponding pair of teams:�
promoted : seq o f Score -> Team * Team
promoted ([sc1 , s c2] ^ -) == mk_(sc1 . team , sc2 . team) ;
� �
Here sc1 is bound to the head of the argument sequence, and sc2 is bound to the
second element of the sequence. If promoted is called with a sequence with fewer than
two elements then a runtime error occurs. Note that as we are not interested in the
remaining elements of the list we use a don’t care pattern for the remainder.
The preceding example also demonstrated the use of sequence concatenation patterns.
Another example of this is the function quicksort which implements a standard quick-
sort algorithm:

90

CHAPTER 7. PATTERNS

�
qu i c k s o r t : seq o f nat -> seq o f nat
qu i c k s o r t (l) ==

ca s e s l :
[] -> [] ,
[x] -> [x] ,
[x , y] -> i f x < y then [x , y] e l s e [y , x] ,
-^ [x]^ - ->

qu i c k s o r t ([l (i) | i i n s e t inds l & l (i) < x])
^ [l (i) | i i n s e t inds l & l (i) = x] ^

qu i c k s o r t ([l (i) | i i n s e t inds l & l (i) > x])
end
� �

Here, in the second cases clause a sequence concatenation pattern is used to decompose
l into an arbitrary pivot element and two subsequences. The pivot is used to partition
the list into those values less than the pivot and those values greater, and these two
partitions are recursively sorted.

Maplet pattern match patterns to elements of a maplet.�
l e t {a | -> b} = {1 | -> 2} in mk_(a , b) = mk_(1 , 2)
� �
Maplet pattern list match patterns to elements of each maplet in a map.�
l e t {1 | -> a , a | -> b , b | -> c} = {1 | -> 4 ,2 | -> 3 ,4 | -> 2} in
c = 3
� �
Map munion pattern can be used to decompose a map for recursive function calls. The
following map2seq function converts a map to a seq of maplet:�
pub l i c map2seq [@T1, @T2] :

map @T1 to @T2 -> seq o f (map @T1 to @T2)
map2seq (m) ==

ca s e s m:
({| - >}) -> [] ,
{ - | -> -} -> [m] ,
m1 munion m2 ->

map2seq [@T1, @T2] (m1) ^ map2seq [@T1, @T2] (m2)
end ;
� �

91

VDM-10 Language Manual

Here, in the third cases clause a map munion pattern is used to decompose m into two
maps.
Tuple patterns can be used to bind tuple components to identifiers. For instance since
the function promoted defined above returns a pair, the following value definition binds
the winning team of GroupA to the identifier Awinner:�

va lu e s

mk_(Awinner , -) = promoted (GroupA) ;
� �
Record patterns are useful when several fields of a record are used in the same ex-
pression. For instance the following expression constructs a map from team names to
points score:�

{ t | -> w * 3 + l | mk_Score (t ,w, l , - , -) i n s e t e lems GroupA}
� �
The function print_Expr on page 58 also gives several examples of record patterns.

7.1 Object Pattern (VDM++ and VDM-RT)
Syntax: object pattern = ‘obj_’, identifier, ‘(’, [field pattern list], ‘)’ ;

field pattern list = field pattern, { ‘,’, field pattern } ;

field pattern = identifier, ‘|->’, pattern ;

Semantics: An object pattern matches object references. An object is matched to the class
identified by the class name led by the prefix obj_. If the class of the object is class
identifier or any of its subclasses, separate instance variables named in an object pattern
are matched against the object from left to right. It is not necessary to enumerate all
the instance variables of a referenced class in an object pattern.
Object patterns may appear only where access to the instance variables named in the
pattern would be permitted. So private instance variables can only be matched within
operations of the same class. This also implies an object pattern may not appear in
function definitions, preconditions, postconditions or invariants. The type checker will
validate accessibility of each instance variable in the pattern. The value of referenced
instance variables is not guaranteed to remain unchanged during matching.

Examples: Using an object pattern, an object can be matched by the values of its instance
variables. The following simple example evaluates to <STUDENT> if and only if

92

CHAPTER 7. PATTERNS

the object reference person points at an instance of the class Student or any of its
subclasses, otherwise <NOT_STUDENT>:�
c a s e s person :

obj_Student () -> <STUDENT>,
o th e r s -> <NOT_STUDENT>

end
� �
The above object pattern would match any instance of the Student class, or any sub-
class, for example an Undergraduate if such a subclass existed. The following example
matches the instance variable name against ”John”:�
c a s e s person :

obj_Student (name | -> ”John”) -> <JOHN>,
o th e r s -> <NOT_A_STUDENT_OR_NOT_JOHN>

end
� �
An object pattern can also bind the value of instance variable. For example, the
following expression binds n to the name instance variable of person if person is an
instance of the class Student.�
c a s e s person :

obj_Student (name | -> n) -> n ,
o th e r s -> ””

end
� �
An object pattern may contain another object pattern. The following expression gives
the name and department concatenated by ”@” for Students, and add the title for
Professors.�
c a s e s person :

obj_Student
(name | -> n , dept | -> obj_Department (name->dname))

-> n^”@”^dname ,
ob j_Pro f e s so r (name | -> n) -> ” Prof . ”^n ,
o th e r s -> ””

end
� �
An object pattern may appear in conjunction with other kinds of patterns. The fol-

93

VDM-10 Language Manual

lowing operation takes a sequence of Professor objects and returns titled names sorted
into initials. The first pattern of the cases expression consists of a list concatenation
pattern. The first element of the list is matched against an object pattern whose in-
stance variable name is also matched against another sequence concatenation pattern
of the initial character initial and the remaining:�
p r o f e s s o rD i c t : seq o f P r o f e s s o r

==> map char to s e t o f seq o f char
p r o f e s s o rD i c t (ps) == re tu rn c a s e s ps :

[ob j_Pro f e s so r (name | -> [i n i t i a l]^ remain ing)] ^ r e s t ->
l e t

d i c t = p r o f e s s o rD i c t (r e s t) ,
name = ”Prof . ” ^ [i n i t i a l]^ remaining ,
names = i f i n i t i a l i n s e t dom d i c t

then d i c t (i n i t i a l)
e l s e {}

in
d i c t ++ { i n i t i a l | -> names union {name}} ,
[-] ^ r e s t -> p r o f e s s o rD i c t (r e s t) , [] -> {| ->}
end ;
� �

For example, the call professorDict([new Professor(”Smith”),
new Professor(”Scott”), new Professor(”Adams”)]) evaluates to:�
{ ’A ’ | -> {” Prof . Adams” } ,
’ S ’ | -> {” Prof . Sco t t ” , ” Prof . Smith ” }} .
� �

94

Chapter 8

Bindings

Syntax: bind = set bind | seq bind | type bind ;

set bind = pattern, ‘in set’, expression ;

seq bind = pattern, ‘in seq’, expression ;

type bind = pattern, ‘:’, type ;

bind list = multiple bind, { ‘,’, multiple bind } ;

multiple bind = multiple set bind
| multiple seq bind
| multiple type bind ;

multiple set bind = pattern list, ‘in set’, expression ;

multiple seq bind = pattern list, ‘in seq’, expression ;

multiple type bind = pattern list, ‘:’, type ;

Semantics: A bind matches a pattern to a value. In a set bind the value is chosen from the
set defined by the set expression of the bind. In a seq bind the value is chosen from
the sequence defined by the sequence expression of the bind. In a type bind the value
is chosen from the type defined by the type expression. Multiple bind is the same as
bind except that several patterns are bound to the same set, sequence or type. Notice
that type binds can only be executed by the VDM interpreters in case the type can
be deduced to be finite statically. This would require the VDM interpreters to search
through infinite domains like the natural numbers.

Examples: Bindings are mainly used in quantified expressions and comprehensions which
can be seen from these examples:

95

VDM-10 Language Manual

�
f o r a l l i , j i n s e t inds l i s t & i < j => l i s t (i) <= l i s t (j)

{ y | y in s e t S & y > 2 }

{ y | y : nat & y > 3 }

occur s : seq1 o f char * seq1 o f char -> boo l
o c cu r s (subst r , s t r) ==

e x i s t s i , j i n s e t inds s t r & sub s t r = s t r (i , . . . , j) ;
� �

96

Chapter 9

Value (Constant) Definitions

The VDM languages supports the definition of constant values. A value definition corre-
sponds to a constant definition in traditional programming languages.

Syntax: value definitions = ‘values’, [access value definition,
{ ‘;’, access value definition }, [‘;’]] ;

access value definition = [access], value definition ;

value definition = pattern, [‘:’, type], ‘=’, expression ;

Semantics: The value definition has the form:�
va lu e s

a c c e s s pat1 = e1 ;
…
a c c e s s patn = en
� �

where the access part only can be used in VDM++ and VDM-RT.
The global values (defined in a value definition) can be referenced at all levels in a VDM
specification. However, in order to be able to execute a specification these values must
be defined before they are used in the sequence of value definitions. This “declaration
before use” principle is only used by the VDM interpreters for value definitions. Thus
for instance functions can be used before they are declared. In standard VDM-SL
there are not any restrictions on the order of the definitions at all. It is possible to
provide a type restriction as well, and this can be useful in order to obtain more exact
type information.
Details of the VDM++ and VDM-RT access specifiers can be found in section 13.3.3.

Examples: The example below, taken from [?] assigns token values to identifiers p1 and eid2,
an Expert record value to e3 and an Alarm record value to a1.

97

VDM-10 Language Manual

�
types

Per iod = token ;
ExpertId = token ;
Expert : : e xp e r t i d : ExpertId

qua l i : s e t o f Qu a l i f i c a t i o n
inv ex == ex . q u a l i <> {} ;
Qu a l i f i c a t i o n = <Elec> | <Mech> | <Bio> | <Chem>;
Alarm : : a la rmtext : seq o f char

qu a l i : Q u a l i f i c a t i o n

va lu e s

pub l i c p1 : Per iod = mk_token (”Monday day”) ;
p r i v a t e e id2 : ExpertId = mk_token (1 4 5) ;
p r o t e c t ed e3 : Expert = mk_Expert (e id2 , { <Mech>, <Chem> }) ;
a1 : Alarm = mk_Alarm(”CO2 de t e c t ed ” , <Chem>)
� �
As this example shows, a value can depend on other values which are defined previous to
itself. The access modifiers private, protected and public can only be used in VDM++
and VDM-RT. A top-level VDM-SL specification can consist of specifications from a
number of files or modules (see section 13.1). It is good practice not to let a value
depend on values defined in other modules as the ordering is important.

98

Chapter 10

Declaration of Modifiable State Components

Syntactically the definition of state components that can be modified using VDM operations
differ in VDM-SL compared with VDM++ and VDM-RT. Since VDM-SL is module based
the state definition is similar to a monolitic record like construct. On the other hand VDM++
and VDM-RT are object-oriented and thus state components needs to be more flexible in
order to enable inheritence of such definitions and thus they are defined in terms of instance
variables. In the two sections in this chapter the two different ways of defining states is
presented.

10.1 Instance Variables (VDM++ and VDM-RT)
Both an object instantiated from a class description and the class itself can have an internal
state, also called the instance variables of the object or class. In the case of objects, we also
refer to this state as the global state of the object.

Syntax: instance variable definitions = ‘instance’, ‘variables’,
[instance variable definition,
{ ‘;’, instance variable definition }] ;

instance variable definition = access assignment definition
| invariant definition ;

access assignment definition = ([access], [‘static’] | [‘static’], [access]),
assignment definition ;

assignment definition = identifier, ‘:’, type, [‘:=’, expression] ;

invariant definition = ‘inv’, expression ;

Semantics: The section describing the internal state is preceded by the keyword instance
variables. A list of instance variable definitions and/or invariant definitions follows.

99

VDM-10 Language Manual

Each instance variable definition consists of an instance variable name with its corre-
sponding type indication and may also include an initial value and access and static
specifiers. Details of the access and static specifiers can be found in section 13.3.3.

It is possible to restrict the values of the instance variables by means of invariant
definitions. Each invariant definition, involving one or more instance variables, may
be defined over the values of the instance variables of objects of a class. All instance
variables in the class including those inherited from superclasses are visible in the
invariant expression. Each invariant definition must be a boolean expression that
limits the values of the instance variables to those where the expression is true. All
invariant expressions must be true during the entire lifetime of each object of the class.

The overall invariant expression of a class is all the invariant definitions of the class
and its superclasses combined by logical and in the order that they are defined in 1)
the superclasses and 2) the class itself.

Example: The following examples show instance variable definitions. The first class specifies
one instance variable:�
c l a s s GroupPhase

types

GroupName = <A> | | <C> | <D> | <E> | <F> | <G> | <H>;
Team = . . . - - as on page 25
Score : : team : Team

won : nat
drawn : nat
l o s t : nat
po i n t s : nat ;

i n s t an c e v a r i a b l e s
gps : map GroupName to s e t o f Score ;
inv f o r a l l gp in s e t rng gps &

(card gp = 4 and
f o r a l l s c in s e t gp & sc . won + sc . l o s t + sc . drawn <= 3)

end GroupPhase
� �
100

CHAPTER 10. DECLARATION OF MODIFIABLE STATE COMPONENTS

10.2 The State Definition (VDM-SL)
If global variables are desired in a VDM-SL specification, it is possible to make a state
definition. The components of the state definition can be considered the collection of global
variables which can be referenced inside operations. A state in a module is initialised before
any of the operation definitions (using that state) in a module can be used by the VDM
interpreters.

Syntax: state definition = ‘state’, identifier, ‘of’, field list,
[invariant], [initialisation], ‘end’, [‘;’] ;

initialisation = ‘init’, invariant initial function ;

invariant initial function = pattern, ‘==’, expression ;

Semantics: The state definition has the form:�
s t a t e i d en t o f

id1 : type1
…
idn : typen

inv pat1 == invpred
i n i t pat2 == i n i t p r e d
end
� �

A state identifier idn is declared of a specific type typen. The invariant invpred is
a boolean expression denoting a property which must hold for the state ident at all
times. initpred denotes a condition which must hold initially. It should be noticed
that in order to use the VDM interpreters, it is necessary to have an initialisation
predicate (if any of the operations using the state are to be executed). In addition
the body of this initialisation predicate must be a binary equality expression with the
name (which also must be used as the pattern) of the entire state on the left-hand side
of the equality and the right-hand side must evaluate to a record value of the correct
type. This enables the VDM interpreters to evaluate the initpred condition. A simple
example of an initialisation predicate is shown below:�

s t a t e St o f
x : nat
y : nat
l : seq1 o f nat

i n i t s == s = mk_St (0 , 0 , [1])
end
� �

101

VDM-10 Language Manual

In the specification of both the invariant and the initial value the state must be manip-
ulated as a whole, and this is done by referring to it as a record tagged with the state
name (see the example). When a field in the state is manipulated in some operation,
the field must however be referenced directly by the field name without pre-fixing it
with the state name.

Examples: In the following example we create one state variable:�
types

GroupName = <A> | | <C> | <D> | <E> | <F> | <G> | <H>

s t a t e GroupPhase o f
gps : map GroupName to s e t o f Score

inv mk_GroupPhase (gps) ==
f o r a l l gp in s e t rng gps &

(card gp = 4 and
f o r a l l s c in s e t gp & sc . won + sc . l o s t + sc . drawn <= 3)

i n i t gp ==
gp = mk_GroupPhase({<A> | -> i n i t_ s c ({<Braz i l >, <Norway>,

<Morocco>, <Scot land >}) ,
. . . })

end

f un c t i o n s

i n i t_ s c : s e t o f Team -> s e t o f Score
i n i t_ s c (t s) ==

{ mk_Score (t , 0 , 0 , 0 , 0) | t in s e t t s }
� �
In the invariant we state that each group has four teams, and no team plays more than
three games. Initially no team has played any games.

102

Chapter 11

Operation Definitions

Operations have already been mentioned in chapter 4. The general form is described here
and for VDM++ and VDM-RT special operations called constructors which are used for
constructing instances of a class are described in section 11.1. Note that the async keyword
can only be used in the VDM-RT dialect.

Syntax: operation definitions = ‘operations’, [access operation definition,
{ ‘;’, access operation definition } , [‘;’]] ;

access operation definition = { ‘pure’
| ‘async’
| access
| ‘static’ },

operation definition ;

operation definition = explicit operation definition
| implicit operation definition
| extended explicit operation definition ;

explicit operation definition = identifier, ‘:’, operation type,
identifier, parameters,
‘==’,
operation body,
[‘pre’, expression],
[‘post’, expression] ;

implicit operation definition = identifier, parameter types,
[identifier type pair list],
implicit operation body ;

implicit operation body = [externals],

103

VDM-10 Language Manual

[‘pre’, expression],
‘post’, expression,
[exceptions] ;

extended explicit operation definition = identifier,
parameter types,
[identifier type pair list],
‘==’, operation body,
[externals],
[‘pre’, expression],
[‘post’, expression],
[exceptions] ;

operation type = discretionary type, ‘==>’, discretionary type ;

discretionary type = type | ‘()’ ;

parameters = ‘(’, [pattern list], ‘)’ ;

pattern list = pattern, { ‘,’, pattern } ;

operation body = statement
| ‘is not yet specified’
| ‘is subclass responsibility’ ;

externals = ‘ext’, var information, { var information } ;

var information = mode, name list, [‘:’, type] ;

mode = ‘rd’ | ‘wr’ ;

name list = identifier, { ‘,’, identifier } ;

exceptions = ‘errs’, error list ;

error list = error, { error } ;

error = identifier, ‘:’, expression, ‘->’, expression ;

Semantics: Operations in VDM are by default synchronous but if the keyword “async” is
used in VDM-RT in front of an operation definition it means that that operation will
be treated as an asynchronous operation. This means that the operation cannot have
a return type and the thread calling an asynchronous operation will continue its own

104

CHAPTER 11. OPERATION DEFINITIONS

execution after having requested the invocation of the asynchronous operation. Note
that constructors cannot be declared asynchronous.
If an operation is declared “pure” it means that it is executed atomically when it is
called from a functional context (from functions, invariants, pre or post-conditions).
Otherwise calling a pure operation is no different to calling a normal operation, except
that a pure operation has various constraints. The constraints are as follows:

• A pure operation cannot update state
• A pure operation cannot call an impure operation
• A pure operation cannot have permission predicates
• An operation overriding a pure operation must also be pure
• History counters cannot be used for pure operations
• A mutex cannot refer to a pure operation
• A pure operation must return a value
• A pure operation cannot be declared async since an asynchronous operation is

required to have void as return type.
• The body of a thread cannot be a pure operation
• It is not allowed to call exit in a pure operation

In both VDM++ and VDM-RT the details of the access and static specifiers can be
found in section 13.3.3. Note that a static operation may not call non-static operations,
and self expressions cannot be used in the definition of a static operation.
The following example of an explicit operation updates the VDM-SL state GroupPhase
and the VDM++ instance variables of class GroupPhase when one team beats another.�
Win : Team * Team ==> ()
Win (wt , l t) ==

l e t gp in s e t dom gps be s t
{wt , l t } subse t { sc . team | sc in s e t gps (gp)}

in gps := gps ++ { gp | ->
{ i f s c . team = wt
then mu(sc , won | -> sc . won + 1 ,

po i n t s | -> sc . po i n t s + 3)
e l s e i f s c . team = l t
then mu(sc , l o s t | -> sc . l o s t + 1)
e l s e s c

| s c in s e t gps (gp)}}
pre e x i s t s gp in s e t dom gps &

{wt , l t } subse t { sc . team | sc in s e t gps (gp) } ;
� �
105

VDM-10 Language Manual

An explicit operation consists of a statement (or several composed using a block state-
ment), as described in chapter 12. The statement may access any state/instance vari-
ables it wishes, reading and writing to them as it sees fit.
An implicit operation is specified using an optional pre-condition, and a mandatory
post-condition. For example we could specify the Win operation implicitly:�
Win (wt , l t : Team)
ext wr gps : map GroupName to s e t o f Score
pre e x i s t s gp in s e t dom gps &

{wt , l t } subse t { sc . team | sc in s e t gps (gp)}
post e x i s t s gp in s e t dom gps &

{wt , l t } subse t { sc . team | sc in s e t gps (gp)}
and gps = gps~ ++

{ gp | ->
{ i f s c . team = wt
then mu(sc , won | -> sc . won + 1 ,

po i n t s | -> sc . po i n t s + 3)
e l s e i f s c . team = l t
then mu(sc , l o s t | -> sc . l o s t + 1)
e l s e s c

| s c in s e t gps (gp) } } ;
� �
The externals field lists the state/instance variables that the operation will manipulate.
The state/instance variables listed after the reserved word rd can only be read whereas
the operation can both read and write the variables listed after wr.
In VDM-SL the presence of such pre- and post-conditions the VDM interpreters will
also create new functions as with the pre- and post-conditions of operation defini-
tions. However, if a specification contains a global state, the state is also part of the
newly created functions. Thus, functions with the following signatures are created for
operations with pre- and/or post-conditions1:�

pre_Op : InType * Sta te +> boo l

post_Op : InType * OutType * Sta te * Sta te +> boo l
� �
with the following exceptions:

• If the operation does not take any arguments, the InType part of the signature
1However, you should remember that these pre and post condition predicates for an operation are simply
boolean functions and the state components are thus not changed by calling such a predicate.

