
6 Big Data File Formats Compared, Pt. 1

Made withMade with ObsidianObsidian

TypeType blogblog
 

CategoryCategory big-databig-data
 

TechnologiesTechnologies PythonPython
 

WebsiteWebsite Post LinkPost Link

A Big Data file format is designed to store high volumes of variable data optimally. This can be achieved using
different formats, such as columnar or row-based.

Columnar formats store data by clustering entries by column, whereas row-based formats store data by
clustering entries by row. Both formats are widely used in Big Data and present advantages & disadvantages
among each other.

We can also further classify formats as text files or binary files. A binary file is designed to be read by
computers; we cannot open a binary file and read its content simply using a text editor. In contrast, a text file
can be directly opened with a text editor.

In this 3-article series, we will discuss six popular Big Data file formats, explain what they are for, go over
writing & reading examples, and make some performance comparisons.

We'll be using Python scripts which can be found in the Blog Article Repo.

Table of Contents

§

§

Overview•
Non-serialized formats•

CSV•

TXT•

Serialized formats•
Feather•

Parquet•

Avro•

Pickle•

Creating a Data Set•

Writing with Python•
CSV•

Using numpy.tofile()•

Using numpy.savetext()•

Using pandas.DataFrame.to_csv()•

TXT•
Using numpy.savetext()•

Using pandas.DataFrame.to_csv()•

https://obsidian.md/
https://pabloagn.com/blog/
https://pabloagn.com/categories/big-data/
https://pabloagn.com/technologies/
https://pabloagn.com/blog/6-big-data-file-formats-compared-pt-1/
https://github.com/pabloagn/blog/tree/master/big-data/6-big-data-file-formats-compared


Overview
1. Non-serialized formats
As opposed to the serialized formats, non-serialized formats do not convert the object into a stream of bytes.
We will explain serialization formats in more detail further on. The most common non-serialization formats are
CSV & TXT files.

1.1 CSV
Comma-separated values (CSV) is a delimited text file format that typically uses a comma to separate values,
and although more delimiters can be used, it's not standard practice. It is the most popular format for storing &
reading tabular data since it's fast, easy to write & read, supported by practically all programs & libraries
involving data processing, and forces a flat & simple schema.

As popular as it is, CSV also has some disadvantages, such as large file sizes, slow parsing time, poor support
from Apache Spark, missing data handling, limited encoding formats, special handling required with nested
data, basic data support only, lack of support of special characters, no defined schema, and the use of commas as
delimiters; if our data entries have commas, we will have to enclose the entry in quotes. Otherwise, they will be
treated as delimiters.

These disadvantages make CSV files suboptimal when working with big data.

A typical CSV file will have a .csv  extension and will look like the example below:

Some considerations:

Feather•
Using pandas.DataFrame.to_feather()•

Parquet•
Using pandas.DataFrame.to_parquet() without partitioning•

Using pandas.DataFrame.to_parquet() with a single partition•

Using pandas.DataFrame.to_parquet() with multiple partitions•

Avro•
Using fastavro Python file handler•

Pickle•
Using .pickle.dump() to write as an open file•

Using .pickle.dumps() to write as a byte string•

Conclusions•

References•

Copyright•

§

Name,Age,Occupation,Country,State,City

Joe,20,Student,United States,Kansas,Kansas City

Chloe,37,Detective,United States,California,Los Angeles

Dan,39,Detective,United States,California,Los Angeles

...




1.2 TXT
Text document file (TXT) is a plain-text format structured as a sequence of lines of text. It is also a prevalent
format used for storing & reading tabular data because of its simplicity & versatility; a TXT file can be
formatted as delimited, free form, fixed width, jagged right, and so on.

A typical TXT file will have a .txt  extension and will look like the example below (depending on the
delimiter used, it will vary. In this example, we use tab delimiters which is the convention):

2. Serialized formats
Here is where things get more interesting; we introduce a concept called serialization.

This refers to the process of converting a data object into a series of bytes that save the state of the object in an
easily transmittable form. The inverse process, called deserialization, consists of reverting the object to its
original form.

Serialization has multiple advantages when it comes to Big Data handling & processing:

There are multiple data-serialization formats available. In this section, we'll mention five examples widely used
to process data.

2.1 Feather
Feather is a portable, lightweight, columnar, serialized file format based on Apache arrow. It uses the Arrow
IPC format internally to store & organize data. Feather supports two compression libraries, the default being
LZ4  (included in the pyarrow  library), and is available for Python & R programming languages.

In general, .feather  files are mostly recommended for short-term storage since stability between binary
versions is not guaranteed.

