
Advanced Python Flow control
ML Conf, Berlin

Oz Tiram, 1 October 2018

Agenda

iterables, iterators and generators
Co-routines, Futures and asyncio
Parallel tasks processing?

/'wəːkʃɒp/
noun: workshop; plural noun: workshops

a meeting at which a group of people engage
in intensive discussion and activity on a
particular subject or project.

iterables - what's behind a for
loop

for item in container:
 do_something_with_item(item)

or

[process(item) for item in container]

iterables - what's behind a for
loop

for item in container:
 do_something_with_item(item)

or

[process(item) for item in container]

iterables - what's behind a for
loop

for item in container:
 do_something_with_item(item)

or

[process(item) for item in container]

An Iterable has an __iter__ method

see class collections.abc.Iterable

iterables - a naive iterable
class March0:
 """Walk 1024 steps"""
 def __iter__(self):
 for i in ['Left', 'Right']*512:
 return i

for step in March():
 print(step)

iterables - a naive iterable
class March0:
 """Walk 1024 steps"""
 def __iter__(self):
 for i in ['Left', 'Right']*512:
 return i

for step in March():
 print(step)

a working iterable

class March1:
 def __iter__(self):
 return iter("Left" if i%2 else "Right" for i in range(1,1025))

iterables - exercise
compare the output of dis.dis with

class March2:

 def __iter__(self):
 return ("Left" if i%2 else "Right" for i in range(1,1025))

dis.dis("""for item in March1():
 print(item)""")

dis.dis("""for item in March2():
 print(item)""")

iter built-in behind the scences
1. object has __iter__? call it to get

an iterator.
2. object has __getitem__? create an

iterator on items in order, starting
from index 0 (zero).

3. raises TypeError("C object is not
iterable")

iterables with __getitem__
exercise: implement March3 with a __getitem__

iterables with __getitem__
exercise: implement March3 with a __getitem__

class March3:

 def __init__(self):
 self.steps = ["Left" if i%2 else "Right" for i in range(1, 1024)]
 def __getitem__(self, index):
 return self.steps[index]

iterators vs. iterables
iterables

Any object from which the iter built-in
function can obtain an iterator. Objects
implementing an __iter__ method returning
an iterator are iterable Sequences are always
iterable; as are objects implementing a
__getitem__ method that takes 0-based
indexes.

iterators

Any object that implements the __next__ no-
argument method that returns the next item in

Excercise - implementing an
iterator

Read
https://docs.python.org/3/library/stdtype
Implement March4

class March4(collections.abc.Iterator):
 """march N steps and stop"""
 def __init__(self, steps):
 self.steps = steps
 ...

https://docs.python.org/3/library/stdtypes.html#typeiter

class March4(Iterator):
 def __init__(self, steps):
 self.steps = steps
 def __next__(self):
 while self.steps:
 self.steps -= 1
 return "Left" if self.steps % 2 else "Right"
 raise StopIteration("No more steps")

>>> m = March4(10)
>>> next(m)
'Left'
>>> next(m)
'Right'
>>> next(m)
...
>>> next(m)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 8, in __next__
StopIteration: No more steps

A function which
returns a
generator
iterator. It looks
like a normal
function except
that it contains
yield expressions
for producing a
series of values
usable in a for-
loop or that can
be retrieved one

A Generator

A function which
returns a
generator
iterator. It looks
like a normal
function except
that it contains
yield expressions
for producing a
series of values
usable in a for-
loop or that can
be retrieved one

def march():
 step = 0
 while True:
 if step % 2:
 yield "Left"
 else:
 yield "Right"
 step += 1

A Generator

Generators are
lazy

Generators - attributes

>>> m = march()
>>> m
<generator object march at 0x7f1
>>> next(m)
'Right'
>>># do_something_else()
>>># go back to march()
... next(m)
'Left'

syntactic sugar

Generator expressions

>>> m = (item for item in {1,2,3,4
>>> m
<generator object <genexpr> at 0
>>> next(m)
1