106

CHAPTER 11. OPERATION DEFINITIONS

is left out in both the pre_Op and post_Op signatures.

• If the operation does not return a value, the OutType part is left out in the
post_Op signature.

• If the specification does not define a state, the State part(s) of both signatures
are left out.

In the post_Op signature, the first State part is for the old state, whereas the second
State part is for the state after the operation call.

For instance, consider the following specifications:�
module A

d e f i n i t i o n s

s t a t e St o f
n : nat

end

op e r a t i o n s

Op1 (a : nat) b : nat
pre a > 0
post b = 2 * a ;

Op2 () b : nat
post b = 2 ;

Op3 ()
post t rue

end A
� �
�
module B

d e f i n i t i o n s

op e r a t i o n s

Op1 (a : nat) b : nat
pre a > 0

107

VDM-10 Language Manual

post b = 2 * a ;

Op2 () b : nat
post b = 2 ;

Op3 ()
post t rue

end B
� �
For module A we could then quote the pre and post conditions defined in this specifi-
cation as illustrated below
Quote expression Explanation
pre_Op1(1,mk_St(2)) a bound to 1 in state St with n bound

to 2
post_Op1(1,2,mk_St(1), mk_St(2)) a bound to 1, b bound to 2, state

before with n bound to 1, state after
with n bound to 2

post_Op2(2,mk_St(1), mk_St(2)) b bound to 2, state before with n
bound to 1, state after with n bound
to 2

post_Op3(mk_St(1), mk_St(2)) state before with n bound to 1, state
after with n bound to 2

For module B we can quote the pre and post conditions defined in this specification as
illustrated below
Quote expression Explanation
pre_Op1(1) a bound to 1
post_Op1(1,2) a bound to 1, b bound to 2
post_Op2(2) b bound to 2
post_Op3() No binding at all

The exceptions clause can be used to describe how an operation should deal with
error situations. The rationale for having the exception clause is to give the user the
ability to separate the exceptional cases from the normal cases. The specification using
exceptions does not give any commitment as to how exceptions are to be signalled,
but it gives the means to show under which circumstances an error situation can occur
and what the consequences are for the result of calling the operation.
The exception clause has the form:�
e r r s COND1: c1 -> r1

…

108

CHAPTER 11. OPERATION DEFINITIONS

CONDn: cn -> rn
� �
The condition names COND1, …, CONDn are identifiers that describe the kind of
error which can be raised2. The condition expressions c1, …, cn can be considered
as pre-conditions for the different kinds of errors. Thus, in these expressions the
identifiers from the arguments list and the variables from the externals list can be
used (they have the same scope as the pre-condition). The result expressions r1, …, rn
can correspondingly be considered as post-conditions for the different kinds of errors.
In these expressions the result identifier and old values of global variables (which can
be written to) can also be used. Thus, the scope corresponds to the scope of the
post-condition.

An operation definition making use of an errs clause essentially gets an effective pre-
condition which is a disjunction of the original pre-condition and all the condition
expressions c1, …, cn. The effective post-condition in these cases becomes a disjunction
of the conjuncts (orig_pre and orig_post) and the c1 and r1, …, cn and rn.

Superficially there appears to be some redundancy between exceptions and pre-conditions
here. However there is a conceptual distinction between them that dictates which
should be used and when. The pre-condition specifies what callers to the operation
must ensure for correct behaviour; the exception clauses indicate that the operation
being specified takes responsibility for error handling when an exception condition is
satisfied. Hence normally exception clauses and pre-conditions do not overlap.

The next VDM-SL example of an operation uses the following state definition:�
s t a t e qsys o f

q : Queue
end
� �

The next VDM++/VDM-RT example of an operation uses the following instance
variable definition:�

i n s t an c e v a r i a b l e s
q : Queue
� �

This example shows how exceptions with an implicit definition can be used:�
DEQUEUE() e : [Elem]
ext wr q : Queue

2Notice that these names are purely of mnemonic value, i.e. semantically they are not important.

109

VDM-10 Language Manual

post q~ = [e] ^ q
e r r s QUEUE_EMPTY: q = [] -> q = q~ and e = n i l
� �

This is a dequeue operation which uses a global variable q of type Queue to get an
element e of type Elem out of the queue. The exceptional case here is that the queue
in which the exception clause specifies how the operation should behave is empty.
Note that the VDM interpreters for VDM-SL models create a function here:�

post_DEQUEUE: [Elem] * qsys * qsys +> boo l
� �
11.1 Constructors (VDM++ and VDM-RT)
Constructors are operations that have the same name as the class in which they are defined
and which create new instances of that class. Their return type must therefore be the same
class name, and if a return value is specified this should be self though this can optionally
be omitted. Finally, since a constructor is used for initialising a new instance of a class, it is
not permitted to declare a constructor static.

Multiple constructors can be defined in a single class using operation overloading as
described in section 13.3.1.

110

Chapter 12

Statements

In this chapter the different kind of statements will be described one by one. Each of them
will be described by means of:

• A syntax description in BNF.

• An informal semantics description.

• An example illustrating its usage.

12.1 Let Statements
Syntax: statement = let statement

| let be statement
| … ;

let statement = ‘let’, local definition, { ‘,’, local definition },
‘in’, statement ;

let be statement = ‘let’, multiple bind, [‘be’, ‘st’, expression], ‘in’,
statement ;

local definition = value definition
| function definition ;

value definition = pattern, [‘:’, type], ‘=’, expression ;

where the “function definition” component is described in chapter 5.

Semantics: The let statement and the let-be-such-that statement are similar to the corre-
sponding let and let-be-such-that expressions except that the in part is a statement
instead of an expression. Thus it can be explained as follows:
A simple let statement has the form:

111

VDM-10 Language Manual

�
l e t p1 = e1 , … , pn = en in s
� �

where p1, …, pn are patterns, e1, …, en are expressions which match the corresponding
patterns pi, and s is a statement, of any type, involving the pattern identifiers of p1, …,
pn. It denotes the evaluation of the statement s in the context in which the patterns
p1, …, pn are matched against the corresponding expressions e1, …, en.
More advanced let statements can also be made by using local function definitions.
The semantics of doing that is simply that the scope of such locally defined functions
is restricted to the body of the let statement.
A let-be-such-that statement has the form�

l e t mb be s t e in s
� �
where mb is a multi-binding of one or more patterns (mostly just one pattern) to a set
value (or a type), e is a boolean expression, and s is a statement, involving the pattern
identifiers of the patterns from mb. The be st e part is optional. The expression
denotes the evaluation of the statement s in the context where all the patterns from
mb has been matched against an element in the set (or type) from mb1. If the be st
expression e is present, only such bindings where e evaluates to true in the matching
context are used.

Examples: An example of a let be st statement is provided in the operation GroupWinner
from the class GroupPhase which returns the winning team in a given group:�

GroupWinner : GroupName ==> Team
GroupWinner (gp) ==

l e t s c in s e t gps (gp) be s t
f o r a l l s c ’ i n s e t } gps (gp) \ { sc } &

(sc . p o i n t s > sc ’ . p o i n t s) or
(s c . p o i n t s = sc ’ . p o i n t s and sc . won > sc ’ . won)

in
r e tu rn sc . team
� �

The companion operation GroupRunnerUp gives an example of a simple let statement
as well:�

GroupRunnerUp_expl : GroupName ==> Team

1Remember that only the set and sequence bindings can be executed by means of the VDM interpreters.

112

CHAPTER 12. STATEMENTS

GroupRunnerUp_expl (gp) ==
de f t = GroupWinner (gp)
in l e t s c t = i o t a sc in s e t gps (gp) & sc . team = t

in
l e t s c in s e t gps (gp) \ { s c t } be s t

f o r a l l s c ’ i n s e t gps (gp) \ { sc , s c t } &
(sc . po i n t s > sc ’ . p o i n t s) or
(s c . p o i n t s = sc ’ . p o i n t s and sc . won > sc ’ . won)

in
r e tu rn sc . team
� �

Note the use of the def statement (section 12.2) here; this is used rather than a let
statement since the right-hand side is an operation call, and therefore is not an expres-
sion.

12.2 The Define Statement
Syntax: statement = …

| def statement
| … ;

def statement = ‘def’, equals definition,
{ ‘;’, equals definition },[‘;’], ‘in’,
statement ;

equals definition = pattern bind, ‘=’, expression ;

Semantics: A define statement has the form:�
de f pb1 = e1 ;

…
pbn = en

in
s
� �

The define statement corresponds to a define expression except that it is also allowed
to use operation calls on the right-hand sides. Thus, operations that change the state
can also be used here, and if there are more than one definition they are evaluated in
the order in which they are presented. It denotes the evaluation of the statement s

113

VDM-10 Language Manual

in the context in which the patterns (or binds) pb1, …, pbn are matched against the
values returned by the corresponding expressions or operation calls e1, …, en2.

Examples: Given the following sequences:�
secondRoundWinners = [<A>,,<C>,<D>,<E>,<F>,<G>,<H>] ;
secondRoundRunnersUp = [,<A>,<D>,<C>,<F>,<E>,<H>,<G>]
� �

The operation SecondRound, in VDM++ from class GroupPhase returns the sequence
of pairs representing the second round games gives an example of a def statement:�
SecondRound : () ==> seq o f (Team * Team)
SecondRound () ==

de f winners = { gp | -> GroupWinner (gp)
| gp in s e t dom gps } ;

runners_up = { gp | -> GroupRunnerUp (gp)
| gp in s e t dom gps}

in
r e tu rn ([mk_(winners (secondRoundWinners (i)) ,

runners_up (secondRoundRunnersUp (i)))
| i i n s e t { 1 , . . . , 8 }])
� �

12.3 The Block Statement
Syntax: statement = …

| block statement
| … ;

block statement = ‘(’, { dcl statement },
statement, { ‘;’, statement }, [‘;’], ‘)’ ;

dcl statement = ‘dcl’, assignment definition,
{ ‘,’, assignment definition }, ‘;’ ;

assignment definition = identifier, ‘:’, type, [‘:=’, expression] ;

Semantics: The block statement corresponds to block statements from traditional high-level
imperative programming languages. It enables the use of locally defined variables (by

2If binds are used it simply means that the values which can match the pattern are further constrained by
the type or set expression as it is explained in section 7.

114

CHAPTER 12. STATEMENTS

means of the declare statement) which can be modified inside the body of the block
statement. It simply denotes the ordered execution of what the individual statements
prescribe. The first statement in the sequence that returns a value causes the evaluation
of the sequence statement to terminate. This value is returned as the value of the block
statement. If none of the statements in the block returns a value, the evaluation of the
block statement is terminated when the last statement in the block has been evaluated.
When the block statement is left the values of the local variables are discharged. Thus,
the scope of these variables is simply inside the block statement.

Examples: In the context of a VDM-SL state definition�
s t a t e St o f

x : nat
y : nat
l : seq1 o f nat

end
� �
or in the context of a VDM++ instance variables�

i n s t an c e v a r i a b l e s
x : nat ;
y : nat ;
l : seq1 o f nat ;
� �

the operation Swap uses a block statement to swap the values of variables x and y:�
Swap : () ==> ()
Swap () ==

(dc l temp : nat := x ;
x := y ;
y := temp

)
� �
12.4 The Assignment Statement
Syntax: statement = …

| general assign statement
| … ;

general assign statement = assign statement

115

VDM-10 Language Manual

| multiple assign statement ;

assign statement = state designator, ‘:=’, expression ;

state designator = name
| field reference
| map or sequence reference ;

field reference = state designator, ‘.’, identifier ;

map or sequence reference = state designator, ‘(’, expression, ‘)’ ;

multiple assign statement = ‘atomic’, ‘(’, assign statement, ‘;’,
assign statement,
{ ‘;’, assign statement }, ‘)’ ;

Semantics: The assignment statement corresponds to a generalisation of assignment state-
ments from traditional high level programming languages. It is used to change the
value of the global or local state. Thus, the assignment statement has side-effects
on the state. However, in order to be able to simply change a part of the state, the
left-hand side of the assignment can be a state designator. A state designator is either
simply the name of a variable, a reference to a field of a variable, a map reference of a
variable, or a sequence reference of a variable. In this way it is possible to change the
value of a small component of the state. For example, if a state component is a map,
it is possible to change a single entry in the map.

An assignment statement has the form:�
sd := ec
� �

where sd is a state designator, and ec is either an expression or a call of an operation.
The assignment statement denotes the change to the given state component described
at the right-hand side (expression or operation call). If the right-hand side is a state
changing operation then that operation is executed (with the corresponding side effect)
before the assignment is made.

Multiple assignment is also possible. This has the form:�
atomic (sd1 := ec1 ;

. . . ;
sdN := ecN

)
� �
116

CHAPTER 12. STATEMENTS

All of the expressions or operation calls on the right hand sides are executed or eval-
uated, and then the results are bound to the corresponding state designators. The
right-hand sides are executed in the order given in the statement, and normal invari-
ant processing and thread switching and statement durations can occur. But once all of
the right-hand values have been obtained, they are assigned to the left-hand variables
in one atomic step, which occurs without invariant checking, thread switching or extra
duration. Given the types T1,...,TN of the respective state designators sd1,...,sdN it
is as if the atomic statement is evaluated as follows:�

l e t t1 : T1 = ec1 ,
. . .
tN : TN = ecN in

(
- - turn o f f i n va r i an t s , th r ead ing and dura t i on s
sd1 := t1 ;
. . .
sdN := tN ;
- - turn on i nva r i an t s , th r ead ing and dura t i on s
- - and check that i n v a r i a n t s hold .

) ;
� �
Examples: The operation in the previous example (Swap) illustrated normal assignment.

The operation Win_sd, a refinement of Win on page 106 illustrates the use of state
designators to assign to a specific map key:�
Win_sd : Team * Team ==> ()
Win_sd (wt , l t) ==

l e t gp in s e t dom gps be s t
{wt , l t } subse t { sc . team | sc in s e t gps (gp)}

in
gps (gp) := { i f s c . team = wt

then mu(sc , won | -> sc . won + 1 ,
po i n t s | -> sc . po i n t s + 3)

e l s e i f s c . team = l t
then mu(sc , l o s t | -> sc . l o s t + 1)
e l s e } sc

| s c in s e t gps (gp)}
pre e x i s t s gp in s e t dom gps &

{wt , l t } subse t { sc . team | sc in s e t gps (gp)}
� �
117

VDM-10 Language Manual

The operation SelectionSort is a state based version of the function selection_sort on
page 54. It demonstrates the use of state designators to modify the contents of a
specific sequence index, using the VDM-SL state St or the VDM++ instance variables
defined on page 115.�
f u n c t i o n s

min_index : seq1 o f nat -> nat
min_index (l) ==

i f l en l = 1
then 1
e l s e l e t mi = min_index (t l l)

i n i f l (mi+1) < hd l
then mi+1
e l s e 1

op e r a t i o n s

S e l e c t i o n S o r t : nat ==> ()
S e l e c t i o n S o r t (i) ==

i f i < l en l
then (dc l temp : nat ;

d c l mi : nat := min_index (l (i , . . . , l e n l)) + i - 1 ;
temp := l (mi) ;
l (mi) := l (i) ;
l (i) := temp ;
S e l e c t i o n S o r t (i +1)

) ;
� �
The following VDM++ example illustrates multiple assignment.�
c l a s s C

i n s t an c e v a r i a b l e s
s i z e : nat ;
l : seq o f nat ;
inv s i z e = l en l

op e r a t i o n s
add1 : nat ==> ()
add1 (x) ==

118

CHAPTER 12. STATEMENTS

(l := [x] ^ l ;
s i z e := s i z e + 1) ;

add2 : nat ==> ()
add2 (x) ==

atomic (l := [x] ^ l ;
s i z e := s i z e + 1)

end C
� �
Here, in add1 the invariant on the class’s instance variables is broken, whereas in add2
using the multiple assignment, the invariant is preserved.

12.5 Conditional Statements
Syntax: statement = …

| if statement
| cases statement
| … ;

if statement = ‘if’, expression, ‘then’, statement,
{ elseif statement }, [‘else’, statement] ;

elseif statement = ‘elseif’, expression, ‘then’, statement ;

cases statement = ‘cases’, expression, ‘:’,
cases statement alternatives,
[‘,’, others statement], ‘end’ ;

cases statement alternatives = cases statement alternative,
{ ‘,’, cases statement alternative } ;

cases statement alternative = pattern list, ‘->’, statement ;

others statement = ‘others’, ‘->’, statement ;

Semantics: The semantics of the if statement corresponds to the if expression described in
section 6.4 except for the alternatives which are statements (and that the else part is
optional)3.
The semantics for the cases statement corresponds to the cases expression described
in section 6.4 except for the alternatives which are statements.

3If the else part is omitted semantically it is like using else skip.

119

VDM-10 Language Manual

Examples: Assuming functions clear_winner and winner_by_more_wins and operation Ran-
domElement with the following signatures:�

c l ear_winner : s e t o f Score -> boo l
winner_by_more_wins : s e t o f Score -> boo l
RandomElement : s e t o f Team ==> Team
� �

then the operation GroupWinner_if demonstrates the use of a nested if statement (the
iota expression is presented on page 61):�
GroupWinner_if : GroupName ==> Team
GroupWinner_if (gp) ==

i f c l ear_winner (gps (gp))
- - r e tu rn unique s c o r e in gps (gp) which has more po i n t s
- - than any othe r s c o r e
then r e tu rn ((i o t a sc in s e t gps (gp) &

f o r a l l s c ’ i n s e t gps (gp) \ { sc } &
sc . po i n t s > sc ’ . p o i n t s) . team)

e l s e i f winner_by_more_wins (gps (gp))
- - r e tu rn unique s c o r e in gps (gp) with maximal po i n t s
- - & has won more than othe r s c o r e s with maximal po i n t s
then r e tu rn ((i o t a sc in s e t gps (gp) &

f o r a l l s c ’ i n s e t gps (gp) \ { sc } &
(sc . po i n t s > sc ’ . p o i n t s) or
(s c . p o i n t s = sc ’ . p o i n t s and
sc . won > sc ’ . won)) . team)

- - no ou t r i g h t winner , so choose random s co r e
- - from j o i n t top s c o r e s
e l s e RandomElement ({ sc . team | sc in s e t gps (gp) &

f o r a l l s c ’ i n s e t gps (gp) &
sc ’ . p o i n t s <= sc . po i n t s }) ;
� �

Alternatively, we could use a cases statement with match value patterns for this oper-
ation:�
GroupWinner_cases : GroupName ==> Team
GroupWinner_cases (gp) ==

ca s e s t rue :
(c l ear_winner (gps (gp))) ->

re tu rn ((i o t a sc in s e t gps (gp) &
f o r a l l s c ’ i n s e t gps (gp) \ { sc } &

120

CHAPTER 12. STATEMENTS

sc . po i n t s > sc ’ . p o i n t s) . team) ,
(winner_by_more_wins (gps (gp))) ->

re tu rn ((i o t a sc in s e t gps (gp) &
f o r a l l s c ’ i n s e t gps (gp) \ { sc } &

(sc . p o i n t s > sc ’ . p o i n t s) or
(s c . p o i n t s = sc ’ . p o i n t s and

sc . won > sc ’ . won)) . team) ,
o th e r s -> RandomElement ({ sc . team | sc in s e t gps (gp) &

f o r a l l s c ’ i n s e t gps (gp) &
sc ’ . p o i n t s <= sc . po i n t s })

end
� �
12.6 For-Loop Statements
Syntax: statement = …

| sequence for loop
| set for loop
| index for loop
| … ;

sequence for loop = ‘for’, pattern bind, ‘in’, expression,
‘do’, statement ;

set for loop = ‘for’, ‘all’, pattern, ‘in set’, expression,
‘do’, statement ;

index for loop = ‘for’, identifier, ‘=’, expression, ‘to’, expression,
[‘by’, expression], ‘do’, statement ;

Semantics: There are three kinds of for-loop statements. The for-loop using an index is
known from most high-level programming languages. In addition, there are two for-
loops for traversing sets and sequences. These are especially useful if access to all
elements from a set (or sequence) is needed one by one.
An index for-loop statement has the form:�

f o r id = e1 to e2 by e3 do
s
� �

where id is an identifier, e1 and e2 are integer expressions indicating the lower and
upper bounds for the loop, e3 is an integer expression indicating the step size, and s

121

VDM-10 Language Manual

is a statement where the identifier id can be used. It denotes the evaluation of the
statement s as a sequence statement where the current context is extended with a
binding of id. Thus, the first time s is evaluated id is bound to the value returned from
the evaluation of the lower bound e1 and so forth until the upper bound is reached i.e.
until s > e2. Note that e1, e2 and e3 are evaluated before entering the loop.
A set for-loop statement has the form:�

f o r a l l e in s e t S do
s
� �

where S is a set expression. The statement s is evaluated in the current environment
extended with a binding of e to subsequent values from the set S.
A sequence for-loop statement has the form:�

f o r e in l do
s
� �

where l is a sequence expression. The statement s is evaluated in the current environ-
ment extended with a binding of e to subsequent values from the sequence l.

