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Introduction

The beginnings of this project arose out of a seminar led by Professor Austen

Clark on classic readings in the philosophy of perception. There I encountered

a peculiar argument of W. H. F. Barnes (1944) which alleged that sense-data,

if they exist, must disobey the Law of Excluded Middle. Barnes presumably

did not endorse his argument’s conclusion, instead offering it as an addition

to the growing list of reductiones ad absurdum against theories of sense-data.

My interest in the argument, however, was not primarily in the question of its

soundness, but in a desire to grasp its rather provocative conclusion.

Approaching this from the standpoint of philosophical logic, the question

becomes how to make formal sense of sense-data having peculiar logical fea-

tures. What might a minimal revision of logic look like that countenanced the

failure of the Law of Excluded Middle (LEM), while preserving as much as

possible of the classical inferences?

A natural way to express the the failure of LEM is as follows:

B ⊬ A ∨ ¬A

where ⊢ abbreviates logical consequence, and ¬ and ∨ are taken to express

1
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negation and disjunction, respectively. In this dissertation I formulate a three-

valued logic that accommodates this failure, and expand on further desiderata

unmet by other nearby systems on offer.

There is a range of various well-studied formal systems that have this fea-

ture (for discussion, see Chapter 2), and so further specifications are necessary

to clarify the formal requirements of the desired system. In general, as above,

the goal is a ‘minimal’ revision to classical logic such that LEM fails. This

failure, however, occurs not as a result of general semantic properties of linguis-

tic items (e.g. sentences or propositions), but because of the indeterministic

character of a particular kind of metaphysical entity.

I take this general characterization to provide two constraints on the desired

logic. The first, corresponding to the goal of minimal revision, is that the

system maintain in every respect the Law of Noncontradiction (LNC). This

amounts to three things, foremost that the system admit no case in which both

a sentence and its negation are true. Second, the system should maintain the

related classical principle of Explosion, or Ex Falso Quodlibet :

A ∧ ¬A ⊢ B

That is, from a contradiction, anything follows. The final, and strongest, form

of LNC I consider states that the negation of a contradiction is a tautology,

or logical truth:

B ⊢ ¬(A ∧ ¬A)

The logical revision, then, seeks at minimum to block the inference from the



CONTENTS 3

failure of LEM to the failure of LNC. The is the starting point for the system

I develop here, called GO (for ‘gappy objects’).

The interpretation of GO allows one to accept Barnes’s conclusion about

sense-data without thereby accepting its dialectical force as an absurdum. For

the majority of philosophical debates, determining what makes something ‘ab-

surd’ in the sense required for a reductio is unproblematic. In classical logic,

any ‘violation’ of a logical truth entails a contradiction, and so it suffices to

identify an absurdum with any logical contradiction. However, once the de-

bate turns to the logical principles themselves, the criteria for absurdity are

often the very source of disagreement.

Here I will take it for granted that extracting a contradiction provides a

sufficient demonstration of absurdity, despite this not being universally ac-

cepted. The Law of Noncontradiction, however, is only one among several

logical principles. The Law of Excluded Middle seems pre-theoretically to be

an independent, though arguably related, principle. Aristotle, at least, ap-

parently felt the need to state the two as separate, independently motivated,

principles. My suggestion here is that in order to understand the proposi-

tion that sense-data disobey LEM in a substantive way, one must attempt to

conceive of such a circumstance without thereby entertaining a contradiction.

The second desideratum for the formal system corresponds to the idea that

the failure of LEM is in some sense restricted, such that it occurs only for a

peculiar type of object. In this case, sense-data are the target, though from

the perspective of the formal system it is inconsequential what kinds of objects

one has in mind. It is this idea of a ‘restricted’ failure of a logical principle

that presents a bit of a puzzle. I will comment on this in later chapters, and
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so here I will make a few brief remarks.

On the surface it seems natural to assert that a particular kind of object

or property has distinctive logical characteristics. The property of transitivity,

for instance, applies to certain properties (being a descendant, for example),

and not to others, and it seems in principle unproblematic to attribute such a

logical characteristic to some kinds of properties and objects, and not to others.

On the other hand, one could distinguish these facts about particular objects

or properties as a posteriori, or topic-specific truths which, though certainly

‘logical’ in some sense, are not ‘purely’ logical inasmuch as they cannot be

deduced on the basis of form alone. One must have particular knowledge

about what it is to be a descendant that justifies abstracting transitivity as

one of its logical features. Logic, it is generally thought, is topic-neutral, and

thus what one might call ‘logic proper’ does not vary according to content,

as it concerns everything there is. And since a principle of transitivity does

not apply to all properties, it is not a principle of logic proper in this sense.

LEM, however, is (or was supposed to be) a law of logic proper, and so it

seems that even a ‘restricted’ failure would count as a total failure insofar as

its application was thought to be topic-neutral and completely general.

Yet there seems to be a significant pull in the other direction, particu-

larly if one allows for the possibility that classical logic might benefit from

an upgrade. In this context, any revision of logic, if countenanced, is to ‘fix’

the logical system in order to accommodate unanticipated anomalies, since

generally speaking the classical system is adequate. Mathematical proof, for

instance, is in fine shape, and its deductive certainty remains unthreatened

by revisions to solve truth-theoretic paradoxes; and the deviant behavior of
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sense-data, or some kind of peculiar object makes one’s daily applications of,

say, modus tollens no less valid. A minimal mutilation to logic, then, would

do the minimum required to accommodate the anomaly, while leaving the rest

intact.

A tension results. One intuition suggests that deductive logic is topic-

neutral and purely formal. Validity is truth-preserving in all contexts, irre-

spective of the particular subject matter. Thus it seems impossible to ‘isolate’

the failure of a logical principle, since a putative logical law, if really a law,

must hold irrespective of content. A logical principle that is said to ‘hold’

in only some contexts merely resembles a logical law, in the same way that

transitivity, as above, resembles a law.

One suggestion to reconcile this is to adopt a logical pluralism which holds

that different domains may require different logics. Mathematics may require

classical logic, while the metaphysics of perception might require a logic with-

out LEM, and the logic of a truth predicate may countenance the failure of

Explosion. Which logic one’s reasoning is subject to will depend on the subject

matter about which one is reasoning. However, this attempt will fail to recon-

cile the perceived tension in one of two ways. Imagine that the different logics

are linearly ordered from weakest to strongest, where a weaker consequence

relation is a subset of a stronger one. If one holds that the weakest logic is

‘logic proper’, since it subsumes the rest, then it is hard to see how reasoning

conducted in any of the stronger logics ought to be considered deductive. (Al-

ternatively, if they are not linearly ordered, once could consider the strongest

logic that is weaker than all the rest to be logic proper.) For the inferences

in the stronger logics are only ‘valid’ under simplifying assumptions that are
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justified by relevant facts about the domain for which the stronger logic holds.

This, however, is the primary characteristic of non-deductive reasoning, that it

can always be considered deductive, once appropriate domain-specific premises

are added.

This version of pluralism, then, seems to collapse into monism in an im-

portant respect, since logic proper is really just the weakest logic. If, on the

other hand, a pluralist holds that there is no sense at all to be made of logic

proper, and that the appropriate logic for a domain is wholly relative and in-

dependent of all others, then the revision of logic becomes far from minimal.

For not only have classical principles of logic been revised, but the very nature

of logic as wholly general has been abandoned. Topic-neutrality would have

to be rejected outright, since logic would become by definition topic-specific.

The interpretation I offer for the formal system developed here provides

one possible way this tension might be reconciled. One feature that aids in

this is the restriction of truth-value gaps on the basis of logical complexity.

As this develops, it will be most naturally interpreted as underwriting some

form of logical atomism. This will be most evident in the condition that it is

only atomic propositions (and their negations) that admit of truth-value gaps.

This does not result from an ad-hoc specification in the semantics, but rather

from a rather simple and straightforward reading of the binary connectives. I

will say briefly, then, what I intend by ‘logical atomism’.

Considering only the works Russell and Wittgenstein, one can find a great

number of theses, different collections of which have at some time or other

been referred to as Logical Atomism. (Bradley 1992), for instance, outlines

fifteen distinct theses on which both Russell and Wittgenstein seem to agree.
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I will not rehearse them all here, but most important for present purposes is

the following from Russell:

Particulars have this peculiarity, among the sort of objects that

you have to take account of in an inventory of the world, that each

of them stands alone and is completely self-subsistent. It has the

sort of self-subsistence that used to belong to substance.. . . each

particular that there is in the world does not depend upon any

other particular. (1918, p.202)

As Russell gestures, this idea of the logical independence or distinctness of

simple particulars compares to some degree with Aristotle’s notion of sub-

stance. Armstrong also cites Hume for a similar idea as inspiration for his

Combinatorialism, discussed in Chapter 3:

This principle draws its inspiration from Hume’s principle that

there are no necessary connections between distinct existences.

Any two distinct existences may be found together, or found one

without the other, in a single world. (1989, p. 20)

A related thesis of atomism is, of course, that the world consists of atoms

of some sort or other. For Wittgenstein, this is expressed primarily in terms

of simple facts, and likewise, for the most part, for Russell. In Chapter 3 I

adopt the vocabulary of facts for purposes of expounding combinatorialism in

concert with the modal system GOMODAL. Generally, however, one can think

of atomism apart from the particular ontology, as what facts consist in are

simple particulars, which is perhaps more natural to think of as atoms.
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I take these two theses, that there are genuine atoms, and that they are

logically independent of each other, as a minimal version of logical atomism,

and it is this conception that will underwrite the formal system. Notably

absent from this, for present purposes, is the claim that this is the totality of

what the world consists in. I return to some of these issues in later chapters.

Chapter summary

The first Chapter focuses on the ‘atoms’ of perception, beginning with a de-

fense against arguments from later C. D. Broad, and ending with Barnes’s

argument that sense-data disobey LEM. Chapter 2 develops the propositional

system with remarks on formal features and their interpretation. The modal

system in Chapter 3 examines D. M. Armstrong’s atomist combinatorialism.

Chapter 4 presents a tableaux proof system and its adequacy results. Chapter

5 concludes with a survey of some outstanding issues as well as areas for future

research. This includes a discussion of an extended 4-valued system and its

application to ‘atomless’ metaphysical views.



Chapter 1

Remarks on Sense Data

1.1 Introduction

The two parts of this chapter each defend sense-data against a different argu-

ment. The first section defends against part of C.D. Broad’s (1952) argument

against direct apprehension accounts of perception. The second section takes

on the charge that sense-data must in some sense disobey the Law of Excluded

Middle.

Each of the arguments has the form of a reductio. Apart from questioning

a premise, a defense of a philosophical thesis against a reductio has at least

approaches available. One could argue that the alleged absurdum is not in

fact absurd, perhaps on the grounds that it does not entail a logical contradic-

tion. §1.2 takes this tack in examining C. D. Broad’s (1952) argument against

sense-data accounts of perception. I propose a way to block the argument

by accepting the putative absurdum that it is logically possible that one may

apprehend another’s dreaming sensations.

9



10 CHAPTER 1. REMARKS ON SENSE DATA

Another, more drastic, defense against a reductio embraces the putative

absurdum and accounts for its tenability by way of logical revision. §1.3 takes

this strategy in response to W. H. F. Barnes’s (1944) argument that sense

data, if they do exist, must disobey the Law of Excluded Middle. I propose

a minimal revision to classical logic that allows for such strange behavior for

atomic objects, while blocking the inference to a contradiction (in this context,

the failure of the Law of Non-contradiction).

Proposing a revision of logic to block a conclusion in many ways seems

a doomsday response which could easily be avoided by simply rejecting the

problematic theory it is intended to save. This may seem especially distasteful

in the service of an out-of-favor theory of perception like sense-data. For

even if Barnes’s argument is blocked, one might claim, there are many other

arguments more well-rehearsed that sense-data must overcome. And to be

sure, a full defense of sense-data is not forthcoming.

The case of sense-data, however, bears an interesting parallel to better

known arguments for logical revision. The truth-theoretic paradoxes, for in-

stance, have driven many to propose logical revision as a result of the trans-

parency of the truth predicate:

T⌜p⌝ iff p

Traditional realist theories that give an ‘act-object’ analysis of perception ap-

peal to a relation of direct acquaintance or apprehension. In sense-data, or

indirect realist, theories, this relation of direct apprehension provides a trans-

parency principle for appearance, similar to that for truth. The nature of per-
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ception, according to the indirect realist, puts us in direct acquaintance with

objects, such that we cannot be mistaken about appearances. This certainty

cannot, however, be of the nature of the things we ordinarily take ourselves to

perceive, for clearly the following principle of appearances is false:

A⌜Fα⌝⇒ Fα

The converse is surely false, too. Indeed, §1.2.1 examines Broad’s refutation

of a weaker version of this naïve direct realist principle:

A⌜Fα⌝⇒ ∃!α

Sense-data theorists, then, account for the certainty of apprehension in-

directly, as consisting in a correlation between an ordinary physical object’s

appearing F and something or other being F . This something or other is the

immediate object of perception and it bears some close relation with the phys-

ical object we take ourselves to perceive. At minimum this suggests something

akin to the following principle:

A⌜Fα⌝⇒ ∃yFy

Thus something appearing F implies, not that it is F , but that some immediate

object of perception is F . Further, there is a strong intuition that, given the

role sense-data are to play in a theory of perception, not only can we not be

mistaken about their positive features, but they also cannot have any positive

phenomenological features that we do not directly apprehend. Some accounts
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of sense-data, then, accept the bi-conditional

A⌜Fα⌝ iff ∃yFy

for some suitable restriction on F that only considers phenomenological prop-

erties. §1.3 examines these latter two principles and the potential resulting

paradoxes in light of Barnes’s argument that the first, weaker, principle en-

tails that sense-data violate the Law of Excluded Middle.

The result, if not an enduring defense of sense-data, is a connection be-

tween paradoxes resulting from semantic theories and those resulting from

metaphysical theories. Later chapters examine a similar parallel that might

be made with paradoxes from scientific theories. The broader approach, then,

is not necessarily to defend any particular theory, but to attempt to understand

what features these disparate motivations for logical revision might share, and

where they may differ.

1.2 Broad’s argument against sense data

Broad argues against prehensive accounts of the epistemological character of

perception. He has two arguments from dreams and hallucinations. The first

refutes the view that sense-perception consists in the prehension of physical

objects. The second argues against the view that sense-perception consists in

the prehension of sense-data.

There are two ways one might speak of the ‘character’ of perception. The

epistemological character accounts for the way in which our perception puts
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us in a relation with ordinary physical objects, such that we are able to gain

knowledge of those objects. It describes the cognitive process of perception

which puts us “in touch” with physical objects.

Just as the epistemological character of perception is the way in which

perception does connect us with physical objects, the phenomenological char-

acter is the way in which perception seems to so connect us with objects.

That is, the phenomenological character is how the epistemological character

is presented to us by experience, such that if the phenomenological character

of a given form of sense perception were accurate, it would be identical to its

epistemological character.

The question then becomes, Is the common-sense description of phenomeno-

logical character accurate? Is the phenomenological character of vision a good

guide to its epistemological character? Broad attacks two possible answers to

these questions. The first is the extreme view, which holds that phenomenolog-

ical character is a perfect guide to epistemological character. Visual experience

presents itself as the direct apprehension of objects, so, the extreme view says,

we must in fact directly apprehend objects. The second is the moderate view,

which holds that, although phenomenological character is not a perfect guide to

epistemological character, it is still some sort of a guide. We may be wrong to

infer from phenomenology that we are directly apprehending ordinary phys-

ical objects, but we are correct to infer that we are directly apprehending

something or other.
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1.2.1 Broad’s argument against the extreme view

The phenomenology of sense-perception seems to inform us that, when we

look at objects, we are directly apprehending (or prehending) them. Physical

objects leap out of the place they appear, such that we are directly aware

of them. Since the extreme view holds that phenomenological character is

a complete guide to epistemological character, the theory states that visual

perception is the direct prehension of objects. This view is the target of Broad’s

first argument. Whatever else it may hold, such a theory is committed to the

following:

(PRO) A form of sense-perception φ (e.g. see, hear, or touch) has the episte-

mological character of Prehension of Objects only if an external object’s

being at a certain place p at a certain time t is a necessary condition

for a person’s having an experience which he would naturally describe

as φ-ing an external object at p at t.

If visually perceiving is the direct prehension of ordinary physical objects, then

in order to be in such a prehension relation with an object at p at t, there must

be an object there and then with which to be in the relation.

There is a certain plausibility to this account with ordinary cases of veridi-

cal perception. When I veridically perceive a burrito in front of me at arms

length, it seems that I am directly and immediately apprehending—“grasping”

in some sense—the burrito. In this case the necessary condition stated in PRO

is satisfied.

Given, though, that dreams and hallucinations are phenomenologically in-
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distinguishable from waking sense-perception, there is a problem for this ac-

count.1 Broad writes:

There are certain experiences, viz., dreams and waking halluci-

nations, which exactly resemble normal waking sense-perceptions

in all their phenomenological characteristics (including that of be-

ing ostensibly prehensive of foreign bodies and external physical

events), but which are certainly not in fact prehensions of any

such objects. It seems most unlikely that experiences which ex-

actly resemble these in all their phenomenological characteristics,

as do normal waking sense perceptions, should be fundamentally

unlike them in their epistemological character.

...On the whole, then, I see nothing for it but to draw the fol-

lowing conclusion. Our waking experiences of seeing, hearing, and

touching are not, as they appear to us to be, prehensions of for-

eign bodies and physical events and of certain of their intrinsic

qualities.(Broad 1952, p. 41)

Broad’s argument against PRO from dreams and hallucinations seems to be

the following:
1Whether dreams are phenomenologically indistinguishable from waking sense perception

I will not debate here. Surely, just because I cannot know whether I am dreaming or waking
right now, it does not follow that dreams and waking perception are phenomenologically
indistinguishable, for this is perhaps merely an epistemological concern. Broad points out,
however, that just because we do distinguish between waking and dreaming we do not do so
“by noting dissimilarities in their phenomenological character. We do so by considering the
interrelations of experiences with the earlier and later experiences of the same person and
the contemporary experiences of others” (Broad 1952, p. 41). This is not clearly true, and
it is hard to imagine what evidence would count one way or the other, since it would require
a suitable criterion for phenomenological indistinguishability. But it does seem plausible to
assert that dreams definitely seem different.
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1. Dreams and waking hallucinations have the same phenomenological char-

acter as normal waking sense-perceptions. [Premise]

2. If dreams/hallucinations and normal waking perceptions have the same

phenomenological character, then they have the same epistemological

character. [Premise]

3. Thus, dreams and waking hallucinations have the same epistemological

character as normal waking sense-perceptions. [From (1) and (2)]

4. Suppose that waking sense-perception has the epistemological char-

acter PRO. [Reductio premise]

5. Thus, dreams and waking hallucinations must have the epistemo-

logical character PRO. [From (3) and (4)]

6. However, one can have an experience during a dream that one would

naturally describe as seeing an external object at some place and

time, while there is no external object there and then. [Premise]

7. Hence, the epistemological character of dreams is not PRO. This

contradicts (5). [From (5) and (6)]

8. Therefore, our supposition (4) is false. That is, waking sense-perception

does not have the epistemological character PRO. [From (4)-(7)]

Premise (1) is from the traditional assumption that dreams and hallucina-

tions are phenomenologically indistinguishable from waking sense-perception.

Premise (2) is an apparent commitment of the extreme view. If the extreme
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view infers epistemological character directly from phenomenological charac-

ter, then it seems one must be willing to apply the inference for all forms of

perception, waking or dreaming. (We will return to this in the next section.)

This leads us to contradiction: in dreaming perception we seem to perceive

objects when no objects are present (6), thus failing to meet the necessary

condition in PRO.

1.2.2 Broad’s argument against the moderate view

It seems we listened to our phenomenology too much: we do not directly pre-

hend physical objects. It does seem, however, that we are directly prehending

something. If it is not the ordinary objects of perception, there must be some

other kind of thing that we prehend, in virtue of which we perceive ordinary

objects. Since these sense data are not ‘ordinary’ objects, they must be some-

thing else. The moderate view, then, holds that, although phenomenology

may not tell us anything about what kinds of objects we are directly aware of,

we can still infer something about epistemological character from phenomeno-

logical character—namely, that the relation we are in is one of prehension.

Broad’s argues against the moderate view by examining what follows merely

from the existence of a prehension relation between a subject and a particular.