A typical Feather file will have a .feather  extension. Since it is a serialized format, we cannot see the contents
of a .feather  file by simply using a text editor.

2.2 Parquet

The header is denoted as the first row of our document.•

Each entry is followed by a comma but without blank spaces.•

Entries can have blank spaces and will be treated accordingly when parsing.•

Even though we can use text and numeric values, a CSV file will not store information regarding data
types.

•

Name   Age   Occupation   Country   State   City

Joe   20   Student   United States   Kansas   Kansas City

Chloe   37   Detective   United States   California   Los Angeles

Dan   39   Detective   United States   California   Los Angeles

...


It facilitates the transportation of data across networks and avoids compatibility issues.•

It enables us to save the exact current state of the object, transfer it, and replicate it in a new location.•

The serialization process can be customized depending on the specific needs, and the serialized data can
also be encrypted.

•

https://arrow.apache.org/docs/format/Columnar.html#serialization-and-interprocess-communication-ipc


Parquet is an open source, columnar, serialized data file format created by Apache, and designed for efficient
data storage & retrieval. As with .feather  files, it supports data compression and encoding schemes, and is
optimized for handling data in bulk.

Unlike .feather  files, .parquet  files are suited for long-term storage since the binary versions are much more
stable and constitute the gold standard for large data set columnar format storage.

A typical Parquet file will have a .parquet  extension. Since it is a serialized format, we cannot see the contents
of a .parquet  file by simply using a text editor. Still, we can see the folder structure (partition scheme) created
if we use partitioning. A single-partitioned .parquet  system would look similar to the example below:

2.3 Avro
Avro is a widely used, row-based, serialized storage format for Hadoop. It uses serialization for the actual data
and the JSON format to store the data schema, making it easily readable by other platforms.

The main difference between Avro and Feather & Parquet formats is that Avro uses a row-based structure,
whereas the last two use a column-based (columnar) format.

A typical Avro file will have a .avro  extension. Since it is a serialized format, we cannot see the contents of a
.avro  file by simply using a text editor.

2.4 Pickle
Pickle is a language-specific, serialized file format used to store Python objects. Its usage is sometimes
discouraged since it is not a universal file format, and other languages might present difficulties parsing it. On
the other hand, it allows us to write virtually any Python object to disk preserving its structure: tuples, lists,
arrays, dictionaries, nested objects, class instances & DataFrames, among others, are supported.

A typical Pickle file will have a .pickle  extension, though other extensions such as .pck , .pcl , and .db  are
also supported. Since it is a serialized format, we cannot see the contents of a .pickle  file by simply using a
text editor.

Creating a Data Set
For this section, we will create an array containing strings & numbers using the NumPy  module. Keep in mind
that we will be using this same object throughout the entire section:

Code

main.parquet

├─── Col1=Col1_Value1

│    ├─── *.parquet

└─── Col1=Col1_Value2

     └─── *.parquet


§



Output

We will also create an outputs  folder, where we'll store all written files:

Code

Once we have our data set as a numpy.ndarray  object arr  and out outputs  folder ready, we can proceed with
the writing.

Writing with Python
1. CSV
There are five primary methods for writing a CSV file using Python, although we'll only be covering three:

1.1 Using numpy.tofile()

This method takes a numpy.ndarray  object as input and writes a .csv  file in return. Additionally, it is very
simple and accepts only two additional parameters:

# Import NumPy module

import numpy as np


# Define headers

headers = ['Name', 'Age', 'Occupation', 'Country', 'State', 'City']


# Define rows

entry_1 = ['Joe', 20, 'Student', 'United States', 'Kansas', 'Kansas City']

entry_2 = ['Chloe', 37, 'Detective', 'United States', 'California', 'Los Angeles']

entry_3 = ['Dan', 39, 'Detective', 'United States', 'California', 'Los Angeles']


# Create array

arr = np.asarray([headers, entry_1, entry_2, entry_3])


Name	  Age	 Occupation	 Country	        State	      City

Joe	     20	    Student	    United States	 Kansas	      Kansas City

Chloe	  37	    Detective	 United States	 California	  Los Angeles

Dan	     39	    Detective	 United States	 California	  Los Angeles


mkdir outputs


§

fid : An open file object or a string containing a filename.•

sep : Separator between array items for text output. If empty, a binary file is written, equivalent to
file.write(a.tobytes()) .

•

str : Format string for text file output.•



This method is not recommended because it lacks flexibility, and even though we generated a two-dimensional
array, the output is a single-lined .csv  file:

Code

Output

1.2 Using numpy.savetext()

This method takes a numpy.ndarray  object as input and writes a .csv  file in return. It accepts a total of eight
parameters. We will stick with the most relevant:

In contrast to the previous method, numpy.savetext()  is more versatile and lets us output a multi-line .csv  file
using the newline  parameter.