Nested for
loops are
needed1 to
iterate over
multiple
generators.

s = 'abc'
l = [1,2,3]
def chain(*iters):
 for it in iters:
 for i in it:
 yield i

list(chain(s, l))
['a', 'b', 'c', 1, 2, 3]

Generators yield from

1check itertools.chain

Since Python
3.3 we have
yield from

s = 'abc'
l = [1,2,3]
def chain(*iters):
 for it in iters:
 yield from i

list(chain(s, l))
['a', 'b', 'c', 1, 2, 3]

Generators yield from

Exercise - Range

create class Range,
the built-in range, it can go
infinitely

class Range:
 def __init__(self, begin, step, end=None):
 self.begin = begin
 self.step = step
 self.end = end # None -> "infinite" series
 ...

Solution
class Range:
 def __init__(self, begin, step, end=None):
 self.begin = begin
 self.step = step
 self.end = end # None -> "infinite" series
 def __iter__(self):
 result = type(self.begin + self.step)(self.begin)
 forever = self.end is None
 index = 0
 while forever or result < self.end:
 yield result
 index += 1
 result = self.begin + self.step * index

>>> Range(1,1.0,5)
<__main__.Range object at 0x7f3fde4acd30>
>>> list(Range(1,1.0,5))
[1.0, 2.0, 3.0, 4.0]

Solution with a generator
function
>>> def range_gen(begin, step, end=None):
... result = type(begin + step)(begin)
... forever = end is None
... index = 0
... while forever or result < end:
... yield result
... index += 1
... result = begin + step * index
...
>>> range_gen(1, 0.5, 10)
<generator object range_gen at 0x7f3fde4aaf68>
>>> list(range_gen(1, 0.5, 10))

exercise - merge CSVs and
implement a qeuery interface
Build an interface for a CSV file which accepts a city
name, and returns the row. This should be similar to
this:

@coroutine
def get_key(data):
 val = None
 while True:
 get_val = yield
 yield data[get_val]

g = get_key({'a':1, 'b':2})
g.send('a')
1

Part 2 - Coroutines, Futures,
asyncio

If Python books are any guide, [coroutines
are] the most poorly documented, obscure,
and apparently useless feature of Python.

David Beazley, Python author

PEP 342 — Coroutines via
Enhanced Generators

.send() and yield in an expression

.trow() - raise exception inside a
generator
.close() - terminate a generator

PEP 388 - Syntax for
delegating to a subgenerator

This PEP allowed to return from a
generator
Allows yield from (seen earlier)

A basic coroutine
def basic_coro():
 print("started and waiting for input ...")
 x = yield
 print("I got %s" % s,)
 print("I am going to finish now ...")

>>> b = basic_coro()
>>> b
<generator object basic_coro at 0x7fca059fcdb0>
>>> next(b) # priming
>>> b.send(2)
got 2, exiting now ...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration

States of a generator - exercise
use inspect.getgeneratorstatus to find the different
states of basic_coro

Basic coroutine with multiple
yields
def basic_coro2(a):
 print(" *** started a: ", a)
 b = yield a
 print(" *** got b: ", s)
 c = yield a + b
 print(" *** received c: ", c ,)
 print(" will exit now ... ")

>>> def averager():
... total = 0.0
... count = 0
... average = None
... while True:
... try:
... term = yield average
... except GeneratorExit:
... print("done")
... raise
... else:
... total += term
... count += 1
... average = total/count
...

Running average - infinite
generator example

>>> def averager():
... total = 0.0
... count = 0
... average = None
... while True:
... try:
... term = yield average
... except GeneratorExit:
... print("done")
... raise
... else:
... total += term
... count += 1
... average = total/count
...