As before, we need only focus on a necessary condition for the moderate view:

(PRS) A form of sense-perception φ has the epistemological character of Pre-

hension of Sensa only if a person S φ-ing consists in (or involves) a

relation R—the target relation here being prehension—such that:

(a) There is some particular, x such that ⟨S,x⟩ ∈ R.
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(b) If ⟨S,x⟩ ∈ R, then it is logically possible that for some S∗ such that

S ≠ S∗, ⟨S∗, x⟩ ∈ R.

Broad outlines other constraints on R which fall out of its being a prehen-

sion relation, but it is only (b) that will concern this next argument. Note

that Broad is ultimately arguing that the epistemological character of sense-

perception does not consist in a prehension relation of any kind. The first

argument shows that the epistemological character of sense-perception is not

that of PRO. If the only other available option is PRS, and Broad successfully

refutes that, then he has shown that sense-perception does not consist in a

subject being in a prehension relation with a particular.

The argument against PRS follows a similar structure as before.

9. Dreams and hallucinations have the same phenomenological character as

waking sense-perceptions. [Premise]

10. If dreams/hallucinations and normal waking perceptions have the same

phenomenological character, then they have the same epistemological

character. [Premise]

11. Thus, dreams and waking hallucinations have the same epistemological

character as normal waking sense-perceptions. [From (9) and (10)]

12. Suppose that waking sense-perception has the epistemological char-

acter PRS. [Reductio premise]

13. Thus, dreams and waking hallucinations must have the epistemo-

logical character PRS. [From (11) and (12)]
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14. However, in the case of S dream-seeing, it is not logically possible

that some S∗ (such that S ≠ S∗) prehend the alleged particular of

S’s dream. [Premise]

15. Hence, the epistemological character of dreams is not PRS. This

contradicts (13). [From (13) and (14)]

16. Therefore, our supposition (12) is false, and so waking sense-perception

does not have the epistemological character PRS. [From (12)-(15)]

The form of this argument is similar to the previous one. Here I suggest that

the sense-data theorist can deny (14), and accept the logical possibility of

another person experiencing my dream sensing.

Broad takes this as absurd, but we should look more closely at the reasons

behind accepting premises (2) and (10). As the premises are stated they are

identical, but there are important differences in their respective justifications.

Premise (2) seems to be an application of a more general principle:

(EP) For all forms of sense-perception φ1 and φ2, if φ1 and φ2 have the same

phenomenological character, then φ1 and φ2 have the same epistemo-

logical character.

One may wonder why we should accept this. After all, Broad is claiming that

the phenomenological character of sense-perception (viz. sight) is not a good

guide to its epistemological character. If this is so, why think that two forms

of sense-perception (or two modes of one form) which share phenomenological

character will share epistemological character? If length is not a good guide to

its width, then there is no reason to think that two things of the same length

will have the same width.



20 CHAPTER 1. REMARKS ON SENSE DATA

Since Broad recognizes that (EP) is false, in order for his argument to go

through, he will have to commit his opponents to it. He might be able to do

so for the proponents of (PRO).2 In the case of sight, the reason for thinking

it consists in (or at least involves) the direct prehension of physical objects is

simply that its phenomenological character seems to do just so. If this is the

only phenomenological reason to think sight obeys (PRO), then it would seem

to commit the proponents of (PRO) to (EP) and thus to (2).

But the commitments of proponents of (PRS) are not as straightforward.

Note that an even more general principle Broad is challenging is:

(G) For all forms of sense-perception φ and all characters δ, if φ has phe-

nomenological character δ, then φ has epistemological character δ.

This implies (EP). However, as Broad points out, proponents of (PRS) (i.e.

sense-data theorists) do not wholly accept (G). He acknowledges that, to the

extent that philosophers saw the inadequacy of (PRO), “they felt obliged to

hold that the phenomenological character of [sense-experiences] is a misleading

guide to their epistemological character” (42). It is clear, then, that proponents

of (PRS) do not accept (G) outright. So, the sense-data theorists reject that

the epistemological character of a given form of sense-perception is exactly like

its phenomenological character. It is left to explain, however, whence comes

the commitment to sense-data.

Though phenomenological character may not be a perfect guide to episte-

mological character, the moderate view maintains that it is at least some such

2Note, he may not need do this for refuting (PRO). He has a simpler argument against
(PRO): we see objects in mirrors when none is present, and we see stars that are not there.
Here we are concerned only with defending the argument from dreams and hallucinations.
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guide. Phenomenology may deceive us as to exactly what kind of objects we are

prehending, but it does inform us that we are prehending something or other.

It seems the sense-data theorist accepts, then, that if the phenomenological

character of sight is that of prehension of something, then the epistemolog-

ical character of sight is that of prehension of something. We see here the

commitment to the following principle:

(SR) For all φ, if φ has the phenomenological character of a relation R to some

kind of object X, then φ has the epistemological character of relation R

to some kind of object Y .

Note that, importantly, X need not be identical to Y . In fact, as the argument

against (PRO) shows, X cannot be the same kind of thing as Y .

The sense-data theorist thus accepts (10) insofar as it follows from (SR).

Perhaps, then, the following is a better formulation:

10′. If the phenomenological character of dreams/hallucinations and waking

sense-perception both consist in relation R, then the epistemological

character of dreams/hallucinations and waking sense-perception both

consist in relation R.

The important point here is this: Just as the sense-data theorist maintains

that seeming to prehend a certain kind of object (i.e. a physical object) is

no guide to what kind of objects we actually prehend (i.e. sense-data), he

can also consistently maintain that the kind of objects we actually prehend

in waking sense-perception is no guide to what kind of objects we prehend in

dream sense-perception.
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This returns us to constraint (b) in (PRS). Russell, Moore, and here Broad,

are careful to emphasize this constraint on waking sense-data. But one won-

ders, Why think it is logically possible, in the case of waking sense-data, that

someone else could have prehended the very same sense-data that I prehend?

One fairly straightforward answer is that the relation of prehension is a relation

between a subject and a non-identical particular, and for any such relation,

it is logically possible that each of the relata be in the same relation with a

distinct relatum.

This suggests one of several reasons for the possibility of prehending an-

other’s waking sense-data. Moore, for instance, writes:

I think, then, that the term ‘sensation’ is liable to be misleading,

because it may be used in two different senses, which it is very

important to distinguish from one another. It may be used either

for the colour which I saw or for the experience which consisted in

my seeing it. And it is, I think very important, for several reasons,

to distinguish these two things. In the first place, it is, I think,

quite conceivable (I do not say it is actually true) but conceivable

that the patch of colour which I saw may have continued to exist

after I saw it: whereas, of course, when I ceased to see it, my seeing

of it ceased to exist (1953, p. 31).

Russell distinguishes between sensibilia and sense-data, the latter being sensi-

bilia that are apprehended. He writes:

We cannot ask, ‘Can sense-data exist without being given?’ for

that is like asking, ‘Can husbands exist without being married?’. . . Unless
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we have the word sensibile as well as the word ‘sense-datum’, such

questions are apt to entangle us in trivial logical puzzles.

It will be seen that all sense-data are sensibilia. It is a metaphysical

question whether all sensibilia are sense-data, and an epistemologi-

cal question whether there exist means of inferring sensibilia which

are not data from those that are (Russell 1917, pp. 110-11).

Perhaps we should treat this constraint as sufficient for logical possibility as

required by (b):

(L) For all x and y, xRy where x ≠ y, only if it is logically possible that there

is some z such that zRy where x ≠ z.

It is hard to know exactly what Broad thought logical possibility amounts

to, so I will suggest constraints that give a fairly broad conception of logical

possibility.

With the development of non-standard logics, the question is no longer

clearly whether something is logically possible simpliciter, but whether it is

logically possible according to a certain logic. Or, if one thinks of possibility

as governed by logical laws, we must consider which logic the laws of which

we should inspect. For a logical monist who thinks there is one “true logic,”

this is tantamount to asking what the real logical laws are.

However, even if it is clear which logic to choose, formulating a criterion of

logical possibility is not straightforward. In classical propositional logic, our

resources are scarce. The obvious candidate there is to define possibility as

truth in some model, and necessity as truth in all models. Here any sentence
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but the negation of a logical truth will be possible. Perhaps this is all that

logical possibility amounts to. On this account we have limited ability to

express inferences with respect to possibility in the object language. But if this

is all that is meant by logical possibility, then since (14) is not straightforwardly

a denial of a classical logical truth, it follows that accepting (14) brings no

contradiction.

If one takes standard Kripke modal logic (e.g. S5) to in some sense model

logical possibility, things are perhaps less clear. It may be unproblematic

on this account to talk of valid inferences with respect to possibility, but to

formulate a criterion of logical possibility requires filling in the schema:

(S) p is logically possible iff . . .

Note that (L) can be formulated several ways, including:

(L∗) ∀x∀y((xRy ∧ x ≠ y) ⊃ 3∃z(zRy ∧ z ≠ x))

and an inferential reading:

(L∗∗) ∃x∃y(xRy ∧ x ≠ y) ⊢ ∃x∃y((xRy ∧ x ≠ y) ∧3∃z(zRy ∧ x ≠ z))

Under the assumption that S5 or a similar logic correctly models logical possi-

bility, there are several options available for filling in (S). We can talk of truth

in some model, truth in all models, or perhaps truth in the correct model. The

first two options seem not to give us what we want. If we adopt S5 as our

paradigm, and define logical possibility in terms of truth in some model, we

get the following:

(S1) p is logically possible iff 3p is true at w0 in some model.
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Here the only logical impossibilities are the negations of classical logical truths

with a few additions, such as 2¬A ∧2A. Similarly, if we opt for

(S2) p is logically possible iff 3p is true at w0 in all models.

the only logical possibilities are the logical necessities. Clearly, neither option

lends much support to (14). The last seems to be our best candidate. Thus:

(S3) p is logically possible iff 3p is true at w0 in the correct model of the

universe.

This is of course contentious for anyone who believes that the ‘models’ at issue

cannot completely represent the universe. But under the assumption that

S5 correctly models logical possibility, it seems the most eligible candidate

for a criterion. Of course, in order to argue that a given claim is or is not

logically possible, it is hard to see how one can make non-question begging

assumptions about the correct model. Here our target p, without any further

constraints, comes out contingent, i.e. (L∗) is true at w0 in some models

but not in others, and (L∗∗) comes out invalid, but the set consisting of the

premise and conclusion is satisfiable. Plausibly, though, if we are looking for

the correct model, we are not looking at validity across all models, but truth in

the model—and thus not truth in all or merely some models. However, putting

the requisite constraints on the model (i.e. picking out a set of candidate

models) such that a form of (L) comes out true will only serve to beg the

question.

But to get a hold on the dialectic, consider that Broad takes (14) to be an

absurdum for the sense-data theorist. Though we have not shown the truth
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of (14), it is hard to see how we should be convinced to find an absurdum

therein.

We can, however, rule out reasons for accepting (14) relating to consid-

erations about R. One can perfectly well say that during dreams one is in

a prehension relation with some particular or other for which it is logically

possible that someone else be in a prehension relation to that same particular.

To see what this is asserting, consider what it does not assert. The following

two considerations are not reasons for asserting (14):

(i) Waking sense-data are causally dependent on physical objects, whereas

dreaming sense-data are not.

(ii) Though waking sense-data may be existentially dependent on there be-

ing some mind or other that prehends them, they are not existentially

dependent on a particular mind, as they are in the case of dreaming

sense-data.

(i) is irrelevant to the consideration of (b). As Broad notes, the point here

is not about causal or nomological possibility, but logical possibility. More

importantly, given what (10′) asserts, there is no reason to hold that the nature

of waking sense-data tells us anything whatever about the nature of dreaming

sense-data. Thus, it seems that (ii) —or any similar consideration—gives us

no reason to deny that it is logically possible for one to prehend another’s

dreaming sense-data.

We might be drawn to believe (14) because it must be the very nature

of these supposed dream sense-data that they are private and they belong

essentially to the particular dreamer. But we have shown that the moderate
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view can hold that dream sense-data are essentially private, while still holding

that it is logically possible that another prehend one’s dream sense-data. The

sense of logical possibility at issue here is the absence of logical contradiction.

It is no problem to coherently think about or model any subject prehending

a particular. And this point is all that the sense data theorists like Moore

and Russell need. It remains open at this point to talk about the natures

of these particulars and whether their natural features preclude in any more

narrow sense prehension by others. The sense-data theorist can make the

requisite inferences from phenomenology without commitment to a particular

conception of the nature of these particulars, nor to there being only one such

nature. For the inferences drawn from phenomenology only tell us about the

nature of the relation constitutive of perception, but not about the natures of

the relata.

1.3 Sense data and LEM

In this section, we are faced with another argument that seems to be a reductio

against sense-data theory. The absurdum in this case is that, if sense-data do

exist, they disobey the Law of Excluded Middle (herein, LEM). I will examine

several things one might say in response to the argument. The argument is in

several ways unclear, and I will look at several possible clarifications. However,

it will seem that none of the responses conclusively block the argument. Thus,

I will embrace the putative absurdum, and accept the conclusion that sense-

data disobey (in some sense) LEM.
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1.3.1 Barnes’s argument

W. H. F. Barnes (1944) raises several objections to sense-data theories. I

would like to focus on just one particular argument, which charges sense-data

(if they exist) with disobeying the LEM. Barnes writes:

If I contemplate an object at some distance, it often happens that

I am uncertain whether it is circular or polygonal. It is necessary

for me to approach close before I can determine the matter with

certainty. On the [sense-data] theory, the mode in which the object

appeared to me at first is a sensum, every sensum is what it appears

to be. Now this sensum appears neither circular nor non-circular.

Therefore it is neither circular nor non-circular. (1944: 145)

Barnes’s argument seems to be the following:

i. If a sense-datum appears F, then it is F.

ii. Sense-datum s appears neither circular nor non-circular.

iii. Therefore, s is neither circular nor non-circular.

If this argument is successful, it seems to show that sense-data in some disobey

the Law of Excluded Middle. Barnes apparently takes this to be a reductio of

sense-data theories that accept some form of (i). Indeed this would commit the

sense-data theorist to some peculiarly behaving entities. However, I intend to

show that it need not follow from (iii) that sense-data theories are incoherent.

The first premise is the assumption of incorrigibility from the target sense-

data theories. The relation of apprehension is such that I cannot be mistaken



1.3. SENSE DATA AND LEM 29

about features of my own sense-data of which I am aware. The second premise

comes from Barnes’s proposed example of an object that appears neither to

have nor lack a certain feature.

There are few initial ways one might respond to the argument. One could

(a) deny across the board the occurrence of phenomena of the type Barnes

proposes, thus denying that (ii) is ever true, (b) question the inference to (iii),

or (c) embrace the conclusion. Though I will ultimately go for (c), let us first

consider (a) and (b).

One possible objection to make is to question the scope of ‘appears’ in (ii).

Is it the case that an object determinately appears a certain way, where that

way is neither circular nor non-circular? Or, is it rather that the object does

not determinately appear to be circular nor determinately appear to be non-

circular? I am not sure how to gather evidence for the truth of one reading

over the other, but Barnes insists that an instance of a sense-datum appearing

neither F nor non-F , as (ii) intends to pick out, is not merely a case of an

object failing to appear a certain way.

At this point, however, it is unclear how to take (ii). From the form of the

argument, it seems that ‘neither circular nor non-circular’ must be a property

that s positively appears to have, in order to detach (i), thus:

F : is neither circular nor non-circular

Now, it would be fine (for the purposes of detaching (i)) if F were a conjunctive

property, for instance:

G: is non-circular
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H: is non-non-circular

F∗: is G and H

In which case we would restate (ii):

ii′. s appears non-circular and s appears non-non circular.

However, F∗ seems to be more like a “contradictory” property, and not some

sort of “gappy” property. But if we take (ii) like the following:

ii′′. s does not appear circular and s does not appear non-circular.

then the argument as stated does not go through. In order for (ii′′) to work,

we would need to read (i) as:

i′. A sensum appears F iff it is F.

This would amount to claiming that sense-data are all and only what they

appear to be. Broad (1927) and others argue against this principle, though,

and it does not seem that Barnes is assuming it. As the argument is stated,

it is unclear how to take (ii) with respect to F . (ii′) does not seem to get us

(iii), but instead to something like:

iii′. s is both non-circular and non-non-circular.

And (ii′′) requires (i′) and not merely (i) in order to get to (iii).

One might conclude that this argument trades on some confusion. But if

so, it is difficult to precisely locate. Instead one might accept (iii) and take it

that it expresses a failure of sense-data to obey LEM.
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Although Barnes’s argument serves as the initial motivation for the logic,

there are other possible applications as well. With respect to sense-data, one

might treat such phenomena as the waterfall illusion with truth-value gaps.

Further, Putnam (1957) noted that quantum physics might require a gappy

logic that rejects LEM. The target logic would allow for such a model that

keeps the gaps at the quantum level. We will discuss many of these issues in

subsequent chapters.

1.3.2 LEM and LNC

There are several ways to formulate LEM and LNC precisely. Broadly speak-

ing, LEM states that every sentence3 is either true or false, and LNC states

that no sentence is both true and false. One might, for instance, distinguish

between not accepting LEM and denying it. Formally, this might involve intro-

ducing two types of negation. Or one might formulate the laws using modal

operators. For our purposes, however, it will suffice to forgo such distinctions,

and formulate the two laws in strong form:

(LEM) B ⊩ A ∨ ¬A

(LNC) A,¬A ⊩ B

(LNC*) B ⊩ ¬(A ∧ ¬A)

Note that in classical propositional logic, the following inference is valid:

¬(A ∨ ¬A) ⊩ A ∧ ¬A
3I use the term ‘sentence’ here and throughout to refer to a meaningful, declarative

sentence.
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Thus, to deny LEM is to deny LNC.4 This is just an instance of DeMorgan.

Note, many standard gappy logics, including Kleene, maintain the above in-

ference. The aim, then, is to develop a logic that does two things. First, it

blocks this inference, and second, it allows for failures of LEM.

When discussing our general idea of a triangle—i.e. our idea of a triangle in

general, not specifically a right triangle, equilateral triangle, scalene, or other

specific kind of triangle—Locke writes:

... Does it not require some pains and skill to form the general Idea

of a Triangle, (which is yet none of the most abstract, comprehen-

sive, and difficult,) for it must be neither Oblique, nor Rectangle,

neither Equilateral, Equicrural, nor Scalenon; but all and none of

these at once. (IV.VII.9 p. 596)

Locke does make the inference from our general idea of a triangle being none

of these, to it being all of them. But why make this inference? Barnes tries to

show that sense-data are deficient in a certain way—they are gappy. Why think

because of this that they are deficient in some other way—e.g. contradictory?

Now, there are other phenomenon that might lead one to believe that sense-

data are contradictory (e.g. waterfall illusion). But these, I think, are different

concerns, and depending on one’s specific theory of sense-data, one could have

explanations for these contradictory phenomena, independent of accepting the

‘gappy’ phenomena. My point is that we should not let Barnes’s argument

show that sense-data are contradictory.

4By ‘deny’ here I mean ‘assert the negation of’, and, in turn, that to deny LEM is to
assert something equivalent to the denial on LNC.
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1.3.3 Resulting Motivation

The resulting picture is as follows. Let us suppose that our language is, by

and large, classical. That is, our language is, for the most part, modeled

correctly by classical logic. Many of the inferences we think are valid are the

classical inferences. In fact, our language might be completely classical, if it

were not for certain misbehaved objects. That is, let us further suppose that

there are these ill-mannered objects that in some sense ‘disobey’ the LEM.

As a result certain atomic sentences about those objects—and likewise their

negations—are neither true nor false.

But it is nothing about our language per se that makes this the case. That

is, we have, suppose, no reason to think that every sentence whatsoever could

be gappy. It is just these deficient ‘gappy’ objects. Other than that, as before,

our language is ‘classical’. In other words, let us suppose that we do not think

that we have some special semantic predicate or funny sort of negation—both

of which would be features of an essentially non-classical language—that is

designed specifically to handle these cases. The next chapter develops the

logic.



Chapter 2

GO: A Basic Picture

In this chapter I present the propositional system GO, a three-valued gappy

logic that restricts the assignment of gaps to literals.1 The logic results from

combining a familiar treatment of three-valued negation with a less-famliar

treatment of conjunction and disjunction. The result has a natural inter-

pretation as an atomistic logic, i.e. one that assumes some form of Logical

Atomism.

§1 covers some brief background of many-valued logics. §2 gives an informal

sketch of the basic GO semantics. §3 highlights features of the formal system,

and §4 covers the philosophical interpretation.

1Literals are typically defined as atomic or negated atomic sentences. Here we also mean
an atomic parameter preceded by any number of negation signs, such that ¬¬p, ¬¬¬p, and
so forth, are treated as literals.

