#pragma once #include <iostream> #include <string> #include <typeinfo> #include <type_traits> #include <vector> #include <list> #include <deque> #include <set> #include <unordered_set> #include <array> #include <map> #include <unordered_map> #include <iomanip> #include <variant> #include <algorithm> #include <cassert> #include <cstddef> #include <iosfwd> #include <limits> #include <string_view> #include <optional> #include <utility> #include <sstream> #include <queue> #include <stack> #include <tuple> #include <initializer_list> #include <complex> #include <cmath> #include <memory> #ifdef __GNUG__ #include <cstdlib> #include <memory> #include <cxxabi.h> #endif // Check if a type is stream writable, i.e., std::cout << foo; template<typename S, typename T, typename = void> struct is_to_stream_writable: std::false_type {}; template<typename S, typename T> struct is_to_stream_writable<S, T, std::void_t< decltype( std::declval<S&>()<<std::declval<T>() ) >> : std::true_type {}; // Printing std::tuple // The indices trick: http://loungecpp.wikidot.com/tips-and-tricks:indices namespace pprint { template<std::size_t...> struct seq{}; template<std::size_t N, std::size_t... Is> struct gen_seq : gen_seq<N-1, N-1, Is...>{}; template<std::size_t... Is> struct gen_seq<0, Is...> : seq<Is...>{}; template<typename T> T to_string(T value) { return value; } std::string to_string(char value) { return "'" + std::string(1, value) + "'"; } std::string to_string(const char * value) { return "\"" + std::string(value) + "\""; } std::string to_string(const std::string& value) { return "\"" + value + "\""; } template<class Ch, class Tr, class Tuple, std::size_t... Is> void print_tuple(std::basic_ostream<Ch,Tr>& os, Tuple const& t, seq<Is...>){ using swallow = int[]; (void)swallow{0, (void(os << (Is == 0? "" : ", ") << to_string(std::get<Is>(t))), 0)...}; } } template<class Ch, class Tr, class... Args> auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t) -> std::basic_ostream<Ch, Tr>& { os << "("; pprint::print_tuple(os, t, pprint::gen_seq<sizeof...(Args)>()); return os << ")"; } // Enum value must be greater or equals than MAGIC_ENUM_RANGE_MIN. By default MAGIC_ENUM_RANGE_MIN = -128. // If need another min range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MIN. #if !defined(MAGIC_ENUM_RANGE_MIN) # define MAGIC_ENUM_RANGE_MIN -128 #endif // Enum value must be less or equals than MAGIC_ENUM_RANGE_MAX. By default MAGIC_ENUM_RANGE_MAX = 128. // If need another max range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MAX. #if !defined(MAGIC_ENUM_RANGE_MAX) # define MAGIC_ENUM_RANGE_MAX 128 #endif namespace magic_enum { // Enum value must be in range [-MAGIC_ENUM_RANGE_MAX, MAGIC_ENUM_RANGE_MIN]. By default MAGIC_ENUM_RANGE_MIN = -128, MAGIC_ENUM_RANGE_MAX = 128. // If need another range for all enum types by default, redefine the macro MAGIC_ENUM_RANGE_MAX and MAGIC_ENUM_RANGE_MIN. // If need another range for specific enum type, add specialization enum_range for necessary enum type. template <typename E> struct enum_range final { static_assert(std::is_enum_v<E>, "magic_enum::enum_range requires enum type."); static constexpr int min = std::is_signed_v<std::underlying_type_t<E>> ? MAGIC_ENUM_RANGE_MIN : 0; static constexpr int max = MAGIC_ENUM_RANGE_MAX; }; static_assert(MAGIC_ENUM_RANGE_MAX > 0, "MAGIC_ENUM_RANGE_MAX must be greater than 0."); static_assert(MAGIC_ENUM_RANGE_MAX < std::numeric_limits<int>::max(), "MAGIC_ENUM_RANGE_MAX must be less than INT_MAX."); static_assert(MAGIC_ENUM_RANGE_MIN <= 0, "MAGIC_ENUM_RANGE_MIN must be less or equals than 0."); static_assert(MAGIC_ENUM_RANGE_MIN > std::numeric_limits<int>::min(), "MAGIC_ENUM_RANGE_MIN must be greater than INT_MIN."); namespace detail { template <typename E, typename U = std::underlying_type_t<E>> [[nodiscard]] constexpr int min_impl() { static_assert(std::is_enum_v<E>, "magic_enum::detail::min_impl requires enum type."); constexpr int min = enum_range<E>::min > (std::numeric_limits<U>::min)() ? enum_range<E>::min : (std::numeric_limits<U>::min)(); return min; } template <typename E, typename U = std::underlying_type_t<E>> [[nodiscard]] constexpr decltype(auto) range_impl() { static_assert(std::is_enum_v<E>, "magic_enum::detail::range_impl requires enum type."); static_assert(enum_range<E>::max > enum_range<E>::min, "magic_enum::enum_range requires max > min."); constexpr int max = enum_range<E>::max < (std::numeric_limits<U>::max)() ? enum_range<E>::max : (std::numeric_limits<U>::max)(); constexpr auto range = std::make_integer_sequence<int, max - min_impl<E>() + 1>{}; return range; } [[nodiscard]] constexpr bool is_name_char(char c, bool front) noexcept { return (!front && c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_'; } template <typename E, E V> [[nodiscard]] constexpr std::string_view name_impl() noexcept { static_assert(std::is_enum_v<E>, "magic_enum::detail::name_impl requires enum type."); #if defined(__clang__) std::string_view name{__PRETTY_FUNCTION__}; constexpr auto suffix = sizeof("]") - 1; #elif defined(__GNUC__) && __GNUC__ >= 9 std::string_view name{__PRETTY_FUNCTION__}; constexpr auto suffix = sizeof("; std::string_view = std::basic_string_view<char>]") - 1; #elif defined(_MSC_VER) std::string_view name{__FUNCSIG__}; constexpr auto suffix = sizeof(">(void) noexcept") - 1; #else return {}; // Unsupported compiler. #endif #if defined(__clang__) || (defined(__GNUC__) && __GNUC__ >= 9) || defined(_MSC_VER) name.remove_suffix(suffix); for (std::size_t i = name.size(); i > 0; --i) { if (!is_name_char(name[i - 1], false)) { name.remove_prefix(i); break; } } if (name.length() > 0 && is_name_char(name.front(), true)) { return name; } else { return {}; // Value does not have name. } #endif } template <typename E, int... I> [[nodiscard]] constexpr decltype(auto) strings_impl(std::integer_sequence<int, I...>) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::detail::strings_impl requires enum type."); constexpr std::array<std::string_view, sizeof...(I)> names{{name_impl<E, static_cast<E>(I + min_impl<E>())>()...}}; return names; } template <typename E> [[nodiscard]] constexpr std::string_view name_impl(int value) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::detail::name_impl requires enum type."); constexpr auto names = strings_impl<E>(range_impl<E>()); const int i = value - min_impl<E>(); if (i >= 0 && static_cast<std::size_t>(i) < names.size()) { return names[i]; } else { return {}; // Value out of range. } } template <typename E, int... I> [[nodiscard]] constexpr decltype(auto) values_impl(std::integer_sequence<int, I...>) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::detail::values_impl requires enum type."); constexpr int n = sizeof...(I); constexpr std::array<bool, n> valid{{!name_impl<E, static_cast<E>(I + min_impl<E>())>().empty()...}}; constexpr int num_valid = ((valid[I] ? 1 : 0) + ...); std::array<E, num_valid> enums{}; for (int i = 0, v = 0; i < n && v < num_valid; ++i) { if (valid[i]) { enums[v++] = static_cast<E>(i + min_impl<E>()); } } return enums; } template <typename E, std::size_t... I> [[nodiscard]] constexpr decltype(auto) names_impl(std::integer_sequence<std::size_t, I...>) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::detail::names_impl requires enum type."); constexpr auto enums = values_impl<E>(range_impl<E>()); constexpr std::array<std::string_view, sizeof...(I)> names{{name_impl<E, enums[I]>()...}}; return names; } template <typename E> [[nodiscard]] constexpr std::optional<E> enum_cast_impl(std::string_view value) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::detail::enum_cast_impl requires enum type."); constexpr auto values = values_impl<E>(range_impl<E>()); constexpr auto count = values.size(); constexpr auto names = names_impl<E>(std::make_index_sequence<count>{}); for (std::size_t i = 0; i < count; ++i) { if (names[i] == value) { return values[i]; } } return std::nullopt; // Invalid value or out of range. } template<typename T> using enable_if_enum_t = typename std::enable_if<std::is_enum_v<T>>::type; template<typename T, bool = std::is_enum_v<T>> struct is_scoped_enum_impl : std::false_type {}; template<typename T> struct is_scoped_enum_impl<T, true> : std::bool_constant<!std::is_convertible_v<T, std::underlying_type_t<T>>> {}; template<typename T, bool = std::is_enum_v<T>> struct is_unscoped_enum_impl : std::false_type {}; template<typename T> struct is_unscoped_enum_impl<T, true> : std::bool_constant<std::is_convertible_v<T, std::underlying_type_t<T>>> {}; } // namespace magic_enum::detail // Checks whether T is an Unscoped enumeration type. // Provides the member constant value which is equal to true, if T is an [Unscoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Unscoped_enumeration) type. // Otherwise, value is equal to false. template <typename T> struct is_unscoped_enum : detail::is_unscoped_enum_impl<T> {}; template <typename