Examples: The operation Remove demonstrates the use of a sequence-for loop to remove all
occurences of a given number from a sequence of numbers:�

Remove : (seq o f nat) * nat ==> seq o f nat
Remove (k , z) ==
(dc l nk : seq o f nat := [] ;
f o r elem in k do

i f elem <> z
then nk := nk ^ [elem] ;

r e tu rn nk
) ;
� �

A set-for loop can be exploited to return the set of winners of all groups:�
GroupWinners : () ==> s e t o f Team
GroupWinners () ==
(dc l winners : s e t o f Team := {} ;
f o r a l l gp in s e t dom gps do

(dc l winner : Team := GroupWinner (gp) ;
winners := winners union {winner }

122

CHAPTER 12. STATEMENTS

) ;
r e tu rn winners
) ;
� �

An example of a index-for loop is the classic bubblesort algorithm:�
BubbleSort : seq o f nat ==> seq o f nat
BubbleSort (k) ==

(dc l s o r t e d_ l i s t : seq o f nat := k ;
f o r i = l en k to 1 by -1 do

f o r j = 1 to i - 1 do
i f s o r t e d_ l i s t (j) > s o r t e d_ l i s t (j +1)
then (dc l temp : nat := s o r t e d_ l i s t (j) ;

s o r t e d_ l i s t (j) := s o r t e d_ l i s t (j +1);
s o r t e d_ l i s t (j +1) := temp

) ;
r e tu rn s o r t e d_ l i s t
)
� �

12.7 The While-Loop Statement
Syntax: statement = …

| while loop
| … ;

while loop = ‘while’, expression, ‘do’, statement ;

Semantics: The semantics for the while statement corresponds to the while statement from
traditional programming languages. The form of a while loop is:�

whi l e e do
s
� �

where e is a boolean expression and s a statement. As long as the expression e evaluates
to true the body statement s is evaluated.

Examples: The while loop can be illustrated by the following example which uses Newton’s
method to approximate the square root of a real number r within relative error e.

123

VDM-10 Language Manual

�
SquareRoot : r e a l * r e a l ==> r e a l
SquareRoot (r , e) ==

(dc l x : r e a l := 1 ,
nextx : r e a l := r ;

wh i l e abs (x - nextx) >= e * x do
(x := nextx ;

nextx := ((r / x) + x) / 2 ;
) ;

r e tu rn nextx
) ;
� �

12.8 The Nondeterministic Statement
Syntax: statement = …

| nondeterministic statement
| … ;

nondeterministic statement = ‘||’, ‘(’, statement,
{ ‘,’, statement }, ‘)’ ;

Semantics: The nondeterministic statement has the form:�
| | (stmt1 , stmt2 , … , stmtn)
� �

and it represents the execution of the component statements stmti in an arbitrary
(non-deterministic) order. However, it should be noted that the component state-
ments are not executed simultaneously. Notice that the VDM interpreters will use an
underdetermined4 semantics even though this construct is called a non-deterministic
statement.

Examples: Using the VDM-SL state definition�
s t a t e St o f

x : nat
y : nat
l : seq1 o f nat

end
� �
4Even though the user of the VDM interpreters does not know the order in which these statements are
executed they are always executed in the same order unless the seed option is used.

124

CHAPTER 12. STATEMENTS

or the VDM++ instance variables�
i n s t an c e v a r i a b l e s

x : nat ;
y : nat ;
l : seq1 o f nat ;
� �

we can use the non-deterministic statement to effect a bubble sort:�
Sort : () ==> ()
Sort () ==

whi l e x < y do
| | (BubbleMin () , BubbleMax ()) ;
� �

Here BubbleMin “bubbles” the minimum value in the subsequence l(x,...,y) to the head
of the subsequence and BubbleMax “bubbles” the maximum value in the subsequence
l(x,...,y) to the last index in the subsequence. BubbleMin works by first iterating
through the subsequence to find the index of the minimum value. The contents of this
index are then swapped with the contents of the head of the list, l(x).�

BubbleMin : () ==> ()
BubbleMin () ==

(dc l z : nat := x ;
d c l m: \ keyw{nat } := l (z) ;
- - f i n d min va l in l (x . . y)
f o r i = x to y do

i f l (i) < m
then (m := l (i) ;

z := i) ;
- - move min va l to index x
(dc l temp : nat ;
temp := l (x) ;
l (x) := l (z) ;
l (z) := temp ;
x := x+1)) ;
� �

BubbleMax operates in a similar fashion. It iterates through the subsequence to find
the index of the maximum value, then swaps the contents of this index with the contents
of the last element of the subsequence.�

125

VDM-10 Language Manual

BubbleMax : () ==> ()
BubbleMax () ==

(dc l z : nat := x ;
d c l m: nat := l (z) ;
- - f i n d max va l in l (x . . y)
f o r i = x to y do

i f l (i) > m
then (m := l (i) ;

z := i) ;
- - move max va l to index y
(dc l temp : nat ;
temp := l (y) ;
l (y) := l (z) ;
l (z) := temp ;
y := y - 1)) ;
� �

12.9 The Call Statement
Syntax: statement = …

| call statement
| … ;

For VDM-SL call statements are defined as:

call statement = name, ‘(’, [expression list], ‘)’ ;

For VDM++ and VDM-RT call statements are defined as:

call statement = [object designator, ‘.’], name,
‘(’, [expression list], ‘)’, ;

object designator = name
| self expression
| new expression
| object field reference
| object apply ;

object field reference = object designator, ‘.’, identifier ;

object apply = object designator, ‘(’, [expression list], ‘)’ ;

Semantics: In VDM-SL the call statement has the form:

126

CHAPTER 12. STATEMENTS

�
opname (param1 , param2 , … , paramn)
� �
In VDM++ and VDM-RT the call statement can additionally have the form:�
ob j e c t . opname (param1 , param2 , … , paramn)
� �
The call statement calls an operation, opname, (in a VDM++ and VDM-RT context
it can also be on a specific object, object), and returns the result of evaluating the
operation. Because operations can manipulate global variables a call statement does
not necessarily have to return a value as function call do.
In VDM++ and VDM-RT if an object designator is specified it must yield an object
reference to an object of a class in which the operation opname is defined, and then the
operation must be specified as public. If no object designator is specified the operation
will be called in the current object. If the operation is defined in a superclass, it must
have been defined as public or protected.

Examples: In VDM-SL the operation ResetStack given below does not have any parameter
and does not return a value whereas the operation PopStack returns the top element
of the stack.�

ResetStack () ;
. . .
top := PopStack () ;
� �

where PopStack could be defined as:�
PopStack : () ==> Elem
PopStack () ==

de f r e s = hd s tack in
(s tack := t l s t a ck ;
r e tu rn r e s)

pre s ta ck <> []
post s t a ck~ = [RESULT] ^ s tack
� �

where stack is a global variable.
In VDM++ and VDM-RT this Stack example can be made like:�

c l a s s Stack

127

VDM-10 Language Manual

i n s t an c e v a r i a b l e s
s t a ck : seq o f Elem := [] ;

o p e r a t i on s

pub l i c Reset : () ==> ()
Reset () ==

stack := [] ;

pub l i c Pop : () ==> Elem
Pop () ==

de f r e s = hd s tack in
(s tack := t l s t a ck ;
r e tu rn r e s)

pre s ta ck <> []
post s t a ck~ = [RESULT] ^ s tack

end Stack
� �
In the example the operation Reset does not have any parameters and does not return
a value whereas the operation Pop returns the top element of the stack. The stack
could be used as follows:�

(d c l s t a ck := new Stack () ;
s t a ck . Reset () ;
. . . .
top := s tack . Pop () ;

)
� �
Inside class Stack the operations can be called as shown below:�

Reset () ;
. . . .
top := Pop () ;
� �

Or using the self reference:�
s e l f . Reset () ;
top := s e l f . Pop () ;
� �

128

CHAPTER 12. STATEMENTS

12.10 The Return Statement
Syntax: statement = …

| return statement
| … ;

return statement = ‘return’, [expression] ;

Semantics: The return statement returns the value of an expression inside an operation. The
value is evaluated in the given context. If an operation does not return a value, the
expression must be omitted. A return statement has the form:�

r e tu rn e
� �
or�

r e tu rn
� �
where expression e is the return value of the operation.

Examples: In the following example OpCall is an operation call whereas FunCall is a function
call. As the if statement only accepts statements in the two branches FunCall is
“converted” to a statement by using the return statement.�

i f t e s t
then OpCall ()
e l s e r e tu rn FunCall ()
� �

For instance in VDM++, we can extend the stack class from the previous section with
an operation which examines the top of the stack:�
pub l i c Top : () ==> Elem
Top () ==

re tu rn (hd s tack)
pre s ta ck <> [] ;
� �

12.11 Exception Handling Statements
Syntax: statement = …

129

VDM-10 Language Manual

| always statement
| trap statement
| recursive trap statement
| exit statement
| … ;

always statement = ‘always’, statement, ‘in’, statement ;

trap statement = ‘trap’, pattern bind, ‘with’, statement, ‘in’,
statement ;

recursive trap statement = ‘tixe’, traps, ‘in’, statement ;

traps = ‘{’, pattern bind, ‘|->’, statement,
{ ‘,’, pattern bind, ‘|->’, statement }, ‘}’ ;

exit statement = ‘exit’, [expression] ;

Semantics: The exception handling statements are used to control exception errors in a
specification. This means that we have to be able to signal an exception within a
specification. This can be done with the exit statement, and has the form:�

e x i t e
� �
or�

e x i t
� �
where e is an expression which is optional. The expression e can be used to signal
what kind of exception is raised.
The always statement has the form:�

always s1 in
s2
� �

where s1 and s2 are statements. First statement s2 is evaluated, and regardless of any
exceptions raised, statement s1 is also evaluated. The result value of the complete
always statement is determined by the evaluation of statement s1: if this raises an
exception, this value is returned, otherwise the result of the evaluation of statement s2
is returned.

130

CHAPTER 12. STATEMENTS

The trap statement only evaluates the handler statement, s1, when certain conditions
are fulfilled. It has the form:�

t rap pat with s1 in s2
� �
where pat is a pattern or bind used to select certain exceptions, s1 and s2 are state-
ments. First, we evaluate statement s2, and if no exception is raised, the result value
of the complete trap statement is the result of the evaluation of s2. If an exception is
raised, the value of s2 is matched against the pattern pat. If there is no matching, the
exception is returned as result of the complete trap statement, otherwise, statement
s1 is evaluated and the result of this evaluation is also the result of the complete trap
statement.

The recursive trap statement has the form:�
t i x e {

pat1 | -> s1 ,
. . .
patn | -> sn

} in s
� �
where pat1, …, patn are patterns or binds, s, s1, …, sn are statements. First, statement
s is evaluated, and if no exception is raised, the result is returned as the result of the
complete recursive trap statement. Otherwise, the value is matched in order against
each of the patterns pati. When a match cannot be found, the exception is returned
as the result of the recursive trap statement. If a match is found, the corresponding
statement si is evaluated. If this does not raise an exception, the result value of the
evaluation of si is returned as the result of the recursive trap statement. Otherwise, the
matching starts again, now with the new exception value (the result of the evaluation
of si).

Examples: In many programs, we need to allocate memory for a single operation. After the
operation is completed, the memory is not needed anymore. This can be done with
the always statement:�

(d c l mem : Memory ;
always Free (mem) in
(mem := A l l o c a t e () ;

Command(mem, …)
)

)
� �
131

VDM-10 Language Manual

In the above example, we cannot act upon a possible exception raised within the body
statement of the always statement. By using the trap statement we can catch these
exceptions:�

t rap pat with ErrorAct ion (pat) in
(d c l mem : Memory ;

always Free (mem) in
(mem := A l l o c a t e () ;

Command(mem, …)
)

)
� �
Now all exceptions raised within the always statement are captured by the trap state-
ment. If we want to distinguish between several exception values, we can use either
nested trap statements or the recursive trap statement:�

DoCommand : () ==> in t
DoCommand () ==
(dc l mem : Memory ;

always Free (mem) in
(mem := A l l o c a t e () ;

Command(mem, …)
)

) ;

Example : () ==> in t
Example () ==
t i x e
{ <NOMEM> | -> re tu rn -1 ,

<BUSY> | -> DoCommand() ,
e r r | -> re tu rn -2 }

in
DoCommand()
� �

In operation DoCommand we use the always statement in the allocation of memory,
and all exceptions raised are captured by the recursive trap statement in operation
Example. An exception with value <NOMEM> results in a return value of -1 and
no exception raised. If the value of the exception is <BUSY> we try to perform the
operation DoCommand again. If this raises an exception, this is also handled by the
recursive trap statement. All other exceptions result in the return of the value -2.

132

CHAPTER 12. STATEMENTS

12.12 The Error Statement
Syntax: statement = …

| error statement
| … ;

error statement = ‘error’ ;

Semantics: The error statement corresponds to the undefined expression. It is used to state
explicitly that the result of a statement is undefined and because of this an error has
occurred. When an error statement is evaluated the VDM interpreters will terminate
the execution of the specification and report that an error statement was evaluated.
Pragmatically use of error statements differs from pre-conditions as was the case with
undefined expressions: use of a pre-condition means it is the caller’s responsibility
to ensure that the pre-condition is satisfied when the operation is called; if an error
statement is used it is the called operation’s responsibility to deal with error handling.

Examples: The operation SquareRoot on page 124 does not exclude the possibility that
the number to be square rooted might be negative. If we do not wish this to be a
pre-condition we can remedy this in the operation SquareRootErr:�

SquareRootErr : r e a l * r e a l ==> r e a l
SquareRootErr (r , e) ==

i f r < 0
then e r r o r
e l s e

(d c l x : r e a l := 1 ;
d c l nextx : r e a l := r ;
wh i l e abs (x - nextx) >= e * x do

(x := nextx ;
nextx := ((r / x) + x) / 2 ;

) ;
r e tu rn nextx

)
� �
12.13 The Identity Statement
Syntax: statement = …

| identity statement ;

identity statement = ‘skip’ ;

133

VDM-10 Language Manual

Semantics: The identity statement is used to signal that no evaluation takes place.

Examples: In the operation Remove in section 12.6 the behaviour of the operation within
the for loop if elem=z is not explicitly stated. Remove2 below does this.�

Remove2 : (seq o f nat) * nat ==> seq o f nat
Remove2 (k , z) ==

(dc l nk : seq o f nat := [] ;
f o r elem in k do

i f elem <> z
then nk := nk ^ [elem]
e l s e s k ip ;

r e tu rn nk
) ;
� �

Here, we explicitly included the else-branch to illustrate the identity statement, how-
ever, in most cases the else-branch will not be included and the identity statement is
implicitly assumed.

12.14 Start and Start List Statements (VDM++ and VDM-RT)
Syntax: statement = …

| start statement
| start list statement ;

start statement = ‘start’, ‘(’, expression, ‘)’ ;

start list statement = ‘startlist’, ‘(’, expression, ‘)’ ;

Semantics: The start and start list statements have the form:�
s t a r t (aRef)
s t a r t l i s t (aRef_s)
� �

If a class description includes a thread (see chapter 15), each object created from this
class will have the ability to operate as a stand-alone virtual machine, or in other terms:
the object has its own processing capability. In this situation, a new expression creates
the ‘process’ leaving it in a waiting state. For such objects VDM++ and VDM-RT has
a mechanism to change the waiting state into an active state5 in terms of a predefined
operation, which can be invoked through a start statement.

5When an object is in an active state, its behaviour can be described using a thread (see chapter 15).

134

CHAPTER 12. STATEMENTS

The explicit separation of object creation and start provides the possibility to complete
the initialisation of a (concurrent) system before the objects start exhibiting their
described behaviour, in this way avoiding problems that may arise when objects are
referred to that are not yet created and/or connected.

A syntactic variant of the start statement is available to start up a number of active
objects in arbitrary order: the start list statement. The parameter aRef_s to startlist
must be a set of object references to objects instantiated from classes containing a
thread.

Examples: Consider the specification of an operating system. A component of this would
be the daemons and other processes started up during the boot sequence. From this
perspective, the following definitions are relevant:�

types

runLeve l = nat ;

Proce s s = Kerneld | Ftpd | Sys logd | Lpd | Httpd

i n s t an c e v a r i a b l e s
p I n i t : map runLeve l to s e t o f Proce s s
� �

where Kerneld is an object reference type specified elsewhere, and similarly for the
other processes listed.

We can then model the boot sequence as an operation:�
bootSequence : runLeve l ==> ()
bootSequence (r l) ==

f o r a l l p in s e t p I n i t (r l) do
s t a r t (p) ;
� �

Alternatively we could use the startlist statement here:�
bootSequenceL i s t : runLeve l ==> ()
bootSequenceL i s t (r l) ==

s t a r t l i s t (p I n i t (r l))
� �
135

VDM-10 Language Manual

12.15 Stop and Stop List Statements (VDM++ and VDM-RT)
Syntax: statement = …

| stop statement
| stop list statement ;

stop statement = ‘stop’, ‘(’, expression, ‘)’ ;

stop list statement = ‘stoplist’, ‘(’, expression, ‘)’ ;

Semantics: The stop and stop list statements have the following form:�
s top (aRef)
s t o p l i s t (aRef_s)
� �

The stop statement can be used to terminate a thread or to prevent a periodic thread
from being invoked again, whereby a thread is identified by the object reference aRef. The
stop list statement is available to stop a number of active objects, in arbitrary order. The
parameter aRef_s to stoplist must be a set of object references. A few additional remarks
can be made:

1. ‘self’ can be passed as an argument to stop or stoplist, effectively killing the current
thread

2. Note that thread identifiers can not be passed as an argument

3. in contrast to start and startlist, stop and stoplist will block until the thread(s), iden-
tified by their object identifiers that are passed as an argument, are dead; if ‘self’ is
part of the set, it will be stopped last

4. passing the object identifier of a task that has never been started or is already dead,
will yield a run-time error

5. objects can be restarted by calling start and startlist again, which will create a fresh
and unique thread identifier for each thread.

6. it is only possible to stop threads that are running on the same CPU

12.16 The Specification Statement
Syntax: statement = …

| specification statement ;

136

CHAPTER 12. STATEMENTS

specification statement = ‘[’, implicit operation body, ‘]’ ;

Semantics: The specification statement can be used to describe a desired effect a statement in
terms of a pre- and a post-condition. Thus, it captures the abstraction of a statement,
permitting it to have an abstract (implicit) specification without being forced to an
operation definition. The specification statement is equivalent with the body of an
implicitly defined operation (see chapter 11). Thus specification statements can not
be executed.

Examples: We can use a specification statement to specify a bubble maximum part of a
bubble sort:�
Sort2 : () ==> ()
Sort2 () ==

whi l e x < y do
| | (BubbleMin () ,

[ext wr l : seq1 o f nat
wr y : nat
rd x : nat

pre x < y
post y < y~ and

permutat ion (l ~(x , . . . , y ~) , l (x , . . . , y ~)) and
f o r a l l i i n s e t {x , . . . , y} & l (i) < l (y ~)]

)
� �
(permutation is an auxiliary function taking two sequences which returns true iff one
sequence is a permutation of the other.)

12.17 The Duration Statement (VDM-RT)
Syntax: statement = …

| duration statement ;

duration statement = ‘duration’, ‘(’, expression, ‘)’, statement ;

Semantics: The duration statement is a runtime directive to the VDM interpreters telling
it that when incrementing the internal clock for the enclosed statement, the value (an
expression that must yield a natural number as its return type, otherwise causing a
run-time error) given in the duration statement should be used instead of the increment
which would normally be computed for that statement. Thus the duration statement

137

VDM-10 Language Manual

provides a mechanism to override the VDM interpreter’s default execution time com-
putation. Note that the execution of the expression is done in zero time and cannot
cause thread switches.

Example: First a simple example:�
whi l e n < 10 do

durat i on (10) n := n + 1 ;
� �
In this example, assuming that this loop is not executed in the context of an enclosing
duration statement, on each iteration of the loop the VDM interpreters will increment
its internal clock by 10 time units (nanoseconds), rather than computing the amount
of time required to execute the statement n := n + 1.

If duration statements are nested, the outermost one takes precedence and the remain-
der are ignored. For instance�

durat i on (30)
(n := 1 ;

wh i l e n < 10 do
durat i on (10) n := n + 1 ;

)
� �
The outer duration statement takes precedence, so assuming this is not executed in the
context of an enclosing duration statement, the VDM interpreters would increment its
internal clock by 30 time units when executing this statement.

Note that nesting can occur due to operation calls. Consider the following example:�
op1 : nat ==> nat
op1 (m) ==

durat i on (20) r e tu rn m + 1 ;

op2 : () ==> nat
op2 () ==
(dc l n : nat := 3 ;

dura t i on (10) n := op1 (1) ;
r e tu rn n)
� �

When executing op2, if the call to op1 is executed, the duration statement in op1 will
be overridden by the duration statement in the environment of the call. Thus in op2

138

CHAPTER 12. STATEMENTS

following execution of the statement n := op1(1); the internal clock is incremented by
10 time units only.�

(n := 1 ; wh i l e n < 10 do durat i on (n) n := n + 1)
� �
The final example demonstrates the use of a general expression as the argument to the
duration statement, whereby the consecutive executions of the body of the while loop
take more time as n increases.