The catch to this method is being careful in the fmt  parameter we specify. If we leave it empty or specify the
incorrect format, we'll probably get a TypeError  in return.

Also, we need to be careful & remember which newline  parameter we use. We'll stick to a newline \n  for this
example:

Code

Output

1.3 Using pandas.DataFrame.to_csv()

By far the most common technique when working with tabular data, but we leave it at the end since this method
requires a different object as input.

# Export data to csv using numpy.tofile() method

arr.tofile('outputs/01_dataset_method_1.csv', sep = ',')


'Name','Age','Occupation','Country','State','City','Joe','20','Student',...


fname : Filename or file handle.•

X : Data to be saved to a text file.•

fmt : A single format (%10.5f) , a sequence of formats, or a multi-format string.•

delimiter : String or character separating columns.•

newline : String or character separating lines.•

header : String that will be written at the beginning of the file.•

# Export data to csv using numpy.savetext() method

np.savetxt('outputs/02_dataset_method_2.csv', arr, fmt = '%s', delimiter = ',', newline = '\n')


Name	  Age	 Occupation	 Country	        State	      City

Joe	     20	    Student	    United States	 Kansas	      Kansas City

Chloe	  37	    Detective	 United States	 California	  Los Angeles

Dan	     39	    Detective	 United States	 California	  Los Angeles




The pandas.DataFrame.to_csv()  method accepts a pandas.DataFrame  object and writes a .csv  file in return. It
accepts a total of 21 parameters. We will stick with the most relevant:

Code

Output

2. TXT
There are two main methods for writing a .txt  file using Python, both of which we've already seen:

2.1 Using numpy.savetext()

The syntax is the same as with a .csv  file; we will only change some parameters:

Everything else can stay as is.

We will use the numpy.ndarray  object arr  we created in the previous section:

Code

Output

path_or_buf : String or path object.•

sep : String of length 1. Field delimiter for the output file.•

header : Write out the column names.•

index : Write row names (index).•

# Import pandas module

import pandas as pd


# Convert our array to a pandas.DataFrame object

# Extract data & columns separately

df = pd.DataFrame(data = arr[1:], columns = arr[:1][0])


# Export data to csv using pandas.DataFrame.to_csv() method

df.to_csv('outputs/03_dataset_method_3.csv', index = False)


Name	  Age	 Occupation	 Country	        State	      City

Joe	     20	    Student	    United States	 Kansas	      Kansas City

Chloe	  37	    Detective	 United States	 California	  Los Angeles

Dan	     39	    Detective	 United States	 California	  Los Angeles


We will change the fname  extension.•

We will remove the current delimiter ( , ) and substitute it with a tab delimiter ( '\t' ). If we do not
specify the delimiter parameter, our .txt  file will be written with a single space delimiter. This is bad
practice and will probably lead to problems when parsing the file if we have entries with single spaces
included.

•

# Export data to csv using numpy.savetext() method

np.savetxt('outputs/04_dataset_method_1.txt', arr, fmt = '%s', delimiter = '\t', newline = '\n')




2.2 Using pandas.DataFrame.to_csv()

This method, again, is the preferred one since it has a fair amount of parameters we can fine-tune. The syntax is
the same as with a .csv  file; we will only change some parameters:

We will use the pandas.DataFrame  object df  we created in the previous section:

Code

Output

3. Feather
We can use the pandas.DataFrame.to_feather()  method. To use this method, we will need to install an additional
library called pyarrow :

3.1 Using pandas.DataFrame.to_feather()

This method accepts a pandas.DataFrame  object and writes a feather  file in return. It accepts a total of 5
parameters, including the additional kwargs :

We will use the pandas.DataFrame  object df  we created in the previous section:

Code

Name	  Age	 Occupation	 Country	        State	      City

Joe	     20	    Student	    United States	 Kansas	      Kansas City

Chloe	  37	    Detective	 United States	 California	  Los Angeles

Dan	     39	    Detective	 United States	 California	  Los Angeles


If we omit the sep  parameter, our file will be written as comma-separated. As stated before, the
convention for .txt  files is to use tab delimiters, so we'll change that.

•

# Export data to csv using pandas.DataFrame.to_csv() method

df.to_csv('outputs/05_dataset_method_3.csv', index = False)


Name	  Age	 Occupation	 Country	        State	      City

Joe	     20	    Student	    United States	 Kansas	      Kansas City

Chloe	  37	    Detective	 United States	 California	  Los Angeles

Dan	     39	    Detective	 United States	 California	  Los Angeles


pip install pyarrow


path : String or path object.•

kwargs : Additional keywords passed:•
compression•

compression_level•

chunksize•

version•



Output
Since .feather  files are binary, we won't be able to see the actual contents of a .feather  file directly using a
text editor.