T> inline constexpr bool is_unscoped_enum_v = is_unscoped_enum<T>::value; // Checks whether T is an Scoped enumeration type. // Provides the member constant value which is equal to true, if T is an [Scoped enumeration](https://en.cppreference.com/w/cpp/language/enum#Scoped_enumerations) type. // Otherwise, value is equal to false. template <typename T> struct is_scoped_enum : detail::is_scoped_enum_impl<T> {}; template <typename T> inline constexpr bool is_scoped_enum_v = is_scoped_enum<T>::value; // Obtains enum value from enum string name. template <typename E, typename = detail::enable_if_enum_t<E>> [[nodiscard]] constexpr std::optional<E> enum_cast(std::string_view value) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::enum_cast requires enum type."); return detail::enum_cast_impl<E>(value); } // Obtains enum value from integer value. template <typename E, typename = detail::enable_if_enum_t<E>> [[nodiscard]] constexpr std::optional<E> enum_cast(std::underlying_type_t<E> value) noexcept { static_assert(std::is_enum_v<E>, "magic_enum::enum_cast requires enum type."); if (detail::name_impl<E>(static_cast<int>(value)).empty()) { return std::nullopt; // Invalid value or out of range. } else { return static_cast<E>(value); } } // Returns enum value at specified index. // No bounds checking is performed: the behavior is undefined if index >= number of enum values. template<typename E, typename = detail::enable_if_enum_t<E>> [[nodiscard]] constexpr E enum_value(std::size_t index) { static_assert(std::is_enum_v<E>, "magic_enum::enum_value requires enum type."); constexpr auto values = detail::values_impl<E>(detail::range_impl<E>()); return assert(index < values.size()), values[index]; } // Obtains value enum sequence. template <typename E, typename = detail::enable_if_enum_t<E>> [[nodiscard]] constexpr decltype(auto) enum_values() noexcept { static_assert(std::is_enum_v<E>, "magic_enum::enum_values requires enum type."); constexpr auto values = detail::values_impl<E>(detail::range_impl<E>()); return values; } // Returns number of enum values. template <typename E, typename = detail::enable_if_enum_t<E>> [[nodiscard]] constexpr std::size_t enum_count() noexcept { static_assert(std::is_enum_v<E>, "magic_enum::enum_count requires enum type."); constexpr auto count = detail::values_impl<E>(detail::range_impl<E>()).size(); return count; } // Obtains string enum name from enum value. template <typename E, typename D = std::decay_t<E>, typename = detail::enable_if_enum_t<D>> [[nodiscard]] constexpr std::optional<std::string_view> enum_name(E value) noexcept { static_assert(std::is_enum_v<D>, "magic_enum::enum_name requires enum type."); const auto name = detail::name_impl<D>(static_cast<int>(value)); if (name.empty()) { return std::nullopt; // Invalid value or out of range. } else { return name; } } // Obtains string enum name sequence. template <typename E, typename = detail::enable_if_enum_t<E>> [[nodiscard]] constexpr decltype(auto) enum_names() noexcept { static_assert(std::is_enum_v<E>, "magic_enum::enum_names requires enum type."); constexpr auto count = detail::values_impl<E>(detail::range_impl<E>()).size(); constexpr auto names = detail::names_impl<E>(std::make_index_sequence<count>{}); return names; } namespace ops { template <typename E, typename D = std::decay_t<E>, typename = detail::enable_if_enum_t<E>> std::ostream& operator<<(std::ostream& os, E value) { static_assert(std::is_enum_v<D>, "magic_enum::ops::operator<< requires enum type."); const auto name = detail::name_impl<D>(static_cast<int>(value)); if (!name.empty()) { os << name; } return os; } template <typename E, typename = detail::enable_if_enum_t<E>> std::ostream& operator<<(std::ostream& os, std::optional<E> value) { static_assert(std::is_enum_v<E>, "magic_enum::ops::operator<< requires enum type."); if (value.has_value()) { const auto name = detail::name_impl<E>(static_cast<int>(value.value())); if (!name.empty()) { os << name; } } return os; } } // namespace magic_enum::ops } // namespace magic_enum namespace pprint { // Some utility structs to check template specialization template<typename Test, template<typename...> class Ref> struct is_specialization : std::false_type {}; template<template<typename...> class Ref, typename... Args> struct is_specialization<Ref<Args...>, Ref> : std::true_type {}; template<typename ...