12.18 The Cycles Statement (VDM-RT)
Syntax: statement = …

| cycles statement ;

cycles statement = ‘cycles’, ‘(’, expression, ‘)’, statement ;

Semantics: The cycles statement is a runtime directive to the VDM interpreters telling it
that when incrementing the internal clock for the enclosed statement, the value (an
expression that must yield a natural number as its return type, otherwise causing a
run-time error) given in the cycles statement should be used as an indication of how
many clock cycles that the enclosed statement should be incremented by instead of
the increment which would normally be computed for that statement. Thus the cycles
statement provides a mechanism to override the VDM interpreter’s default execution
time computation similar to the duration statement but in a way that is relative to
the speed of the CPU that the computation is carried out on. Note that the execution
of the expression is done in zero time and cannot cause thread switches.

Example: First a simple example:�
whi l e n < 10 do

c y c l e s (1000) n := n + 1 ;
� �
In this example, assuming that this loop is not executed in the context of an enclosing
cycles statement, on each iteration of the loop the VDM interpreters will increment
its internal clock by the time it will take to process 1000 instructions on the given
CPU (relative to its capacity), rather than computing the amount of time required to
execute the statement n := n + 1.

If cycles statements are nested, the outermost one takes precedence and the remainder
are ignored. For instance

139

VDM-10 Language Manual

�
c y c l e s (3000) (

n := 1 ;
wh i l e n < 10 do

c y c l e s (1000) n := n + 1 ;
)
� �

The outer cycles statement takes precedence, so assuming this is not executed in the
context of an enclosing cycles statement, the interpreter would increment its internal
clock by the time it takes to process 3000 instructions on the given CPU when executing
this statement.
Note that nesting can occur due to operation calls. Consider the following example:�

op1 : nat ==> nat
op1 (m) ==

cy c l e s (2000) r e tu rn m + 1 ;

op2 : () ==> nat
op2 () ==
(dc l n : nat := 3 ;
c y c l e s (1000) n := op1 (1) ;
r e tu rn n)
� �

When executing op2, if the call to op1 is executed, the cycles statement in op1 will
be overridden by the cycles statement in the environment of the call. Thus in op2
following execution of the statement n := op1(1); the internal clock is incremented by
the time it takes to process 1000 instructions on the given CPU only.�

(n := 1 ; wh i l e n < 10 do c y c l e s (n) n := n + 1)
� �
The final example demonstrates the use of a general expression as the argument to
the cycles statement, whereby the consecutive executions of the body of the while loop
take more time as n increases.

140

Chapter 13

Top-level Specification in VDM

The top-level specification structure differs significantly between the VDM-SL approach and
the VDM++ and VDM-RT approach. In VDM-SL the ISO standard prescribes a flat-
language but here a modular extension is also enabled using imports and exports primitives.
In VDM++ and VDM-RT structuring is done using object-oriented classes that can inherit
constructs between them controlled by access modifiers. These two different approaches are
explained in the two sections in this chapter.

13.1 Top-level Specification in VDM-SL
In the previous chapters all the VDM-SL constructs such as types, expressions, statements,
functions and operations have been described. A number of these constructs can constitute
a top-level VDM-SL specification. A top-level specification can be created in two ways:

1. The specification is split into a number of modules which are specified separately, but
can depend on each other.

2. The specification is specified in a flat manner, i.e. no modules are used (note that in
VDM-10 it is possible to have access to standard modules also from a flat VDM-SL
specification).

Thus, a complete specification, or document, has the following syntax.

Syntax: document = module, { module }
| definition block, { definition block } ;

13.1.1 A Flat Specification
As said, a flat specification does not use modules. This means that all constructs can be
used throughout the specification. In the flat case, a document has a syntax of:

141

VDM-10 Language Manual

document = …
| definition block, { definition block } ;

definition block = type definitions
| state definition
| value definitions
| function definitions
| operation definitions
| traces definitions ;

Thus, a flat specification is made up of several definition blocks. However, only one state
definition is allowed. The following is an example of a flat top-level specification:�
va lu e s

s t 1 = mk_St ([3 , 2 , - 9 , 1 1 , 5 , 3])

s t a t e St o f
l i s t : seq1 o f nat

end

f un c t i o n s

min_index : seq1 o f nat -> nat
min_index (p l i s t) ==

i f l en p l i s t = 1
then 1
e l s e l e t mi = min_index (t l p l i s t)

in
i f p l i s t (mi+1) < hd p l i s t
then mi+1
e l s e 1

op e r a t i o n s

S e l e c t i o n S o r t : nat ==> ()
S e l e c t i o n S o r t (i) ==

i f i < l en l i s t
then (dc l temp : nat ;

d c l mi : nat := min_index (l (i , . . . , l e n l i s t)) + i - 1 ;

temp := l i s t (mi) ;
l i s t (mi) := l i s t (i) ;

142

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

l i s t (i) := temp ;
S e l e c t i o n S o r t (i +1)

)
� �
13.1.2 A Structured Specification
As an extension to the standard VDM-SL language, it is possible to structure an VDM-
SL specification using modules. In this section, the use of modules to create the top-level
specification will be described. With the structuring facilities offered by VDM-SL it is
possible to:

• Export constructs from a module.

• Import constructs from a module.

• Rename constructs upon import.

• Define a state in a module.

The Layout of a Module

Before the actual facilities are described, the general layout of a module is described. A
module consists of three parts: a module declaration, an interface section, and a definitions
section. It is possible to leave out the definitions part in the early development of a module
specification.

In the module declaration, the module is named. The name must be a unique module
name within the complete specification. The second part, the interface section, defines the
relation of a module with other modules and consists of two sections. These sections are:

• An imports section. In the imports section, all the constructs that are going to be
used from other modules are described. If constructs are going to be renamed it has
to be done in the imports section.

• An exports section. Here all the constructs that are going to be used in other modules
are defined. If no exports section is present the module cannot be used from any other
modules.

The third part of a module declaration, the definitions section, contains all the definitions
of the module. Thus, in general, the syntax of a module is:

Syntax: module = ‘module’, identifier, interface,
[module body], ‘end’, identifier ;

module body = ‘definitions’, definition block, { definition block } ;

Note that the identifier after module and end should be identical.

143

VDM-10 Language Manual

The Exports Section

Syntax: interface = [import definition list],
export definition ;

export definition = ‘exports’, export module signature ;

export module signature = ‘all’
| export signature,

{ export signature } ;

export signature = export types signature
| export values signature
| export functions signature
| export operations signature ;

export types signature = ‘types’, type export,
{ ‘;’, type export }, [‘;’] ;

type export = [‘struct’], name ;

export values signature = ‘values’, value signature,
{ ‘;’, value signature }, [‘;’] ;

value signature = name list, ‘:’, type ;

export functions signature = ‘functions’, function signature,
{ ‘;’, function signature }, [‘;’] ;

function signature = name list, [type variable list], ‘:’,
function type ;

export operations signature = ‘operations’, operation signature,
{ ‘;’, operation signature }, [‘;’] ;

operation signature = name list, ‘:’, operation type ;

Semantics: The exports section must be used to make constructs visible to other modules.
Some or all of the defined constructs from a module can be exported. In the latter
case, the keyword all is used. However, imported constructs are not exported from the
module. If only part of the constructs are exported, the visible constructs with the
appropriate signatures are stated.
Normally, if a construct is visible to another module, that construct can be considered
to be defined inside the module. However, with types and operations there are some
exceptions:

144

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

Types: If a type T is defined in module A and this type is also going to be used in
module B, the type from module A has to be exported. This can be done in two
ways:
1. The name of the type is exported.
2. The structure of the type is exported.

If only the name of the type is exported, the other module cannot create values
of type T. This means that the exporting module (A) must provide functions
and/or operations to directly create and manipulate values of type T by means
of the constructors related to the representation of T.
If we export the structure of the type by using the keyword struct, the other
module can create and manipulate values of type T (it can also use the mk_
keyword and the is_ keyword for this type if it is a record type).
If the type also defines an invariant, the invariant predicate function is only
exported if the structure of the type is exported.

Operations: In a module, a state that is global for the module can be defined. All op-
erations within the module can manipulate that state. If operations are exported
from a module, they manipulate the state in the exporting module, i.e. the state
in the module where they are defined.

If an exported function or an operation defines a pre- and/or post-condition, the cor-
responding predicate functions (see chapter 5) are also exported.

Examples: Consider a model of a bank account. An account is characterised by the name of
the holder, the account number, the bank branch at which the account is maintained,
the balance, and an encrypted PIN code for the ATM card. We might model this as
follows:�
module BankAccount

expo r t s types d i g i t ; account
f u n c t i o n s d i g v a l : d i g i t -> nat ;

d epo s i t : account * r e a l -> account ;
withdrawal : account * r e a l -> account ;
i sP i n : account * nat -> boo l ;
requestWithdrawal : account * nat -> boo l

d e f i n i t i o n s

types

d i g i t = nat
inv d == d < 10 ;

145

VDM-10 Language Manual

account : : ho ld e r : seq1 o f char
number : seq1 o f d i g i t
branchcode : seq1 o f d i g i t
ba lance : r e a l
ep in : nat

inv mk_account (ho lder , number , branchcode , - , -) ==
l en number = 8 and l en branchcode = 6

f un c t i o n s

d i g v a l : d i g i t -> nat
d i g va l (d) == d ;

d epo s i t : account * r e a l -> account
d epo s i t (acc , r) ==

mu(acc , ba lance | -> acc . ba lance + r) ;

withdrawal : account * r e a l -> account
withdrawal (acc , r) ==

mu(acc , ba lance | -> acc . ba lance - r) ;

i sP i n : account * nat -> boo l
i sP i n (acc , ep) ==

ep = acc . ep in ;

requestWithdrawal : account * nat -> boo l
requestWithdrawal (acc , amt) ==

acc . ba lance > amt

end BankAccount
� �
In this module we export two types and five functions. Note that since we have
enumerated the entities we are exporting, but have not exported digit or account
using the struct keyword, the internals of account values may not be accessed by other
modules, neither may the invariant for digit. If such access is necessary, the types
should be exported with the struct keyword, or all constructs in the module should be
exported using the exports all clause.

The module Keypad given below models the keypad interface of an ATM machine.
The state variable maintains a buffer of data typed at the keypad by the user.�

146

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

module Keypad

imports
from BankAccount types d i g i t

expo r t s a l l

d e f i n i t i o n s

s t a t e b u f f e r o f
data : seq o f BankAccount ‘ d i g i t

end

op e r a t i o n s

DataAvai lab le : () ==> boo l
DataAvai lab le () ==

re tu rn (data <> []) ;

ReadData : () ==> seq o f BankAccount ‘ d i g i t
ReadData () ==

re tu rn (data) ;

WriteData : seq o f BankAccount ‘ d i g i t ==> ()
WriteData (d) ==

data := data^d

end Keypad
� �
In this module all constructs are exported. Since the only entities defined are the
state and operations on it, this means that all of the operations may be accessed by
an importing module. The state is not accessible to importing modules, but remains
private to this module. However the state constructor mk_Keypad‘buffer is accessible.

The Imports Section

Syntax: interface = [import definition list],
export definition ;

import definition list = ‘imports’, import definition,
{ ‘,’, import definition } ;

import definition = ‘from’, identifier, import module signature ;

147

VDM-10 Language Manual

import module signature = ‘all’
| import signature,

{ import signature } ;

import signature = import types signature
| import values signature
| import functions signature
| import operations signature ;

import types signature = ‘types’, type import,
{ ‘;’, type import }, [‘;’] ;

type import = name, [‘renamed’, name]
| type definition, [‘renamed’, name] ;

import values signature = ‘values’, value import,
{ ‘;’, value import }, [‘;’] ;

value import = name, [‘:’, type], [‘renamed’, name] ;

import functions signature = ‘functions’, function import,
{ ‘;’, function import }, [‘;’] ;

function import = name, [[type variable list], ‘:’, function type],
[‘renamed’, name] ;

import operations signature = ‘operations’, operation import,
{ ‘;’, operation import }, [‘;’] ;

operation import = name, [‘:’, operation type],
[‘renamed’, name] ;

Semantics: The imports section is used to state what constructs are used from other modules
with the restriction that only visible constructs can be imported. If all the visible
constructs from a module are going to be used, the keyword all is used, unless one
or more constructs are going to be renamed. With renaming, an imported construct
is given a new name which can be used instead of the original name preceded by the
exporting module name. In general this has the form:�

name renamed new_name
� �
148

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

where name is the name of the imported construct, and new_name is the new name
for the construct. This way, more meaningful names can be given to constructs. Note
that in the importing module it is not possible to refer to DefModule‘name (where
DefModule is the name of the defining module) any longer but only to newname.
It is possible to include type information in the imports section, such that this infor-
mation will only be used by the static semantics check of the complete module. If no
type information is given, the static semantics can also find this information in the
exporting module.
A module that imports a type may only access the internal structure of that type if
it was exported with the struct keyword; this includes invoking the type constructor
and using the selector functions. If the type was exported without the struct keyword
then the importing module may refer to the type, and call functions from the imported
module that create elements of the type, but it cannot invoke the type constructor, or
use the selector functions.
When a composite type is exported with struct then its constructor is referred to, in
the importing module, by mk_ExportingMod‘RecordName. If the composite type is
renamed on import, to ImportedRecName say, then the constructor is referred to by
mk_ImportedRecName.

Examples: We can model an ATM card as consisting of a card number and an expiry date.
This requires the digit type defined in the module BankAccount. It also uses the
function digval from the same module.�
module ATMCard

imports
from BankAccount types d i g i t

f u n c t i o n s d i g v a l renamed atmc_digval

expo r t s a l l

d e f i n i t i o n s

types

d i g i t = BankAccount ‘ d i g i t

atmc : : cardnumber : seq1 o f d i g i t
exp i ry : d i g i t * d i g i t * d i g i t * d i g i t

inv mk_atmc(cardnumber , mk_(m1,m2, - , -)) ==
l e t m = atmc_digval (m1) * 10 + atmc_digval (m2)
in m > 0 and m <= 12 and l en cardnumber >= 8

149

VDM-10 Language Manual

f u n c t i o n s

getCardnumber : atmc -> seq1 o f d i g i t
getCardnumber (atmc) ==

atmc . cardnumber

end ATMCard
� �
Here the invariant on the type atmc states that expiry dates must represent valid
dates, and card numbers must be at least 8 digits long. Note that since digit is not
exported with the struct keyword from the module BankAccount, we cannot access
the invariant for digit in module ATMCard. This notwithstanding, all values of type
digit manipulated in ATMCard must satisfy the invariant.

13.2 Top-level Specification in VDM++ and VDM-RT
In the previous chapters VDM constructs such as types, expressions, statements, functions
and operations have been described. A number of these constructs can constitute the defi-
nitions inside a class definition. A top-level specification, or document, is composed of one
or more class definitions. Note that only in VDM-RT it is possible to have a system class.

Syntax: document = (class | system) ,{ class | system } ;

13.3 System (VDM-RT)
In order to be able to describe distributed systems VDM-RT includes a notion of a sys-
tem that describes how different parts of the system modelled are deployed to different Core
Processing Units (CPUs) and communication busses connecting the CPUs together. Syntac-
tically the system is described exactly like ordinary classes described below in Section 13.3.1,
except that the keyword “system” instead of the keyword “class” is used.

Syntax: system = ‘system’, identifier,
[class body],
‘end’, identifier ;

class body = definition block, { definition block } ;

definition block = type definitions
| value definitions
| function definitions

150

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

| operation definitions
| instance variable definitions
| synchronization definitions
| thread definitions ;

Semantics: Each system description has the following parts:

• A system header with the system name.
• An optional system body.
• A system tail.

The system name as given in the system header is the defining occurrence of the name
of the class. A system name is globally visible, i.e. visible in all other classes/systems
in the specification.
The system name in the class header must be the same as the system name in the
system tail. Furthermore, defining system names must be unique throughout the
specification.
The special thing about the system is that it can make use of special implicitly defined
classes called CPU and BUS. It is not possible to create instances of the system, but
instances made of CPU and BUS will be created at initialisation time. Note that CPU
and BUS cannot be used outside the system definition.
The instances of CPU and BUS must be made as instance variables and the definition
must use constructors. The constructor for the CPU class takes two parameters: the
first one indicates the primary scheduling policy used for the CPU whereas the second
parameter provides the capacity of the CPU (indicated as number of instructions Per
Second or Hz – NB. the (time unit) step size of time is 1 nanosecond). The constructor
for the BUS class takes three parameters. The first one indicates the kind of bus, the
second one the capacity of the bus (its band width in bytes per second) and finally the
third parameter gives a set of CPU instances connected together by the given BUS
instance.
The currently supported primary scheduling policies for the CPU are:

<FP>: Fixed Priority
<FCFS>: First Come First Served

The currently supported primary scheduling policy for the BUS is:

<FCFS>: First Come First Served

The CPU class has member operations called deploy and setPriority. The deploy
operation takes one significant parameter which must be an object that is declared as

151

VDM-10 Language Manual

a static instance variable inside the system1. The semantics of the deploy operation is
that execution of all functionality inside this object will take place on the CPU that it
has been deployed to. The setPriority operation takes two parameters where the first
must be the name of a public operation that has been deployed to the CPU and the
second parameter is a natural number. The semantics of the setPriority operation is
that the given operation is assigned the given priority (the second parameter). This
will be used when fixed priority scheduling is used on the given CPU. Per default
operations that are not explicitly assigned a priority using the setPriority operation
are assigned a default priority of 1.
The system “class” is limited in the way that it can only contain:

Instance variables: The only instances that can be declared in the system “class” is
of the special classes CPU and BUS as well as static instances of the different
system components that one wishes to allocate to different CPU’s.

Constructor: The actual deployment of instances to CPU’s and setting of priorities for
the different operations is set inside the constructor which is the only operation
that can be placed in the system “class”. The only kind of statement that can be
used inside this constructor is a block statement with a sequence of invocations
of the special deploy and setPriority operations.

In addition there are limitations with respect to the use of static declarations for
instances that are deployed to different CPU’s. Basically the user should ensure that
only one instance is deployed to a CPU if the class the instance comes from contains any
static operations or functions. In case a static instance variable is used it is accessed
directly (without any communication over the busses), so this in essence not proper
from a distribution standpoint. Thus, all instance variables of instances to be deployed
should only be accessed through the use of operations.

Example: The system class could for example be defined as:�
system Simple

i n s t an c e v a r i a b l e s
s t a t i c pub l i c a : A := new A() ;
s t a t i c pub l i c b : B := new B() ;
- - d e f i n e the f i r s t CPU with f i x e d p r i o r i t y s ch edu l i ng
- - and 22E6 Hz
CPU1 : CPU := new CPU (<FP>, 22E6) ;

s t a t i c pub l i c c : C := new C() ;

1It is also allowed to take a string as a second parameter for future extensions but that is ignored at the
moment.

152

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

- - d e f i n e the second CPU with f i x e d p r i o r i t y s ch edu l i ng
- - and 11E6 Hz
CPU2 : CPU := new CPU (<FP>, 11E6) ;

- - c r e a t e a communication bus that l i n k s the th r e e
- - CPU ’ s t og e th e r
BUS1 : BUS := new BUS (<CSMACD>, 72E3 , {CPU1, CPU2})

op e r a t i o n s
pub l i c Simple : () ==> Simple
Simple () ==

(- - deploy a on CPU1
CPU1. deploy (a) ;
- - deploy b on CPU1
CPU1. deploy (b) ;
- - deploy c on CPU2
CPU2. deploy (c , ”CT”) ;
- - ”CT” i s a l a b e l here which i s i gno r ed

) ;

end Simple
� �
where A, B and C all are defined as classes.

13.3.1 Classes
Compared to the standard VDM-SL language, VDM++ and VDM-RT have been extended
with classes. In this section, the use of classes to create and structure a top-level specification
will be described. With the object oriented facilities offered by VDM++ and VDM-RT it is
possible to:

• Define classes and create objects.

• Define associations and create links between objects.

• Make generalisation and specialisation through inheritance.

• Describe the functional behaviour of the objects using functions and operations.

• Describe the dynamic behaviour of the system through threads and synchronisation
constraints.

Before the actual facilities are described, the general layout of a class is described.

153

VDM-10 Language Manual

Syntax: class = ‘class’, identifier, [inheritance clause],
[class body],
‘end’, identifier ;

inheritance clause = ‘is subclass of’, identifier, { ‘,’, identifier } ;

class body = definition block, { definition block } ;

definition block = type definitions
| value definitions
| function definitions
| operation definitions
| instance variable definitions
| synchronization definitions
| thread definitions
| traces definitions ;

Semantics: Each class description has the following parts:

• A class header with the class name and an optional inheritance clause.
• An optional class body.
• A class tail.

The class name as given in the class header is the defining occurrence of the name
of the class. A class name is globally visible, i.e. visible in all other classes in the
specification.
The class name in the class header must be the same as the class name in the class
tail. Furthermore, defining class names must be unique throughout the specification.
The (optional) class body may consist of:

• A set of value definitions (constants).
• A set of type definitions.
• A set of function definitions.
• A set of instance variable definitions describing the internal state of an object

instantiated from the class. State invariant expressions are encouraged but are
not mandatory.