4. Parquet
We can use the pandas.DataFrame.to_parquet()  method. Same as with the pandas.DataFrame.to_feather()

module, to use this method, we will need to install an additional module called pyarrow .

Since we already have it, we'll go straight to writing.

4.1 Using pandas.DataFrame.to_parquet()  without partitioning
This method accepts a pandas.DataFrame  object and writes a parquet  file in return. It accepts a total of 5
parameters, including the additional kwargs :

We will use the pandas.DataFrame  object df  we created in the previous section.

As mentioned earlier, we can write .parquet  files partitioned or without partitioning. If we want to write an
unpartitioned .parquet  file, we can do so by leaving the partition_cols  parameter unspecified:

Code

Output
Since .parquet  files are binary, we won't be able to see the actual contents of a .parquet  file directly by using
a text editor.

4.2 Using pandas.DataFrame.to_parquet()  with a single partition
In contrast, if we want to write a partitioned .parquet  file, we can specify the column names by which to
partition the dataset using the partition_cols  parameter. In this example, we will partition only by State :

Code

# Export data to feather using pandas.DataFrame.to_feather() method

df.to_feather('outputs/06_dataset_method_1.feather')


path : String or path object.•

engine : Parquet library to use. If ‘auto’, the option io.parquet.engine  is used.•

compression : Name of the compression to use.•

index : If True, include the DataFrame’s index(es) in the file output.•

partition_cols : Column names by which to partition the dataset.•

kwargs : Additional keywords passed.•

# Using pandas.DataFrame.to_parquet() without partitioning

df.to_parquet('outputs/07_dataset_method_1.parquet')


# Using pandas.DataFrame.to_parquet() with partitioning

df.to_parquet('outputs/08_dataset_method_2.parquet', partition_cols = 'State')




Output
As before, .parquet  files are binary, but we can take a look at the different partitions:

4.3 Using pandas.DataFrame.to_parquet()  with multiple partitions
We can also pass a list of columns if we want an output partitioned multiple times. Each partition will be nested
inside its parent partition:

Code

Output
As before, .parquet  files are binary, but we can take a look at the different partitions:

5. Avro
.avro  files are less straightforward when working with pandas  since there is no default support. Also, as

mentioned earlier, we need to define a schema to write .avro  files.

There are two main libraries for manipulating .avro  files in Python. We will stick with the latter since the first
one is significantly slower:

5.1 Using fastavro  Python file handler
Before anything else, we will need to install the required library:

Code

dataset_method_2.parquet

├─── State=California

│    ├─── *.parquet

└─── State=Kansas

     └─── *.parquet


# Using pandas.DataFrame.to_parquet() with partitioning

df.to_parquet('outputs/09_dataset_method_3.parquet', partition_cols = ['State', 'City'])


dataset_method_3.parquet

├─── State=California

│    ├─── City=Los Angeles

│    │    └─── *.parquet

└─── State=Kansas

     └─── City=Kansas City

          └─── *.parquet


avro•

fastavro•

pip install fastavro 




We can then import the required modules from the fastavro  library:

Code

We must also cast the Age  column of our DataFrame df  to int . Otherwise, when defining our schema and
writing our file, we will get a TypeError :

Code

Output

The next step will consist of defining our schema in a JSON-like format and then parsing it using the
parse_schema()  method:

Code

# Import fastavro modules

from fastavro import writer, parse_schema


# Cast age to int type

df['Age'] = df['Age'].astype('int')


# Verify casting

df.dtypes


Name          object

Age            int32

Occupation    object

Country       object

State         object

City          object

dtype: object




The parse_schema()  method returns a dictionary consisting of 6 entries:

Output

Once we have generated our schema, we can then convert our pandas.DataFrame  object to a list of records:

Code

# Define the schema

schema = {

    'type': 'record',

    'name': 'dataset',

    'namespace': 'dataset',

    'doc': 'This schema consists of 1 int type and 7 string types',

    'fields': [

        {'name': 'Name', 'type': 'string'},

        {'name': 'Age', 'type': 'int'},

        {'name': 'Occupation', 'type': 'string'},

        {'name': 'Country', 'type': 'string'},

        {'name': 'State', 'type': 'string'},

        {'name': 'City', 'type': 'string'}

    ]

}


# Parse the schema

parsed_schema = parse_schema(schema)