34
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2.1 Background

This section briefly reviews a few logical systems relevant to the current dis-

cussion. The reader quite familiar with many-valued logics may wish to skip

ahead to §2.

2.1.1 Classical Logic

Today’s standard system of classical propositional logic (herein CPL) comes

from Frege and has been refined over decades by many others. The recognition

of CPL as the standard is a relatively recent development, however, as for cen-

turies the standard was Aristotle’s syllogistic logic, and there are good reasons

for believing that it conflicts with CPL in a few, yet significant ways.2 Other

reasons abound for restricting (or expanding, depending on one’s viewpoint)

CPL, and they are well-rehearsed in the recent literature, and so we will not

survey them here.3

A familiar presentation of CPL begins by recursively defining a set of sen-

tence elements, which includes a base of atomic elements {p, q, r, . . .} as well

as all possible combinations built in the usual way from a set of connectives

{¬,∧,∨}, standing for negation, conjunction and disjunction, respectively.4

Logical consequence is then defined in terms of models, or valuation functions

ν that assign each sentence a single value, 1 or 0. A conclusion A is a log-

ical consequence of premises B0, . . . ,Bn iff for every valuation where each of

2See for instance (Łukasiewicz 1957) and (Corcoran 1972).
3For a useful survey, see (Rescher 1969) and (Beall and van Fraassen 2003).
4For present purposes, we take both ∧ and ∨ as primitive, disregarding redundancy.
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ν(B0), . . . , ν(Bn) is 1, it is also the case that ν(A) = 1. Our valuations are

restricted to those that accord with the following diagrams:

¬
0 1
1 0

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

Two additional connectives, the material conditional ⊃ and material equiva-

lence ≡ are defined, where A ⊃ B abbreviates ¬A ∨B, and A ≡ B abbreviates

(A ⊃ B) ∧ (B ⊃ A).

2.1.2 Many-valued logics

A many-valued logic, somewhat confusingly, is one that has more than two

values. Here we consider systems that have exactly three values, {0, 1∕2,1}.

Expanding the set of values naturally requires modifications in other parts

of the system. In some cases this includes modifying the definition of logical

consequence. In paraconsistent logics, which may countenance true contradic-

tions (A∧¬A), the intermediate value functions as an additional way of being

true. A typical strategy for this is to define logical consequence in terms of

a set D of designated values, where an argument is valid iff every valuation

that assigns each of the premises some value in D, also assigns the conclusion

a value in D. Thus in CPL, D={1}, and in the Logic of Paradox (Priest 1979),

LP, D={1∕2,1}. In this system, the value 1∕2 can be thought of as both true and

false, and a sentence receiving this value is said to be glutty.

The current discussion, on the other hand, focuses on systems that treat

1∕2 as in some sense neither true nor false. A sentence receiving the value 1∕2 is
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said to be gappy, the idea being that it falls within a gap between truth and

falsity. Precisely what this amounts to depends on the particular philosophical

issue for which the system is used. The label ‘indeterminate’ is common,

which in some cases means ‘unprovable’, and in others something a bit more

metaphysical. We return to these issues in §4. The upshot in any case is that,

as in classical logic, D={1}, and so our set of undesignated values is {0, 1∕2}. As

a result, for present purposes, we need not alter our CPL definition of logical

consequence.

It remains to say how the connectives behave with respect to this new value.

Naturally, there are several different ways one might go, although some are no

doubt more interesting than others. A review of all these ways is too large a

task, but we will have a brief look at some systems of Kleene, Łukasiewicz and

Bochvar.

Kleene

The Strong Kleene system (herein K3) treats the connectives in the following

way:

¬
0 1
1∕2 1∕2
1 0

∨ 0 1∕2 1
0 0 1∕2 1
1∕2 1∕2 1∕2 1
1 1 1 1

∧ 0 1∕2 1
0 0 0 0
1∕2 0 1∕2 1∕2
1 0 1∕2 1

With respect to the classical values 1 and 0, the connectives preserve their

treatment in CPL. What of the value 1∕2? Negation behaves similar to the

intuitionistic mode. Intuitively, if a sentence is gappy, so too is its negation.

The tables for ∧ and ∨ also have somewhat intuitive readings. Here we can
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think of a conjunction as true just when both conjuncts are true, false when one

or more conjuncts is false, and gappy in all other cases. Likewise, a disjunction

is true just when one or more disjuncts is true, false when both disjuncts are

false, and gappy in all other cases. (Incidentally, it is worth noting that LP is

the glutty dual of K3, having the same readings of the connectives but treating

1∕2 as designated.)

The Weak Kleene system keeps ¬ the same (likewise for all systems dis-

cussed herein, including GO), but treats the binary connectives differently:

∨ 0 1∕2 1
0 0 1∕2 1
1∕2 1∕2 1∕2 1∕2
1 1 1∕2 1

∧ 0 1∕2 1
0 0 1∕2 0
1∕2 1∕2 1∕2 1∕2
1 0 1∕2 1

With the interpretation of 1∕2 as meaningless, the thought here is that any

statement built from one or more meaningless statements is itself meaningless.

(Or, as the saying goes, one bit of rat’s dung spoils the soup.)

Consider now the valuation that assigns each atomic element the value 1∕2.

In the Kleene systems, the tables show that this valuation must also assign the

value 1∕2 to every sentence element whatsoever. As a result, though there are

certainly valid arguments, there are no tautologies—or logical truths—in these

systems. Consequently, it is often remarked that the Kleene systems lack a

genuine conditional, since Identity (‘if A then A’) and Equivalence (‘A iff A’)

fail as logical truths, not only for ⊃ and ≡, but for any definable connective.
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Łukasiewicz

The Łukasiewicz three-valued system Ł3 preserves the tables for K3, but has

an additional connective → intended as an adequate conditional, one for which

identity and equivalence hold:5

→ 0 1∕2 1
0 1 1 1
1∕2 1∕2 1 1
1 0 1∕2 1

Intuitively, if the consequent is at least as strong as the antecedent, a con-

ditional is true (thinking of 1∕2 as “in between” true and false). Otherwise,

the ‘value’ of the conditional corresponds to the how much ‘stronger’ the an-

tecedent is than the consequent.

Bochvar

Lastly, we consider the system of D. A. Bochvar (1937). Bochvar’s so-called

‘internal’ system B3 is equivalent to Weak Kleene, while the full system BE
3

includes an additional ‘assertion operator’ »with the following table:

»
0 0
1∕2 0
1 1

In turn, BE
3 defines ‘external’ versions of the binary connectives:

5The Ł3 → connective is not definable in terms of ¬, ∧ and ∨. However, Łukasiewicz took
the connectives ¬ and → as the only primitives, and defined ∧ and ∨ from them.
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¬. A ∶= ¬ »A
A /B ∶= »A ∨ »B
A .B ∶= »A ∧ »B

The GO system developed here bears a close relation to BE
3 , which we will

explore in more detail in later sections. It is worth remarking, though, that

these external connectives are in a clear sense fully classical, and thus the BE
3

logical consequence relation contains CPL logical consequence as a fragment.

2.2 GO semantics

Common to these systems is the preservation of CPL’s treatment of the con-

nectives with respect to the classical values. In fact, it is widely assumed that

this is a requirement for any ‘acceptable’ deviation from CPL, insofar as one

construes the values of the system as truth-values. It is evident, however, that

this requirement underdetermines the behavior of many-valued systems with

respect to the intermediate value.

It is therefore natural to consider the connectives of each of the above sys-

tems as faithful expansions of their classical counterparts. Their philosophical

legitimacy, so to speak, is sufficiently grounded in the pre-theoretical plausi-

bility of the respective truth tables for each connective. This is perhaps most

clear when a more or less precise reading is given to the intermediate value,

although a precise reading is not in general necessary.

Taking the standard treatment of three-valued negation, an intuitive read-

ing of the GO connectives also holds true for the CPL connectives. A con-

junction is true just when both conjuncts are true, otherwise it is false, and a
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disjunction is true just when at least one disjunct is true, and false otherwise.

This reading gives the following tables:

¬
0 1
1∕2 1∕2
1 0

∧ 0 1∕2 1
0 0 0 0
1∕2 0 0 0
1 0 0 1

∨ 0 1∕2 1
0 0 0 1
1∕2 0 0 1
1 1 1 1

It is fitting that an intuitive reading of the connectives can easily be given,

especially for an alternative logic with an eye toward a ‘conservative’ deviation

from CPL. The system’s main significance, however, comes from its charac-

teristic features and their philosophical interpretation, which we review in §3

and §4, respectively.

As above, logical consequence is defined in the usual way, where A is a log-

ical consequence of B1, . . . ,Bn iff all valuations that assign each of B1, . . . ,Bn

value 1 assign A value 1.

Notation. We write B ⊢ A for ‘A is a logical consequence of B’ and B ⊬ A

when A is not a consequence of B. Tautologies are either explicitly indicated

as such, or written as a consequence of an arbitrary sentence, for example

B ⊢ A→ A.

2.2.1 Alternative semantics

A mathematically concise way to give the semantics, which will be useful for

subsequent chapters, makes use of the following two arithmetic functions:

g(x) = min{x,1 − x}

c(x) = x − g(x)
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Note that, with respect to the three values {0, 1∕2,1} the function g returns 0

for the classical values, which gives the latter function c the following behavior:

c (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if x = 1

0 otherwise.

One might call this a ‘classical cruncher,’ since its output is always a classical

value. For the connectives, our valuation function ν behaves as follows:

» Negation. ν(¬A) = 1 − ν(A)

» Conjunction. ν(A ∧B) = min{c(ν(A)), c(ν(B))}

» Disjunction. ν(A ∨B) = max{c(ν(A)), c(ν(B))}

This version of the semantics allows for convenient symmetry in giving the

semantics of the modal connectives in Chapter 3. It is also useful for the

discussion on expanding the set of values for GO in Chapter 5. It is unnecessary,

however, to see it as anything more than mathematical convenience, since the

truth tables for the connectives invite independently plausible readings.

2.3 Logical features

This section highlights some aspects of the GO system. We return to the

philosophical interpretation in §4.
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2.3.1 Characteristic Inferences

One can see that any counterexamples in GO to a CPL validity will be valua-

tions involving the value 1∕2. Among these, of course, is the failure of LEM:

B ⊬ A ∨ ¬A

A contrast between GO and the other systems canvassed above is that coun-

terexamples to this tautology assign A∨¬A the value 0 as opposed to 1∕2. This

generalizes to any failure of a classical tautology in GO, since every CPL tau-

tology involves either ∨ or ∧ (or connectives defined from these). Of course,

this does not hold true of failures of CPL validities in general, for example:

¬(A ∨B) ⊬ ¬A

For this fails exactly when the conclusion is gappy. This in turn shows that

some classical DeMorgan inferences must also fail.

¬(A ∨B) ⊬ ¬A ∧ ¬B

¬(A ∧B) ⊬ ¬A ∨ ¬B

But the other direction of the DeMorgan inferences do hold:

¬A ∨ ¬B ⊢ ¬(A ∧B)

¬A ∧ ¬B ⊢ ¬(A ∨B)
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The failure of some DeMorgan inferences is precisely what is in order for

a strong separation between LEM and LNC. We can see this independence in

several ways. Most apparent is that a contradiction of the form A ∧ ¬A never

receives value 1, and in light of the above, it uniformly assumes value 0. A

result is that the negation of a contradiction is a tautology.

B ⊢ ¬(A ∧ ¬A)

Consequently Explosion, or Ex Falso Quodlibet, holds.

A ∧ ¬A ⊢ B

The failure of one direction of DeMorgan, however, allows one to negate a case

of excluded middle without inferring a failure of LNC. Hence:

¬(A ∨ ¬A) ⊬ A ∧ ¬A

This occurs because valuations where A is gappy must assign A ∨ ¬A value 0,

and hence the premise is satisfiable.

Thus we see that, in cases where A is gappy, ν(A) ≠ ν(A ∨A). Similarly

for the case of conjunction, since ν(A ∨A) = ν(A ∧A). We might be tempted

to consider these inequalities a failure of an important substitution principle.

Here, though, one must be somewhat careful. It is true that there are models

where A and A ∧A do not receive the same value. However, there is a sense

in which each can be substituted for the other salva veritate, since the result

of any such substitution into a true sentence will never be untrue, and vice
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versa. Furthermore, the following principles hold:

A ⊢ A ∧A and A ∧A ⊢ A

B ⊢ A iff B ⊢ A ∧A

Hence A and A∧A can be substituted for each other salva validate. Similarly

for A ∨A (mutatis mutandis).

Material connectives

We define the standard material connectives:

A ⊃ B ∶= ¬A ∨B

A ≡ B ∶= (A ⊃ B) ∧ (B ⊃ A)

These connectives behave according to the following tables:

⊃ 0 1∕2 1
0 1 1 1
1∕2 0 0 1
1 0 0 1

≡ 0 1∕2 1
0 1 0 0
1∕2 0 0 0
1 0 0 1

Many classical inferences hold for the material conditional, for instance:

Modus Ponens. A,A ⊃ B ⊢ B

Modus Tollens. ¬B,A ⊃ B ⊢ ¬A

Contraction. A ⊃ (A ⊃ B) ⊢ A ⊃ B

Contraposition. A ⊃ B ⊢ ¬B ⊃ ¬A

We have neither Material Identity nor Material Equivalence.
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B ⊬ A ⊃ A

B ⊬ A ≡ A

This is no surprise, since ⊃ merely abbreviates a disjunction. We define a more

adequate conditional, where Identity and Equivalence hold, in §2.3.2.

‘Restricted’ classical inferences

Note that, although LEM does not hold generally, we do have

C ⊢ (A ∨B) ∨ ¬(A ∨B)

of which the following is an instance:

B ⊢ (A ∨A) ∨ ¬(A ∨A)

The idea here is that, since determinacy arises at a certain level of complexity,

one would expect classical ‘behavior’ to emerge at some level. Indeed, this

is given a general treatment in a later section, but it is useful to see the

unabbreviate forms of some inferences. Note that the following also holds:

B ⊢ ¬(A ∨A) ∨A

But not this:

B ⊬ (A ∨A) ∨ ¬A
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This occurs despite the validity of communtation, association, idempotence

and distribution.

With respect to the failures of DeMorgan, one can formulate the following

restricted versions:

¬((A ∨B) ∨ (C ∨D)) ⊢ ¬(A ∨B) ∧ ¬(C ∨D)

¬((A ∨B) ∧ (C ∨D)) ⊢ ¬(A ∨B) ∨ ¬(C ∨D)

Equivalently, one can replace the first and third occurences of ∨ with ∧ in each

premise and conclusion above salva validate.

Material Identity and Equivalence have the following restricted forms:

Restricted Identity. B ⊢ (A ∧A) ⊃ A

Restricted Equivalence. B ⊢ (A ∧A) ≡ (A ∧A)

These restricted versions of classical inferences illustrate the basis of the inter-

pretation of GO as distinctively atomistic. We return to this in a §2.4.3. They

also reflect the idea that determinacy, and thus classicality, result as a matter

of form at a level of complexity, which is discussed in §2.3.3.

2.3.2 Expressibility

We have already seen a definable predicate for a strong notion of truth, or

‘determinate truth’.

TA ∶= A ∧A

That is, when A is false or gappy, TA is false. We get from this so-called

Release (TA ⊢ A) and Capture (A ⊢ T).
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From this we can see that ∨ and ∧ are interdefinable, along the following

lines:

A ∨B ∶= ¬(¬TA ∧ ¬TB)

Furthermore, we can define a connective expressing a ‘gap’ operator:

¯ A ∶= ¬(A ∨ ¬A)

The expressibility of these operators shows that GO is expressively complete

with respect to the values {1,0}. That is, every operator represented by a truth

table consisting of any combination of only classical values is expressible in GO

through a definable connective. This is not difficult to see, given that we have

defined unary connectives whose respective operators evaluate to 1 for each

respective value, and in turn the operator for ¬ returns 0 for 1. We should not

concern ourselves here with the technicalities of a rigorous proof of this, but

an illustrative sketch for binary operators is perhaps helpful. For this, we can

label the positions on a truth table for a binary connective as follows:

0 1∕2 1
0 a b c
1∕2 d e f
1 g h i

Let TableX be the truth table (operator) with value 1 at all positions in X,

and 0 everywhere else. In turn, we define the following array of connectives

corresponding to each position on the truth table.
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A}a B ∶= ¬A ∧ ¬B
A}d B ∶= ¯ A ∧ ¬B
A}g B ∶= A ∧ ¬B

A}b B ∶= ¬A ∧ ¯ B
A}e B ∶= ¯ A ∧ ¯ B
A}h B ∶= A ∧ ¯ B

A}c B ∶= ¬A ∧B
A}f B ∶= ¯ A ∧B
A}i B ∶= A ∧B

We can see that each connective }x expresses Table{x}. Let Y be the set of

table positions {a, . . . , i}. Hence {TableX ∣X ⊆ Y } is the set of all possible

truth tables containing only 1s and 0s. We can express Table∅ (the all-0 table)

with A ∧ ¬A. Now if a sentence form A expresses Tableα and B expresses

Tableβ, then given the semantics of disjunction, A ∨ B expresses Table{α,β}.

Hence by induction we can express every Tablex such that x ∈ Y .

Conditional

Given the above, it is easy to see that we can define a conditional connective

→ as follows.

» A→ B ∶= (A ⊃ B) ∨ ( ¯ A ∧ ¯ B)

» A↔ B ∶= (A→ B) ∧ (B → A)

The connective → is defined in terms of a disjunction. The first disjunct

is just the material conditional. The second disjunct makes use of our defined

gap operator, so that ¯ A∧ ¯ B is true just when both A and B are gappy. These

connectives accord with the following tables:

→ 0 1∕2 1
0 1 1 1
1∕2 0 1 1
1 0 0 1

↔ 0 1∕2 1
0 1 0 0
1∕2 0 1 0
1 0 0 1

Thus, we have identity and equivalence:
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B ⊢ A→ A

B ⊢ A↔ B

2.3.3 CPL containment

An important aspect of a non-classical system is its relation to CPL. This is

for various reasons. Primarily, there is often a trade-off between the greater

expressive power of a many-valued system, and the stronger provability powers

of CPL. The desire to preserve the strong proof features of CPL thus pushes

one to search for ways to express some sort of ‘containment’ of CPL, albeit

within obvious limits.

One concept relevant here is that of an extension of a system’s consequence

relation. Simply stated, a system S′ is an extension of S iff the S consequence

relation is a subset of the S′ consequence relation; that is, iff anything valid in

S is valid in S′. In this sense, CPL is an extension of all systems canvassed so

far, GO included. However, this relationship is quite weak, as it merely rules

out the validity of anything not valid in CPL, which holds, for example, of an

empty consequence relation.

A further relationship between CPL and many gappy systems is often ex-

pressed in noting that failures of classical inferences are preserved under an

assumption of bivalence for the sentences at issue. Thus if we add to our

premises that LEM holds for B1, . . . ,Bn, then every classical inference from

these sentences obtains. For example:
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A ∨ ¬A ⊢ A ≡ A

Once the appropriate premises are added, the logic essentially ‘collapses’ into

CPL. This is certainly the case for K3, Ł3 and B3, and for GO a similar principle

also holds. Here, this principle requires that for every propositional parameter

p occurring in the premises, p∨¬p is included in the premises. This condition

is sufficient for K3 and the other systems, since it will guarantee classicality

for complex sentences. In GO, however, complex sentences are determinate

even if their propositional parameters receive indeterminate values, and so it

is insufficient merely to require that excluded middle for premises be added to

guarantee classicality, since the premises might include complex sentences.

The intuitive idea here is that, in most ‘domains’ in which actual reasoning

takes place, the assumption of bivalence is justified for the domain.6 One might

consider this, too, a rather weak logical relationship, since it requires topic-

specific information relevant to a particular subclass of sentences—information

which is independent of logical form.

In the present case, one can recognize a stronger ‘containment’ of CPL.

More precisely, there is a translation schema that shows the CPL consequence

relation contained in GO consequence. Define the following GO connectives:

A /B ∶= TA ∨TB

A .B ∶= TA ∧TB

For each argument from sentences B1, . . . ,Bn to A there is an argument B∗1 , . . . ,B∗n

to A∗ which is the result of translating each occurence of ∧ and ∨ in the former
6For a discussion, see (Beall and Restall 2006)
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with . and / respectively, such that:

A is a CPL consequence of B1, . . . ,Bn iff B∗1 , . . . ,B
∗
n ⊢ A∗

We see that the CPL consequence relation is in a sense ‘contained’ in GO

consequence. Indeed, the same holds for BE
3 , since GO is isomorphic to the

fragment of BE
3 containing only external connectives and ¬.