> using to_void = void; template<typename T, typename = void> struct is_container : std::false_type {}; template<typename T> struct is_container<T, to_void<decltype(std::declval<T>().begin()), decltype(std::declval<T>().end()), typename T::value_type >> : std::true_type // will be enabled for iterable objects {}; class PrettyPrinter { private: std::ostream& stream_; std::string line_terminator_; size_t indent_; bool quotes_; bool compact_; public: PrettyPrinter(std::ostream& stream = std::cout) : stream_(stream), line_terminator_("\n"), indent_(2), compact_(false), quotes_(true) {} void line_terminator(const std::string& value) { line_terminator_ = value; } void indent(size_t indent) { indent_ = indent; } void compact(bool value) { compact_ = value; } void quotes(bool value) { quotes_ = value; } template <typename T> void print(T value) { print_internal(value, 0, line_terminator_, 0); } template <typename T> void print(std::initializer_list<T> value) { print_internal(value, 0, line_terminator_, 0); } template<typename T, typename... Targs> void print(T value, Targs... Fargs) { print_internal(value, 0, "", 0); print_internal(" ", 0, "", 0); print(Fargs...); } template <typename T> void print_inline(T value) { print_internal(value, indent_, "", 0); } template <typename T> void print_inline(std::initializer_list<T> value) { print_internal(value, indent_, "", 0); } template<typename T, typename... Targs> void print_inline(T value, Targs... Fargs) { print_internal(value, indent_, "", 0); print_internal(" ", 0, "", 0); print_inline(Fargs...); } private: template <typename T> typename std::enable_if<std::is_integral<T>::value == true, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } template <typename T> typename std::enable_if<std::is_null_pointer<T>::value == true, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << "nullptr" << line_terminator; } void print_internal(float value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << 'f' << line_terminator; } void print_internal(double value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } void print_internal(const std::string& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { if (!quotes_) print_internal_without_quotes(value, indent, line_terminator, level); else stream_ << std::string(indent, ' ') << "\"" << value << "\"" << line_terminator; } void print_internal(const char * value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { if (!quotes_) print_internal_without_quotes(value, indent, line_terminator, level); else stream_ << std::string(indent, ' ') << "\"" << value << "\"" << line_terminator; } void print_internal(char value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { if (!quotes_) print_internal_without_quotes(value, indent, line_terminator, level); else stream_ << std::string(indent, ' ') << "'" << value << "'" << line_terminator; } void print_internal_without_quotes(const std::string& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } void print_internal_without_quotes(const char * value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } void print_internal_without_quotes(char value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } void print_internal(bool value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << (value ? "true" : "false") << line_terminator; } template <typename T> typename std::enable_if<std::is_pointer<T>::value == true, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { if (value == nullptr) { return print_internal(nullptr, indent, line_terminator, level); } stream_ << std::string(indent, ' ') << "<" << type(value) << " at " << value << ">" << line_terminator; } std::string demangle(const char* name) { #ifdef __GNUG__ int status = -4; std::unique_ptr<char, void(*)(void*)> res { abi::__cxa_demangle(name, NULL, NULL, &status), std::free }; return (status==0) ? res.get() : name; #else return name; #endif } template <class T> std::string type(const T& t) { return demangle(typeid(t).name()); } template <typename T> typename std::enable_if<std::is_enum<T>::value == true, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { auto enum_string = magic_enum::enum_name(value); if (enum_string.has_value()) { stream_ << std::string(indent, ' ') << enum_string.value() << line_terminator; } else { stream_ << std::string(indent, ' ') << value << line_terminator; } } template <typename T> typename std::enable_if<std::is_class<T>::value == true && is_to_stream_writable<std::ostream, T>::value == true && std::is_enum<T>::value == false && is_specialization<T, std::unique_ptr>::value == false && is_specialization<T, std::shared_ptr>::value == false && is_specialization<T, std::weak_ptr>::value == false && is_specialization<T, std::tuple>::value == false && is_specialization<T, std::variant>::value == false && is_specialization<T, std::vector>::value == false && is_specialization<T, std::list>::value == false && is_specialization<T, std::deque>::value == false && is_specialization<T, std::queue>::value == false && is_specialization<T, std::priority_queue>::value == false && is_specialization<T, std::stack>::value == false && is_specialization<T, std::set>::value == false && is_specialization<T, std::multiset>::value == false && is_specialization<T, std::unordered_set>::value == false && is_specialization<T, std::unordered_multiset>::value == false && is_specialization<T, std::map>::value == false && is_specialization<T, std::multimap>::value == false && is_specialization<T, std::unordered_map>::value == false && is_specialization<T, std::unordered_multimap>::value == false, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } template <typename T> typename std::enable_if<std::is_class<T>::value == true && is_to_stream_writable<std::ostream, T>::value == false && std::is_enum<T>::value == false && is_specialization<T, std::unique_ptr>::value == false && is_specialization<T, std::shared_ptr>::value == false && is_specialization<T, std::weak_ptr>::value == false && is_specialization<T, std::tuple>::value == false && is_specialization<T, std::variant>::value == false && is_specialization<T, std::vector>::value == false && is_specialization<T, std::list>::value == false && is_specialization<T, std::deque>::value == false && is_specialization<T, std::queue>::value == false && is_specialization<T, std::priority_queue>::value == false && is_specialization<T, std::stack>::value == false && is_specialization<T, std::set>::value == false && is_specialization<T, std::multiset>::value == false && is_specialization<T, std::unordered_set>::value == false && is_specialization<T, std::unordered_multiset>::value == false && is_specialization<T, std::map>::value == false && is_specialization<T, std::multimap>::value == false && is_specialization<T, std::unordered_map>::value == false && is_specialization<T, std::unordered_multimap>::value == false, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << "<Object " << type(value) << ">" << line_terminator; } template <typename T> typename std::enable_if<std::is_member_function_pointer<T>::value == true, void>::type print_internal(T value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << "<Object.method " << type(value) << " at " << &value << ">" << line_terminator; } template <typename Container> typename std::enable_if<is_specialization<Container, std::vector>::value, void>::type print_internal(const Container& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { typedef typename Container::value_type T; if (level == 0 && !compact_) { if (value.size() == 0) { print_internal_without_quotes("[", 0, ""); } else if (value.size() == 1) { print_internal_without_quotes("[", 0, ""); print_internal(value.front(), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("[", 0, "\n"); print_internal(value.front(), indent + indent_, "", level + 1); if (value.size() > 1 && is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else if (is_container<T>::value) print_internal_without_quotes(", ", 0, "\n"); for (size_t i = 1; i < value.size() - 1; i++) { print_internal(value[i], indent + indent_, "", level + 1); if (is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else print_internal_without_quotes(", ", 0, "\n"); } if (value.size() > 1) { print_internal(value.back(), indent + indent_, "\n", level + 1); } } if (value.size() == 0) print_internal_without_quotes("]", indent, ""); else if (is_container<T>::value == false) print_internal_without_quotes("]", indent, ""); else print_internal_without_quotes(line_terminator_ + "]", indent, ""); print_internal_without_quotes(line_terminator_, 0, ""); } else { if (value.size() == 0) { print_internal_without_quotes("[", indent, ""); } else if (value.size() == 1) { print_internal_without_quotes("[", indent, ""); print_internal(value.front(), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("[", indent, ""); print_internal(value.front(), 0, "", level + 1); if (value.size() > 1) print_internal_without_quotes(", ", 0, ""); for (size_t i = 1; i < value.size() - 1; i++) { print_internal(value[i], 0, "", level + 