The type  parameter is set to record . A record  is a complex Avro type that supports the following
parameters:

•

The name  parameter provides the name of the record .•

The namespace  parameter provides a name  qualification.•

The doc  parameter provides documentation to the user of our schema.•

The fields  parameter provides the data types for each column.•

__fastavro_parsed   bool

__named_schemas     dict

doc                 str

fields              list

name                str

type                str


__fastavro_parsed  confirms we have a fastavro  parsed schema.•

__named_schemas  contains doc , fields , name  & type .•

doc  contains our brief documentation.•

fields  contains a dictionary with column - data type associations.•

name  contains our record name.•

type  denotes that this is a record .•

# Convert pd.DataFrame to records (list of dictionaries)

records = df.to_dict('records')




The df.to_dict()  method returns a Python list containing three dictionaries (one per row), each with column-
entry pairs.

Output

Finally, we can write our list of records to a .avro  file using the Python file handler:

The wb  parameter denotes we're writing a binary file.

6. Pickle
We can use the built-in pickle  library for writing .pickle  files. This library provides two different
serialization methods:

6.1 Using .pickle.dump()  to write as an open file
We will start by importing the pickle  library:

Code

Next, we will create a Python file handle by specifying our target filename.pickle :

Finally, we will use the pickle.dump()  method to convert our previously generated list of dictionaries named
records , to a pickle  open file:

Code

dict     {'Name': 'Joe', 'Age': 20, 'Occupation': 'Student'...}

dict     {'Name': 'Chloe', 'Age': 37, 'Occupation': 'Detective'...}

dict     {'Name': 'Dan', 'Age': 39, 'Occupation': 'Detective'...}


# Write to Avro file

with open('outputs/10_dataset_method_1.avro', 'wb') as out:

    writer(out, parsed_schema, records)


# Close the BuffredWriter object

out.close()


pickle.dump() : The open file version.•

pickle.dumps() : The byte string version.•

# Import pickle library

import pickle


# Open a file to store the data

file = open('outputs/11_dataset_method_1.pickle', 'wb')


# Write open file to disk

pickle.dump(records, file)




Output
.avro  files are also binary, although a pickle.dump()  object is different in structure from a pickle.dumps()

object.

6.2 Using .pickle.dumps()  to write as a byte string
This method differs slightly from the previous one. As a first step, we will convert our previously generated list
of dictionaries named records , to a pickle  byte string:

Code

Output

We will next write our string of bytes as a .pickle  file in memory using the Python file handler:

Code

Output
The end result is a .pickle  file containing a line of binary characters, or byte string.

Conclusions
We've reviewed six file formats that can be used to write different data types. Each file format serves a different
purpose, from the very simple to the more complex.

Now that we know some general theories behind serialization, deserialization, the different file formats used,
and how to write them using Python, it's time to move on to reading these files and comparing them.

# Define a pickle object

my_pickled_object = pickle.dumps(records)


# Check the data type

type(my_pickled_object)


bytes


# Write byte string to disk

with open('outputs/12_dataset_method_2.pickle','wb') as out:

    out.write(my_pickled_object)


# Close the BufferedWriter object

out.close()


§

§



References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

Geeks for Geeks, Working with csv files in Python•

Stack Exchange, Why do we keep using CSV?•

Python Documentation, CSV File Reading and Writing•

Ireland's Open Data Portal, Choosing the right format for open data•

Towards Data Science, Big Data File Formats Explained•

Apache Arrow, Tabular File Formats•

Apache Avro, Schema Record•

Informatica, Avro Data Types•

Berkeley, Python Numerical Methods - Pickle Files•

Towards Data Science, CSV Files for Storage? Absolutely Not. Use Apache Avro Instead•

§

https://www.geeksforgeeks.org/working-csv-files-python/
https://softwareengineering.stackexchange.com/questions/47838/why-do-we-keep-using-csv
https://docs.python.org/3/library/csv.html
https://data.gov.ie/edpelearning/en/module9/#/id/co-01
https://towardsdatascience.com/big-data-file-formats-explained-dfaabe9e8b33
https://arrow.apache.org/docs/python/api/formats.html#tabular-file-formats
https://avro.apache.org/docs/1.8.2/spec.html#schema_record
https://docs.informatica.com/data-quality-and-governance/data-quality/10-5/developer-tool-guide/appendix-a--data-type-reference/complex-file-and-transformation-data-types/avro-data-types-and-transformation-data-types.html
https://pythonnumericalmethods.berkeley.edu/notebooks/chapter11.03-Pickle-Files.html
https://towardsdatascience.com/csv-files-for-storage-absolutely-not-use-apache-avro-instead-7b7296149326