• A set of operation definitions that can act on the internal state.
• A set of the synchronization definitions, specified either in terms of permission

predicates or using mutex constraints.
• A set of thread definitions that describe the thread of control for active objects.

154

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

• A set of traces that are used to indicate the sequences of operation calls for which
test cases are desired to be produced automatically.

In general, all constructs defined within a class must have a unique name, e.g. it
is not allowed to define an operation and a type with the same name. However, it
is possible to overload function and operation names (i.e. it is possible to have two
or more functions with the same name and two or more operations with the same
name) subject to the restriction that the types of their input parameters should not
overlap. That is, it should be possible using static type checking alone to determine
uniquely and unambiguously which function/operation definition corresponds to each
function/operation call. Note that this applies not only to functions and operations
defined in the local interface of a class but also to those inherited from superclasses.
Thus, for example, in a design involving multiple inheritance a class C may inherit a
function from a class A and a function with the same name from a class B and all calls
involving this function name must be resolvable in class C.

13.3.2 Inheritance
The concept of inheritance is essential to object orientation. When one defines a class as a
subclass of an already existing class, the definition of the subclass introduces an extended
class, which is composed of the definitions of the superclass together with the definitions of
the newly defined subclass.

Through inheritance, a subclass inherits from the superclass:

• Its instance variables. This also includes all invariants and their restrictions on the
allowed modifications of the state.

• Its operation and function definitions.

• Its value and type definitions.

• Its synchronization definitions as described in section 14.2.

• Its thread definitions as described in chapter 15.

A name conflict occurs when two constructs of the same kind and with the same name
are inherited from different superclasses. Name conflicts must be explicitly resolved through
name qualification, i.e. prefixing the construct with the name of the superclass and a ‘-sign
(back-quote).

Example: In the first example, we see that inheritance can be exploited to allow a class
definition to be used as an abstract interface which subclasses must implement:�
c l a s s Sort

155

VDM-10 Language Manual

i n s t an c e v a r i a b l e s
p ro t e c t ed data : seq o f i n t

op e r a t i on s

i n i t i a l_d a t a : seq o f i n t ==> ()
i n i t i a l_d a t a (l i s t) ==

data := l i s t ;

so r t_ascend ing : () ==> ()
so r t_ascend ing () == i s s ub c l a s s r e s p o n s i b i l i t y ;

end Sort

c l a s s S e l e c t i o n S o r t i s s u b c l a s s o f Sort

f u n c t i o n s

min_index : seq1 o f nat -> nat
min_index (l i s t) ==

i f l en l i s t = 1
then 1
e l s e l e t mi = min_index (t l l i s t)

in
i f l i s t (mi+1) < hd l i s t
then mi+1
e l s e 1

op e r a t i on s

so r t_ascend ing : () ==> ()
so r t_ascend ing () == s e l e c t S o r t (1) ;

s e l e c t S o r t : nat ==> ()
s e l e c t S o r t (i) ==

i f i < l en data
then (dc l temp : nat ;

d c l mi : nat := min_index (data (i , . . . , l e n data)) +
i - 1 ;

temp := data (mi) ;
data (mi) := data (i) ;
data (i) := temp ;

156

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

s e l e c t S o r t (i +1)
)

end S e l e c t i o n S o r t
� �
Here the class Sort defines an abstract interface to be implemented by different sorting
algorithms. One implementation is provided by the SelectionSort class.
The next example clarifies how name space clashes are resolved.�

c l a s s A
i n s t an c e v a r i a b l e s }

i : i n t := 1 ;
j : i n t := 2 ;

end A

c l a s s B i s s ub c l a s s o f A
end B

c l a s s C i s s ub c l a s s o f A
i n s t an c e v a r i a b l e s

i : i n t := 3 ;
end C

c l a s s D i s s ub c l a s s o f B,C
ope r a t i on s

GetValues : () ==> seq o f i n t
GetValues () ==

re tu rn [
A‘ i , - - equa l to 1
B‘ i , - - equa l to 1 (A‘ i)
C‘ i , - - equa l to 3
j - - equa l to 2 (A‘ j)

]
end D
� �

In the example objects of class D have 3 instance variables: A‘i, A‘j and C‘j. Note that
objects of class D will have only one copy of the instance variables defined in class A even
though this class is a common super class of both class B and C. Thus, in class D the names
B‘j, C‘j, D‘j and j are all referring to the same variable, A‘j. It should also be noticed that
the variable name i is ambiguous in class D as it refers to different variables in class B and

157

VDM-10 Language Manual

class C.

13.3.3 Interface and Availability of Class Members
In VDM++ and VDM-RT definitions inside a class are distinguished between:

Class attribute: an attribute of a class for which there exists exactly one incarnation no
matter how many instances (possibly zero) of the class may eventually be created. Class
attributes in VDM++ and VDM-RT correspond to static class members in languages
like C++ and Java. Class (static) attributes can be referenced by prefixing the name
of the attribute with the name of the class followed by a ‘-sign (back-quote), so that,
for example, ClassName‘val refers to the value val defined in class ClassName.

Instance attribute: an attribute for which there exists one incarnation for each instance of
the class. Thus, an instance attribute is only available in an object and each object
has its own copy of its instance attributes. Instance (non-static) attributes can be
referenced by prefixing the name of the attribute with the name of the object followed
by a dot, so that, for example, object.op() invokes the operation op in the object
denoted by object (provided that op is visible to object).

Functions, operations, instance variables and constants2 in a class may be either class
attributes or instance attributes. This is indicated by the keyword static: if the declaration
is preceded by the keyword static then it represents a class attribute, otherwise it denotes
an instance attribute.

Other class components are by default always either class attributes or instance attributes
as follows:

• Type definitions are always class attributes.

• Thread definitions are always instance attributes. Thus, each active object has its own
thread(s).

• Synchronization definitions are always instance attributes. Thus, each object has its
own “history” when it has been created.

In addition, the interface or accessibility of a class member may be explicitly defined
using an access specifier: one of public, private or protected. The meaning of these specifiers
is:

public: Any class may use such members

protected: Only subclasses of the current class may use such members
2In practice, constants will generally be static – a non-static constant would represent a constant whose value
may vary from one instance of the class to another which would be more naturally represented by an instance
variable.

158

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

public protected private
Within the class

√ √ √

In a subclass
√ √

×
In an arbitrary external class

√
× ×

Table 13.1: Summary of Access Specifier Semantics

private: No other class may use such members - they may only be used in the class in which
they are specified.

The default access to any class member is private. That is, if no access specifier is given
for a member it is private.

This is summarized in table 13.1. A few provisos apply here:

• Granting access to instance variables (i.e. through a public or protected access specifier)
gives both read and write access to these instance variables.

• Public instance variables may be read (but not written) using the dot (for object
instance variables) or back-quote (for class instance variables) notation e.g. a public
instance variable v of an object o may be accessed as o.v.

• Access specifiers may only be used with type, value, function, operation and instance
variable definitions; they cannot be used with thread or synchronization definitions.

• It is not possible to convert a class attribute into an instance attribute, or vice-versa.

• For inherited classes, the interface to the subclass is the same as the interface to its
superclasses extended with the new definitions within the subclass.

• Access to an inherited member cannot be made more restrictive e.g. a public instance
variable in a superclass cannot be redeclared as a private instance variable in a subclass.

Example In the example below use of the different access specifiers is demonstrated, as well
as the default access to class members. Explanation is given in the comments within
the definitions.�
c l a s s A

types
pub l i c Atype = <A> | | <C>

va lu e s
pub l i c Avalue = 10 ;

159

VDM-10 Language Manual

f u n c t i o n s
pub l i c compare : nat -> Atype
compare (x) ==

i f x < Avalue
then <A>
e l s e i f x = Avalue
then
e l s e <C>

in s t an c e v a r i a b l e s
pub l i c v1 : nat ;
p r i v a t e v2 : boo l := f a l s e ;
p r o t e c t ed v3 : r e a l := 3 . 1 4 ;

op e r a t i o n s
p ro t e c t ed AIn i t : nat * boo l * r e a l ==> ()
AIn i t (n , b , r) ==

(v1 := n ;
v2 := b ;
v3 := r)

end A

c l a s s B i s s ub c l a s s o f A

i n s t an c e v a r i a b l e s
v4 : Atype - - i n h e r i t e d from A

ope r a t i o n s

BIn i t : () ==> ()
BIn i t () ==

(AIn i t (1 , true , 2 . 7 1 8) ; - -OK: can a c c e s s p r o t e c t ed members
- - in s u p e r c l a s s

v4 := compare (v1) ; - -OK s i n c e v1 i s pub l i c
v3 := 3 . 5 ; - -OK s i n c e v3 p ro t e c t ed and t h i s

- - i s a s ub c l a s s o f A
v2 := f a l s e - - i l l e g a l s i n c e v2 i s p r i v a t e to A

)

end B

160

CHAPTER 13. TOP-LEVEL SPECIFICATION IN VDM

c l a s s C

i n s t an c e v a r i a b l e s
a : A := new A() ;
b : B := new B() ;

op e r a t i o n s

CIn i t : () ==> A‘ Atype - - types are c l a s s a t t r i b u t e s
CIn i t () ==

(a . AIn i t (3 , f a l s e , 1 . 1) ;
- - i l l e g a l s i n c e AIn i t i s p r o t e c t ed

b . BIn i t () ; - - i l l e g a l s i n c e BIn i t i s (by d e f a u l t)
- - p r i v a t e

l e t - = a . compare (b . v3) in sk i p ;
- - i l l e g a l s i n c e C i s not s ub c l a s s
- - o f A so b . v3 i s not a v a i l a b l e

r e tu rn b . compare (B‘ Avalue)
- -OK s i n c e compare i s a pub l i c i n s t an c e
- - a t t r i b u t e and Avalue i s pub l i c c l a s s
- - a t t r i b u t e in B

)

end C
� �

161

VDM-10 Language Manual

162

Chapter 14

Synchronization Constraints (VDM++ and
VDM-RT)

In general a complete system contains objects of a passive nature (which only react when
their operations are invoked) and active objects which ‘breath life’ into the system. These
active objects behave like virtual machines with their own processing thread of control and
after start up they do not need interaction with other objects to continue their activities. In
another terminology a system could be described as consisting of a number of active clients
requesting services of passive or active servers. In such a parallel environment the server
objects need synchronization control to be able to guarantee internal consistency, to be able
to maintain their state invariants. Therefore, in a parallel world, a passive object needs to
behave like a Hoare monitor with its operations as entries.

If a sequential system is specified (in which only one thread of control is active at a time)
only a special case of the general properties is used and no extra syntax is needed. However,
in the course of development from specification to implementation more differences are likely
to appear.

The following default synchronization rules for each object apply in VDM++ and VDM-
RT:

• operations are to be viewed as though they are atomic, from the point of the caller;

• operations which have no corresponding permission predicate are subject to no restric-
tions at all;

• synchronization constraints apply equally to calls within an object (i.e. one operation
within an object calls another operation within that object) and outside an object (i.e.
an operation from one object calls an operation in another object);

• operation invocations have the semantics of a rendez-vous (as in Ada, see [?]) in case
two active objects are involved. Thus if an object O1 calls an operation o in object
O2, if O2 is currently unable to start operation o then O1 blocks until the operation
may be executed. Thus invocation occurs when both the calling object and the called

163

VDM-10 Language Manual

object are ready. (Note here a slight difference from the semantics of Ada: in Ada
both parties to the rendez-vous are active objects; in VDM++ and VDM-RT only the
calling party is active).

The synchronization definition blocks of the class description provide the user with ways to
override the defaults described above.

Syntax: synchronization definitions = ‘sync’, [synchronization] ;

synchronization = permission predicates ;

Semantics: Synchronization is specified in VDM++ and VDM-RT using permission predi-
cates.

14.1 Permission Predicates
The following gives the syntax used to state rules for accepting the execution of concurrently
callable operations. Some notes are given explaining these features.

Syntax: permission predicates = permission predicate, { ‘;’,
permission predicate } ;

permission predicate = ‘per’, name, ‘=>’, expression
| mutex predicate ;

mutex predicate = ‘mutex’, ‘(’, (‘all’ | name list, ‘)’ ;

Semantics: Permission to accept execution of a requested operation depends on a guard
condition in a (deontic) permission predicate of the form:

per operation name => guard condition

The use of implication to express the permission means that truth of the guard con-
dition (expression) is a necessary but not sufficient condition for the invocation. The
permission predicate is to be read as stating that if the guard condition is false then
there is non-permission. Expressing the permission in this way allows further simi-
lar constraints to be added without risk of contradiction through inheritance for the
subclasses. There is a default for all operations:

per operation name => true

but when a permission predicate for an operation is specified this default is overridden.
Guard conditions can be conceptually divided into:

164

CHAPTER 14. SYNCHRONIZATION CONSTRAINTS (VDM++ AND VDM-RT)

• a history guard defining the dependence on events in the past;

• an object state guard, which depends on the instance variables of the object, and

• a queue condition guard, which depends on the states of the queues formed by
operation invocations (messages) awaiting service by the object.

These guards can be freely mixed. Note that there is no syntactic distinction between
these guards - they are all expressions. However they may be distinguished at the
semantic level.

A mutex predicate allows the user to specify either that all operations of the class are to
be executed mutually exclusive, or that a list of operations are to be executed mutually
exclusive to each other. Operations that appear in one mutex predicate are allowed to
appear in other mutex predicates as well, and may also be used in the usual permission
predicates. Each mutex predicate will implicitly be translated to permission predicates
using history guards for each operation mentioned in the name list. For instance,�
sync

mutex (opA , opB) ;
mutex (opB , opC , opD) ;
per opD => someVar iable > 42 ;
� �

would be translated to the following permission predicates:�
sync

per opA => #ac t i v e (opB) = 0 ;
per opB => #ac t i v e (opA) = 0 and

#a c t i v e (opC) + #ac t i v e (opD) = 0 ;
per opC => #ac t i v e (opB) + #ac t i v e (opD) = 0 ;
per opD => #ac t i v e (opB) + #ac t i v e (opC) = 0 and

someVar iable > 42 ;
� �
Note that it is only permitted to have one “stand-alone” permission predicate for each
operation. It is also important to note that if permission predicates are made over
operations that are overloaded (see Section 13.3.1) then it will incorporate all of their
history counters as the same operation. The #active operator is explained below.

A mutex(all) constraint specifies that all of the operations specified in that class and
any superclasses are to be executed mutually exclusively.

165

VDM-10 Language Manual

14.1.1 History guards
Semantics: A history guard is a guard which depends on the sequence of earlier invocations

of the operations of the object expressed in terms of history expressions (see section
6.23). History expressions denotes the number of activations and completions of the
operations, given as functions
#act and #fin, respectively.

#act: operation name → N
#fin: operation name → N

Furthermore, a derived function #active is available such that #active(A) = #act(A) -
#fin(A), giving the number of currently active instances of A. Another history function
– #req – is defined in section 14.1.3.

Examples: Consider a Web server that is capable of supporting 10 simultaneous connections
and can buffer a further 100 requests. In this case we have one instance variable,
representing the mapping from URLs to local filenames:�
i n s t an c e v a r i a b l e s

site_map : map URL to Filename := {| ->}
� �
The following operations are defined in this class (definitions omitted for brevity):
ExecuteCGI: URL ==> File Execute a CGI script on the server
RetrieveURL: URL ==> File Transmit a page of html
UploadFile: File * URL ==> () Upload a file onto the server
ServerBusy: () ==> File Transmit a “server busy” page
DeleteURL: URL ==> () Remove an obsolete file

Since the server can support only 10 simultaneous connects, we can only permit an
execute or retrieve operation to be activated if the number already active is less than
10:�

per RetrieveURL => #ac t i v e (RetrieveURL) +
#ac t i v e (ExecuteCGI) < 10 ;

per ExecuteCGI => #ac t i v e (RetrieveURL) +
#ac t i v e (ExecuteCGI) < 10 ;
� �

14.1.2 The object state guard
Semantics: The object state guard is a boolean expression which depends on the values of

one (or more) instance variable(s) of the object itself. Object state guards differ from

166

CHAPTER 14. SYNCHRONIZATION CONSTRAINTS (VDM++ AND VDM-RT)

operation pre-conditions in that a call to an operation whose permission predicate is
false results in the caller blocking until the predicate is satisfied, whereas a call to an
operation whose pre-condition is false means the operation’s behaviour is unspecified.

Examples: Using the web server example again, we can only allow file removal if some files
already exist:�

per DeleteURL => dom site_map <> {}
� �
Constraints for safe execution of the operations Push and Pop in a stack object can be
expressed using an object state guard as:�
per Push => leng th < maxsize ;
per Pop => leng th > 0
� �
where maxsize and length are instance variables of the stack object.

It is often possible to express such constraints as a consequence of the history, for
example the empty state of the stack:�

l eng th = 0 <=> #f i n (Push) = #f i n (Pop)
� �
However, the size is a property which is better regarded as a property of the particular
stack instance, and in such cases it is more elegant to use available instance variables
which store the effects of history.

14.1.3 Queue condition guards
Semantics: A queue condition guard acts on requests waiting in the queues for the execution

of the operations. This requires use of a third history function #req such that #req(A)
counts the number of messages which have been received by the object requesting
execution of operation A. Again it is useful to introduce the function #waiting such
that: #waiting(A) = #req(A) - #act(A), which counts the number of items in the
queue.

Examples: Once again, with the web server we can only activate the ServerBusy operation
if 100 or more connections are waiting:�
per ServerBusy => #wai t ing (RetrieveURL) +

#wai t ing (ExecuteCGI) >= 100 ;
� �
167

VDM-10 Language Manual

The most important use of such expressions containing queue state functions is for
expressing priority between operations. The protocol specified by:�
per B => #wai t ing (A) = 0
� �
gives priority to waiting requests for activation of A. There are, however, many other
situations when operation dispatch depends on the state of waiting requests. Full
description of the queuing requirements to allow specification of operation selection
based on request arrival times or to describe ‘shortest job next’ behaviour will be a
future development.

Note that #req(A) have value 1 at the time of evaluation of the permission predicate
for the first invocation of operation A. That is,�
per A => #req (A) = 0
� �
would always block.

14.1.4 Evaluation of Guards

Using the previous example, consider the following situation: the web server is handling
10 RetrieveURL requests already. While it is dealing with these requests, two further Re-
trieveURL requests (from objects O1 and O2) and one ExecuteCGI request (from object O3)
are received. The permission predicates for these two operations are false since the number
of active RetrieveURL operations is already 10. Thus these objects block.

Then, one of the active RetrieveURL operations reaches completion. The permission
predicate so far blocking O1, O2 and O3 will become “true” simultaneously. This raises the
question: which object is allowed to proceed? Or even all of them?

Guard expressions are only reevaluated when an event occurs (in this case the completion
of a RetrieveURL operation). In addition to that the test of a permission predicate by an
object and its (potential) activation is an atomic operation. This means, that when the first
object evaluates its guard expression, it will find it to be true and activate the corresponding
operation (RetrieveURL or ExecuteCGI in this case). The other objects evaluating their
guard expressions afterwards will find that #active(RetrieveURL) + #active(ExecuteCGI)
= 10 and thus remain blocked. Which object is allowed to evaluate the guard expression
first is undefined.

It is important to understand that the guard expression need only evaluate to true at
the time of the activation. In the example as soon as O1, O2 or O3’s request is activated its
guard expression becomes false again.

168

CHAPTER 14. SYNCHRONIZATION CONSTRAINTS (VDM++ AND VDM-RT)

14.2 Inheritance of Synchronization Constraints
Synchronization constraints specified in a superclass are inherited by its subclass(es). The
manner in which this occurs depends on the kind of synchronization.

14.2.1 Mutex constraints
Mutex constraints from base classes and derived classes are simply added. If the base class
and derived class have the mutex definitions MA and MB , respectively, then the derived
class simply has both mutex constraints MA, and MB . The binding of operation names to
actual operations is always performed in the class where the constraint is defined. Therefore
a mutex(all) constraint defined in a superclass and inherited by a subclass only makes the
operations from the base class mutually exclusive and does not affect operations of the
derived class.

Inheritance of mutex constraints is completely analogous to the inheritance scheme for
permission predicates. Internally mutex constraints are always expanded into appropriate
permission predicates which are added to the existing permission predicates as a conjunction.
This inheritance scheme ensures that the result (the final permission predicate) is the same,
regardless of whether the mutex definitions are expanded in the base class and inherited as
permission predicates or are inherited as mutex definitions and only expanded in the derived
class.

The intention for inheriting synchronization constraints in the way presented is to ensure,
that any derived class at least satisfies the constraints of the base class. In addition to that
it must be possible to strengthen the synchronization constraints. This can be necessary if
the derived class adds new operations as in the following example:�
c l a s s A
ope r a t i o n s

w r i t e r : () ==> ()
w r i t e r () == i s not yet s p e c i f i e d

r eade r : () ==> ()
r eade r () == i s not yet s p e c i f i e d

sync
per r eade r => #ac t i v e (w r i t e r) = 0 ;
per w r i t e r => #ac t i v e (reader , w r i t e r) = 0 ;

end A

c l a s s B i s s ub c l a s s o f A
ope r a t i o n s

169

VDM-10 Language Manual

newWriter : () ==> ()
newWriter () == i s not yet s p e c i f i e d

sync
per r eade r => #ac t i v e (newWriter) = 0 ;
per w r i t e r => #ac t i v e (newWriter) = 0 ;
per newWriter => #ac t i v e (reader , wr i t e r , newWriter) = 0 ;

end B
� �
Class A implements reader and writer operations with the permission predicates specify-

ing the multiple readers-single writer protocol. The derived class B adds newWriter. In order
to ensure deterministic behaviour B also has to add permission predicates for the inherited
operations.