However, the characteristic of GO that determinacy arises as a matter of

form results in an additional sense in which CPL is contained therein. This

formal or syntactic relationship can be given a precise characterization in the

following way. Define a complexity function κ as follows, where � is the main

connective of a sentence A (∅ if A is atomic), and An is the nth operand of A:

κ (A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if � = ∅
κ (A1) if � = ¬
1 + κ (A1) + ⋅ ⋅ ⋅ + κ (An) otherwise

We immediately see that if κ (A) > 0, then ν(A) ∈ {0,1}, and hence:

B ⊢ A ∨ ¬A

And if κ (A) + κ (B) > 1

¬(A ∨B) ⊢ ¬A ∧ ¬B

¬(A ∧B) ⊢ ¬A ∨ ¬B

More generally, all classical inferences hold for sentences A where κ (A) > 0.
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2.3.4 Another way to GO?

It is interesting to consider what other systems might be said to restrict inde-

terminacy on the the basis of form. A somewhat similar phenomenon might

be seen, for instance, in the systems of Emil Post (1921), where ∨ is defined

familiarly as:

ν(A ∨B) = max{ν(A), ν(B)}

Conjunction in turn is defined in a standard way:

A ∧B ∶= ¬(¬A ∨ ¬B)

Negation, however, behaves along less standard lines, which in turn gives ∧ a

peculiar behavior. Post’s 3-valued system P3 has the following tables:

¬
0 1
1∕2 0
1 1∕2

∨ 0 1∕2 1
0 0 1∕2 1
1∕2 1∕2 1∕2 1
1 1 1 1

∧ 0 1∕2 1
0 1∕2 1∕2 1∕2
1∕2 1∕2 1 0
1 1∕2 0 0

The characteristic mode of negation in Post’s systems in effect shifts the values.

This is seen more clearly when we consider ¬ in the 4-valued version P4:

¬
0 1
1∕3 0
2∕3 1∕3
1 2∕3

We will return to discuss 4-valued systems in Chapter 5. For present purposes,
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we need only consider P3. Note that double-negation fails in both directions:

A ⊬ ¬¬A

¬¬A ⊬ A

Consequently, while A ∨ ¬A is clearly not a tautology, one can see that the

following is a tautology:

(A ∨ ¬A) ∨ ¬¬A

One might consider this a ‘restricted’ form of LEM, in comparison to the

GO’s restricted version of LEM above. Besides the obvious differences in their

respective consequence relations, it is helpful to see two general ways in which

P3 contrasts with GO. First, the restricted version of LEM occurs in P3 as

a result of the ‘rotational’ mode of ¬, whereas restricted versions of classical

inferences occur as the result of the behavior of the binary connectives.

Perhaps more interestingly, one might, in concert with our interpretation

of GO, consider determinacy arising in P3 as a matter of form. However, in

P3 there does not occur the same logical separation between literals and non-

literals. Post did not offer such an interpretation, though it may be useful to

consider at least parts of his system in this context.

2.4 Interpretation

We have already noted in the previous chapter some motivation for a system

that preserves the Law of Noncontradiction (LNC) in all of its formulations,

while allowing for restricted failures of the Law of Excluded Middle (LEM).
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Here we briefly expand on the philosophical interpretation of some particular

features of the GO system. Chapter 5 will return to some of the issues raised in

this section in greater detail. At present we concern ourselves with outlining

the general features of a philosophical theory that would favor this logic.

Such a theory might accept the failure of the LEM, but hold that this failure

can only occur for atomics sentences, or a certain subclass of them. Such a

failure, however, would not affect a qualified form of all classical inferences.

2.4.1 Indeterminacy

A challenge of making clear an interpretation of a gappy system like the one

proposed is to give a perspicuous interpretation of the intermediate value. One

can avoid some philosophical headaches by shifting focus to applications of

the system by demonstrating the system’s usefulness to particular philophical

questions. This often involves a shift from a notion of alethic indeterminacy,

or truth-value gaps, to a notion of epistemic indeterminacy, or gaps in our

knowledge. In some cases, this shift occurs as a sleight-of-hand, but the re-

sulting applications are no less applicable, and the philosophical terrain no

more forgiving.

Epistemic Indeterminacy

Thus we first consider how, in general, one might construe a notion of epis-

temic indeterminacy, insofar as many-valued systems could apply to it. Most

notably for present purposes is the application of many-valued systems to ar-

eas of science. Many such applications are well-known, and their development
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deserves more attention than we can give here.7

The broad idea of a science requiring a many-valued logic, can be charac-

terized as the failure in principle of necessary conditions for the dispatchment

of some classical inferences. Thus a domain is rightly said to require a logic

weaker than CPL when it is in principle impossible, at least in some cases, for

the objects in the domain to admit of determinate measurement with respect

to a basic property or quantity of the operative scientific theory.

In such cases, the interpretation of a logical system views the semantic

values as something other than truth values, as the inquiry to which the system

is applied precludes determinate knowledge (viz. measurability) of its basic

subject matter. This preclusion may result from the impossibility of observing

or measuring two basic quantities of the domain at the same time.

In modeling social help among higher animals, for example, (Weingartner

2004) notes the following incommensurability:

If the proposition p(I) represents (describes) the states of affairs

that the measurable rate I [the growth-rate for the propagation of

genes] has the value i and the proposition q(L) represents(describes)

the states of affairs that the measurable rate L [the loss-rate] has

the value l then the proposition p(I)∧ q(I) does not represent the

state of affairs that the measurable rate of both I and L has a

certain value; because there is no such measurable rate: I and L

cannot be measured simultaneously with a specific (sharp) value

(p. 234).

7For a cross-disciplinary persepective, see (Weingartner 2004).
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2.4.2 Bivalence

One should note that, strictly speaking, the theory requires only the failure of

bivalence (again, only for atomics). In many systems this brings with it the

failure of LEM, and this is certainly true in GO, at least for ∨. One could,

however, insist that disjunction is best interpreted as the defined connective

/, for which LEM holds:

A /B ∶= (A ∧A) ∨ (B ∧B)

Yet treating / as disjunction suggests treating conjunction along similar

“external” lines. At this point, however, one is dealing only with the classical

portion of the consequence relation, and absent a suitable interpretation of ∧

or ∨, it is unclear what the failure of bivalence amounts to in this context.8

For our purposes, it is thereby appropriate to focus on the failure of bivalence.

Theories of truth

Bivalence is about truth, and so a reason for rejecting bivalence might natu-

rally come from a philosophical theory of truth. One might have a metaphysi-

cal theory of what makes a sentence true which allows for the possibility that

the ‘making’ relationship is indeterminate for at least one sentence. If truth

consists in a relation of correspondence between propositions and facts, for

instance, a theory might countenance the possibility of a proposition neither

determiniately corresponding nor determinately failing to correspond to a par-

8There are non-bivalent systems that preserve LEM, most notable van Fraassen’s super-
valuational system. See (Bencivwenga, Lambert, and van Fraassen 1991, pp40-47).
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ticular fact. The explanation for this kind of indeterminacy will doubtless vary

depending on details of the theory of truth. It may, for instance, result from

a view about the nature of propositions, specifically, one that holds that some

propositions themselves are ‘incomplete’ in a suitable sense. Alternatively, a

theory of relations might allow for some sort of ‘ontic vagueness’ which results

in indeterminacy with respect to the relata.

In contrast to metaphysical theories of truth, one might hold a formal the-

ory of truth where the logical features of the truth predicate, together with

basic compositional features of language, require that the predicate ‘true’ nei-

ther determinately applies nor determinately does not apply to some sentences.

So-called deflationist or minimalist theories of truth claim that the ‘nature’ of

truth consists only in the logical properties of the predicate ‘true’. The schema

[α iff ‘α’ is true] captures the whole meaning of ‘true’ and thus of truth.

The formal truth paradoxes that result in CPL are famous. Given certain

basic features of a system, the existence of paradoxical sentences, e.g. Liar

sentences and Curry sentences, is guaranteed. In CPL this induces triviality

(B ⊢ A). Thus the logical nature of ‘true’ requires a system weaker than CPL

in order to remain faithful to it, since CPL does not validate every argument.

In this case, indeterminacy is accepted as an implication of a general theory

that the truth predicate must be indeterminate (this in practice usually comes

from minimalist responses to truth paradoxes). We cover more in chapter 5.

Theories of truths

Many reasons for rejecting bivalence, however, come not from a theory of truth

in general, but from a theory of what makes some particular sentences true.
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This could be because of a physical theory which contains at least one sentence

that quantifies over objects to which a (precise) predicate of the theory neither

determinately applies nor determinately does not apply. In this case, again this

reduces to indeterminacy in the application of a predicate, with the caveats

that the predicate is ‘precise’ and that the theory is likely true.

Another possibility is a linguistic theory which recognizes that at least one

language contains some meaningful declarative sentence that is neither true nor

false. In the linguistic case we might consider presupposition failures, certain

theories of fictional objects, etc., or even an aggressively empirical approach to

the meaning of ‘true’ that countenances uses that are traditionally considered

instances of imprecision or incompetence.

2.4.3 Logical Atomism

The logic is distinctly atomistic. Literals are special in the sense that they

exhibit a different logical behavior from all other sentences. This sense goes

beyond the ordinary fact that, in standard model-theoretic semantics, atomic

sentences are given separate truth conditions from moleculars. This by it-

self will not make the logical consequence relation vary depending on which

sentences a class of interpretations assigns as atomic. Any reassignment (or re-

translation) that preserves truth conditions for every sentence will result in the

same consequence relation. Not so for the current logic: a different choice for

atoms yields a different consequence relation. Though this makes atomism of

one sort or other a natural friend for the logic, it does not strictly bind the logic

to atomism. However, without such a commitment, in absence of principled
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distinction between the truly atomic and all other sentences, this logic would

seem to point to a rather unique view of logical relativity or conventionalism

indexed to an arbitrary choice of atoms.



Chapter 3

GO Modal: A Combinatorial

Approach

This chapter presents the modal extension of the GO semantics, by way of

Armstrong’s combinatorialist analysis of possibility. §3.3 considers a combina-

torialist approach to possibility detached from the thesis of naturalism. §3.4

discusses an Armstrongian interpretation of GO, specifically with respect to

negative states of affairs. §3.5 presents the formal semantics, and §3.6 briefly

highlights some significant logical features.

3.1 Introduction

Given the propositional GO semantics, one naturally wonders what happens

in a modal setting. Here we explore the GOMODAL system in which the modal

operators behave classically. This extends from the common quantifier ap-

proach to necessity and possibility as generalized conjunction and disjunction,
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respectively.

As we have seen, GO has a natural interpretation as a system for logical

atomism. It is fitting, then, to look at the Combinatorialism of D. M. Arm-

strong, since it is a thoroughgoing logical atomist theory. Our interpretation

of GOMODAL will center around its philosophical implications on a combinato-

rialist framework.

It should be emphasized, however that Armstrong’s theory is not the only

possible interpretation of GOMODAL. This holds in two respects. First, one

can have a combinatorialist view of possibility—or a certain type of possibil-

ity—that is divorced from central aspects of Armstrong’s metaphysics. We

remark on one broad approach to this in §3.3. Second, one could develop a

view where the points over which the modal operators range are not worlds

produced from combinatorialist principles, but rather some other sort of thing.

In order to develop a system neutral to some of these issues, as well as for the

sake of simplicity, we restrict the formal semantics to the propositional case.

First-order semantics are given in Chapter 5.

3.2 Combinatorialism

Taking the standard quantifier approach to possibility, the modal operators

range over points, or ‘worlds’. The essential feature of a combinatorial account,

though, is that these worlds are not taken as primitive a la (Lewis 1973), but

are “built up” from base constituents—in Armstrong’s case, those of the actual

world—according to one or several combinatorial principles. Here we follow
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Armstrong’s (1989) presentation, not because it is the origin of the idea,1 but

because it is widely known and straightforward, and its metaphysical inter-

pretation provides an intuitive picture that demonstrates combinatorialism’s

philosophical significance. As Armstrong himself points out, a combinatorial

account of possibility is not essentially tied to his particular version of natu-

ralism, or even to naturalism at all (p. 37). §3.3 will discuss an alternative

approach to a combinatorialist account of possibility.

The stage is set with an ontology consisting of simple individuals, properties

and relations. A ‘simple’ individual is one with no proper parts, in the usual

mereological sense. What kinds of things these individuals actually are is an

empirical matter, one left for a total science. He indicates point-instants as

potential candidates (so long as they can bear properties), but this is only to

be thought of heuristically.

A simple property, similarly, is one that has no other property as a con-

stituent. Here, ‘constituent’ is a universal’s analogue to a part, but it is some

non-mereological relation. We can think of having a constituent in much the

same way as having a part, though not identically.2 Armstrong’s view is that

properties and relations are universals, and that universals and simple indi-

viduals have no being apart from the states of affairs they enter into. This

follows an essentially Tractarian line of thought, where simples are thought of

as abstractions from the states of affairs of which they are constituents. The

important combinatorial step, however, is from the notion of a state of affairs

to that of a possible state of affairs. These are introduced via the representa-

1See (Wittgenstein 1961), (Cresswell 1979), and (Skyrms 1981).
2This issue traces back to (Leonard 1930). For a useful discussion see (Rossberg 2009).
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tion of states of affairs.

Assuming a is F , this state of affairs is represented Fa, and so on in the

usual way. Supposing a is not F , Fa is false, and so it does not represent a

state affairs. However, it has the right form, and so represents a possible state

of affairs—one that does not exist. The generalization of this is Armstrong’s

basic Combinatorial Principle:

(CP) “The simple individuals, properties and relations may be combined in

all ways to yield possible atomic states of affairs, provided only that the

form of atomic facts is respected” (1989, p. 579).

The principle (CP) allows us to generate a set of worlds from our base ontology.

There are, however, some conditions on this principle which Armstrong adds.

We can formulate the general picture in the following way. Let an ontology

o = ⟨I,P,R⟩ consisting of:

» A set of individuals I = {a, b, c, . . .}

» A set of properties P = {F,G,H, . . .}

» A set of n-adic relations R = {Rn, Sn, T n, . . .} for n > 1

Define a combination function Λ over ontologies:

Λ (o) = {Φα ∣Φ ∈ P and α ∈ I} ∪ {Θnα1 . . .αn ∣ Θ ∈R and α1, . . . ,αn ∈ I}

The function Λ generates all atomic states of affairs, or ‘facts’, available to a

given ontology. A world w with ontology ow, then, is a non-empty subset F

of Λ (ow) such that:
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1. For each α ∈ I there is some Φ ∈ P such that Φα ∈ F

2. For each Φ ∈ P there is some α ∈ I such that Φα ∈ F

3. For each Θn ∈R there are some α1, . . . ,αn ∈ I such that
Θnα1 . . .αn ∈ F

Given a base world β, the set of possible worldsW contains all and only worlds

in Λ (oβ), where to be a world, it must meet the three constraints above.

The first condition requires that each individual have some non-relational

property. This rules out so-called ‘propertyless’ individuals. Armstrong con-

siders individuals to be abstractions from the states of affairs they enter into.

Thus an individual that does not enter into at least one fact simply does not

exist. This view rejects Haecceitism, the view that individuals have a unique

‘inner essence’ distinct from their properties.

The second and third conditions respectively ensure that each property

and relation is instantiated. This prohibits uninstantiated, or alien universals,

and it is motivated by Armstrong’s naturalist account of universals. The

rejection of alien universals poses some difficulty, as some have argued that

their conceivability undermines Armstrong’s analysis of possibility.3 In any

case, there is a logical significance in the rejection of alien universals. Since

Armstrong will allow for worlds that contain fewer universals than the actual

world, but not more, such a ‘contracted’ world w1 will be ‘accessible’ from

the actual world, though there is some universal, say F , which it does not

contain. The actual world, however, will not be accessible from w1, since from

its perspective F is an alien universal. The result is an accessibility relation

3See, for instance (Schneider 2001).
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that is reflexive and transitive, but not symmetric. Thus the logic corresponds

to the standard S4. (More on ‘contracted’ worlds below.)

3.3 Naturalism

As the principle (CP) is formulated, it yields a somewhat limited collection of

worlds, since it requires each individual in the ontology to appear in each world

(as well for property and relations). This is the set of so-called Wittgenstein

worlds. Armstrong proposes additions to the W to include those from con-

traction and expansion. Contraction allows worlds that contain a (non-empty)

proper subset of the individuals in the base world, and expansion allows worlds

that contain ‘more’ individuals. Armstrong, following Skyrms, proposes these

principles via a slight departure from strict combinatorialism, by appeal to

analogy. 4

We can see combinatorialism’s connection to logical atomism in the follow-

ing way. Suppose we did not require logical atomism for combinatorialism and

we allowed any predicate, whether atomic or not, to yield a representation

of an acceptable recombination. Take it for granted that there are at least

two objects a and b, and one universal F , such that Fa and ¬Fb. Thus, per

the combinatorial principle and our hypothesis both F and ¬F are predicates

available for recombination. Thus Fa ∧ ¬Fa represents a possible state of

affairs. Hence, only genuinely atomic facts are available for recombination.

The restriction that the items available for recombination are genuinely

4This appeal also requires the abandonment of Haecceitism and the adoption of so-called
weak anti-Haecceitism. For discussion, see (Armstrong 1986, pp. 580-4) .
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atomic seems to presuppose that there are such things as genuine atoms. Thus,

combinatorialism without atomism cannot rule out these unwanted recombi-

nations. This might not be an essential connection, however, and Armstrong

does gives an ‘atomless’ interpretation of combinatorialism that allows for so-

called relative atoms.5

For Armstrong, naturalism is the thesis that all that exists is the space-

time world: there are no transcendent, or ‘other-worldly’ entities. However,

we might frame a general argument for combinatorialism irrespective of natu-

ralism in the following way:

(i) Science requires an account of possibility with a naturalistically respectable

basis.

(ii) The space-time world, logical constructions therefrom, and idealizations

thereof are naturalistically respectable.

(iii) Combinatorialism provides an adequate account for scientific claims of

possibility and necessity and is an idealization of or logical construction

from the actual space-time world.

The demand for an account of possibility is pronounced in a naturalistic

theory like Armstrong’s, which rejects the existence of transcendent entities

like abstract primitive modalities or possible worlds. With respect to (ii),

Armstrong is a fictionalist about possible worlds. These useful fictions account

for modal truths in science, in much the same way that ideal gases are useful

fictions which ground truths about actual gases. Combinatorialism’s base,
5For further discussion, see Chapter 5.
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then, is as naturalistic as it gets, and so its constructed fictions must also be

naturalistically respectable.

(i), however, is not a naturalist thesis per se. The combinatorial worlds

provide a scientifically respectable account of possibility, whether or not natu-

ralism as a philosophical thesis is true. For providing a ‘respectable account’,

however, it is not sufficient that the base from which possible worlds are con-

structed are scientifically respectable. The account should further countenance

a broad range of open scientific theories. Armstrong recognizes this when he

considers whether there are no atoms, in essence treating the core assumption

of logical atomism as an empirical hypothesis.

Thus a combinatorial theory should comport with future scientific discov-

ery—not merely the discovery of new objects and properties, but also with

broader changes in the theory of the structure of the space-time world. In

this spirit it is natural to countenance scientific theories that allow for in-

determinacy. But then what happens to our logical constructions from an

indeterminate base? Combinatorialism is a hybrid logical-physical theory, and

the GO logic attempts to take this at face value. It models indeterminacy from

scientific theories as occurring at the atomic level, while the determinacy of

logic is reflected at the level of combination.

Suppose then that recalcitrant evidence comes from science that signals the

failure of bivalence. What are the options for responding that do not simply

discredit the results?

At minimum, to accept the evidence is to admit that a bivalent framework

is inadequate for a true scientific theory. An extreme option, then, is to accept

that science has refuted—and hence, can refute—the Law of Excluded Middle,
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the very same law in every respect that was thought to hold for all reasoning

in general. One thereby accepts the unequivocal failure of a putative logical

truth. Logical ‘principles’, then, are in every important respect no different

from scientific hypotheses, and in this case the evidence shows that classical

logic simply got it wrong.

Perhaps this position is tenable, but it seems contrary to basic intuitions

many hold about the nature and scope of logic. It implies that logic is subject

to revision in a much more direct way than the usual Quinean picture suggests.

Classical logic’s central position in the web of belief is presumably not merely

a result of our degree of confidence in its content (if logic has any content).

Rather, logic’s centrality is due to its totally general role in governing the

acceptance and rejection of all propositions whatsoever in the web of belief.