1); print_internal_without_quotes(", ", 0, ""); } if (value.size() > 1) { print_internal(value.back(), 0, "", level + 1); } } print_internal_without_quotes("]", 0, ""); if (level == 0 && compact_) print_internal_without_quotes(line_terminator_, 0, ""); } } template <typename T, unsigned long int S> void print_internal(const std::array<T, S>& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { if (level == 0 && !compact_) { if (value.size() == 0) { print_internal_without_quotes("[", 0, ""); } else if (value.size() == 1) { print_internal_without_quotes("[", 0, ""); print_internal(value.front(), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("[", 0, "\n"); print_internal(value.front(), indent + indent_, "", level + 1); if (value.size() > 1 && is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else if (is_container<T>::value) print_internal_without_quotes(", ", 0, "\n"); for (size_t i = 1; i < value.size() - 1; i++) { print_internal(value[i], indent + indent_, "", level + 1); if (is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else print_internal_without_quotes(", ", 0, "\n"); } if (value.size() > 1) { print_internal(value.back(), indent + indent_, "\n", level + 1); } } if (value.size() == 0) print_internal_without_quotes("]", indent, ""); else if (is_container<T>::value == false) print_internal_without_quotes("]", indent, ""); else print_internal_without_quotes(line_terminator_ + "]", indent, ""); print_internal_without_quotes(line_terminator_, 0, ""); } else { if (value.size() == 0) { print_internal_without_quotes("[", indent, ""); } else if (value.size() == 1) { print_internal_without_quotes("[", indent, ""); print_internal(value.front(), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("[", indent, ""); print_internal(value.front(), 0, "", level + 1); if (value.size() > 1) print_internal_without_quotes(", ", 0, ""); for (size_t i = 1; i < value.size() - 1; i++) { print_internal(value[i], 0, "", level + 1); print_internal_without_quotes(", ", 0, ""); } if (value.size() > 1) { print_internal(value.back(), 0, "", level + 1); } } print_internal_without_quotes("]", 0, ""); if (level == 0 && compact_) print_internal_without_quotes(line_terminator_, 0, ""); } } template <typename Container> typename std::enable_if<is_specialization<Container, std::list>::value || is_specialization<Container, std::deque>::value, void>::type print_internal(const Container& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { typedef typename Container::value_type T; if (level == 0 && !compact_) { if (value.size() == 0) { print_internal_without_quotes("[", 0, ""); } else if (value.size() == 1) { print_internal_without_quotes("[", 0, ""); print_internal(value.front(), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("[", 0, "\n"); print_internal(value.front(), indent + indent_, "", level + 1); if (value.size() > 1 && is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else if (is_container<T>::value) print_internal_without_quotes(", ", 0, "\n"); typename Container::const_iterator iterator; for (iterator = std::next(value.begin()); iterator != std::prev(value.end()); ++iterator) { print_internal(*iterator, indent + indent_, "", level + 1); if (is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else print_internal_without_quotes(", ", 0, "\n"); } if (value.size() > 1) { print_internal(value.back(), indent + indent_, "\n", level + 1); } } if (value.size() == 0) print_internal_without_quotes("]", indent, ""); else if (is_container<T>::value == false) print_internal_without_quotes("]", indent, ""); else print_internal_without_quotes(line_terminator_ + "]", indent, ""); print_internal_without_quotes(line_terminator_, 0, ""); } else { if (value.size() == 0) { print_internal_without_quotes("[", indent, ""); } else if (value.size() == 1) { print_internal_without_quotes("[", indent, ""); print_internal(value.front(), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("[", indent, ""); print_internal(value.front(), 0, "", level + 1); if (value.size() > 1) print_internal_without_quotes(", ", 0, ""); typename Container::const_iterator iterator; for (iterator = std::next(value.begin()); iterator != std::prev(value.end()); ++iterator) { print_internal(*iterator, 0, "", level + 1); print_internal_without_quotes(", ", 0, ""); } if (value.size() > 1) { print_internal(value.back(), 0, "", level + 1); } } print_internal_without_quotes("]", 0, ""); if (level == 0 && compact_) print_internal_without_quotes(line_terminator_, 