The actual permission predicates in the derived class are therefore:�
per r eade r => #ac t i v e (w r i t e r)=0 and #a c t i v e (newWriter)=0;
per w r i t e r => #ac t i v e (reader , w r i t e r)=0 and #a c t i v e (newWriter)=0;
per newWriter => #ac t i v e (reader , wr i t e r , newWriter)=0;
� �

A special situation arises when a subclass overrides an operation from the base class.
The overriding operation is treated as a new operation. It has no permission predicate (and
in particular inherits none) unless one is defined in the subclass.

The semantics of inheriting mutex constraints for overridden operations is completely
analogous: newly defined overriding operations are not restricted by mutex definitions for
equally named operations in the base class. The mutex(all) shorthand makes all inherited
and locally defined operations mutually exclusive. Overridden operations (defined in a base
class) are not affected. In other words, all operations, that can be called with an unqualified
name (“locally visible operations”) will be mutex to each other.

170

Chapter 15

Threads (VDM++ and VDM-RT)

Objects instantiated from a class with a thread part are called active objects. The scope
of the instance variables and operations of the current class is considered to extend to the
thread specification. Note that from a tool perspective the thread for the expression a user
would like to evaluate in relation to a VDM model is called a debug thread. This thread has
a special role in the sense that when it is finished the entire execution is completed (and thus
all other threads ready to be scheduled in or running will be thrown away and aborted). If
a session where a series of expressions are being evaluated this is not true (in this case the
other threads will be continued when the next expression is executed, see [?] for more details
about “sessions”). Thus if one would like to ensure a specific number of such other threads
to be completed before stopping the execution one needs to block the debug thread using a
synchronisation as explained in Chapter 14.

Syntax: thread definitions = ‘thread’, [thread definition] ;

thread definition = periodic thread definition
| procedural thread definition ;

periodic thread definition = periodic obligation
| sporadic obligation ;

Subclasses inherit threads from superclasses. If a class inherits from several classes only
one of these may declare its own thread (possibly through inheritance). Furthermore, ex-
plicitly declaring a thread in a subclass will override any inherited thread.

15.1 Periodic Thread Definitions (VDM-RT)
The periodic obligation can be regarded as the way of describing repetitive activities in a
class. As the ‘period’ implies a explicit notion of time, this construct is only available in
VDM-RT.

171

VDM-10 Language Manual

Figure 15.1: Period (p), jitter (j), delay (d) and offset (o)

Syntax(VDM-RT): Time is explicit in VDM-RT, using a discrete clock with a 1 nsec reso-
lution, where the periodic obligation looks like:

periodic obligation = ‘periodic’, ‘(’, 4 * expression, ‘)’, ‘(’, name, ‘)’ ;

Semantics (VDM-RT): The type of the expressions should all yield a natural number (as
we use a natural number valued wall-clock in the VDM-RT interpreter), otherwise a
run-time error will occur. Note that the evaluation of the expressions also causes time
to elapse whenever the ‘start’ or ‘start_list’ statement is executed. The expressions
all denote a time value with a resolution of 1 nsec. For each periodic obligation,
four different numbers are used. They are, in order of appearance (also illustrated in
Figure 15.1):

1. period: This is a non-negative, non-zero value that describes the length of the
time interval between two adjacent events in a strictly periodic event stream
(where jitter = 0). Hence, a value of 1E9 denotes a period of 1 second.

2. jitter: This is a non-negative value that describes the amount of time variance
that is allowed around a single event. We assume that the interval is balanced
[-j, j]. Note that jitter is allowed to be bigger than the period to characterize
so-called event bursts.

3. delay: This is a non-negative value smaller than the period which is used to
denote the minimum inter arrival distance between two adjacent events.

4. offset: This is a non-negative value which is used to denote the absolute time
value at which the first period of the event stream starts. Note that the first
event occurs in the interval [offset, offset + jitter].

Given a defined time resolution ∆T, a thread with a periodic obligation invokes the
mentioned operation at the beginning of each time interval with length period. This
creates the periodic execution of the operation simulating the discrete equivalent of

172

CHAPTER 15. THREADS (VDM++ AND VDM-RT)

continuous relations which have to be maintained between instance variables, parame-
ter values and possibly other external values obtained through operation invocations.
It is not possible to dynamically change the length of the interval.

Periodic obligations are intended to describe e.g. analogue physical relations between
values in formulas (e.g. transfer functions) and their discrete event simulation. It
is a requirement on the implementation to guarantee that the execution time of the
operation is at least smaller than the used periodic time length. If other operations are
present the user has to guarantee that the fairness criteria for the invocation of these
other operations are maintained by reasoning about the time slices used internally and
available for external invocations.

Note that a periodic thread is neither created nor started when an instance of the cor-
responding class is created. Instead, as with procedural threads, ‘start’ (or ‘start_list’)
statements should be used with periodic threads.

Examples: Consider a timer class which periodically increments its clock in its own thread.
It provides operations for starting, and stopping timing, and reading the current time.�
c l a s s Timer
va lu e s

PERIOD : nat = 1000
� �
The Timer has two instance variables the current time and a flag indicating whether
the Timer is active or not (the current time is only incremented if the Timer is active).�
i n s t an c e v a r i a b l e s

curTime : nat := 0 ;
a c t i : boo l := f a l s e ;
� �

The Timer provides straightforward operations which need no further explanation.�
op e r a t i o n s

pub l i c S t a r t : () ==> ()
S ta r t () ==

(a c t i := t rue ;
curTime := 0) ;

pub l i c Stop : () ==> ()
Stop () ==

a c t i := f a l s e ;

173

VDM-10 Language Manual

pub l i c GetTime : () ==> nat
GetTime () ==

re tu rn curTime ;

IncTime : () ==> ()
IncTime () ==

i f a c t i
then curTime := curTime + 100 ;
� �

The Timer’s thread ensures that the current time is incremented. The period with
which this is done is 1000 time units (nanoseconds). The allowed jitter is 10 time units
and the minimal distance between two instances is 200 time units and finally no offset
has been used.�
thread

p e r i o d i c (PERIOD, PERIOD/100 , PERIOD/5 , 0) (IncTime)

end Timer
� �
15.2 Sporadic Thread Definitions (VDM-RT)
The sporadic obligation can be regarded as the way of describing stochastic activities in a
class.

Syntax: (VDM-RT):

sporadic obligation = ‘sporadic’, ‘(’, 3 * expression, ‘)’, ‘(’, name, ‘)’ ;

Semantics: (VDM-RT) The type of the expressions should all yield a natural number (as
we use a natural number valued wall-clock in the VDM-RT interpreter), otherwise a
run-time error will occur. Note that the evaluation of the expressions also causes time
to elapse whenever the ‘start’ or ‘start_list’ statement is executed. The expressions
all denote a time value with a resolution of 1 nsec. For each sporadic obligation, three
different numbers are used. They are, in order of appearance:

1. delay: This value is used to denote the minimum inter arrival distance between
two adjacent thread invocations.

2. bound: This value, greater than delay, is the maximum inter arrival distance
between two adjacent thread invocations.

174

CHAPTER 15. THREADS (VDM++ AND VDM-RT)

3. offset: This is a non-negative value which is used to denote the absolute time value
at which the first period starts, randomly in the interval [offset , offset + bound].

Given these definitions, and assuming the last thread was invoked at t0 then the next
invocation is randomly scheduled in the interval [t0 + delay , t0 + bound].

Examples: Analogous to the example in ‘periodic’ for the Timer class, the sporadic definition
could be as follows:�
c l a s s Timer
. . .

thread
spo r ad i c (100 , 1000 , 0) (IncTime)

end Timer
� �
15.3 Procedural Thread Definitions (VDM++ and VDM-RT)
A procedural thread provides a mechanism to explicitly define the external behaviour of an
active object through the use of statements, which are executed when the object is started
(see section 12.14).

Syntax: procedural thread definition = statement ;

Semantics: A procedural thread is scheduled for execution following the application of a
start statement to the object owning the thread. The statements in the thread are then
executed sequentially, and when execution of the statements is complete, the thread
dies. Synchronization between multiple threads is achieved using permission predicates
on shared objects.

Examples: The example below demonstrates procedural threads by using them to compute
the factorial of a given integer concurrently.�
c l a s s F a c t o r i a l

i n s t an c e v a r i a b l e s
r e s u l t : nat := 5 ;

op e r a t i o n s

pub l i c f a c t o r i a l : nat ==> nat
f a c t o r i a l (n) ==

175

VDM-10 Language Manual

i f n = 0
then r e tu rn 1
e l s e (d c l m : Mu l t i p l i e r ;

m := new Mu l t i p l i e r () ;
m. c a l c u l a t e (1 , n) ;
s t a r t (m) ;
r e s u l t := m. g i v eRe su l t () ;
r e tu rn r e s u l t

)

end Fa c t o r i a l

c l a s s Mu l t i p l i e r

i n s t an c e v a r i a b l e s
i : nat1 ;
j : nat1 ;
k : nat1 ;
r e s u l t : nat1

op e r a t i o n s

pub l i c c a l c u l a t e : nat1 * nat1 ==> ()
c a l c u l a t e (f i r s t , l a s t) ==

(i := f i r s t ; j := l a s t) ;

d o i t : () ==> ()
do i t () ==
(i f i = j

then r e s u l t := i
e l s e (d c l p : Mu l t i p l i e r ;

d c l q : Mu l t i p l i e r ;
p := new Mu l t i p l i e r () ;
q := new Mu l t i p l i e r () ;
s t a r t (p) ;
s t a r t (q) ;
k := (i + j) d iv 2 ;
- - d i v i s i o n with rounding down
p . c a l c u l a t e (i , k) ;
q . c a l c u l a t e (k+1, j) ;
r e s u l t := p . g i v eRe su l t () * q . g i v eRe su l t ()

)

176

CHAPTER 15. THREADS (VDM++ AND VDM-RT)

) ;

pub l i c g i v eRe su l t : () ==> nat1
g i v eRe su l t () ==

re tu rn r e s u l t ;

sync
- - c y c l i c c o n s t r a i n t s a l l ow ing only the
- - sequence c a l c u l a t e ; d o i t ; g i v eRe su l t

per do i t => #f i n (c a l c u l a t e) > #act (do i t) ;
per g i v eRe su l t => #f i n (do i t) > #act (g i v eRe su l t) ;
per c a l c u l a t e => #f i n (g i v eRe su l t) = #act (c a l c u l a t e)

thread
do i t () ;

end Mu l t i p l i e r
� �

177

VDM-10 Language Manual

178

Chapter 16

Trace Definitions

In order to automate the testing process VDM-10 contains a notation enabling the expression
of the traces that one would like to have tested exhaustively. Such traces are used to express
combinations of sequences of operations that wish to be tested in all possible combinations.
In a sense this is similar to model checking limitations except that this is done with real and
not symbolic values. However, errors in test cases are filtered away so other test cases with
the same prefix will be skipped automatically.

Syntax: traces definitions = ‘traces’, [named trace, { ‘;’, named trace }] ;

named trace = identifier, { ‘/’, identifier }, ‘:’, trace definition list ;

trace definition list = trace definition term, { ‘;’, trace definition term } ;

trace definition term = trace definition, { ‘|’, trace definition } ;

trace definition = trace binding definition
| trace repeat definition ;

trace binding definition = trace let def binding
| trace let best binding ;

trace let def binding = ‘let’, local definition, { ‘,’, local definition },
‘in’, trace definition ;

trace let best binding = ‘let’, multiple bind, [‘be’, ‘st’, expression],
‘in’, trace definition ;

trace repeat definition = trace core definition, [trace repeat pattern] ;

179

VDM-10 Language Manual

trace repeat pattern = ‘*’
| ‘+’
| ‘?’
| ‘{’, numeric literal, [‘,’, numeric literal, ‘}’] ;

trace core definition = trace apply expression
| trace concurrent expression
| trace bracketed expression ;

trace apply expression = call statement ;

trace concurrent expression = ‘||’, ‘(’, trace definition,
‘,’, trace definition,
{ ‘,’, trace definition }, ‘)’ ;

trace bracketed expression = ‘(’, trace definition list, ‘)’ ;

Semantics: Semantically the trace definitions provided in a class have no effect. These def-
initions are simply used to enhance testing of a VDM specification using principles
from combinatorial testing (also called all-pairs testing). So each trace definition can
be considered as a regular expression describing the test sequences in which different
operations should be executed to test the VDM specification. Inside the trace defini-
tions, bindings may appear and for each possible binding a particular test case can be
automatically derived. So one trace definition expands into a set of test cases. In this
sense a test case is a sequence of operation calls executed after each other. Between
each test case the VDM specification is initialised so they become entirely independent.
From a static semantics perspective it is important to note that the expressions used
inside trace definitions must be executed in the expansion process. This means that it
cannot directly refer to instance variables, because these could be changed during the
execution.

So here it makes sense to explain what kind of expansion the different kinds of trace
definitions gives rise to.

The trace definition lists simply use a semicolon (“;”) and this results in sequencing
between the trace definition terms used inside it.

In the trace definition term it is possible to introduce alternatives using the bar (“|”)
operator. This results in test cases for all alternatives.

The trace binding definition exists in two forms where the trace let def binding simply
enables the binding introduced to be used after the ‘in’ in the same way as in let-
expressions. Alternatively the trace let best binding can be used and this will expand
to test cases with all the different possible bindings.

180

CHAPTER 16. TRACE DEFINITIONS

The trace repeat definition is used to introduce the possibility of having repetitions of
the operation calls used in the trace. The different kinds of repeat patterns have the
following meanings:

• ‘*’ means 0 to n occurences (n is tool specific).
• ‘+’ means 1 to n occurences (n is tool specific).
• ‘?’ means 0 or 1 occurences.
• ‘{’, n, ‘}’ means n occurences.
• ‘{’, n, ‘,’ m ‘}’ means between n and m occurences.

The trace core definitions have three possibilities. These are ordinary operation calls,
trace concurrency expressions and bracketed trace definitions respectively. The trace
concurrency expressions are similar to the nondeterministic statements in the sense
that the trace definition lists inside it will be executed in all possible permulations of
the elements. This is particular useful for concurrent VDM++ models where potential
deadlocks can occur under some circumstances.

Examples: In an example like the one below test cases will be generated in all possible com-
bination starting with a call of Reset followed by one to four Pushes of values onto the
stack followed again by one to three Pops from the stack.

�
c l a s s Stack

i n s t an c e v a r i a b l e s
s t a ck : seq o f i n t := [] ;

o p e r a t i o n s

pub l i c Reset : () ==> ()
Reset () ==

stack := [] ;

pub l i c Pop : () ==> in t
Pop () ==

de f r e s = hd s tack in
(s tack := t l s t a ck ;
r e tu rn r e s)

pre s ta ck <> []
post s t a ck~ = [RESULT] ^ s tack ;

pub l i c Push : i n t ==> ()

181

VDM-10 Language Manual

Push (elem) ==
stack := s tack ^ [elem] ;

pub l i c Top : () ==> in t
Top () ==

re tu rn (hd s tack) ;

end Stack
c l a s s UseStack

i n s t an c e v a r i a b l e s

s : Stack := new Stack () ;

t r a c e s

PushBeforePop : s . Reset () ;
(l e t x in s e t {1 ,2} in s . Push (x)) { 1 , 4 } ;
s . Pop (){1 , 3}

end UseStack
� �

182

Appendix A

The Syntax of the VDM Languages

This appendix specifies the complete syntax for the VDM languages.

A.1 VDM-SL Document
document = module, { module }

| definition block, { definition block } ;

A.1.1 Modules
This entire subsection is not present in the current version of the VDM-SL standard.

module = ‘module’, identifier, interface,
[module body], ‘end’, identifier ;

interface = [import definition list],
export definition ;

import definition list = ‘imports’, import definition,
{ ‘,’, import definition } ;

import definition = ‘from’, identifier, import module signature ;

import module signature = ‘all’
| import signature, { import signature } ;

import signature = import types signature
| import values signature
| import functions signature
| import operations signature ;

183

VDM-10 Language Manual

import types signature = ‘types’, type import,
{ ‘;’, type import }, [‘;’] ;

type import = name, [‘renamed’, name]
| type definition, [‘renamed’, name] ;

import values signature = ‘values’, value import,
{ ‘;’, value import }, [‘;’] ;

value import = name, [‘:’, type], [‘renamed’, name] ;

import functions signature = ‘functions’, function import,
{ ‘;’, function import }, [‘;’] ;

function import = name, [[type variable list], ‘:’, function type],
[‘renamed’, name] ;

import operations signature = ‘operations’, operation import,
{ ‘;’, operation import }, [‘;’] ;

operation import = name, [‘:’, operation type], [‘renamed’, name] ;

export definition = ‘exports’, export module signature ;

export module signature = ‘all’
| export signature,

{ export signature } ;

export signature = export types signature
| export values signature
| export functions signature
| export operations signature ;

export types signature = ‘types’, type export,
{ ‘;’, type export }, [‘;’] ;

type export = [‘struct’], name ;

export values signature = ‘values’, value signature,
{ ‘;’, value signature }, [‘;’] ;

value signature = name list, ‘:’, type ;

export functions signature = ‘functions’, function signature,
{ ‘;’, function signature }, [‘;’] ;

function signature = name list, [type variable list], ‘:’,
function type ;

export operations signature = ‘operations’, operation signature,
{ ‘;’, operation signature }, [‘;’] ;

operation signature = name list, ‘:’, operation type ;

184

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

A.2 VDM++ and VDM-RT Document
document = (class | system) , { class | system } ;

A.3 System (VDM-RT)
system = ‘system’, identifier,

[class body],
‘end’, identifier ;

A.3.1 Classes
class = ‘class’, identifier, [inheritance clause],

[class body],
‘end’, identifier ;

inheritance clause = ‘is subclass of’, identifier, { ‘,’, identifier } ;

A.4 Definitions
class body = definition block, { definition block } ;

module body = ‘definitions’, definition block, { definition block } ;

definition block = type definitions
| state definition
| value definitions
| function definitions
| operation definitions
| instance variable definitions
| synchronization definitions
| thread definitions
| traces definitions ;

A.4.1 Type Definitions
type definitions = ‘types’, [access type definition ,

{ ‘;’, access type definition }, [‘;’]] ;

access type definition = ([access], [‘static’] | [‘static’], [access]),
type definition ;

The access part is only possible in VDM++ and VDM-RT.