Subjecting logical principles to ‘direct’ refutation from science to this extent

does more than holism demands, effectively shifting logic’s position in the web

to the edge.

It is doubtful that this extreme position is sincerely adopted by many lo-

gicians, even diehard Quinean sympathizers. Logic, after all, should contain

only principles that are certain. A tamer position holds that the inadequacy

of a bivalent framework for science does not show that bivalence fails in logic.

This is close to the view proposed here, but one must be careful how wide

the cleavage between logic and science is drawn. There are certainly many

applications of formal systems to scientific problems that in no way ‘threaten’

logic. However, this is because a mere application of logic only credits inter-

preting the ‘semantic’ values as something strictly other than truth values.6

6For further discussion, see Chapter 5.
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An electronic ‘logic’ circuit, for example, credits interpreting the values as sta-

ble voltage states, and the existence of three such states does not refute LEM.

This is just as well, as this is not a scientific theory.

But this would undermine the original goal, as it is equivalent to rejecting

the supposed evidence as evidence. To automatically dismiss any putative

scientific evidence that challenges bivalence is to discredit the evidence, which

fails to meet our initial challenge. Further, to do so on principled grounds

seems to make logic completely immune to revision. This move would seem to

suggest that scientific ‘truth’ is completely separate from what logic studies.

The middle road suggested here is to countenance the possibility that

genuine indeterminacy occurs at the basic empirical level, while maintain-

ing logic’s central position in the web of belief. Such an occurrence would

doubtless require a revision of ‘logic proper’, but would respect the intuition

that logical principles are not wholly empirical principles, and they hold no

matter what the domain.

This is the broader motivation for the GOMODAL framework for combinato-

rialism. A more specific advantage is in relation to ‘negative facts’.

3.4 Negative Facts

For Armstrong, every truth has a truthmaker.7 An atomic proposition that a

is F is made true by the fact Fa. But what about the proposition that a is

not F? Supposing it is true, what makes it so? It cannot be the fact Fa, since

it does not exist. For Armstrong, negative atomic propositions are made true

7See (2000, p. 150) and (2004, pp. 5, 19).
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by ‘totality’ facts, or what Russell (1918) calls general facts. What makes it

the case that a is not F is all of the atomic facts together with the total fact

that these are all the first-order facts.

An alternative to admitting total facts is to admit first-order ‘negative’

facts as truthmakers for negative atomic propositions.8 However, Armstrong

claims that Combinatorialism cannot admit negative facts. He says:

Suppose we admit both a’s being F and a’s not being F as possible

states of affairs. Our combinatorial scheme when the allow us to

select both these states of affairs (1989, p. 48).

To avoid this, one might introduce additional constraints on our combinatorial

principle in order to rule out out such ‘contradictory’ combinations. This

is problematic for Armstrong, however, given that he wishes to provide an

analysis of possibility.

[T]hen we are using in our statement of constraints that very notion

of modality which it was our hope to analyse. For contradictory

states of affairs would be the ones for which one state of affairs

must obtain and the other fail to obtain.

Even apart from the attempt to analyze possibility, it is a common charge of

an atomist-combinatorialist framework to eschew logical connections among

atomic states of affairs. It may be noted, however, that Armstrong’s con-

ditions (1-3) on (CP), as well as his appeals to analogy for contraction and
8For recent discussions on some advantages and difficulties of negative facts, see (Molnar

2000), (Priest 2000), (Beall 2000), (Simons 2005), (Mumford 2005), (Cheyne and Pidgen
2006), (Parsons 2006) and Armstrong (2000, 2005, 2006).
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expansion, might already count as departures from strict analysis. One might

argue that these principles can only be justified by appealing to a prior notion

of possibility.

Allowing for indeterminacy within Armstrong’s metaphysical framework

does seem to require admitting negative facts, and along with it a commit-

ment to an additional metaphysical constraint that rules out contradictory

combinations. The non-existence of a truthmaker for p, together with a total

fact, is not sufficient for the truth of ¬p. Indeed this is plausibly what the

rejection of bivalence on scientific grounds must amount to for the truthmaker

theorist. If we allow that science can give us reason to accept genuine inde-

terminacy, then we do not have a basis for the rejection of negative facts. A

realism about scientific theories which countenances the failure of bivalence for

scientific reasons presupposes that science is in the business of investigating

negative facts.

Indeed, Armstrong later sees totality facts as essentially negative facts

(Armstrong 2000, p. 153). One wonders, then, why he is so reluctant to admit

them as corresponding to each positive fact. His answer is an appeal to parsi-

mony: admitting negative facts for every positive fact is just too ontologically

indulgent. With the GO logic, however, this worry dissipates to a large degree.

As above, once negative facts are admitted for atomic propositions, no further

negative facts are required for complexes.

Suppose an atomic proposition p is true, and q is gappy. Thus it follows:

1. There is a truthmaker for p.

2. There is no truthmaker for q.
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3. There is no truthmaker for ¬q.

What is the status of p ∧ q? If we were to admit of the case where a

conjunction is gappy, then we would have to admit of negative facts for their

negations, and so on for every complex fact. But since the gappy case is ruled

out by GO, the absence of a truthmaker for either p or q suffices for the falsity

of p ∧ q and thus the truth of ¬(p ∧ q). Thus the only domain for which one

must posit negative facts is that which is the source of indeterminacy. And

so Armstrong’s original condition for conjunction remains intact, where p ∧ q

has a truthmaker just when each of p and q has a truthmaker. Similarly for

disjunction.

Thus, though not the original motivation for the GO logic, the truthmaker

theory yields some natural payoffs from the combinatorialist interpretation of

the logic. With these in mind, I now turn to model-theoretic semantics of

GOMODAL. Chapter 4 develops a tableaux proof system with its soundness and

completeness results.

3.5 GOMODAL

The formal semantics for GOMODAL is as follows. The syntax is the standard

syntax for CPL, augmented with our modal connectives 2 and 3:

» A set of atomic formulas A = {p0, . . . , pn, q0, . . . , qn}

» A set of unary connectives Cu = {¬,2,3}

» A set of binary connectives Cb = {∧,∨,⊃,≡,→,↔}

» Let C = Cu ∪ Cb
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» A set of punctuation marks U = {(, )}

» A set of sentences S:

(a) A ⊂ S.
(b) If A ∈ S and � ∈ Cu, then �A ∈ S.
(c) If A and B are in S and � ∈ Cb, then (A�B) ∈ S. 9

We mark a division between unary and binary connectives solely for conve-

nience for the Tableaux adequacy proofs in the next chapter.

Our semantics includes a constant set of values, and we will make use of

two arithmetic functions:

» A set of values V = {0, 1∕2,1}

» Two convenient functions:

1. g(x) = min{x,1 − x}
2. c(x) = x − g(x)

As noted in Chapter 2, we can think of g as the ‘distance’ from a classical

value: in this case, 0 for 1 and 0, and 1∕2 for 1∕2. The function c is our ‘classical

cruncher’ which subtracts the distance from the value.

The propositional semantics formalize the presentation in Chapter 2. The

semantics for the modal machinery resembles for the most part standard

Kripke semantics. The difference, of course, comes in the clauses for the modal

connectives.

A model M is a triple ⟨W ,R, ν⟩ where:

» W is a non-empty set of worlds {w0,w1, . . . ,wn}
9For readability, outer parentheses are dropped when no ambiguity results.
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» R ∶W Ð→ ℘(W). We abbreviate w′ ∈R(w) as wRw′. R is:

(a) Reflexive: wRw for all w ∈W
(b) Transitive: If wRw′ and w′Rw′′ then wRw′′

» ν ∶ S ×W Ð→ V . We abbreviate ν(⟨A,w⟩) as νw(A). Lo:

(i) νw(¬A) = 1 − νw(A)
(ii) νw(A ∧B) = min{c(νw(A)), c(νw(B))}
(iii) νw(2A) = min{c(νw′(A)) ∶ wRw′})

» Defined connectives:

1. νw(3A) = νw(¬2¬(A ∧A))
2. νw(A ∨B) = νw(¬(¬(A ∧A) ∧ ¬(B ∧B))))
3. νw(A ⊃ B) = νw(¬A ∨B)
4. νw(A ≡ B) = νw((A ⊃ B) ∧ (B ⊃ A))
5. νw(A→ B) = νw((A ⊃ B) ∨ (¬(A ∨ ¬A) ∧ ¬(B ∨ ¬B)))
6. νw(A↔ B) = νw((A→ B) ∧ (B → A))

The conditions of reflexivity and transitivity on R are those of standard

S4 logic. Note the following equivalences for some of the defined connectives:

» νw(3A) = max{c(νw′(A)) ∶ wRw′}

» νw(A ∨B) = max{c(νw(A)), c(νw(B))}

» νw(A→ B) = c(max{νw(¬A), νw(B), g(νw(A)) + g(νw(B))})

For 3 the equivalence is as one would expect, given its treatment as generalized

disjunction. The equivalence for → reflects its definition in terms of ⊃ disjoined

with the sum of the distance from a classical value of the antecedent and

consequent.

Logical consequence is defined in the standard way.
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Definition 5.1. X ⊩ A iff for all models M, for every world w ∈ W, if

νw(B) = 1 for each B ∈X, then νw(A) = 1.

The semantics have it that the truth-functional connectives are interpreted at

each world in accordance with the following tables:

¬
0 1
1∕2 1∕2
1 0

∨ 0 1∕2 1
0 0 0 1
1∕2 0 0 1
1 1 1 1

∧ 0 1∕2 1
0 0 0 0
1∕2 0 0 0
1 0 0 1

⊃ 0 1∕2 1
0 1 1 1
1∕2 0 0 1
1 0 0 1

≡ 0 1∕2 1
0 1 0 0
1∕2 0 0 0
1 0 0 1

→ 0 1∕2 1
0 1 1 1
1∕2 0 1 1
1 0 0 1

↔ 0 1∕2 1
0 1 0 0
1∕2 0 1 0
1 0 0 1

3.6 Logical Features

§3.7 gives many notable inferences, but a few should be mentioned here. As

one would anticipate, given that 2 and 3 are conceived in terms of generalized

conjunction and disjunction, respectively, the characteristic rejection of certain

DeMorgan inferences discussed in the previous chapter carry over from the

propositional to the modal case. This manifests in a failure of the standard

interdefinability of the modal connectives:
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¬3¬A ⊬ 2A

¬2¬A ⊬ 3A

Take a model where A is gappy in all worlds. Thus ¬A is gappy everywhere,

and so 3A is false, though obviously so too is 2A. Similarly for the second

case.

The other directions for the standard interdefinability do hold:

3A ⊢ ¬2¬A

2A ⊢ ¬3¬A

As one would expect, with our T operator (see Chapter 2), we can define a

modal connective

�A ∶= 3TA

For �, both directions of the standard definability hold:

�A ⊣⊢ ¬2¬A

2A ⊣⊢ ¬� ¬A

As with standard S4, the so-called necessitation principle holds: If B ⊢ A then

B ⊢ 2A.
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3.6.1 Alternative Modal Semantics

In passing, one might consider an alternative approach to extended GO to

a modal system that defines the modal connectives exactly as in standard

many-valued modal systems.

1. νw(2A) = min{νw′(A)) ∶ wRw′})

2. νw(3A) = max{νw′(A)) ∶ wRw′})

This approach countenances gaps for sentences with our modal connectives.

Roughly, if A is gappy at all accessible worlds, then so too will 3A and 2A.

This gives us the standard interdefinability of the modal connectives:

3A ∶= ¬2¬A

or

2A ∶= ¬3¬A

Given the motivation, though, this is unsatisfactory, as it countenances inde-

terminacy in purely ‘logical’ combinations.

3.7 Inferences

Conjunction / Disjunction

2. B ⊬ A ∨ ¬A (LEM)

3. C ⊢ (A ∨B) ∨ ¬(A ∨B) (LEM - Restricted)
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4. A ∧ ¬A ⊢ B (LNC)

5. B ⊢ ¬(A ∧ ¬A) (LNC*)

6. ¬(A ∨ ¬A) ⊬ A ∧ ¬A

7. B ⊬ (A ∧A) ∨ (¬A ∧ ¬A)

8. B ⊬ (A ∨A) ∨ (¬A ∨ ¬A)

9. A ∧B ⊣⊢ B ∧A (Commutation - Conjunction)

10. A ∨B ⊣⊢ B ∨A (Commutation - Disjunction)

11. A ∧ (B ∧C) ⊣⊢ (A ∧B) ∧C (Association - Conjunction)

12. A ∨ (B ∨C) ⊣⊢ (A ∨B) ∨C (Association - Disjunction)

13. A ⊣⊢ A ∧A (Idempotence - Conjunction)

14. A ⊣⊢ A ∨A (Idempotence - Disjunction)

15. A ∧ (B ∨C) ⊣⊢ (A ∧B) ∨ (A ∧C) (Distribution1)

16. A ∨ (B ∧C) ⊣⊢ (A ∨B) ∧ (A ∨C) (Distribution2)

17. {A ∨B,¬A} ⊢ B (Disjunctive Syllogism)

DeMorgan

18. ¬(A ∨B) ⊬ ¬A ∧ ¬B

19. ¬A ∧ ¬B ⊢ ¬(A ∨B)

20. ¬(A ∧B) ⊬ ¬A ∨ ¬B

21. ¬A ∨ ¬B ⊢ ¬(A ∧B)

22. ¬((A ∨B) ∨ (C ∨D)) ⊣⊢ ¬(A ∨B) ∧ ¬(C ∨D)

23. ¬((A ∨B) ∧ (C ∨D)) ⊣⊢ ¬(A ∨B) ∨ ¬(C ∨D)

Material Conditional

24. B ⊬ A ⊃ A (Identity)

25. B ⊢ (A ∧A) ⊃ A (Identity - Restricted)
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26. {A,A ⊃ B} ⊢ B (Modus Ponens)

27. C ⊢ (A ∧ (A ⊃ B)) ⊃ B (Pseudo Modus Ponens)

28. {¬B,A ⊃ B} ⊢ ¬A (Modus Tollens)

29. C ⊢ (¬B ∧ (A ⊃ B)) ⊃ ¬A (Pseudo Modus Tollens)

30. {A ⊃ B,B ⊃ C} ⊢ A ⊃ C (Hypothetical Syllogism)

31. A ⊃ (A ⊃ B) ⊣⊢ A ⊃ B (Contraction)

32. C ⊢ (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B) (Pseudo Contraction)

33. A ⊃ B ⊣⊢ ¬B ⊃ ¬A (Contraposition)

34. C ⊢ (A ⊃ B) ⊃ (¬B ⊃ ¬A) (Pseudo Contraposition)

35. A ⊃ (B ⊃ C) ⊣⊢ (A ∧B) ⊃ C (Exportation)

36. ¬A ⊢ A ⊃ B

37. ¬(A ⊃ B) ⊬ ¬B

38. A ⊢ B ⊃ A

39. A ⊃ B ⊢ (A ∧C) ⊃ B

40. (A ∧B) ⊃ C ⊬ (A ⊃ C) ∨ (B ⊃ C)

Material Equivalence

41. B ⊬ A ≡ A

42. D ⊬ ((A ≡ B) ∨ (A ≡ C)) ∨ (B ≡ C)

Conditional

43. B ⊢ A→ A (Identity)

44. B ⊢ (A ∧A)→ A (Identity - Restricted)

45. {A,A→ B} ⊢ B (Modus Ponens)

46. C ⊢ (A ∧ (A→ B))→ B (Pseudo Modus Ponens)

47. {¬B,A→ B} ⊢ ¬A (Modus Tollens)
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48. C ⊢ (¬B ∧ (A→ B))→ ¬A (Pseudo Modus Tollens)

49. {A→ B,B → C} ⊢ A→ C (Hypothetical Syllogism)

50. A→ (A→ B) ⊣⊢ A→ B (Contraction)

51. C ⊢ (A→ (A→ B))→ (A→ B) (Pseudo Contraction)

52. A→ B ⊣⊢ ¬B → ¬A (Contraposition)

53. C ⊢ (A→ B)→ (¬B → ¬A) (Pseudo Contraposition)

54. A→ (B → C) ⊣⊢ (A ∧B)→ C (Exportation)

55. ¬A ⊢ A→ B

56. ¬(A→ B) ⊬ ¬B

57. A ⊢ B → A

58. A→ B ⊢ (A ∧C)→ B

59. (A ∧B)→ C ⊬ (A→ C) ∨ (B → C)

Biconditional

60. B ⊢ A↔ A

61. D ⊬ ((A↔ B) ∨ (A↔ C)) ∨ (B ↔ C)

Modal

62. 2A ⊢ ¬3¬A

63. 3A ⊢ ¬2¬A

64. ¬3¬A ⊬ 2A

65. ¬2¬A ⊬ 3A

66. 2A ⊣⊢ ¬3¬(A ∧A)

67. 3A ⊣⊢ ¬2¬(A ∧A)

68. 3A ⊣⊢ 3(A ∧A)

69. 2A ⊣⊢ 2(A ∧A)
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70. 2A ⊢ A

71. A ⊢ 3A

72. 22A ⊢ 2A

73. 2A ⊢ 22A

74. B ⊢ 2A→ 3A

75. B ⊢ 2A→ 22A

76. 3A ⊬ 23A

77. B ⊢ 2A→ 23A

78. 3(A ∨B) ⊢ 3A ∨3B

79. 3(A→ B) ⊢ 2A→ 3B

80. 2¬A ⊢ 2(A→ B)

81. 3A ⊬ 23A

82. 2A ⊢ 32A

83. 3A ⊢ 33A

84. 2A ⊢ 22A



Chapter 4

GOMODAL Tableaux

4.1 Background

This section briefly covers some basics of Tableaux systems, focusing on the

general expansion of classical tableaux to many-valued and modal versions.

The presentation here owes much to (Beall and van Fraassen 2003), and also

(Priest 2008).

For our purposes a tableaux system provides a mechanical procedure for

determining the validity of arguments. A tableau has something like the fol-

lowing structure:

○

○

○

○

○ ○

The ○s are nodes, where the top node is the root and the bottom ones are the

83
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leaves. A branch consists of all nodes along a path from the root to a leaf.

In the tableaux system for CPL, each node consists of a single sentence. A

tableau for an argument consists of an initial list, which is a branch starting

with a node for each premises, and ending with a node for the conclusion

preceded by the negation symbol. For an argument from B1, . . . ,Bn to A,

then, the initial list is:

B1

⋮

Bn

¬A

The construction of the tableau proceeds by applying a set of rules to its

branches. Rules come in two broad types: resolution rules and closure rules.

When a closure rule is applied, it ‘finishes’ the branch, halting the application

of any further rules. In CPL, there is exactly one closure rule, and it applies

to a branch having both a node with some sentence A and a node with ¬A. A

resolution rule, for our purposes, is any rule that is not a closure rule.

The rules of a tableaux system are constructed to reflect the semantics of

the system for which they are developed. We can give an intuitive reading of

how a tableau is so related. In CPL, the construction of each branch reflects

the attempt to find a model where each of the nodes’ sentences are true. Since

the semantics for ¬ rules out any model where A and ¬A are both true, any

branch with nodes of those forms does not represent a model, and so the branch

closes. Since the initial list is formed by listing all the premises and negating
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the conclusion, any completed open branch will represent a model where each

of the premises are true and the negation of the conclusion is true—in short,

a countermodel to the argument.

For other systems nodes may take various forms, and for different reasons.

In tableaux systems for modal logic, for example, since models do not assign

sentences values simpliciter, but only relative to a world, nodes must also

contain some index that can be mapped to worlds. A simple way is to use

natural numbers, and thus a node A,0 on a completed open branch reflects a

model where νw(A) = 1.

Many-valued tableaux systems may require nodes with an additional ele-

ment, sometimes called a designation marker. In the propositional case, the

classical method for constructing the initial list for an argument will not work.

Take, for example, an argument from B to A where there is a model that

assigns B the value 1, and A value 1∕2. Given our definition of logical conse-

quence, this model is a counterexample to the argument. However, ¬A might

not be designated (depending on the semantics), and so the initial list will not

produce a branch that reflects this model. A standard solution is to construct

the initial list as follows:

B1�

⋮

Bn�

A�

Intuitively, � means that the sentence gets the value 1, and � means that the
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sentence gets some other value, e.g. 0 or 1∕2. In this case, the mere ‘occurrence’

of a sentence on a completed open branch does not reflect that the sentence

is true, unless it is followed by �. As a result, the closure rules might need

revision, and the resolution rules may increase, since we now have an additional

element in our nodes. Here we combine this approach with the modal version

above.

4.2 Some Definitions and Lemmas

Note that the function c(x) behaves accordingly:

c(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if x = 1

0 if 0 ≤ x < 1

Given V = {0, 1∕2,1}, this gives us the following lemmas.

