
Continuous Deployments with
CI\CD Pipelines &

Kubernetes
DEVOPSCON Berlin ONLINE

14.06.2021

Oz Tiram

/'wəːkʃɒp/

noun: workshop; plural noun:
workshops

> a meeting at which a group of
people engage in intensive
discussion and activity on a
particular subject or project.

Workshop

Who am I?

Who are you?
● What is your role?
● Have you worked with k8s before?
● How are you using kubernetes?

Agenda
● Continuous integration and continuous deployment
● Deploying straight to production
● Building a pipeline using gitlab
● Deploying to Kubernetes

What is CI\CD?
● What is Continuous Integration
● What is Continuous Delivery
● Are you doing it? How are you doing it?
● What do you like about it?
● What do you not like about it?

Continuous Integration
Continuous integration (CI) is the practice, in
software engineering, of merging all developer working
copies with a shared mainline several times a day.
Continuous integration involves integrating early and
often, so as to avoid the pitfalls of "integration
hell". The practice aims to reduce rework and thus
reduce cost and time.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Trunk_%28software%29

Continuous Delivery
Continuous Delivery doesn't mean every change is
deployed to production ASAP. It means every change is
proven to be deployable at any time.

Where do you deploy to?
● Do you have Jenkins or Similar at work?
● Do you have multiple “environments” at work?
● If so, how do they defer?
● What possible problem could arise from such differences?

Manual Deployment and Testing

Manual Deployment and Testing
Manual Testing is immoral. It's not just
dumb - and it is dumb -
it is immoral, because you are taking
people and you are asking them to act
like machines.

Bob Martin, The land that scrum forgot.

https://www.youtube.com/watch?v=hG4LH6P8Syk&t=2202s

Continuous
Delivery

Deployment!

● Reduces hardware and maintenance costs
● Reduces manual labor

Continuous Deployment

● Code Changes bare risk
● Delay -> more change ---> more risk

Continuous Deployment

Continuous Deployment is reducing risk!

 Risk of 1 is 1/6
 Risk of 6 is 1/6

 Risk of 1 and 6 is 1/36

Risk of 1 and 6 or 1 and 3 is 2/36 ...

If we have a chance of 1 out 1000 that a commit is broken,

Deploying 20 commits bears the risk of >20/1000 or >2%*

● Code Changes bare risk
● Delay -> more change ---> more risk

Continuous Deployment

Continuous Deployment is reducing risk!

Continuous Deployment
Strategies

0. Application Recreation

● Strictly speaking this isn’t continuous
deployment.

● We replace version 1 with version 2 with a
“big bang”.

● Usually practiced with “Continuous Delivery”

0. Application Recreation
● The most common strategy
● Companies that have this may have one or more

of:
○ Separate environments
○ Separate deployment pipeline
○ Release ceremonies and or release manager

0. Application Recreation

0. Application Recreation

Downtime!

0. Application Recreation

Downtime with
release gone

wrong!

0. Application Recreation

Downtime with
release gone

wrong!

Downtime, how long ?!

Uptime SLA Monthly
downtime

99.99 4 m 22s

99 7h 18m 17s

96 1d 5h 13m 9s

1. Rolling release
● Easy if you automate all your tests.

● Can be rolled back automatically, if you have

monitoring in place!

● Usually, it is the norm outside the software

industry!

1. Rolling release

Risk control and management

2. Canary releases

The Scientific method!

2. Canary releases

The Scientific method!

2. Canary releases

The Scientific method!

A\B Testing

3. A\B, Blue\Green deployment

The Scientific method with user specific targeting

Canary release, A\B Testing

● Can’t be avoided in large
organizations

● Allow organizations to

carefully test in

production

Strategy Comparison
Strategy Downtime Real

traffic
testing

Targeting
users

Rollback
duration

Impact on
users

Complexity

Recrate Yes No No Long High Low

Rolling No No No Long Medium Medium

Canary No Yes Yes Short Low High