185

VDM-10 Language Manual

access = ‘public’
| ‘private’
| ‘protected’ ;

type definition = identifier, ‘=’, type, [invariant], [eq clause], [ord clause]
| identifier, ‘::’, field list, [invariant], [eq clause], [ord clause] ;

type = bracketed type
| basic type
| quote type
| composite type
| union type
| product type
| optional type
| set type
| seq type
| map type
| function type
| type name
| type variable ;

bracketed type = ‘(’, type, ‘)’ ;

basic type = ‘bool’ | ‘nat’ | ‘nat1’ | ‘int’ | ‘rat’
| ‘real’ | ‘char’ | ‘token’ ;

quote type = quote literal ;

composite type = ‘compose’, identifier, ‘of’, field list, ‘end’ ;

field list = { field } ;

field = [identifier, ‘:’], type
| [identifier, ‘:-’], type ;

union type = type, ‘|’, type, { ‘|’, type } ;

product type = type, ‘*’, type, { ‘*’, type } ;

optional type = ‘[’, type, ‘]’ ;

set type = set0 type
| set1 type ;

set0 type = ‘set of’, type ;

186

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

set1 type = ‘set1 of’, type ;

seq type = seq0 type
| seq1 type ;

seq0 type = ‘seq of’, type ;

seq1 type = ‘seq1 of’, type ;

map type = general map type
| injective map type ;

general map type = ‘map’, type, ‘to’, type ;

injective map type = ‘inmap’, type, ‘to’, type ;

function type = partial function type
| total function type ;

partial function type = discretionary type, ‘->’, type ;

total function type = discretionary type, ‘+>’, type ;

discretionary type = type
| ‘(’, ‘)’ ;

type name = name ;

type variable = type variable identifier ;

invariant = ‘inv’, invariant initial function ;

invariant initial function = pattern, ‘==’, expression ;

eq clause = ‘eq’, pattern, ‘=’, pattern, ‘==’, expression ;

ord clause = ‘ord’, pattern, ‘<’, pattern, ‘==’, expression ;

A.4.2 The VDM-SL State Definition
state definition = ‘state’, identifier, ‘of’, field list,

[invariant], [initialisation], ‘end’, [‘;’] ;

initialisation = ‘init’, invariant initial function ;

187

VDM-10 Language Manual

A.4.3 Value Definitions
value definitions = ‘values’, [access value definition,

{ ‘;’, access value definition }, [‘;’]] ;

access value definition = [access], value definition ;

value definition = pattern, [‘:’, type], ‘=’, expression ;

A.4.4 Function Definitions
function definitions = ‘functions’, [access function definition,

{ ‘;’, access function definition }, [‘;’]] ;

access function definition = [access], function definition ;

function definition = explicit function definition
| implicit function definition
| extended explicit function definition ;

explicit function definition = identifier, [type variable list], ‘:’,
function type,
identifier, parameters list,
‘==’, function body,
[‘pre’, expression] ,
[‘post’, expression],
[‘measure’, measure body] ;

implicit function definition = identifier, [type variable list],
parameter types,
identifier type pair list,
[‘pre’, expression],
‘post’, expression ;

extended explicit function definition = identifier, [type variable list],
parameter types,
identifier type pair list,
‘==’, function body,
[‘pre’, expression],
[‘post’, expression],
[‘measure’, measure body] ;

type variable list = ‘[’, type variable identifier,
{ ‘,’, type variable identifier }, ‘]’ ;

188

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

identifier type pair = identifier, ‘:’, type ;

parameter types = ‘(’, [pattern type pair list], ‘)’ ;

identifier type pair list = identifier type pair, { ‘,’, identifier type pair } ;

pattern type pair list = pattern list, ‘:’, type,
{ ‘,’, pattern list,‘:’, type } ;

parameters list = parameters, { parameters } ;

parameters = ‘(’, [pattern list], ‘)’ ;

function body = expression
| ‘is subclass responsibility’
| ‘is not yet specified’ ;

measure body = expression
| ‘is not yet specified’ ;

A.4.5 Operation Definitions
operation definitions = ‘operations’, [access operation definition,

{ ‘;’, access operation definition }, [‘;’]] ;

access operation definition = { ‘pure’
| ‘async’
| access
| ‘static’ },

operation definition ;

operation definition = explicit operation definition
| implicit operation definition
| extended explicit operation definition ;

explicit operation definition = identifier, ‘:’, operation type,
identifier, parameters,
‘==’, operation body,
[‘pre’, expression],
[‘post’, expression] ;

implicit operation definition = identifier, parameter types,
[identifier type pair list],
implicit operation body ;

189

VDM-10 Language Manual

implicit operation body = [externals],
[‘pre’, expression],
‘post’, expression,
[exceptions] ;

extended explicit operation definition = identifier, parameter types,
[identifier type pair list],
‘==’, operation body,
[externals],
[‘pre’, expression],
[‘post’, expression],
[exceptions] ;

operation type = discretionary type, ‘==>’, discretionary type ;

operation body = statement
| ‘is subclass responsibility’
| ‘is not yet specified’ ;

externals = ‘ext’, var information, { var information } ;

var information = mode, name list, [‘:’, type] ;

mode = ‘rd’ | ‘wr’ ;

exceptions = ‘errs’, error list ;

error list = error, { error } ;

error = identifier, ‘:’, expression, ‘->’, expression ;

A.4.6 Instance Variable Definitions (VDM++ and VDM-RT)
instance variable definitions = ‘instance’, ‘variables’,

[instance variable definition,
{ ‘;’, instance variable definition }] ;

instance variable definition = access assignment definition
| invariant definition ;

access assignment definition = ([access], [‘static’] | [‘static’], [access]),
assignment definition ;

invariant definition = ‘inv’, expression ;

190

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

A.4.7 Synchronization Definitions (VDM++ and VDM-RT)
synchronization definitions = ‘sync’, [synchronization] ;

synchronization = permission predicates ;

permission predicates = permission predicate,
{ ‘;’, permission predicate } ;

permission predicate = ‘per’, name, ‘=>’, expression
| mutex predicate ;

mutex predicate = ‘mutex’, ‘(’, (‘all’ | name list), ‘)’ ;

A.4.8 Thread Definitions (VDM++ and VDM-RT)
thread definitions = ‘thread’, [thread definition] ;

thread definition = periodic thread definition
| procedural thread definition ;

periodic thread definition = periodic obligation
| sporadic obligation ;

For VDM-RT where time is explicit, it looks like:

periodic obligation = ‘periodic’, ‘(’, 4 * expression, ‘)’, ‘(’, name, ‘)’ ;

sporadic obligation = ‘sporadic’, ‘(’, 3 * expression, ‘)’, ‘(’, name, ‘)’ ;

For both VDM++ and VDM-RT, we can define:

procedural thread definition = statement ;

A.4.9 Trace Definitions
traces definitions = ‘traces’, [named trace, { ‘;’, named trace }] ;

named trace = identifier, { ‘/’, identifier }, ‘:’, trace definition list ;

trace definition list = trace definition term, { ‘;’, trace definition term } ;

trace definition term = trace definition, { ‘|’, trace definition } ;

trace definition = trace binding definition
| trace repeat definition ;

191

VDM-10 Language Manual

trace binding definition = trace let def binding
| trace let best binding ;

trace let def binding = ‘let’, local definition, { ‘,’, local definition },
‘in’, trace definition ;

trace let best binding = ‘let’, multiple bind, [‘be’, ‘st’, expression],
‘in’, trace definition ;

trace repeat definition = trace core definition, [trace repeat pattern] ;

trace repeat pattern = ‘*’
| ‘+’
| ‘?’
| ‘{’, numeric literal, [‘,’, numeric literal], ‘}’ ;

trace core definition = trace apply expression
| trace concurrent expression
| trace bracketed expression ;

trace apply expression = call statement ;

trace concurrent expression = ‘||’, ‘(’, trace definition,
‘,’, trace definition,
{ ‘,’, trace definition }, ‘)’ ;

trace bracketed expression = ‘(’, trace definition list, ‘)’ ;

A.5 Expressions
expression list = expression, { ‘,’, expression } ;

expression = bracketed expression
| let expression
| let be expression
| def expression
| if expression
| cases expression
| unary expression
| binary expression
| quantified expression
| iota expression
| set enumeration

192

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

| set comprehension
| set range expression
| sequence enumeration
| sequence comprehension
| subsequence
| map enumeration
| map comprehension
| tuple constructor
| record constructor
| record modifier
| apply
| field select
| tuple select
| function type instantiation
| lambda expression
| narrow expression
| new expression
| self expression
| threadid expression
| general is expression
| undefined expression
| precondition expression
| isofbaseclass expression
| isofclass expression
| samebaseclass expression
| sameclass expression
| act expression
| fin expression
| active expression
| req expression
| waiting expression
| time expression
| name
| old name
| symbolic literal ;

A.5.1 Bracketed Expressions

bracketed expression = ‘(’, expression, ‘)’ ;

193

VDM-10 Language Manual

A.5.2 Local Binding Expressions
let expression = ‘let’, local definition, { ‘,’, local definition },

‘in’, expression ;

let be expression = ‘let’, multiple bind, [‘be’, ‘st’, expression], ‘in’,
expression ;

def expression = ‘def’, pattern bind, ‘=’, expression,
{ ‘;’, pattern bind, ‘=’, expression }, [‘;’],
‘in’, expression ;

A.5.3 Conditional Expressions
if expression = ‘if’, expression, ‘then’, expression,

{ elseif expression },
‘else’, expression ;

elseif expression = ‘elseif’, expression, ‘then’, expression ;

cases expression = ‘cases’, expression, ‘:’,
cases expression alternatives,
[‘,’, others expression], ‘end’ ;

cases expression alternatives = cases expression alternative,
{ ‘,’, cases expression alternative } ;

cases expression alternative = pattern list, ‘->’, expression ;

others expression = ‘others’, ‘->’, expression ;

A.5.4 Unary Expressions
unary expression = prefix expression

| map inverse ;

prefix expression = unary operator, expression ;

unary operator = unary plus
| unary minus
| arithmetic abs
| floor
| not
| set cardinality

194

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

| finite power set
| distributed set union
| distributed set intersection
| sequence head
| sequence tail
| sequence length
| sequence elements
| sequence indices
| sequence reverse
| distributed sequence concatenation
| map domain
| map range
| distributed map merge ;

unary plus = ‘+’ ;

unary minus = ‘-’ ;

arithmetic abs = ‘abs’ ;

floor = ‘floor’ ;

not = ‘not’ ;

set cardinality = ‘card’ ;

finite power set = ‘power’ ;

distributed set union = ‘dunion’ ;

distributed set intersection = ‘dinter’ ;

sequence head = ‘hd’ ;

sequence tail = ‘tl’ ;

sequence length = ‘len’ ;

sequence elements = ‘elems’ ;

sequence indices = ‘inds’ ;

sequence reverse = ‘reverse’ ;

distributed sequence concatenation = ‘conc’ ;

map domain = ‘dom’ ;

map range = ‘rng’ ;

distributed map merge = ‘merge’ ;

map inverse = ‘inverse’, expression ;

195

VDM-10 Language Manual

A.5.5 Binary Expressions
binary expression = expression, binary operator, expression ;

binary operator = arithmetic plus
| arithmetic minus
| arithmetic multiplication
| arithmetic divide
| arithmetic integer division
| arithmetic rem
| arithmetic mod
| less than
| less than or equal
| greater than
| greater than or equal
| equal
| not equal
| or
| and
| imply
| logical equivalence
| in set
| not in set
| subset
| proper subset
| set union
| set difference
| set intersection
| sequence concatenate
| map or sequence modify
| map merge
| map domain restrict to
| map domain restrict by
| map range restrict to
| map range restrict by
| composition
| iterate ;

arithmetic plus = ‘+’ ;

arithmetic minus = ‘-’ ;

arithmetic multiplication = ‘*’ ;

196

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

arithmetic divide = ‘/’ ;

arithmetic integer division = ‘div’ ;

arithmetic rem = ‘rem’ ;

arithmetic mod = ‘mod’ ;

less than = ‘<’ ;

less than or equal = ‘<=’ ;

greater than = ‘>’ ;

greater than or equal = ‘>=’ ;

equal = ‘=’ ;

not equal = ‘<>’ ;

or = ‘or’ ;

and = ‘and’ ;

imply = ‘=>’ ;

logical equivalence = ‘<=>’ ;

in set = ‘in set’ ;

not in set = ‘not in set’ ;

subset = ‘subset’ ;

proper subset = ‘psubset’ ;

set union = ‘union’ ;

set difference = ‘\’ ;

set intersection = ‘inter’ ;

sequence concatenate = ‘^’ ;

map or sequence modify = ‘++’ ;

map merge = ‘munion’ ;

map domain restrict to = ‘<:’ ;

map domain restrict by = ‘<-:’ ;

map range restrict to = ‘:>’ ;

map range restrict by = ‘:->’ ;

composition = ‘comp’ ;

iterate = ‘**’ ;

197

VDM-10 Language Manual

A.5.6 Quantified Expressions
quantified expression = all expression

| exists expression
| exists unique expression ;

all expression = ‘forall’, bind list, ‘&’, expression ;

exists expression = ‘exists’, bind list, ‘&’, expression ;

exists unique expression = ‘exists1’, bind, ‘&’, expression ;

A.5.7 The Iota Expression
iota expression = ‘iota’, bind, ‘&’, expression ;

A.5.8 Set Expressions
set enumeration = ‘{’, [expression list], ‘}’ ;

set comprehension = ‘{’, expression, ‘|’, bind list,
[‘&’, expression], ‘}’ ;

set range expression = ‘{’, expression, ‘,’, ‘…’, ‘,’,
expression, ‘}’ ;

A.5.9 Sequence Expressions
sequence enumeration = ‘[’, [expression list], ‘]’ ;

sequence comprehension = ‘[’, expression, ‘|’, bind, [‘&’, expression], ‘]’ ;

subsequence = expression, ‘(’, expression, ‘,’, ‘…’, ‘,’, expression, ‘)’ ;

A.5.10 Map Expressions
map enumeration = ‘{’, maplet, { ‘,’, maplet }, ‘}’

| ‘{’, ‘|->’, ‘}’ ;

maplet = expression, ‘|->’, expression ;

map comprehension = ‘{’, maplet, ‘|’, bind list,
[‘&’, expression], ‘}’ ;

198

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

A.5.11 The Tuple Constructor Expression
tuple constructor = ‘mk_’, ‘(’, expression, ‘,’, expression list, ‘)’ ;

A.5.12 Record Expressions
record constructor = ‘mk_’,1 name, ‘(’, [expression list], ‘)’ ;

record modifier = ‘mu’, ‘(’, expression, ‘,’,
record modification,
{ ‘,’, record modification }, ‘)’ ;

record modification = identifier, ‘|->’, expression ;

A.5.13 Apply Expressions
apply = expression, ‘(’, [expression list], ‘)’ ;

field select = expression, ‘.’, identifier ;

tuple select = expression, ‘.#’, numeral ;

function type instantiation = name, ‘[’, type, { ‘,’, type }, ‘]’ ;

A.5.14 The Lambda Expression
lambda expression = ‘lambda’, type bind list, ‘&’, expression ;

A.5.15 The narrow Expression
narrow expression = ‘narrow_’, ‘(’, expression, ‘,’, type, ‘)’ ;

A.5.16 The New Expression (VDM++ and VDM-RT)
new expression = ‘new’, name, ‘(’, [expression list], ‘)’ ;

A.5.17 The Self Expression (VDM++ and VDM-RT)
self expression = ‘self’ ;

A.5.18 The Threadid Expression (VDM++ and VDM-RT)
threadid expression = ‘threadid’ ;

1Note: no delimiter is allowed

199

VDM-10 Language Manual

A.5.19 The Is Expression
general is expression = is expression

| type judgement ;
is expression = ‘is_’,2(name | basic type), ‘(’, expression, ‘)’ ;

type judgement = ‘is_’, ‘(’, expression, ‘,’, type, ‘)’ ;

A.5.20 The Undefined Expression
undefined expression = ‘undefined’ ;

A.5.21 The Precondition Expression
precondition expression = ‘pre_’, ‘(’, expression list, ‘)’ ;

A.5.22 Base Class Membership (VDM++ and VDM-RT)
isofbaseclass expression = ‘isofbaseclass’, ‘(’, name, ‘,’, expression, ‘)’ ;

A.5.23 Class Membership (VDM++ and VDM-RT)
isofclass expression = ‘isofclass’, ‘(’, name, ‘,’, expression, ‘)’ ;

A.5.24 Same Base Class Membership (VDM++ and VDM-RT)
samebaseclass expression = ‘samebaseclass’, ‘(’, expression, ‘,’,

expression, ‘)’ ;

A.5.25 Same Class Membership (VDM++ and VDM-RT)
sameclass expression = ‘sameclass’, ‘(’, expression, ‘,’,

expression, ‘)’ ;

A.5.26 History Expressions (VDM++ and VDM-RT)
act expression = ‘#act’, ‘(’, name list, ‘)’ ;
fin expression = ‘#fin’, ‘(’, name list, ‘)’ ;
active expression = ‘#active’, ‘(’, name list, ‘)’ ;
req expression = ‘#req’, ‘(’, name list, ‘)’ ;
waiting expression = ‘#waiting’, ‘(’, name list, ‘)’ ;

2Note: no delimiter is allowed

200

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

A.5.27 Time Expressions (VDM-RT)
time expression = ‘time’ ;

A.5.28 Names
name = identifier, [“’, identifier] ;

name list = name, { ‘,’, name } ;

old name = identifier, ‘~’ ;

A.6 State Designators
state designator = name

| field reference
| map or sequence reference ;

field reference = state designator, ‘.’, identifier ;

map or sequence reference = state designator, ‘(’, expression, ‘)’ ;

A.7 Statements
statement = let statement

| let be statement
| def statement
| block statement
| general assign statement
| if statement
| cases statement
| sequence for loop
| set for loop
| index for loop
| while loop
| nondeterministic statement
| call statement
| specification statement
| start statement
| start list statement
| stop statement
| stop list statement

201

VDM-10 Language Manual

| duration statement
| cycles statement
| return statement
| always statement
| trap statement
| recursive trap statement
| exit statement
| error statement
| identity statement ;

A.7.1 Local Binding Statements
let statement = ‘let’, local definition, { ‘,’, local definition },

‘in’, statement ;

local definition = value definition
| function definition ;

let be statement = ‘let’, multiple bind, [‘be’, ‘st’, expression], ‘in’,
statement ;

def statement = ‘def’, equals definition,
{ ‘;’, equals definition }, [‘;’],
‘in’, statement ;

equals definition = pattern bind, ‘=’, expression ;

A.7.2 Block and Assignment Statements
block statement = ‘(’, { dcl statement },

statement, { ‘;’, statement }, [‘;’], ‘)’ ;

dcl statement = ‘dcl’, assignment definition,
{ ‘,’, assignment definition }, ‘;’ ;

assignment definition = identifier, ‘:’, type, [‘:=’, expression] ;

general assign statement = assign statement
| multiple assign statement ;

assign statement = state designator, ‘:=’, expression ;

multiple assign statement = ‘atomic’, ‘(’, assign statement, ‘;’,
assign statement,
{ ‘;’, assign statement }, ‘)’ ;

202

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

A.7.3 Conditional Statements
if statement = ‘if’, expression, ‘then’, statement,

{ elseif statement },
[‘else’, statement] ;

elseif statement = ‘elseif’, expression, ‘then’, statement ;

cases statement = ‘cases’, expression, ‘:’,
cases statement alternatives,
[‘,’, others statement], ‘end’ ;

cases statement alternatives = cases statement alternative,
{ ‘,’, cases statement alternative } ;

cases statement alternative = pattern list, ‘->’, statement ;

others statement = ‘others’, ‘->’, statement ;

A.7.4 Loop Statements
sequence for loop = ‘for’, pattern bind, ‘in’,

expression, ‘do’, statement ;

set for loop = ‘for’, ‘all’, pattern, ‘in set’, expression,
‘do’, statement ;

index for loop = ‘for’, identifier, ‘=’, expression, ‘to’, expression,
[‘by’, expression],
‘do’, statement ;

while loop = ‘while’, expression, ‘do’, statement ;

A.7.5 The Nondeterministic Statement
nondeterministic statement = ‘||’, ‘(’, statement,

{ ‘,’, statement }, ‘)’ ;

A.7.6 Call and Return Statements
In VDM-SL a call statement looks like:

call statement = name, ‘(’,
[expression list], ‘)’ ;

203

VDM-10 Language Manual

In VDM++ and VDM-RT a call statement looks like:

call statement = [object designator, ‘.’],
name, ‘(’, [expression list], ‘)’ ;

object designator = name
| self expression
| new expression
| object field reference
| object apply ;

object field reference = object designator, ‘.’, identifier ;

object apply = object designator, ‘(’, [expression list], ‘)’ ;

return statement = ‘return’, [expression] ;

A.7.7 The Specification Statement
specification statement = ‘[’, implicit operation body, ‘]’ ;

A.7.8 Start and Start List Statements (VDM++ and VDM-RT)
start statement = ‘start’, ‘(’, expression, ‘)’ ;

start list statement = ‘startlist’, ‘(’, expression, ‘)’ ;

A.7.9 Stop and Stop List Statements (VDM++ and VDM-RT)
stop statement = ‘stop’, ‘(’, expression, ‘)’ ;

stop list statement = ‘stoplist’, ‘(’, expression, ‘)’ ;

A.7.10 The Duration and Cycles Statements (VDM-RT)
duration statement = ‘duration’, ‘(’, expression, ‘)’,

statement ;

cycles statement = ‘cycles’, ‘(’, expression, ‘)’,
statement ;

204

APPENDIX A. THE SYNTAX OF THE VDM LANGUAGES

A.7.11 Exception Handling Statements
always statement = ‘always’, statement, ‘in’, statement ;

trap statement = ‘trap’, pattern bind, ‘with’, statement,
‘in’, statement ;

recursive trap statement = ‘tixe’, traps, ‘in’, statement ;

traps = ‘{’, pattern bind, ‘|->’, statement,
{ ‘,’, pattern bind, ‘|->’, statement }, ‘}’ ;

exit statement = ‘exit’, [expression] ;

A.7.12 The Error Statement
error statement = ‘error’ ;

A.7.13 The Identity Statement
identity statement = ‘skip’ ;

A.8 Patterns and Bindings

A.8.1 Patterns
pattern = pattern identifier

| match value
| set enum pattern
| set union pattern
| seq enum pattern
| seq conc pattern
| map enumeration pattern
| map munion pattern
| tuple pattern
| object pattern
| record pattern ;

pattern identifier = identifier | ‘-’ ;

match value = ‘(’, expression, ‘)’
| symbolic literal ;

set enum pattern = ‘{’, [pattern list], ‘}’ ;

205

VDM-10 Language Manual

set union pattern = pattern, ‘union’, pattern ;

seq enum pattern = ‘[’, [pattern list], ‘]’ ;

seq conc pattern = pattern, ‘^’, pattern ;

map enumeration pattern = ‘{’, maplet pattern list, ‘}’
| ‘{’, ‘|->’, ‘}’ ;

maplet pattern list = maplet pattern, { ‘,’, maplet pattern } ;

maplet pattern = pattern, ‘|->’, pattern ;

map munion pattern = pattern, ‘munion’, pattern ;

tuple pattern = ‘mk_’, ‘(’, pattern, ‘,’, pattern list, ‘)’ ;

record pattern = ‘mk_’,3 name, ‘(’, [pattern list], ‘)’ ;

object pattern = ‘obj_’, identifier, ‘(’, [field pattern list], ‘)’4;

field pattern list = field pattern, { ‘,’, field pattern } ;

field pattern = identifier, ‘|->’, pattern ;

pattern list = pattern, { ‘,’, pattern } ;

A.8.2 Bindings
pattern bind = pattern | bind ;

bind = set bind | seq bind | type bind ;

set bind = pattern, ‘in set’, expression ;

seq bind = pattern, ‘in seq’, expression ;

type bind = pattern, ‘:’, type ;

bind list = multiple bind, { ‘,’, multiple bind } ;

multiple bind = multiple set bind
| multiple seq bind
| multiple type bind ;

multiple set bind = pattern list, ‘in set’, expression ;

multiple seq bind = pattern list, ‘in seq’, expression ;

multiple type bind = pattern list, ‘:’, type ;

type bind list = type bind, { ‘,’, type bind } ;
3Note: no delimiter is allowed
4Note: object pattern is only be used in VDM++ and VDM-RT

206

Appendix B

Lexical Specification

B.1 Characters
The characters that comprise a valid VDM specification are defined in terms of Unicode code-
points. The actual character encoding of a VDM source file (for example UTF-8, ISO-Latin-1
or Shift-JIS) is not defined, and the tool support is responsible for converting whatever en-
coding is used into Unicode during the parse of the file.