Lemma 2.2. For all M and all w ∈W, and each connective � ∈ {2,3}:

(i) if νw(�A) ≠ 1, then νw(�A) = 0, and

(ii) if νw(¬�A) ≠ 1, then νw(¬�A) = 0.

Lemma 2.3. For all M and all w ∈W, and each �b ∈ Cb, and �u ∈ Cu:

(i) if νw(A�b B) ≠ 1, then νw(A�B) = 0, and

(ii) if νw(�u(A�b B)) ≠ 1, then νw(�u(A�b B)) = 0.

The proofs are trivial, and they are left as trivial exercises.

Logical consequence is defined in the standard way.
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Definition 2.4. X ⊩ A iff for all models M, for every world w ∈ W, if

νw(B) = 1 for each B ∈X, then νw(A) = 1.

4.3 GOMODAL Tableaux

4.3.1 Nodes

Every node on a GOMODAL tableau has one of the following forms, where A ∈ S,

and i, j ∈ N:

» A, i�

» A, i�

» iRj

4.3.2 Initial List

The initial list of a GOMODAL tableau for the argument from B1, . . . ,Bn to A

is formed as follows:

B1,0�

⋮

Bn,0�

A,0�
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4.3.3 Closure & Completion

Definition 3.5. A branch b of a GOMODAL tableau is closed iff either A, i�

and A, i� appear on b, or A, i� and ¬A, i� appear on b.

We mark the closure of a branch with �. Witness:

⋮ ⋮

A, i� A, i�

A, i� ¬A, i�

� �

Definition 3.6. A GOMODAL tableau is closed iff all branches on the tableau

are closed.

Definition 3.7. A GOMODAL tableau is complete iff all GOMODAL resolution

rules that can be applied have been applied.

Definition 3.8. X ⊢ A iff there is a closed tableau for the argument from

all members B1, ...,Bn of X to A.

4.3.4 Resolution Rules

Define the following convenient functions:

» ßb (x) = {y ∣ xRy is on b}

» z (b) = {n ∈ N ∣ for some A ∈ S, A,n� or A,n� is on b}
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2 rules

For rule 2�, A, j� must not already occur on b. For ¬2�, j = max{z (b)}+1.

2� ¬2� 2� ¬2�

2A, i�
iRj

A, j�

¬2A, i�

iRj
A, j�

2A, i�

¬2A, i�

¬2A, i�

2A, i�

3 rules

For rule ¬3�, A, j� must not already occur on b. For 3�, j = max{z (b)}+1.

3� ¬3� 3� ¬3�

3A, i�

iRj
A, j�

¬3A, i�
iRj

A, j�

3A, i�

¬3A, i�

¬3A, i�

3A, i�

R rules

For rule Rrefl, i is any n ∈ z (b) ∖ ßb (n). For rule Rtran, k ∉ ßb (i)

Rrefl Rtran

⋮

iRi

iRj
jRk

iRk
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¬ Rules

¬¬� ¬¬�

¬¬A, i�

A, i�

¬¬A, i�

A, i�

∧ Rules

∧� ¬∧� ∧� ¬∧�

A ∧B, i�

A, i�
B, i�

¬(A ∧B), i�

A, i� B, i�

A ∧B, i�

¬(A ∧B), i�

¬(A ∧B), i�

A ∧B, i�

∨ Rules

∨� ¬∨� ∨� ¬∨�

A ∨B, i�

A, i� B, i�

¬(A ∨B), i�

A, i�
B, i�

A ∨B, i�

¬(A ∨B), i�

¬(A ∨B), i�

A ∨B, i�

⊃ Rules

⊃� ¬ ⊃� ⊃� ¬ ⊃�

A ⊃ B, i�

¬A, i� B, i�

¬(A ⊃ B), i�

¬A, i�
B, i�

A ⊃ B, i�

¬(A ⊃ B), i�

¬(A ⊃ B), i�

A ⊃ B, i�
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≡ Rules

≡� ¬ ≡� ≡� ¬ ≡�

A ≡ B, i�

¬A, i�
¬B, i�

B, i�
A, i�

¬(A ≡ B), i�

¬A, i�
B, i�

¬B, i�
A, i�

A ≡ B, i�

¬(A ≡ B), i�

¬(A ≡ B), i�

A ≡ B, i�

→ Rules

→� ¬→� →� ¬→�

A→ B, i�

¬A ∨B, i� A, i�
B, i�
¬A, i�
¬B, i�

¬(A→ B), i�

A, i�
B, i�

¬B, i�
¬A, i�

A→ B, i�

¬(A→ B), i�

¬(A→ B), i�

A→ B, i�

↔ Rules

↔� ¬↔� ↔� ¬↔�

A↔ B, i�

A→ B, i�
B → A, i�

¬(A↔ B), i�

¬(A→ B), i� ¬(B → A), i�

A↔ B, i�

¬(A↔ B), i�

¬(A↔ B), i�

A↔ B, i�
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4.4 Adequacy

We now demonstrate soundness and completeness of the GOMODAL tableaux

system with respect to the semantics of LGOMODAL
.

4.4.1 Soundness

Faithful Model

Definition 4.9. A map f ∶ N Ð→ W shows a model M = ⟨W,R, ν⟩ of

LGOMODAL
to be faithful to a tableau branch b iff:

» for each A ∈ S:

– if A, i� is on b, then νf(i)(A) = 1 and

– if A, i� is on b, then νf(i)(A) ≠ 1.

» for each n ∈ N, ßb (n) ⊆R (f(n)).

Soundness Lemma

With Definition 4.9. in mind, we formulate the Soundness Lemma to state

that the GOMODAL resolutions rules are “faithfulness preserving.”

Lemma 4.10. For any branch b of any GOMODAL tableau: If f shows M to

be faithful to b, and we apply any GOMODAL resolution rule to b, then there is

an f ′ that shows M to be faithful to at least one extension b′ of b.

Proof. The proof shows that Lemma 4.10. holds for each GOMODAL rule.
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1. 2�. Suppose 2A, i� is on b. Since f shows M to be faithful to b,

νf(i)(2A) = 1. Further, ßb (i) ⊆ R (f(i)) and hence, by the semantics of

2, νw(A) = 1 for each w such that f(i)Rw. When we apply the 2� rule

to b, it produces an extension b′ with a node of the form A, j� where

j ∈ ßb (i). Since we’ve shown that νf(j)(A) = 1, there is an f ′, namely f ,

that shows M to be faithful to b′. ◻

2. ¬2�. Suppose ¬2A, i� is on b. Since f shows M to be faithful to b,

νf(i)(¬2A) = 1, and so νf(i)(2A) = 0. By the semantics of 2, for some

w ∈R (f(i)), νw(A) ≠ 1. When we apply the ¬2� rule to b, it produces

an extension b′ with nodes iRj and A, j� for some j ∉ z (b). Let f ′ be

the same as f except f ′(j) = w. Since f ′ differs from f only wrt j, and

j ∉ z (b), f ′ shows M to be faithful to b. Therefore, since νf ′(j)(A) ≠ 1,

f ′ shows M to be faithful to b′. ◻

3. 2�. Suppose 2A, i� is on b. Since f shows M to be faithful to b,

νf(i)(2A) ≠ 1, and thus by Lemma 2.2.(i), νf(i)(2A) = 0. Hence, by the

semantics of negation, νf(i)(¬2A) = 1. When we apply the 2� rule, it

produces an extension b′ with a node ¬2A, i� . Thus there is an f ′,

namely f , that shows M to be faithful to b′. ◻

4. ¬2�. Suppose ¬2A, i� is on b. Since f shows M to be faithful to

b, νf(i)(¬2A) ≠ 1. Hence, since by Lemma 2.2.(ii) νf(i)(¬2A) = 0, it

follows that νf(i)(2A) = 1. When we apply the ¬2� rule, it produces an

extension b′ with a node 2A, i� . Thus there is an f ′, namely f , that

shows M to be faithful to b′. ◻
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5. 3�. Suppose 3A, i� is on b. Thus νf(i)(3A) = 1. Thus there is some

world w ∈R (f(i)) such that νw(A) = 1. When we apply the 3� rule, it

produces an extension b′ with nodes iRj and A, j� for some j ∉ z (b).

Let f ′ be the same as f except f ′(j) = w. Since f ′ differs from f only

wrt j, and j ∉ z (b), f ′ shows M to be faithful to b. Therefore, since

νf ′(j)(A) = 1, f ′ shows M to be faithful to b′. ◻

6. ¬3�. Suppose ¬3A, i� is on b. Thus νf(i)(¬3A) = 1, and hence

νf(i)(3A) = 0. When we apply the ¬3� rule, it produces as extension b′

with a node A, j� where j ∈ ßb (i). Since by definition ßb (i) ⊆R (f(i)),

by the semantics of 3, νf(j)(A) ≠ 1. So there is an f ′, namely f , that

shows M to be faithful to b′. ◻

7. 3�. Suppose 3A, i� is on b. So νf(i)(3A) ≠ 1, and thus by Lemma

2.2.(i), νf(i)(3A) = 0, and so νf(i)(¬3A) = 1. When we apply the 3�

rule, it produces an extension b′ with a node ¬3A, i� . Thus there is

an f ′, namely f , that shows M to be faithful to b′. ◻

8. ¬3�. Suppose ¬3A, i� is on b. Thus νf(i)(¬3A) ≠ 1. Hence, since by

Lemma 2.2.(ii) νf(i)(¬3A) = 0, νf(i)(3A) = 1. When we apply the ¬3�

rule, it produces an extension b′ with a node 3A, i� . Thus there is an

f ′, namely f , that shows M to be faithful to b′. ◻

For each of the remaining proofs, let w stand for the value of f(i). Also, we

speak of M as faithful to b, dropping particular reference to f , since f ′ = f

throughout.

9. ∧�. Suppose A ∧B, i� is on b. Since M is faithful to b, νw(A ∧B) = 1.
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Thus νw(A) = 1 = νw(B). When we apply the ∧� rule, it produces an

extension b′ with nodes A, i� and B, i� . Hence M is faithful to b′. ◻

10. ¬∧�. Suppose ¬(A ∧B), i� is on b. So νw(¬(A ∧B)) = 1. When we

apply the ¬∧� rule, it produces two extensions, one with A, i� , and

the other with B, i� . Since νw(A ∧B) = 0, either νw(A) ≠ 1 or νB(≠)1.

In the first case, M is faithful to the first extension, and in the other

case, M is faithful to the second extension. ◻

11. ∧�. Suppose A ∧B, i� is on b. Thus νw(A ∧B) ≠ 1, and so by Lemma

2.3.(i), νw(A ∧B) = 0. Hence, νw(¬(A ∧B)) = 1. Since ∧� rule extends

b only with ¬(A ∧B), i�, M is faithful to the extension. ◻

12. ¬∧�. Suppose ¬(A ∧B), i� is on b. So νw(¬(A ∧B)) ≠ 1, and hence

by Lemma 2.3.(ii) νw(A ∧B) = 1. Since the ¬∧� rule extends b only

with A ∧B, i�, M is faithful to the extension. ◻

13. ∨�. Suppose A ∨B, i� is on b. Since M is faithful, νw(A ∨B) = 1.

Applying the ∨� rule produces two extensions, one with A, i� and the

other with B, i� . By the semantics of ∨, νw(A) = 1 or νw(B) = 1. In

the first case, M is faithful to one extension, and to the other in the

second case. ◻

14. ¬∨�. Suppose ¬(A ∨B), i� is on b. Hence νw(¬(A ∨B)) = 1, and so

νw(A ∨B) = 0. The ¬∨� rule extends b with A, i� and B, i� . By

the semantics of ∨, νw(A) ≠ 1 and νw(B) ≠ 1. Hence M is faithful to the

extension. ◻
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15. ∨�. Suppose A ∨B, i� is on b. Since M is faithful, νw(A ∨B) ≠ 1, and

by Lemma 2.3.(i), νw(A ∨B) = 0. Hence, νw(¬(A ∨B)) = 1. Applying

the ∨� rule extends b only with ¬(A ∨B), i� . Thus M is faithful to

the extension. ◻

16. ¬∨�. Suppose ¬(A ∨B), i� is on b. So νw(¬(A ∨B)) ≠ 1, hence by

Lemma 2.3.(ii), νw(¬(A ∨B)) = 0. Hence, νw(A ∨B) = 1. Applying the

¬∨� rule extends b only with A ∨B, i� , and so M is faithful to the

extension. ◻

17. →�. Suppose A→ B, i� is on b. Hence νw(A→ B) = 1. So,

νw((A ⊃ B) ∨ (¬(A ∨ ¬A) ∧ ¬(B ∨ ¬B))) = 1

Thus either:

(i) νw(A ⊃ B) = 1, or

(ii) νw(¬(A ∨ ¬A) ∧ ¬(B ∨ ¬B)) = 1.

When we apply the →� rule, it produces two extensions. The first

has A ⊃ B, i� , to which M is faithful in case (i). The second has the

following:

A, i�

B, i�

¬A, i�

¬B, i�
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To which M is faithful iff

νw(A) = 1∕2 = νw(B)

In case (ii), it follows that

νw(¬(A ∨ ¬A)) = 1

and so,

νw(A ∨ ¬A) = 0

This guarantees that νw(A) = 1∕2. Similar reasoning on the second con-

junct shows that νw(B) = 1∕2. Hence M must be faithful to at least one

extension of b. ◻

18. ¬→�. Suppose ¬(A→ B), i� is on b. Thus νw(¬(A→ B)) = 1, and so

νw(A→ B) = 0. So,

νw((A ⊃ B) ∨ (¬(A ∨ ¬A) ∧ ¬(B ∨ ¬B))) = 0

Hence by the semantics of ∨ and Lemma 2.3.(ii):

νw(A ⊃ B) = 0

and

νw(¬(A ∨ ¬A) ∧ ¬(B ∨ ¬B)) = 0

And so by the semantics of ∧ and Lemma 2.3.(ii) either:
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(i) νw(¬(A ∨ ¬A)) = 0, or

(ii) νw(¬(B ∨ ¬B)) = 0

The semantics for ¬ show the following to hold in their respective cases:

(i) νw(A ∨ ¬A) = 1, or

(ii) νw(B ∨ ¬B) = 1

and consequently,

(i) νw(A) ∈ {0,1}, or

(ii) νw(B) ∈ {0,1}

Given that νw(A ⊃ B) = 0 we have it that

(i) νw(A) = 1, or

(ii) νw(B) = 0

One extension from the ¬→� rule has A, i� and B, i� . In case (i),

since νw(A ⊃ B) = 0, νw(B) ≠ 1, and thus M is faithful to this extension

The other extension has ¬B, i� and ¬A, i� . In case (ii), νw(¬B) = 1,

and since νw(A ⊃ B) = 0, it follows that νw(A) ≠ 1, and thus M is faithful

to this extension. ◻

19. →�. Suppose A→ B, i� is on b. Thus νw(A→ B) ≠ 1, and hence by

Lemma 2.3.(i), νw(A→ B) = 0. So, νw(¬(A→ B)) = 1. The →� rule

extends b only with ¬(A→ B), i� . Thus M is faithful to the extension.

◻
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20. ¬→�. Suppose ¬(A→ B), i� is on b. So νw(¬(A→ B)) ≠ 1, and by

Lemma 2.3.(ii), νw(¬(A→ B)) = 0. Hence νw(A→ B) = 1, and the ¬→�

extends b only with A→ B, i� . Thus M is faithful to the extension. ◻

21. ↔�. Suppose A↔ B, i� is on b. Hence νw(A↔ B) = 1, and so

νw(A→ B) = 1

and

νw(B → A) = 1

And since the↔� rule extends b only with A→ B, i� and B → A, i� ,

M is faithful to the extension. ◻

22. ¬↔�. Suppose ¬(A↔ B), i� is on b. Hence νw(¬(A↔ B)) = 1, and

so

νw(¬((A→ B) ∧ (B → A))) = 1

Thus

νw((A→ B) ∧ (B → A) = 0)

and hence either:

(i) νw(A→ B) ≠ 1, or

(ii) νw(B → A) ≠ 1

and so, respectively, either:

(i) νw(A→ B) = 0, or
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(ii) νw(B → A) = 0

Consequently:

(i) νw(¬(A→ B)) = 1, or

(ii) νw(¬(B → A)) = 1

The ¬↔� rule produces two extensions. The first has ¬(A→ B), i� ,

to which M is faithful in case (i). In case (ii) M is faithful to the second

extension, which has ¬(B → A), i� . ◻

23. ↔�. Suppose A↔ B, i� is on b. Hence νw(A↔ B) ≠ 1, and by

Lemma 2.3.(i), νw(A↔ B) = 0, and so νw(¬(A↔ B)). The ↔� rule

gives a unique extension with ¬(A↔ B), i� , and thus M is faithful to

it. ◻

24. ¬↔�. Suppose ¬(A↔ B), i� is on b. So νw(¬(A↔ B)) ≠ 1, and by

Lemma 2.3.(ii), νw(¬(A↔ B)) = 0. Hence νw(A↔ B) = 1. The ¬↔�

rule extends b with only A↔ B, i� , and thus M is faithful to it. ◻

25. ⊃�. Suppose A ⊃ B, i� is on b. Hence νw(A ⊃ B) = 1, and by definition

νw(¬A ∨B) = 1. Thus either:

(i) νw(¬A) = 1, or

(ii) νw(B) = 1

The ⊃� rule produces two extensions. In case (i), M is faithful to the

extension with ¬A, i� , and in case (ii), M is faithful to the other

extension with B, i� . ◻
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26. ¬ ⊃�. Suppose ¬(A ⊃ B), i� is on b. Thus νw(¬(A ⊃ B)) = 1, and so

νw(A ⊃ B) = 0. Hence

νw(¬A ∨B) = 0

and so

νw(¬A) ≠ 1

and

νw(B) ≠ 1

The ¬ ⊃� rule extends b with only ¬A, i� and B, i� . Thus M is

faithful to the extension. ◻

27. ⊃�. Suppose A ⊃ B, i� is on b. Since νw(A ⊃ B) ≠ 1, by Lemma 2.3.(i),

νw(A ⊃ B) = 0, and so νw(¬(A ⊃ B)) = 1. The ⊃� rule extends b only

with ¬(A ⊃ B), i� , and thus M is faithful to the extension. ◻

28. ¬ ⊃�. Suppose ¬(A ⊃ B), i� is on b. Since νw(¬(A ⊃ B)) ≠ 1, by

Lemma 2.3.(ii), νw(¬(A ⊃ B)) = 0, and so νw(A ⊃ B) = 1. Since the

¬ ⊃� rule extends b only with A ⊃ B, i� , M is faithful to the extension.

◻

29. ≡�. Suppose A ≡ B, i� is on b. Hence νw(A ≡ B) = 1. Thus

νw(A) ≠ 1∕2

and

νw(A) = νw(B)
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Thus either:

(i) νw(A) = 1 = νw(B), or

(ii) νw(¬A) = 1 = νw(¬B).

The ≡� rule produces two extensions. The first has ¬A, i� and ¬B, i� ,

to which, in case (i) M is faithful. The second extension has A, i� and

B, i� , to which M is faithful in case (ii). ◻

30. ¬ ≡�. Suppose ¬(A ≡ B), i� is on b. So νw(¬(A ≡ B)) = 1, and thus

νw(A ≡ B) = 0. By the semantics of ≡ and Lemma 2.3.(i), either:

(i) νw(A ⊃ B) = 0, or

(ii) νw(B ⊃ A) = 0.

Consequently, in the respective cases:

(i) νw(¬A ∨B) = 0, or

(ii) νw(¬B ∨A) = 0.

And so

(i) νw(¬A) ≠ 1 and νw(B) ≠ 1, or

(ii) νw(¬B) ≠ 1 and νw(A) ≠ 1.

The ¬ ≡� produces two extensions. The first has ¬A, i� and B, i� , to

which case (i) shows M to be faithful. The second extension has ¬B, i�

and A, i� , to which case (ii) shows M to be faithful. ◻
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31. ≡�. Suppose A ≡ B, i� is on b. Hence νw(A ≡ B) ≠ 1, and so by Lemma

2.3.(i) and the semantics of ¬, νw(¬(A ≡ B)) = 1. Thus M is faithful to

the extension produced by the ≡� rule, which has ¬(A ≡ B), i� . ◻

32. ¬ ≡�. Suppose ¬(A ≡ B), i� is on b. So νw(¬(A ≡ B)) ≠ 1, and so by

Lemma 2.3.(ii) and the semantics of ¬, νw(A ≡ B) = 1. Thus M is faithful

to the extension produced by the ¬ ≡� rule, which has A ≡ B, i� . ◻

33. ¬¬�. Suppose ¬¬A, i� is on b. Since M is faithful to b, νw(¬¬A) = 1,

and so νw(A) = 1. The ¬¬� extends b only with A, i� , and hence M

is faithful to the extension. ◻

34. ¬¬�. Suppose ¬¬A, i� is on b. Since M is faithful to b, νw(¬¬A) ≠ 1

and so νw(¬A) ∈ {1, 1∕2}, and consequently νw(A) ∈ {0, 1∕2}. The ¬¬�

extends b only with A, i� . Whence 1 ∉ 0, 1∕2, M is faithful to the

extension. ◻

Soundness Theorem

Theorem 4.11. If Σ ⊢ A then Σ ⊩ A.