>>> avg = averager()
>>> next(avg) # start coroutine
>>> avg.send(1.0)
1.0
>>> avg.send(2.0)
1.5
>>> avg.close()
done

Running average - infinite
generator example

https://bit.ly/2xNk3th

https://bit.ly/2xNk3th

Priming co-routines

from functools import wraps

def coroutine(func):
 "primes `func` by advancing to
 @wraps(func)
 def primer(*args,**kwargs):
 gen = func(*args,**kwargs)
 next(gen)
 return gen
 return primer

@coroutine
def averager():
 ...

now the usage of averager is sim

>>> avg = averager()
>>> avg.send(1.0)
1.0
>>> avg.send(2.0)
1.5
>>> avg.close()
done

Terminating coroutines

generator.throw(exc_type[,
exc_value[, traceback]])
generator.close()

Exercise
Handling a custome execption in a genrator

Python docs https://bit.ly/2Iqlv8R

https://bit.ly/2Iqlv8R

Concurrecty with Futures
To handle network I/O efficiently, you need
concurrency, as it involves high latency, so
instead of wasting CPU cycles waiting, it’s
better to do something else until a response
comes back from the network.

Luciano Ramalho, Fluent Python

Commonly used in the past ...
http://code.activestate.com/recipes/577187-python-
thread-pool/

Let's examine the code together ...

http://code.activestate.com/recipes/577187-python-thread-pool/

Shiny concurrent.futures in
Python 3.2
def get_gdp(country, year=2017):
...: url = ('http://api.worldbank.org/v2/countries/{}'
...: '/indicators/NY.GDP.MKTP.CD?format=json&date={}'
...: ''.format(country, year))
...: resp = requests.get(url)
...: return {country: resp.json()[-1][0]["value"]}

>>> with ThreadPoolExecutor(5) as executor:
 res = executor.map(get_gdp, ['us', 'br', 'de', 'ir', 'il'])
>>> res
<generator object Executor.map.<locals>.result_iterator at 0x7f608880

>>> list(res)
[{'us': 19390604000000},
 {'br': 2055505502224.73},
 {'de': 3677439129776.6},

ThreadPoolExecutor.map -
what happens under the hood?

Despite Python's GIL multiple
threads run really quickly.
Every Blocking I\O in the STD
releases the GIL
Hence, while a thread is waiting for
response it gives control to another

Python's thread are great at doing nothing!

ThreadPoolExecutor with
explicit submit
with ThreadPoolExecutor(max_workers=5) as executor:
 tasks = []
 for country in ['us', 'br', 'de', 'ir', 'il']:
 future = executor.submit(get_gdp, country)
 tasks.append(future)
 print("Scheduled task at ", future)
 for task in futures.as_completed(tasks):
 print(task.result())

Scheduled task at <Future at 0x7f2273ad72b0 state=running>
Scheduled task at <Future at 0x7f2268037b70 state=running>
Scheduled task at <Future at 0x7f2268e9a240 state=running>
Scheduled task at <Future at 0x7f2268e9ab38 state=running>
Scheduled task at <Future at 0x7f22447e2128 state=running>
{'ir': 439513511620.591}
{'us': 19390604000000}
{'il': 350850537827.281}

ProcessPoolExecutor
concurrent.futures.ProcessPoolExecutor for heavy
CPU processes.

Threads aren't perfect

in fact they are dumb ... and hard to
manage
and they consume a lot of memory
...

Concurrency with asyncio
import asyncio

loop = asyncio.get_event_loop()
for country in ['us', 'br', 'de', 'ir', 'il']:
 tasks.append(loop.create_task(get_gdp(country)))

loop.run_until_complete(asyncio.gather(*tasks))

Diving into Python's
coroutines
bit.ly/coroutines

https://www.youtube.com/watch?
v=7sCu4gEjH5I&list=WL&index=17&t=0s

https://www.youtube.com/watch?v=7sCu4gEjH5I&list=WL&index=17&t=0s

Credits

A lot of ideas and material are
taken from Fluent Python, by
Luciano Ramalho
A. Jesse Jiryu Davis who's blogs
and talk have inspired this
workshop.

https://emptysqua.re/blog/