All VDM keywords and delimiter tokens are composed of characters from the Basic Latin
block (“ASCII” codepoints less than U+0080). On the other hand, user identifiers (variable
names, function names and so on) can be composed of a rich variety of Unicode codepoints,
reflecting the need for fully internationalized specifications.

All Unicode codepoints have a “category”. Certain categories are entirely excluded from
the set of codepoints that are permitted in identifiers. This prevents, say, punctuation
characters from being used. On the other hand, to provide a degree of compatibility with the
original VDM ISO standard, and for backward compatibility, there are different rules for the
formation of user identifiers that only use ASCII characters. For example, the underscore
is permitted in identifiers (U+005F), even though this is in the connecting punctuation
category, which would not normally be allowed.

See http://www.fileformat.info/info/unicode/category/index.htm for more information
about categories.

207

http://www.fileformat.info/info/unicode/category/index.htm

VDM-10 Language Manual

initial letter:
if codepoint < U+0100
then Any character in categories Ll, Lm, Lo, Lt, Lu or U+0024 (a dollar sign)
else Any character except categories Cc, Zl, Zp, Zs, Cs, Cn, Nd, Pc

following letter:
if codepoint < U+0100
then Any character in categories Ll, Lm, Lo, Lt, Lu, Nd or U+0024 (a dollar

sign) or U+005F (underscore) or U+0027 (apostrophe)
else Any character except categories Cc, Zl, Zp, Zs, Cs, Cn

digit:
0 1 2 3 4 5 6 7 8 9

hexadecimal digit:
0 1 2 3 4 5 6 7 8 9
A B C D E F
a b c d e f

octal digit:
0 1 2 3 4 5 6 7

Table B.1: Character set

208

APPENDIX B. LEXICAL SPECIFICATION

B.2 Symbols
The following kinds of symbols exist: keywords, delimiters, symbolic literals, and comments.
The transformation from characters to symbols is given by the following rules; these use
the same notation as the syntax definition but differ in meaning in that no separators may
appear between adjacent terminals. Where ambiguity is possible otherwise, two consecutive
symbols must be separated by a separator.

keyword = ‘#act’ | ‘#active’ | ‘#fin’ | ‘#req’ | ‘#waiting’ | ‘abs’
| ‘all’ | ‘always’ | ‘and’ | ‘as’ | ‘async’ | ‘atomic’ | ‘be’
| ‘bool’ | ‘by’ | ‘card’ | ‘cases’ | ‘char’ | ‘class’
| ‘comp’ | ‘compose’ | ‘conc’ | ‘cycles’ | ‘dcl’ | ‘def’
| ‘definitions’ | ‘dinter’ | ‘div’ | ‘dlmodule’ | ‘do’
| ‘dom’ | ‘dunion’ | ‘duration’ | ‘elems’ | ‘else’ | ‘elseif’
| ‘end’ | ‘eq’ | ‘error’ | ‘errs’ | ‘exists’ | ‘exists1’ | ‘exit’
| ‘exports’ | ‘ext’ | ‘false’ | ‘floor’
| ‘for’ | ‘forall’ | ‘from’ | ‘functions’ | ‘hd’ | ‘if’ | ‘in’
| ‘inds’ | ‘inmap’ | ‘instance’ | ‘int’ | ‘inter’
| ‘imports’ | ‘init’ | ‘inv’ | ‘inverse’ | ‘iota’ | ‘is’
| ‘isofbaseclass’ | ‘isofclass’ | ‘lambda’ | ‘len’ | ‘let’
| ‘map’ | ‘measure’ | ‘merge’ | ‘mod’ | ‘module’ | ‘mu’
| ‘munion’ | ‘mutex’ | ‘nat’ | ‘nat1’ | ‘new’ | ‘nil’ | ‘not’ | ‘of’
| ‘operations’ | ‘or’ | ‘ord’ | ‘others’ | ‘per’ | ‘periodic’ | ‘post’
| ‘power’ | ‘pre’ | ‘private’ | ‘protected’ | ‘psubset’
| ‘public’ | ‘pure’ | ‘rat’ | ‘rd’ | ‘real’ | ‘rem’ | ‘renamed’
| ‘responsibility’ | ‘return’ | ‘reverse’ | ‘rng’
| ‘samebaseclass’ | ‘sameclass’ | ‘self’ | ‘seq’ | ‘seq1’
| ‘set’ | ‘set1’ | ‘skip’ | ‘specified’ | ‘sporadic’ | ‘st’ | ‘start’
| ‘startlist’ | ‘state’ | ‘stop’ | ‘stoplist’
| ‘struct’ | ‘subclass’ | ‘subset’ | ‘sync’
| ‘system’ | ‘then’ | ‘thread’ | ‘threadid’ | ‘time’ | ‘tixe’
| ‘tl’ | ‘to’ | ‘token’ | ‘traces’ | ‘trap’ | ‘true’ | ‘types’
| ‘undefined’ | ‘union’ | ‘uselib’ | ‘values’
| ‘variables’ | ‘while’ | ‘with’ | ‘wr’ | ‘yet’ | ‘RESULT’ ;

identifier = initial letter, { following letter } ;

Note that in VDM-RT the CPU and BUS classes are reserved and cannot be redefined by
the user. These two predefined classes contain the functionality described in Section 13.3
above.

All identifiers beginning with one of the reserved prefixes are reserved: init_, inv_, is_,
mk_, post_ and pre_.

209

VDM-10 Language Manual

type variable identifier = ‘@’, identifier ;

symbolic literal = numeric literal | boolean literal
| nil literal | character literal | text literal
| quote literal ;

numeral = digit, { digit } ;

numeric literal = decimal literal | hexadecimal literal ;

exponent = (‘E’ | ‘e’), [‘+’ | ‘-’], numeral ;

decimal literal = numeral, [‘.’, numeral], [exponent] ;

hexadecimal literal = (‘0x’ | ‘0X’), hexadecimal digit, { hexadecimal digit } ;

boolean literal = ‘true’ | ‘false’ ;

nil literal = ‘nil’ ;

character literal = ‘ ’ ’, (character | escape sequence), ‘ ’ ’ ;

escape sequence = ‘\\’ | ‘\r’ | ‘\n’ | ‘\t’ | ‘\f’ | ‘\e’ | ‘\a’
| ‘\x’, 2 * hexadecimal digit
| ‘\u’, 4 * hexadecimal digit
| ‘\c’, character
| ‘\’, 3 * octal digit
| ‘\”’ | ‘\” ;

text literal = ‘ ” ’, { ‘ \” ’ | character | escape sequence }, ‘ ” ’ ;

quote literal = ‘<’, identifier, ‘>’ ;

single line comment = ‘–’, { character – newline }, newline ;

multiple line comment = ‘/*’, { character }, ‘*/’ ;

Note that multiple line comments will be parsed in a single level without nesting, but
tools may provide different strategies of parsing comments, e.g. it is possible for tools to
optionally parse nested comments.

The escape sequences given above are to be interpreted as follows:

210

APPENDIX B. LEXICAL SPECIFICATION

Sequence Interpretation
‘\\’ U+005C (backslash character)
‘\r’ U+000D (return character)
‘\n’ U+000A (newline character)
‘\t’ U+0009 (tab character)
‘\f’ U+000C (formfeed character)
‘\e’ U+001B (escape character)
‘\a’ U+0007 (alarm (bell))
‘\x’ hexadecimal digit, hexadecimal digit U+00xy (hex representation of character

(e.g. \x41 is ‘A’))
‘\u’, 4 * hexadecimal digit U+abcd (hex representation of character

(e.g. \u0041 is ‘A’))
‘\c’, character U+00nn (control character)

(e.g. \cA ≡ \x01)
‘\’, 3 * octal digit U+00nn (octal representation of character)
‘\”’ U+0022 (double quote)
‘\” U+0027 (apostrophe)

Table B.2: Escape sequences

211

VDM-10 Language Manual

212

Appendix C

Operator Precedence

The precedence ordering for operators in the concrete syntax is defined using a two-level
approach: operators are divided into families, and an upper-level precedence ordering, >, is
given for the families, such that if families F1 and F2 satisfy

F1 > F2

then every operator in the family F1 is of a higher precedence than every operator in the
family F2.

The relative precedences of the operators within families is determined by considering
type information, and this is used to resolve ambiguity. The type constructors are treated
separately, and are not placed in a precedence ordering with the other operators.

There are six families of operators, namely Combinators, Applicators, Evaluators, Rela-
tions, Connectives and Constructors:

Combinators: Operations that allow function and mapping values to be combined, and func-
tion, mapping and numeric values to be iterated.

Applicators: Function application, field selection, sequence indexing, etc.

Evaluators: Operators that are non-predicates.

Relations: Operators that are relations.

Connectives: The logical connectives.

Constructors: Operators that are used, implicitly or explicitly, in the construction of expres-
sions; e.g. if-then-elseif-else, ‘|->’, ‘…’, etc.

The precedence ordering on the families is:

combinators > applicators > evaluators > relations > connectives > constructors

213

VDM-10 Language Manual

C.1 The Family of Combinators
These combinators have the highest family priority.

combinator = iterate | composition ;

iterate = ‘**’ ;

composition = ‘comp’ ;

precedence level combinator
1 comp
2 iterate

C.2 The Family of Applicators
All applicators have equal precedence.

applicator = subsequence
| apply
| function type instantiation
| field select ;

subsequence = expression, ‘(’, expression, ‘,’, ‘…’, ‘,’,
expression, ‘)’ ;

apply = expression, ‘(’, [expression list], ‘)’ ;

function type instantiation = expression, ‘[’, type, { ‘,’, type }, ‘]’ ;

field select = expression, ‘.’, identifier ;

C.3 The Family of Evaluators
The family of evaluators is divided into nine groups, according to the type of expression they
are used in.

evaluator = arithmetic prefix operator
| set prefix operator
| sequence prefix operator
| map prefix operator
| arithmetic infix operator
| set infix operator
| sequence infix operator
| map infix operator ;

214

APPENDIX C. OPERATOR PRECEDENCE

arithmetic prefix operator = ‘+’ | ‘-’ | ‘abs’ | ‘floor’ ;

set prefix operator = ‘card’ | ‘power’ | ‘dunion’ | ‘dinter’ ;

sequence prefix operator = ‘hd’ | ‘tl’ | ‘len’
| ‘inds’ | ‘elems’ | ‘conc’ | ‘reverse’ ;

map prefix operator = ‘dom’ | ‘rng’ | ‘merge’ | ‘inverse’ ;

arithmetic infix operator = ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘rem’ | ‘mod’ | ‘div’ ;

set infix operator = ‘union’ | ‘inter’ | ‘\’ ;

sequence infix operator = ‘^’ ;

map infix operator = ‘munion’ | ‘++’ | ‘<:’ | ‘<-:’ | ‘:>’ | ‘:->’ ;

The precedence ordering follows a pattern of analogous operators. The family is defined in
the following table.

precedence level arithmetic set map sequence
1 + - union \ munion ++ ^
2 * / inter

rem
mod
div

3 inverse
4 <: <-:
5 :> :->
6 (unary) + card dom len

(unary) - power rng elems
abs dinter merge hd tl
floor dunion conc

inds
reverse

Table C.1: Operator precedence

215

VDM-10 Language Manual

C.4 The Family of Relations
This family includes all the relational operators whose results are of type bool.

relation = relational infix operator | set relational operator ;

relational infix operator = ‘=’ | ‘<>’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ ;

set relational operator = ‘subset’ | ‘psubset’ | ‘in set’ | ‘not in set’ ;

precedence level relation
1 <= <

>= >
= <>

subset psubset
in set not in set

All operators in the Relations family have equal precedence. Typing dictates that there is
no meaningful way of using them adjacently.

C.5 The Family of Connectives
This family includes all the logical operators whose result is of type bool.

connective = logical prefix operator | logical infix operator ;

logical prefix operator = ‘not’ ;

logical infix operator = ‘and’ | ‘or’ | ‘=>’ | ‘<=>’ ;

precedence level connective
1 <=>
2 =>
3 or
4 and
5 not

216

APPENDIX C. OPERATOR PRECEDENCE

C.6 The Family of Constructors
This family includes all the operators used to construct a value. Their priority is given either
by brackets, which are an implicit part of the operator, or by the syntax.

C.7 Grouping
The grouping of operands of the binary operators are as follows:

Combinators: Right grouping.

Applicators: Left grouping.

Connectives: The ‘=>’ operator has right grouping. The other operators are associative
and therefore right and left grouping are equivalent.

Evaluators: Left grouping1.

Relations: No grouping, as it has no meaning.

Constructors: No grouping, as it has no meaning.

Note: the ’=’ operator is in the Relations family, which does not have specified grouping.
However, it is possible to construct a meaningful expression with a chain of ’=’ operators
comparing Boolean values, such as true = 3 = 3. This is parsed as true = (3 = 3) – i.e. the
’=’ operator has right grouping.

The ’**’ operator is always treated as an iterator for the purpose of grouping, and is
therefore a member of the Combinators family and has right grouping.

C.8 The Type Operators
Type operators have their own separate precedence ordering, as follows:

1. Function types: ->, +> (right grouping).

2. Union type: | (left grouping).

3. Other binary type operators: * (no grouping).

4. Map types: map …to …and inmap …to … (right grouping).

5. Unary type operators: seq of, seq1 of, set of, set1 of.

1Except the “map domain restrict to” and the “map domain restrict by” operators which have a right grouping.
This is not standard.

217

VDM-10 Language Manual

218

Appendix D

Differences between the Concrete Syntaxes

When VDM was originally developed a mathematical syntax was used and this have also
been retained in the ISO/VDM-SL standard. However, most VDM tools today mainly use
an ASCII syntax. Below is a list of the symbols which are different in the mathematical
syntax and the ASCII syntax:

Mathematical syntax ASCII syntax
· &
× *
≤ <=
≥ >=
6= <>
o→ ==>
→ ->
⇒ =>
⇔ <=>
7→ |->
4 ==
↑ **
† ++
m
⋃ munion
C <:
B :>
−C <-:
−B :->
⊂ psubset
⊆ subset
y ^⋂ dinter⋃ dunion

219

VDM-10 Language Manual

Mathematical syntax ASCII syntax
F power
…-set set of ...
…-set1 set1 of ...
…∗ seq of ...
…+ seq1 of ...
… m
-→… map ... to ...

… m←→… inmap ... to ...
µ mu
B bool
N nat
N1 nat1
Z int
R real
¬ not
∩ inter
∪ union
∈ in set
6∈ not in set
∧ and
∨ or
∀ forall
∃ exists
∃ ! exists1
λ lambda
ι iota
. . .-1 inverse ...

220

	Introduction
	The VDM Specification Language (VDM-SL)
	The VDM++ Language
	The VDM Real Time Language (VDM-RT)
	Purpose of The Document
	Structure of the Document

	Concrete Syntax Notation
	Data Type Definitions
	Basic Data Types
	The Boolean Type
	The Numeric Types
	The Character Type
	The Quote Type
	The Token Type

	Compound Types
	Set Types
	Sequence Types
	Map Types
	Product Types
	Composite Types
	Union and Optional Types
	The Object Reference Type (VDM++ and VDM-RT)
	Function Types

	Invariants
	Equality
	Order

	Algorithm Definitions
	Function Definitions
	Polymorphic Functions
	Higher Order Functions

	Expressions
	Let Expressions
	The Define Expression
	Unary and Binary Expressions
	Conditional Expressions
	Quantified Expressions
	The Iota Expression
	Set Expressions
	Sequence Expressions
	Map Expressions
	Tuple Constructor Expressions
	Record Expressions
	Apply Expressions
	The New Expression (VDM++ and VDM-RT)
	The Self Expression (VDM++ and VDM-RT)
	The Threadid Expression (VDM++ and VDM-RT)
	The Lambda Expression
	Narrow Expressions
	Is Expressions
	Base Class Membership (VDM++ and VDM-RT)
	Class Membership
	Same Base Class Membership (VDM++ and VDM-RT)
	Same Class Membership (VDM++ and VDM-RT)
	History Expressions (VDM++ and VDM-RT)
	The Time Expression (VDM-RT)
	Literals and Names
	The Undefined Expression
	The Precondition Expression

	Patterns
	Object Pattern (VDM++ and VDM-RT)

	Bindings
	Value (Constant) Definitions
	Declaration of Modifiable State Components
	Instance Variables (VDM++ and VDM-RT)
	The State Definition (VDM-SL)

	Operation Definitions
	Constructors (VDM++ and VDM-RT)

	Statements
	Let Statements
	The Define Statement
	The Block Statement
	The Assignment Statement
	Conditional Statements
	For-Loop Statements
	The While-Loop Statement
	The Nondeterministic Statement
	The Call Statement
	The Return Statement
	Exception Handling Statements
	The Error Statement
	The Identity Statement
	Start and Start List Statements (VDM++ and VDM-RT)
	Stop and Stop List Statements (VDM++ and VDM-RT)
	The Specification Statement
	The Duration Statement (VDM-RT)
	The Cycles Statement (VDM-RT)

	Top-level Specification in VDM
	Top-level Specification in VDM-SL
	A Flat Specification
	A Structured Specification

	Top-level Specification in VDM++ and VDM-RT
	System (VDM-RT)
	Classes
	Inheritance
	Interface and Availability of Class Members

	Synchronization Constraints (VDM++ and VDM-RT)
	Permission Predicates
	History guards
	The object state guard
	Queue condition guards
	Evaluation of Guards

	Inheritance of Synchronization Constraints
	Mutex constraints

	Threads (VDM++ and VDM-RT)
	Periodic Thread Definitions (VDM-RT)
	Sporadic Thread Definitions (VDM-RT)
	Procedural Thread Definitions (VDM++ and VDM-RT)

	Trace Definitions
	The Syntax of the VDM Languages
	VDM-SL Document
	Modules

	VDM++ and VDM-RT Document
	System (VDM-RT)
	Classes

	Definitions
	Type Definitions
	The VDM-SL State Definition
	Value Definitions
	Function Definitions
	Operation Definitions
	Instance Variable Definitions (VDM++ and VDM-RT)
	Synchronization Definitions (VDM++ and VDM-RT)
	Thread Definitions (VDM++ and VDM-RT)
	Trace Definitions

	Expressions
	Bracketed Expressions
	Local Binding Expressions
	Conditional Expressions
	Unary Expressions
	Binary Expressions
	Quantified Expressions
	The Iota Expression
	Set Expressions
	Sequence Expressions
	Map Expressions
	The Tuple Constructor Expression
	Record Expressions
	Apply Expressions
	The Lambda Expression
	The narrow Expression
	The New Expression (VDM++ and VDM-RT)
	The Self Expression (VDM++ and VDM-RT)
	The Threadid Expression (VDM++ and VDM-RT)
	The Is Expression
	The Undefined Expression
	The Precondition Expression
	Base Class Membership (VDM++ and VDM-RT)
	Class Membership (VDM++ and VDM-RT)
	Same Base Class Membership (VDM++ and VDM-RT)
	Same Class Membership (VDM++ and VDM-RT)
	History Expressions (VDM++ and VDM-RT)
	Time Expressions (VDM-RT)
	Names

	State Designators
	Statements
	Local Binding Statements
	Block and Assignment Statements
	Conditional Statements
	Loop Statements
	The Nondeterministic Statement
	Call and Return Statements
	The Specification Statement
	Start and Start List Statements (VDM++ and VDM-RT)
	Stop and Stop List Statements (VDM++ and VDM-RT)
	The Duration and Cycles Statements (VDM-RT)
	Exception Handling Statements
	The Error Statement
	The Identity Statement

	Patterns and Bindings
	Patterns
	Bindings

	Lexical Specification
	Characters
	Symbols

	Operator Precedence
	The Family of Combinators
	The Family of Applicators
	The Family of Evaluators
	The Family of Relations
	The Family of Connectives
	The Family of Constructors
	Grouping
	The Type Operators

	Differences between the Concrete Syntaxes