0, ""); } } template <typename Container> typename std::enable_if<is_specialization<Container, std::set>::value || is_specialization<Container, std::multiset>::value || is_specialization<Container, std::unordered_set>::value || is_specialization<Container, std::unordered_multiset>::value, void>::type print_internal(const Container& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { typedef typename Container::value_type T; if (level == 0 && !compact_) { if (value.size() == 0) { print_internal_without_quotes("{", 0, ""); } else if (value.size() == 1) { print_internal_without_quotes("{", 0, ""); print_internal(*(value.begin()), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("{", 0, "\n"); print_internal(*(value.begin()), indent + indent_, "", level + 1); if (value.size() > 1 && is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else if (is_container<T>::value) print_internal_without_quotes(", ", 0, "\n"); typename Container::const_iterator iterator; for (iterator = std::next(value.begin()); iterator != std::prev(value.end()); ++iterator) { print_internal(*iterator, indent + indent_, "", level + 1); if (is_container<T>::value == false) print_internal_without_quotes(", ", 0, "\n"); else print_internal_without_quotes(", ", 0, "\n"); } if (value.size() > 1) { print_internal(*(std::prev(value.end())), indent + indent_, "\n", level + 1); } } if (value.size() == 0) print_internal_without_quotes("}", indent, ""); else if (is_container<T>::value == false) print_internal_without_quotes("}", indent, ""); else print_internal_without_quotes(line_terminator_ + "}", indent, ""); print_internal_without_quotes(line_terminator_, 0, ""); } else { if (value.size() == 0) { print_internal_without_quotes("{", indent, ""); } else if (value.size() == 1) { print_internal_without_quotes("{", indent, ""); print_internal(*(value.begin()), 0, "", level + 1); } else if (value.size() > 0) { print_internal_without_quotes("{", indent, ""); print_internal(*(value.begin()), 0, "", level + 1); if (value.size() > 1) print_internal_without_quotes(", ", 0, ""); typename Container::const_iterator iterator; for (iterator = std::next(value.begin()); iterator != std::prev(value.end()); ++iterator) { print_internal(*iterator, 0, "", level + 1); print_internal_without_quotes(", ", 0, ""); } if (value.size() > 1) { print_internal(*(std::prev(value.end())), 0, "", level + 1); } } print_internal_without_quotes("}", 0, ""); if (level == 0 && compact_) print_internal_without_quotes(line_terminator_, 0, ""); } } template <typename T> typename std::enable_if<is_specialization<T, std::map>::value == true || is_specialization<T, std::multimap>::value == true || is_specialization<T, std::unordered_map>::value == true || is_specialization<T, std::unordered_multimap>::value == true, void>::type print_internal(const T& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { typedef typename T::mapped_type Value; if (level == 0 && !compact_) { if (value.size() == 0) { print_internal_without_quotes("{", 0, ""); } else if (value.size() == 1) { print_internal_without_quotes("{", 0, ""); for (auto& kvpair : value) { print_internal(kvpair.first, 0, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); } } else if (value.size() > 0) { size_t count = 0; for (auto& kvpair : value) { if (count == 0) { print_internal_without_quotes("{", 0, "\n"); print_internal(kvpair.first, indent + indent_, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); if (value.size() > 1 && is_container<Value>::value == false) print_internal_without_quotes(", ", 0, "\n"); else if (is_container<Value>::value) print_internal_without_quotes(", ", 0, "\n"); } else if (count + 1 < value.size()) { print_internal(kvpair.first, indent + indent_, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); if (is_container<Value>::value == false) print_internal_without_quotes(", ", 0, "\n"); else print_internal_without_quotes(", ", 0, "\n"); } else { print_internal(kvpair.first, indent + indent_, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "\n", level + 1); } count += 1; } } if (value.size() == 0) print_internal_without_quotes("}", indent, ""); else if (is_container<Value>::value == false) print_internal_without_quotes("}", indent, ""); else print_internal_without_quotes(line_terminator_ + "}", indent, ""); print_internal_without_quotes(line_terminator_, 0, ""); } else { if (value.size() == 0) { print_internal_without_quotes("{", indent, ""); } else if (value.size() == 