
6 Big Data File Formats Compared, Pt. 3

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory big-databig-data

TechnologiesTechnologies PythonPython

WebsiteWebsite Post LinkPost Link

Over the last two articles of this series, we have discussed different Big Data file formats and their overall
characteristics. We have also performed writing & reading examples using different Python modules &
methods.

In this section, we will focus on comparing the performance of the formats reviewed. We will evaluate writing
times, reading times, and file sizes.

We will then conclude this series by reviewing specific use cases for each one of the formats, as well as
discussing some recommendations.

This section will be longer than the previous ones and involve more code. We'll be using Python scripts which
can be found in the Blog Article Repo.

Table of Contents

§

§

Importing the required modules•

Defining plot parameters•

Preparing the data set•

Experiment design•

Performance tests•
Parameter definition•

Writing performance tests•

Reading performance tests•

Analysis•
Writing performance analysis•

Reading performance analysis•

File size analysis•

Performance results•
Plotting the results•

Bar chart for file sizes•

Boxplot for writing times•

Boxplot for reading times•

Exporting the results in a tabular format•

Side-by-side comparison•
Consolidated results•

https://obsidian.md/
https://pabloagn.com/blog/
https://pabloagn.com/categories/big-data/
https://pabloagn.com/technologies/
https://pabloagn.com/blog/6-big-data-file-formats-compared-pt-3/
https://github.com/pabloagn/blog/tree/master/big-data/6-big-data-file-formats-compared

Importing the required modules
For this section, we will be using the following Python libraries and modules:

Code

Defining plot parameters
Since we'll be plotting our experimental results, we will need to define our plot parameters beforehand:

Code

Interpretation•

Use cases•

Conclusions•

Appendix•
Experimental Conditions•

References•

Copyright•

§

File manipulation modules

import pandas as pd

from fastavro import reader, writer, parse_schema

import pickle

import openpyxl

Performance measurement modules

import time

System utility modules

import os

import shutil

from pathlib import Path

Plotting modules

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sns

§

Preparing the data set
To reduce noise in our performance measurements, we will employ a slightly larger file for this section. We will
be using the Spotify Charts data set (2.48 GB) published by DHRUVIL DAVE , which you can download from
Kaggle.

We can start by reading the data set as a pandas.DataFrame object:

Code

This process should take a couple of minutes, depending on the specifications of each machine.

Upon concluding, we should end up with a pandas.DataFrame object df with the following shape:

Code

Before anything else, delete the Matplotlib

font cache directory if it exists, to ensure

custom font proper loading

try:

 shutil.rmtree(matplotlib.get_cachedir())

except FileNotFoundError:

 pass

Define main color as hex

color_main = '#1a1a1a'

Define title & label padding

text_padding = 18

Define font sizes

title_font_size = 17

label_font_size = 14

Define rc params

plt.rcParams['figure.figsize'] = [14.0, 7.0]

plt.rcParams['figure.dpi'] = 300

plt.rcParams['grid.color'] = 'k'

plt.rcParams['grid.linestyle'] = ':'

plt.rcParams['grid.linewidth'] = 0.5

plt.rcParams['font.family'] = 'sans-serif'

plt.rcParams['font.sans-serif'] = ['Lora']

§

Load csv file as pandas.DataFrame object

df = pd.read_csv('datasets/charts.csv')

Get the shape of the object

df.shape

https://www.kaggle.com/datasets/dhruvildave/spotify-charts

Output

Meaning 26,173,514 rows by 9 columns.

Next, we will need to do some preprocessing before beginning with the tests:

Code

We converted our date field to an int datetime64 data type because the fastavro library does not currently
support str datetime64 objects.

Since we will be defining a schema for this file format, a conventional datetime64 data type would raise a
TypeError .

Lastly, we will create two new directories:

Code

Now, we're ready to start designing our experiment.