Proof. We prove the contrapositive. Assume for conditional proof that

Σ ⊮ A. Thus there is some world w in some model M such that νw(B) = 1

for all B ∈ Σ, and νw(A) ≠ 1. Suppose for reductio that there is a closed

tableau for the argument from Σ to A. Let f show M to be faithful to the

initial list and let f(0) = w. When we apply any resolution rule to our tableau,

by Lemma 4.10., there is an f ′ that shows M to be faithful to at least one

extension b′ of b. Since b′ is closed, for some C ∈ S and some i ∈ N, either
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(a): both C, i� and C, i� are on b′, or (b): both C, i� and ¬C, i� are

on b′. In case (a), νf ′(i)(C) = 1 and νf ′(i)(C) ≠ 1. Impossible. In case (b),

νf ′(i)(C) = 1 and νf ′(i)(¬C) = 1. Impossible. Hence, there is no closed tableau

for the argument from Σ to A. Therefore, Σ ⊬ A. ◻

4.4.2 Completeness

Induced Model

Definition 4.12. A complete open branch b of a GOMODAL tableau induces

a model M = ⟨W,R, ν⟩ iff

» W = {wi ∣ i ∈ z (b)}

» For all p ∈ A on b and i ∈ N :

(i) R (wi) = ßb (i).

(ii) νwi
(p) = 1 iff p, i� is on b.

(iii) νwi
(p) = 1∕2 iff p, i� and ¬p, i� are on b.

(iv) νwi
(p) = 0 iff either

(a) ¬p, i� is on b, or

(b) p, i� is on b and ¬p, i� is not on b.

» For any p ∈ A not on b, and all w ∈W, νw(p) = 1.

Completeness Lemma

Lemma 4.13. Given a branch b of a completed open tableau and its induced

model M:
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(a) If A, i� is on b, then νwi
(A) = 1, and

(b) If ¬A, i� is on b, then νwi
(A) = 0, and

(c) If A, i� and ¬A, i� are on b, then νwi
(A) = 1∕2, and

(d) If A, i� is on b, then νwi
(A) ≠ 1, and

(e) If ¬A, i� is on b, then νwi
(A) ≠ 0.

Proof. The proof shows that Lemma 4.13. holds for each LGOMODAL
sentence.

We start with our base case, and prove that each condition of Lemma 4.13.

holds for atomic sentences.

1. Proof of (a) for atomics.

Suppose p, i� is on b. By Definition 4.12.(ii), νwi
(p) = 1. ◻

2. Proof of (b) for atomics.

Suppose ¬p, i� is on b. By Definition 4.12.(iv), νwi
(p) = 0. ◻

3. Proof of (c) for atomics.

Suppose p, i� and ¬p, i� are on b. Hence, by Definition 4.12.(iii),

νwi
(p) = 1∕2. ◻

4. Proof of (d) for atomics.

Suppose p, i� is on b. It is either the case or not the case that ¬p, i�

is on b. If it is, then by Definition 4.12.(iii), νwi
(p) = 1∕2. If it is not, then

by Definition 4.12.(iv), νwi
(p) = 0. In either case, νwi

(p) ≠ 1. ◻
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5. Proof of (e) for atomics.

Suppose ¬p, i� is on b. Since b is open, ¬p, i� is not on b. Thus by

Definition 4.12.(iv), νwi
(p) ≠ 0. ◻

We proceed by induction for non-atomic cases. We start with the binary

connectives. Our induction hypothesis, then, is that each condition of the

Lemma holds for sentences A and B. Since Lemma 2.3. tells us that no binary

sentence is assigned value 1∕2, condition (c) should never apply. Thus we prove

(c) for all binary connectives in one step.

6. Proof of (c) for each � ∈ Cb.

The rule for A�B, i� for each � ∈ Cb produces exactly one node of

the form ¬(A�B), i� .

Suppose A�B, i� is on b. Since b is complete, ¬(A�B), i� is on b.

Since b is open, ¬(A�B), i� is not on b, and so (c) is vacuously true.

◻

Next we prove conditions (a) and (b) hold for each binary connective. Once

these are shown, we will prove that the remaining conditions, (d) and (e), must

also hold for all binary connectives.

7. Proof of (a) for ∧.

Suppose A ∧B, i� is on b. Since b is complete, A, i� and B, i� are

on b. By the induction hypothesis, then, νwi
(A) = 1 = νwi

(B). Hence,

νwi
(A ∧B) = 1. ◻
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8. Proof of (b) for ∧.

Suppose ¬(A ∧B), i� is on b. Thus either A, i� or B, i� is on b.

By the induction hypothesis, then either νwi
(A) ≠ 1 or νwi

(B) ≠ 1. In

either case, νwi
(A ∧B) = 0. ◻

9. Proof of (a) for ∨.

Suppose A ∨B, i� is on b. Thus either A, i� i or B, i� is on b. By

the induction hypothesis, either νwi
(A) = 1 or νwi

(B) = 1. In each case,

it follows that νwi
(A ∨B) = 1. ◻

10. Proof of (b) for ∨.

Suppose ¬(A ∨B), i� is on b. Thus both A, i� and B, i� are on b.

By the induction hypothesis,

νwi
(A) ≠ 1

νwi
(B) ≠ 1

Hence νwi
(A ∨B) = 0. ◻



108 CHAPTER 4. GOMODAL TABLEAUX

11. Proof of (a) for ⊃.

Suppose A ⊃ B, i� is on b. Since b is complete, either ¬A, i� or B, i�

is on b. In the first case, it follows from the induction hypothesis that

νwi
(A) = 0, and hence νwi

(A ⊃ B) = 1. Similarly, in the second case,

νwi
(B) = 1, and so νwi

(A ⊃ B) = 1. ◻

12. Proof of (b) for ⊃.

Suppose ¬(A ⊃ B), i� is on b. Thus ¬A, i� and B, i� are on b. By

the induction hypothesis, νwi
(B) ≠ 1 and νwi

(¬A) ≠ 0. Hence, by the

semantics of ⊃, νwi
(A ⊃ B) = 0. ◻

13. Proof of (a) for ≡.

Suppose A ≡ B, i� is on b. Thus either

(I) A, i� and B, i� are on b, or

(II) ¬A, i� and ¬B, i� are on b.

In case (I), by the induction hypothesis,

νwi
(A) = 1 = νwi

(B)

and similarly in case (II),

νwi
(A) = 0 = νwi

(B)

In each case it follows that νwi
(A ≡ B) = 1. ◻

14. Proof of (b) for ≡.
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Suppose ¬(A ≡ B), i� is on b. Thus either

(I) ¬A, i� and B, i� are on b, or

(II) A, i� and ¬B, i� are on b.

In case (I), it follows that

νwi
(A) ≠ 0

νwi
(B) ≠ 1

and thus

νwi
(A ⊃ B) = 0

In case (II), similarly:

νwi
(A) ≠ 1

νwi
(B) ≠ 0

whence

νwi
(B ⊃ A) = 0

In each case it follows that νwi
(A ≡ B) = 0. ◻
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15. Proof of (a) for →.

Suppose A→ B, i� is on b. Thus either:

(I) ¬A ∨B, i� is on b, or

(II) All of these are on b :

A, i�

B, i�

¬A, i�

¬B, i�

Case (I): Since b is complete, either ¬A, i� or B, i� is on b. Thus by the

induction hypothesis, either νwi
(A) = 0 or νwi

(B) = 1. So νwi
(¬A ∨B) =

1, and hence νwi
(A→ B) = 1.

Case (II): By the induction hypothesis (c),

νwi
(A) = 1∕2 = νwi

(B)

Hence, νwi
(A→ B) = 1. ◻

16. Proof of (b) for →.

Suppose ¬(A→ B), i� is on b. Thus either:

(I) A, i� and B, i� are on b, or

(II) ¬A, i� and ¬B, i� are on b.
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Case (I). By the induction hypothesis,

νwi
(A) = 1

νwi
(B) ≠ 1

Thus νwi
(A→ B) = 0.

Case (II). By the induction hypothesis,

νwi
(A) ≠ 0

νwi
(B) = 0

Hence νwi
(A→ B) = 0. ◻

17. Proof of (a) for ↔.

Suppose A↔ B, i� is on b. Thus A→ B, i� and B → A, i� are on

b, and so by the above proof (15)

νwi
(A→ B) = 1

νwi
(B → A) = 1

Hence νwi
(A↔ B) = 1. ◻

18. Proof of (b) for ↔.

Suppose A↔ B, i� is on b. Thus either:

(I) ¬(A→ B), i� is on b, or
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(II) ¬(B → A), i� is on b

In either case, by the above proof (16), νwi
(A↔ B) = 0. ◻

Given that (a) and (b) hold for the binary connectives, we show that (d) and

(e) must also hold

19. Proof of (d) for each � ∈ Cb.

The rule for A�B, i� for each � ∈ Cb produces exactly one node of

the form ¬(A�B), i� .

Since (b) holds for �, νwi
(A�B) = 0. Hence νwi

(A�B) ≠ 1. ◻

20. Proof of (e) for each � ∈ Cb.

The rule for ¬(A�B), i� for each � ∈ Cb produces exactly one node

of the form A�B, i� .

Since (a) holds for �, νwi
(A�B) = 1. Hence νwi

(A�B) ≠ 0. ◻

What are left are the unary connectives. For 2 and 3, we proceed in a fashion

similar to the binary connectives. Our induction hypothesis is that Lemma

4.13. holds for sentence A. First we show that conditions (a) and (b) hold for

2 and 3.

21. Proof of (a) for 2.

Suppose 2A, i� is on b. Since b is complete, for each j ∈ ßb (i), A, j�

is on b, and by the induction hypothesis, νwj
(A) = 1. By Definition

4.12.(i), it follows that ßb (i) =R (wi), and thus νwi
(2A) = 1. ◻
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22. Proof of (b) for 2.

Suppose ¬2A, i� is on b. Since b is complete, iRj and A, j� are on

b. Thus by the induction hypothesis, νwj
(A) ≠ 1, and by the Definition

4.12.(i), wiRwj. Hence by the semantics of 2, νwi
(2A) = 0. ◻

23. Proof of (a) for 3.

Suppose 3A, i� is on b. Since b is complete, A, j� and iRj are

on b. By Definition 4.12.(i), wiRwj, and by the induction hypothesis

νwj
(A) = 1, and thus it follows that νwi

(3A) = 1. ◻

24. Proof of (b) for 3.

Suppose ¬3A, i� is on b. Thus for each j ∈ ßb (i), A, j� is on b,

and by the induction hypothesis, νwj
(A) ≠ 1. By Definition 4.12.(i),

ßb (i) =R (wi), and thus νwi
(3A) = 0. ◻

The proofs for conditions (d) and (e) for 2 and 3 are similar to those for the

binary connectives, and they are left as an exercise. This leaves ¬. We proceed

with each condition individually.
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25. Proof of (a) for ¬.

Suppose ¬A, i� is on b. By the induction hypothesis, νwi
(A) = 0, and

thus νwi
(¬A) = 1. ◻

26. Proof of (b) for ¬.

Suppose ¬¬A, i� is on b. Hence, A, i� is on b, and so by the induction

hypothesis νwi
(A) = 1. Thus νwi

(¬A) = 0. ◻

27. Proof of (c) for ¬.

Suppose ¬A, i� and ¬¬A, i� are on b. Since b is complete, A, i�

is also on b, and so by the induction hypothesis νwi
(A) = 1∕2. Hence,

νwi
(¬A) = 1∕2. ◻

28. Proof of (d) for ¬.

Suppose ¬A, i� is on b. By the induction hypothesis, νwi
(A) ≠ 0, and

so νwi
(A) ∈ {1∕2,1}. Thus, νwi

(¬A) ∈ {0, 1∕2}, and hence νwi
(¬A) ≠ 1. ◻

29. Proof of (e) for ¬.

Suppose ¬¬A, i� is on b. Thus, A, i� is on b, and so by the induction

hypothesis, νwi
(A) ≠ 1. Whence νwi

(A) ∈ {0, 1∕2}, thence νwi
(¬A) ∈

{1∕2,1}. In either case, νwi
(¬A) ≠ 0. ◻
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Completeness Theorem

Theorem 4.14. If Σ ⊩ A then Σ ⊢ A.

Proof. We prove the contrapositive. Assume for conditional proof that Σ ⊬ A.

Thus there is a completed open tableau with an initial list of B,0� for all

B ∈ Σ and A,0� . Let M be a model induced by b. By Lemma 4.13.,

νw0(B) = 1 for each B ∈ Σ, and νw0(A) ≠ 1. Therefore, by Definition 2.4.,

Σ ⊮ A. ◻



Chapter 5

Further Issues

This chapter briefly surveys a few further expansions of the GO system, as well

as possible further applications. §5.1 gives a full first-order semantics. §5.2

considers the GO system in light of the rejection of mereological atomism. For

this, §5.3 develops a 4-valued system.

5.1 Quantification

Here we expand our propositional language GO to a full first-order language

with quantification.

We add to the syntax:

» A set of predicate symbols of any arity n ∈ N where n > 0,

P = {F n
1 , F

n
2 , . . . ,G

n
1 ,G

n
2 , . . . ,H

n
1 ,H

n
2 , . . .}

» A set of constants O = {a1, b2, . . . , b1, b2, . . . , c1, c2, . . .}

We also add special k-constants to O to ensure each object in the domain has

116
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a name.

» kd ∈ O, for each d ∈ D. (D here is our domain of objects, defined below.)

» A set of variables B = {x1, x2, . . . , y1, y2, . . . , z1, z2, . . .}

» New connectives ∀,∃ ∈ C

» New atomic formulas:

(a) If t ∈ O or t ∈ B, then t is a term.

(b) If t1, . . . , tn are terms and F n an n-ary predicate then F nt1, . . . , tn ∈
A

(c) If A is a formula, then ∀xA and ∃xA ∈ S

A model M comprises the following:

» A non-empty domain of objects, D

» Our interpretation function ν which we augment in the following way:

(a) For each a ∈ O, for some d ∈ D, ν(a) = d.
(b) The following constraint applies: For each k-constant kd ∈ O, ν(kd) =

d.

For each n-place predicate P n:

(c) ν+(P n) ⊆ Dn

(d) ν−(P n) ⊆ Dn

(e) The following constraint applies: ν+(P n) ∪ ν−(P n) = ∅.

» Truth conditions for closed atomics:

(a) ν(P na1, . . . , an) = 1 iff ⟨ν(a1), . . . , ν(an)⟩ ∈ ν+(P n)
(b) ν(P na1, . . . , an) = 0 iff ⟨ν(a1), . . . , ν(an)⟩ ∈ ν−(P n)
(c) ν(P na1, . . . , an) = 1∕2 iff ⟨ν(a1), . . . , ν(an)⟩ ∉ ν+(P n) ∪ ν−(P n)

» Truth conditions for quantifiers1:
1A(c/x) is the formula resulting from replacing c for each free occurrence of x in A.
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(a) ν(∀xA) = 1 iff for all d ∈ D, ν(A(kd/x)) = 1, else ν(∀xA) = 0
(b) ν(∃xA) = 1 iff for some d ∈ D, ν(A(kd/x)) = 1, else ν(∃xA) = 0

» Our conditions for ∨,∧,¬ are the same as before. Satisfaction and se-
mantic consequence are defined similarly.

Similar to the treatment of conjunction and disjunction, we have it that no

quantified sentence nor its negation gets value 1∕2. This gives us the following

lemmas:

Lemma 1.15. If ν(∀xA) ≠ 1 then ν(∀xA) = 0.

Lemma 1.16. If ν(¬∀xA) ≠ 1 then ν(¬∀xA) = 0.

Lemma 1.17. If ν(∃xA) ≠ 1 then ν(∃xA) = 0.

Lemma 1.18. If ν(¬∃xA) ≠ 1 then ν(¬∃xA) = 0.

Many classical inferences hold, for instance:

∀x(Px ⊃ Qx),∀x(Qx ⊃ Sx) ⊢ ∀x(Px ⊃ Sx)

B ⊢ ∀xA ⊃ ∃xA

Proof. By reductio. Suppose ν(∀xA ⊃ ∃xA) ≠ 1. By Lemma 1.15., ν(∀xA ⊃
∃xA) = 0. Thus ν(¬∀xA ∨ ∃xA) = 0. Hence ν(¬∀xA) ≠ 1 and ν(∃xA) ≠ 1. By
Lemmas 1.16. and 1.17., ν(¬∀xA) = 0 = ν(∃xA). Thus ν(∀xA) = 1. So, for
all d ∈ D, ν(A(kd/x)) = 1. But since, ν(∃xA) = 0, there is no d ∈ D such that
ν(A(kd/x)) = 1. Since our domain is non-empty, a contradiction follows. Thus
for all ν, ν(∀xA ⊃ ∃xA) = 1. Thus B ⊢ ∀xA ⊃ ∃xA. ◻

The following hold, where C is any closed formula.

∀xC ⊢ C
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Proof. Suppose ν(∀xC) = 1. Thus ν(C(kd/x)) = 1 for any d ∈ D. Since C is
closed, there are no unbound occurrences of x. Thus ν(C(kd/x)) = ν(C) for
all d ∈ D. Thus ν(C) = 1 = ν(∀xC). A similar proof follows for the others. ◻

C ⊢ ∀xC

∃xC ⊢ C

C ⊢ ∃xC

Restricted generality inferences such as the following hold:

Fa,∀x(Fx ⊃ Gx) ⊢ Ga

We do not have the classical bi-entailment of the quantifiers:

¬∃x¬A ⊬ ∀xA

We give a countermodel as follows. Take F 1x for A. Let:

D = {α,β}

ν+(F 1) = {α}

ν−(F 1) = ∅

Thus:

ν(¬F 1
kα
) = 0 ν(F 1

kα
) = 1

ν(¬F 1
kβ
) = 1∕2 ν(F 1

kβ
) = 1∕2

ν(∃x¬F 1x) = 0 ν(∀xF 1x) = 0
ν(¬∃x¬F 1x) = 1

This is to be expected, given our treatment of the quantifiers as general-

ized conjunction and disjunction, with conjunction and disjunction interpreted

analogously to our ∧ and ∨. We should expect these to result from features
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of GO analogous to those features that brought about a failure of some clas-

sical DeMorgan transformations. We might also expect to maintain the other

direction:

∀xA ⊢ ¬∃x¬A

Proof. Assume ν(∀xA) = 1. Thus for all d ∈ D, ν(A(kd/x)) = 1. Hence for all

d ∈ D, ν(¬A(kd/x)) = 0. Thus ν(∃x¬A) = 0, and hence, ν(¬∃x¬A) = 1. ◻

It follows by a similar counterexample that we do not have straightforward

interdefinability of the quantifiers in the standard way:

It is not the case that for any sentence A, ν(∀xA) = ν(¬∃x¬A).

5.2 What if there are no atoms?

Throughout we have assumed that some form of atomism is necessary for

the interpretation of GO; specifically, that there is a fact of the matter as to

which sentences or proposition are genuinely atomic. Given the motivation

that logical principles can be subject to minimal revision for reasons that

are ‘extra-logical’ (metaphysical, or perhaps physical reasons), one wonders

what becomes of the system if, for some reason or other, one abandons the

commitment to atomism.

It might certainly be the case that the world does consist of mereological

atoms; that there is a bottom level at which the tiniest particles that compose

everything in world themselves contain no proper parts, and cannot themselves

be divided. However, this is a substantive assumption about the true makeup
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of the physical world, and it is by no means certain. Schaffer (2003), for

instance, presents a compelling case for thinking that the epistemic possibility

of infinite descent is not only an open question, but that there is indeed no

evidence for the existence of a ‘fundamental’ level.

Toward the goal of making his account suitable for a broad range of sci-

entific theories, Armstrong considers the doxastic possibility that the world

contains no simple individuals, no ‘genuine atoms’. If this were the case, it

appears on the surface that combinatorialism is doomed, since it explicitly as-

sumes that there are genuinely atomic individuals and properties from which

the combinatorial principle constructs possible worlds.