1) { print_internal_without_quotes("{", indent, ""); for (auto& kvpair : value) { print_internal(kvpair.first, 0, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); } } else if (value.size() > 0) { size_t count = 0; for (auto& kvpair : value) { if (count == 0) { print_internal_without_quotes("{", indent, ""); print_internal(kvpair.first, 0, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); print_internal_without_quotes(", ", 0, ""); } else if (count + 1 < value.size()) { print_internal(kvpair.first, indent + indent_, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); print_internal_without_quotes(", ", 0, ""); } else { print_internal(kvpair.first, 0, "", level + 1); print_internal_without_quotes(" : ", 0, ""); print_internal(kvpair.second, 0, "", level + 1); } count += 1; } } print_internal_without_quotes("}", 0, ""); if (level == 0 && compact_) print_internal_without_quotes(line_terminator_, 0, ""); } } template <typename Key, typename Value> void print_internal(std::pair<Key, Value> value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { print_internal_without_quotes("(", indent, ""); print_internal(value.first, 0, ""); print_internal_without_quotes(", ", 0, ""); print_internal(value.second, 0, ""); print_internal_without_quotes(")", 0, line_terminator, level); } template <class ...Ts> void print_internal(std::variant<Ts...> value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { std::visit([=](const auto& value) { print_internal(value, indent, line_terminator, level); }, value); } template <typename T> void print_internal(std::optional<T> value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { if (value) { print_internal(value.value(), indent, line_terminator, level); } else { print_internal_without_quotes("nullopt", indent, line_terminator, level); } } template <typename Container> typename std::enable_if<is_specialization<Container, std::queue>::value, void>::type print_internal(const Container& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { auto current_compact = compact_; compact_ = true; typedef typename Container::value_type T; auto local = value; std::vector<T> local_vector; while (!local.empty()) { local_vector.push_back(local.front()); local.pop(); } print_internal(local_vector, indent, line_terminator, level); compact_ = current_compact; } template <typename Container> typename std::enable_if<is_specialization<Container, std::priority_queue>::value, void>::type print_internal(const Container& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { auto current_compact = compact_; compact_ = true; typedef typename Container::value_type T; auto local = value; std::vector<T> local_vector; while (!local.empty()) { local_vector.push_back(local.top()); local.pop(); } print_internal(local_vector, indent, line_terminator, level); compact_ = current_compact; } template <typename T> void print_internal(std::initializer_list<T> value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { std::multiset<T> local; for(const T& x : value) { local.insert(x); } print_internal(local, indent, line_terminator_, level); } template <typename Container> typename std::enable_if<is_specialization<Container, std::stack>::value, void>::type print_internal(const Container& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { bool current_compact = compact_; compact_ = false; // Need to print a stack like its a stack, i.e., vertical typedef typename Container::value_type T; auto local = value; std::vector<T> local_vector; while (!local.empty()) { local_vector.push_back(local.top()); local.pop(); } print_internal(local_vector, indent, line_terminator, level); compact_ = current_compact; } template<class... Args> void print_internal(const std::tuple<Args...>& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << value << line_terminator; } template<typename T> void print_internal(const std::complex<T>& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << "(" << value.real() << " + " << value.imag() << "i)" << line_terminator; } template<typename Pointer> typename std::enable_if<is_specialization<Pointer, std::unique_ptr>::value || is_specialization<Pointer, std::shared_ptr>::value || is_specialization<Pointer, std::weak_ptr>::value, void>::type print_internal(const Pointer& value, size_t indent = 0, const std::string& line_terminator = "\n", size_t level = 0) { stream_ << std::string(indent, ' ') << "<" << type(value) << " at " << &value << ">" << line_terminator; } }; }