A potential solution that Armstrong considers is that, even if the world

contains no genuine atoms, it still might contain relative atoms. The idea here

is that any mereological level can be taken as ‘relatively’ atomic.

An individual at a mereological level l is an l-relative atom if it is ‘wholly

distinct’ from every other individual at level l. An individual is wholly distinct

from another if the two share no individual as a part. A similar notion of

distinctness applies for universals, where, as before in Chapter 3, instead of

‘part’ in the mereological sense, a universal is wholly distinct from another if

the two have no ‘constituent’ in common.

If the world does contain genuine atoms, then there is a fundamental level

l0 such that no individual at l0 has a proper part. In this case, an l0-relative

atom is a genuine atom. If, however, there is no fundamental level, Armstrong’s

suggestion is that, at any given level l, the l-relative atoms generates a set of

possible worlds, and at each lower level, a new set of worlds is revealed. If the

world is infinitely divisible, then this process would continue ad infinitum.
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This proposal raises an immediate question: Why atomism? If there aren’t

any genuine atoms, then what reason is there to maintain an atomistic frame-

work? One answer is that a combinatorial framework in the context of atom-

lessness preserves the structure reflected in the principle of Hume Distinct-

ness. Even if two distinct objects are infinitely divisible, they remain logically

distinct, and so the mutual compatibility of the ‘relative’ recombinations is

guaranteed by the condition that the individuals and universals be wholly

distinct.

Perhaps the most straightforward picture of an infinite descent is one that

is stratified into well-organized levels. That is, the properties of entities at each

level supervene on properties of entities at the level below it, whose properties

are determined by those of the things below it, and so forth. Without speaking

of supervenience, we might instead say that, on this picture, the logic of things

remains the same throughout all levels of descent.

One notable feature of this picture of infinite descent is that there seems to

be no non-arbitrary way to distinguish any level as more or less “fundamental”

as another. As Schaffer argues, for any supposed ontologically privileged cut-

off level ln, since ln−1 provides a supervenience base for l and entities at l are

composed of those at ln−1, ln−1 provides a supervenience base for all levels

above l (2003, p. 507). This poses a problem for philosophical theses such as

physicalism, which seem to presuppose that there is a fundamental level, and

upon whose proponents it is incumbent to identify such a privileged base.

In the GO system, determinacy arises as a matter of form. While an atomic

sentence p may be indeterminate, each of its combinations (e.g., p ∧ q) is



5.2. WHAT IF THERE ARE NO ATOMS? 123

determinate. The result is a strict logical line between literal2 and complex

sentences. One can think of this general idea of a “logical line” as a result of

determinacy arising at a particular level of logical complexity, and remaining

at all higher levels. For the GO logic, this level is directly above the literal

level.

However, one might hold the view that, while determinacy arises as a mat-

ter of form, it does so at a higher level of complexity. Given an indeterminate

atomic sentence p, then, one of its combinations p∧q is also indeterminate, but

at some level of complexity, say (p∧q)∧r, determinacy arises. For disjunction

this might be either value 1 or 0, while for conjunction it will inevitably lead

to 0.

What sort of philosophical view might such a logic interpret? A natural

focus here is a mereological view according to which the world is stratified into

levels. Thus far, the GO logic restricts indeterminacy to the lowest level, but

prevents these gaps from percolating upward, such that the determinacy of

any combination is unaffected. One might, however, hold that, though gaps

do not percolate up all the way, indeterminacy does continue to some level

higher than atomics.

A simplified example of such a view holds that indeterminacy occurs at

the quantum level, and this in turn allows indeterminacy to occur all the

way up to, say, the chemical level, but at all levels beyond (the biological,

sociological, etc.) everything is determinate. There is an intuitive appeal to

this idea, reflected in the commonsense view that at the macro level, things

2Literals are standardly defined as atomics or negated atomics. Here we mean “literals” to
include any sentence featuring just an atomic sentence and any number of negation symbols,
since if p is indeterminate, so too are ¬p, ¬¬p, ¬¬¬p, and so forth.
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behave determinately, even if what goes on at the most microscopic level is

indeterminate; that the logic of all but perhaps the tiniest esoteric particles is

bivalent and is not held hostage to quantum considerations.

There are several ways one might expand the GO logic to model the contin-

uation of indeterminacy to higher levels. Here we briefly consider an expansion

of GO to a 4-valued logic, GO4, which allows for indeterminacy at one level

higher than literals.

5.3 GO4

Keeping the syntax of GO, the semantics for GO4 expands our set of values

with an additional indeterminate (i.e. undesignated) value.

V = {0, 1∕3, 2∕3,1}

Logical consequence, as before, is defined in the usual way. The truth tables

expand to accommodate the additional semantic value.

¬
0 1
1∕3 1∕3
2∕3 2∕3
1 0

∧ 0 1∕3 2∕3 1
0 0 0 0 0
1∕3 0 0 0 0
2∕3 0 0 1∕3 1∕3
1 0 0 1∕3 1

∨ 0 1∕3 2∕3 1
0 0 0 1∕3 1
1∕3 0 0 1∕3 1
2∕3 1∕3 1∕3 1∕3 1
1 1 1 1 1

Using our functions g and c, we keep our definitions for ∧ and ∨ the same.

g(x) = min{x,1 − x}

c(x) = x − g(x)
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ν(A ∧B) = min{c(ν(A)), c(ν(B))}

ν(A ∨B) = max{c(ν(A)), c(ν(B))}

Negation behaves similar to before, toggling classical values while holding in-

determinate values fixed.

The binary connectives of GO4 “push” toward classical values, though less

immediately than the GO connectives. As before, LEM fails, though now with

an additional counterexample which counts the disjunction as indeterminate:

B ⊬ A ∨ ¬A

If ν(A) = 1∕3, then as expected ν(A ∨ ¬A) = 0. When ν(A) = 2∕3 however, the

disjunction is indeterminate, although less than ν(A), as ν(A ∨ ¬A) = 1∕3. As

a result, at the next level of complexity, LEM still fails, and thus we lose GO’s

restricted versions of LEM:

C ⊬ (A ∨B) ∨ ¬(A ∨B)

B ⊬ A ∨ ¬(A ∨A)

The counterexamples here, however, assign the respective sentences value 0,

and so, as one would expect, determinacy now arises. As a result, this allows

yet weaker restricted versions of LEM:

C ⊢ ((A ∨B) ∨ ¬(A ∨B)) ∨ ¬((A ∨B) ∨ ¬(A ∨B))

B ⊢ ((A ∨A) ∨ ¬((A ∨A) ∨ (A ∨A)))
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What of DeMorgan transformations? The results for standard DeMorgan

inferences remain the same:

¬A ∧ ¬B ⊢ ¬(A ∨B)

¬A ∨ ¬B ⊢ ¬(A ∧B)

¬(A ∨B) ⊬ ¬A ∧ ¬B

¬(A ∧B) ⊬ ¬A ∨ ¬B

As before, the failure of DeMorgan blocks the inference from the negation of

an LEM instance to the failure of LNC:

¬(A ∨B) ⊬ ¬A ∧ ¬B

As one would expect, though, the restricted GO versions of distributive De-

Morgan also fail:

¬((A ∨B) ∨ (C ∨D)) ⊬ ¬(A ∨B) ∧ ¬(C ∨D)

¬((A ∨B) ∧ (C ∨D)) ⊬ ¬(A ∨B) ∨ ¬(C ∨D)

Replacing these are weaker versions:

¬((A ∨B) ∨ (C ∨D) ∨ (E ∨ F ) ∨ (G ∨H)) ⊢

¬((A ∨B) ∨ (C ∨D)) ∧ ¬((E ∨ F ) ∨ (G ∨H))

¬(((A ∨B) ∨ (C ∨D)) ∧ ((E ∨ F ) ∨ (G ∨H))) ⊢

¬((A ∨B) ∨ (C ∨D)) ∨ ¬((E ∨ F ) ∨ (G ∨H))

Though LNC still holds, the allowance for gaps in conjunctions brings the
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failure of GO’s stronger form of LNC:

B ⊬ ¬(A ∧ ¬A)

Counterexamples to this inference arise when ν(A) = 2∕3. Our replacement in

this case is only slightly weaker:

B ⊢ ¬((A ∧A) ∧ ¬A)

We have, for every sentence A, a sentence that is true iff A is gappy (i.e.

iff ν(A) ∈ {1∕3, 2∕3} ):

¯ A ∶= ¬((A ∨A) ∨ ¬A)

We also have one that is true iff ν(A) = 1∕3 :

? A ∶= ¬(A ∨ ¬A)

Additionally there is a sentence that is true iff ν(A) = 2∕3 :

@ A ∶= ¬((A ∨ ¬A) ∨ ¬(A ∨ ¬A))

This expressive power does come at a slight cost, though, as we lose the inter-

definability of ∧ and ∨, and so take each as primitive. However, the advantages

of the ability to isolate each value in the object language are most clear when

it comes to conditionals.

Observe that under the standard definition of the material conditional A ⊃
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B as ¬A ∨B, its behavior is slightly atypical:

⊃ 0 1∕3 2∕3 1
0 1 1 1 1
1∕3 0 0 1∕3 1
2∕3 1∕3 1∕3 1∕3 1
1 0 0 1∕3 1

As such, it may be unintuitive to consider this as a conditional. Consider

the case where ν(A) = 1∕3 and ν(B) = 0, and so ν(A ⊃ B) = 0. This in itself

is no surprise, as the situation is similar with values .5 and 0 in GO. What

is counterintuitive is when the antecedent is strengthened to 2∕3, the value of

A ⊃ B is also strengthened.

Note that modus ponens, modus tollens and transitivity hold:

A,A ⊃ B ⊢ B

¬B,A ⊃ B ⊢ ¬A

A ⊃ B,B ⊃ C ⊢ A ⊃ C

Although the anomalous ⊃ does not seem to affect these important inferences,

one might be inclined to look for a solution. From the outset, it is worth

noting that, depending on the particular philosophical view with which one

interprets this logic, it may be misleading to think of value 2∕3 as stronger than

1∕3 in any important sense.

A possible alteration is to return to GO’s original semantic clause for ¬,

where ν(¬A) = 1 − ν(A). The resulting tables would be:
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¬
0 1
1∕3 2∕3
2∕3 1∕3
1 0

⊃ 0 1∕3 2∕3 1
0 1 1 1 1
1∕3 1∕3 1∕3 1∕3 1
2∕3 0 0 1∕3 1
1 0 0 1∕3 1

Either way, however, identity (A ⊃ A) and thereby equivalence (A ≡ A) fail,

and so it remains a stretch to consider ⊃ a conditional.

Most importantly, however, given the ability to isolate each value, we can

define a range of stronger, suitable conditionals, for which identity and equiv-

alence hold, in the following ways:

A→ B ∶= (A ⊃ B) ∨ (( ? A ∧ ? B) ∨ ( @ A ∧ @ B))

A⇒ B ∶= (A ⊃ B) ∨ ( ¯ A ∧ @ B)

A⇛ B ∶= (A ⊃ B) ∨ ( ¯ A ∧ ¯ B)

The resulting tables are as follows:

→ 0 1∕3 2∕3 1
0 1 1 1 1
1∕3 0 1 0 1
2∕3 0 0 1 1
1 0 0 0 1

⇒ 0 1∕3 2∕3 1
0 1 1 1 1
1∕3 0 1 1 1
2∕3 0 0 1 1
1 0 0 0 1

⇛ 0 1∕3 2∕3 1
0 1 1 1 1
1∕3 0 1 1 1
2∕3 0 1 1 1
1 0 0 0 1

In general, we can define any truth table which assigns only values 0 or 1.

Schaffer’s attack on physicalism relies on the inability of the physicalist

to locate a non-arbitrary mereological level to serve as the fundamental base

level. The defining thesis of physicalism is that the fundamental physical level

is the privileged base whose existence and properties underwrites those of all
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the higher levels. If the picture of infinite descent is correct, however, then

any level that the physicalist might choose will be underwritten by an infinite

descent of lower levels. To privilege a higher level over a lower one, or to

maintain that no level is privileged, is to abandon the physicalist program.

Schaffer notes that there is one route the fundamentalist could take to block

his conclusion. The resulting view holds that the fundamental level, though

not mereologically simple, provides a supervenience base for all levels above

it. The parts at this ‘fundamental’ level, though they admit of decomposition,

decompose is a ‘boring’ sense, in that the properties of their parts supervene

on the properties of the whole, and so on down. Schaffer notes that this sort of

fundamentality is evidentially in the best shape, and “metaphysically speaking,

more palatable” (Schaffer 2003, p. 510).

Besides a picture of ‘boring’ descent, though, there is another way to take

this general route to pick out a non-arbitrary base level. The interpretation

for a GO system affords a logical distinction between the fundamental level,

which is determinate, and the ‘sub-fundamental’ levels, which allow for inde-

terminacy. The three-valued GO models an even cutoff at the fundamental

level, while GO4 models a stepped cutoff. Infinitely-valued cases are left for

future research. Apart from supervenience, in a mereological application, the

intermediate value models an indeterminate composition relation; similarly

with sense-data and indeterminate representation.



Appendix: Tableaux Examples

This appendix provides proofs using the tableaux system developed in Chapter
4. Many of the inferences referenced in Chapters 2 and 3 are included.

(1) B ⊬ A ∨ ¬A

B,0�
A ∨ ¬A,0�

0R0
¬(A ∨ ¬A),0�

A,0�
¬A,0�

Counter Model:

W = {w0}
R = {⟨w0,w0⟩}
νw0(B) = 1
νw0(A) = .5

(2) C ⊢ (A ∨B) ∨ ¬(A ∨B)

C,0�
(A ∨B) ∨ ¬(A ∨B),0�

0R0
¬((A ∨B) ∨ ¬(A ∨B)),0�

A ∨B,0�
¬(A ∨B),0�
¬(A ∨B),0�

�

131
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(3) A ∧ ¬A ⊢ B

A ∧ ¬A,0�
B,0�
0R0
A,0�
¬A,0�

�

(4) B ⊢ ¬(A ∧ ¬A)

B,0�
¬(A ∧ ¬A),0�

0R0
A ∧ ¬A,0�

A,0�
¬A,0�

�

(5) ¬(A ∨ ¬A) ⊬ A ∧ ¬A

¬(A ∨ ¬A),0�
A ∧ ¬A,0�

0R0
¬(A ∧ ¬A),0�

A,0�
¬A,0�

A,0� ¬A,0�

Counter Model:

W = {w0}
R = {⟨w0,w0⟩}
νw0(A) = .5
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(15a) A ∨ (B ∧C) ⊢ (A ∨B) ∧ (A ∨C)

A ∨ (B ∧C),0�
(A ∨B) ∧ (A ∨C),0�

0R0
¬((A ∨B) ∧ (A ∨C)),0�

A,0�

A ∨B,0�
¬(A ∨B),0�

A,0�
B,0�

�

A ∨C,0�
¬(A ∨C),0�

A,0�
C,0�

�

B ∧C,0�
B,0�
C,0�

A ∨B,0�
¬(A ∨B),0�

A,0�
B,0�

�

A ∨C,0�
¬(A ∨C),0�

A,0�
C,0�

�
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(15b) (A ∨B) ∧ (A ∨C) ⊢ A ∨ (B ∧C)

(A ∨B) ∧ (A ∨C),0�
A ∨ (B ∧C),0�

0R0
A ∨B,0�
A ∨C,0�

¬(A ∨ (B ∧C)),0�
A,0�

B ∧C,0�
¬(B ∧C),0�

A,0�
�

B,0�

A,0�
�

C,0�

B,0�
�

C,0�
�

(30a) A ⊃ (A ⊃ B) ⊢ A ⊃ B

A ⊃ (A ⊃ B),0�
A ⊃ B,0�

0R0
¬(A ⊃ B),0�

¬A,0�
B,0�

¬A,0�
�

A ⊃ B,0�
�
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(30b) A ⊃ B ⊢ A ⊃ (A ⊃ B)

A ⊃ B,0�
A ⊃ (A ⊃ B),0�

0R0
¬(A ⊃ (A ⊃ B)),0�

¬A,0�
A ⊃ B,0�

�

(42) B ⊢ A→ A

B,0�
A→ A,0�

0R0
¬(A→ A),0�

A,0�
A,0�

�

¬A,0�
¬A,0�

�

(43) B ⊢ (A ∧A)→ A

B,0�
(A ∧A)→ A,0�

0R0
¬((A ∧A)→ A),0�

A ∧A,0�
A,0�
A,0�

�

¬A,0�
¬(A ∧A),0�
A ∧A,0�
A,0�

�
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(45) C ⊢ (A ∧ (A→ B))→ B

C,0�
(A ∧ (A→ B))→ B,0�

0R0
¬((A ∧ (A→ B))→ B),0�

A ∧ (A→ B),0�
B,0�
A,0�

A→ B,0�

A,0�
B,0�
¬A,0�
¬B,0�

�

¬A ∨B,0�

¬A,0�
�

B,0�
�

¬B,0�
¬(A ∧ (A→ B)),0�
A ∧ (A→ B),0�

A,0�
A→ B,0�

A,0�
B,0�
¬A,0�
¬B,0�

�

¬A ∨B,0�

¬A,0�
�

B,0�
�

(49a) A→ (A→ B) ⊢ A→ B

A→ (A→ B),0�
A→ B,0�

0R0
¬(A→ B),0�

A,0�
A→ B,0�
¬A,0�

¬(A→ B),0�
�

¬A ∨ (A→ B),0�

A→ B,0�
�

¬A,0�

A,0�
B,0�

�

¬B,0�
¬A,0�

�
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(49b) A→ B ⊢ A→ (A→ B)

A→ B,0�
A→ (A→ B),0�

0R0
¬(A→ (A→ B)),0�

A,0�
B,0�
¬A,0�
¬B,0�

A,0�
A→ B,0�

�

¬(A→ B),0�
¬A,0�

�

¬A ∨B,0�

¬A,0�

A,0�
A→ B,0�

�

¬(A→ B),0�
¬A,0�

�

B,0�

A,0�
A→ B,0�

�

¬(A→ B),0�
¬A,0�

�
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(61) 2A ⊢ ¬3¬A
2A,0�

¬3¬A,0�
0R0
A,0�

3¬A,0�
¬A,1�
0R1
1R1
A,1�

�

(62) 3A ⊢ ¬2¬A

3A,0�
¬2¬A,0�

0R0
2¬A,0�
¬A,0�
A,1�
0R1
1R1

¬A,1�
�

(63) ¬3¬A ⊬ 2A
¬3¬A,0�
2A,0�
0R0

¬2A,0�
A,1�
0R1
1R1

¬A,1�
¬A,0�

Counter Model:

W = {w0,w1}
R = {⟨w0,w0⟩, ⟨w0,w1⟩, ⟨w1,w1⟩}
νw1(A) = .5
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(74) B ⊢ 2A→ 22A

B,0�
2A→ 22A,0�

0R0
¬(2A→ 22A),0�

2A,0�
22A,0�
A,0�

¬22A,0�
2A,1�
0R1
1R1
A,1�

¬2A,1�
A,2�
1R2
2R2
0R2
A,2�

�

¬22A,0�
¬2A,0�
2A,1�
0R1
1R1

¬2A,1�
A,2�
1R2
2R2
0R2

2A,0�
A,2�

�

(75) 3A ⊬ 23A

3A,0�
23A,0�

0R0
¬23A,0�
3A,1�
0R1
1R1
A,2�
0R2
2R2

¬3A,1�
A,1�

Counter Model:
W = {w0,w1,w2}
R = {⟨w0,w0⟩, ⟨w0,w1⟩, ⟨w1,w1⟩, ⟨w0,w2⟩, ⟨w2,w2⟩}
νw2(A) = 1
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νw1(A) = 0

(78) 3(A→ B) ⊢ 2A→ 3B

3(A→ B),0�
2A→ 3B,0�

0R0
¬(2A→ 3B),0�

A→ B,1�
0R1
1R1

A,1�
B,1�
¬A,1�
¬B,1�

2A,0�
3B,0�
A,1�

�

¬3B,0�
¬2A,0�
2A,0�
A,1�

�

¬A ∨B,1�

¬A,1�

2A,0�
3B,0�
A,1�

�

¬3B,0�
¬2A,0�
2A,0�
A,1�

�

B,1�

¬3B,0�
¬2A,0�
2A,0�
A,1�
A,0�
B,1�

�

2A,0�
3B,0�
A,1�
A,0�

¬3B,0�
B,1�

�
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