Experiment design

(26173514, 9)

Singe we have nan values, we will remove them

df = df.dropna()

Check the current data types and see if casting is required

df.dtypes

Cast to required data types

Date is currently a string. We will cast it to Pandas DateTime in integer format.

since Avro does not support original DateTime

df['date'] = pd.to_datetime(df['date'])

df['date'] = df['date'].apply(lambda x: x.value)

Streams will be casted to integer type

df['streams'] = df['streams'].astype('int')

Finally, reset index since .feather does not support

serializing a non-default index

df = df.reset_index(drop = True)

The first one for storing all of our written files.•

The second one for storing all of our performance test results.•

mkdir performance_tests

mkdir performance_results

§

For both writing & reading performance tests, we will be using a collection of measurements per file format.
This is always a good practice in experimental design and will help us calculate a complete set of descriptive
statistics.

Our experiment for the writing process will consist of the following steps:

1. Define the variables to measure.
2. Set the number of trials as a control variable.
3. Begin with the first trial, measuring variables of interest.
4. Store measurements.
5. Repeat for the other file formats.
6. Consolidate results and perform a statistical description.
7. Delete all written files except one to read in the next experiment.

Our experiment for the reading process will consist of the following steps:

1. Define the variables to measure.
2. Set the number of trials as a control variable.
3. Begin with the first trial, measuring variables of interest.
4. Store measurements.
5. Clear memory
6. Repeat for the other file formats.
7. Consolidate results and perform a statistical description.

Performance tests
1. Parameter definition
We will start by defining our experiment parameters:

Code

2. Writing performance tests
We will start by defining our writingPerformance() function, which will accept the following parameters :

Upon calling, it will return the following:

§

Define number of trials n

n = 20

Define performance tests output path

path = 'performance_tests/'

n : int•
Number of trials.•

path : str•
Path for writing results.•

df : pandas.DataFrame•
DataFrame Object containing the data set.•

Once we have the expected inputs and outputs, the idea is to perform the following:

1. Declare a pandas.core.series.Series for each file format, where we will store writing times. This will
result in 8 objects in total.

2. Declare an empty dictionary measured_vars_w , used to store key-value pairs of file format-Pandas series of
measurements.

3. Define a for loop to iterate over the number of trials n .
4. Define a writing method for each file format.
5. Set a start timer variable before writing execution using the time.time() method. This will be our initial

time marker.
6. Set an end timer variable after writing execution using the time.time() method. This will be our final

time marker.
7. Calculate the exec_time for each loop by calculating the difference between end and start variables.
8. Append the exec_time to our corresponding pandas.core.series.Series object.
9. Upon loop completion, assign a key-value pair to our measured_vars_w dictionary corresponding to the file

format and measured execution times.
10. Remove all generated files except one using the os.remove method.
11. Repeat for all remaining file formats.

We can translate our pseudocode into code:

Code

measured_vars_w : dict•
Execution time for each file format with n number of trials.•

def writingPerformance(n, path, df):

 '''

 Parameters

 n : int

 Number of trials.

 path : str

 Path for result writing.

 df : pandas.DataFrame

 DataFrame Object containing data set.

 Returns

 measured_vars_w : dict

 Execution time for each file format, with n number of trials.

 '''

 # Declare pd.Series() for storing the measured variables for each file format

 wtime_csv = pd.Series([], dtype='float64')

 wtime_txt = pd.Series([], dtype='float64')

 wtime_feather = pd.Series([], dtype='float64')

 wtime_parquet_NP = pd.Series([], dtype='float64')

 wtime_parquet_SP = pd.Series([], dtype='float64')

 wtime_parquet_MP = pd.Series([], dtype='float64')

 wtime_avro = pd.Series([], dtype='float64')

 wtime_pickle = pd.Series([], dtype='float64')

 # Declare a dictionary for storing all series

 measured_vars_w = {}

 # -------------------------------

 # 1. CSV

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'CSV trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to file

 df.to_csv(path + 'CSV' + '_' + str(trial) + '.csv')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_csv = pd.concat([pd.Series([exec_time]), wtime_csv])

 # Define series title

 wtime_csv.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['01_CSV'] = wtime_csv.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 os.remove(path + 'CSV' + '_' + str(trial) + '.csv')

 # -------------------------------

 # 2. TXT

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'TXT trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to file

 df.to_csv(path + 'TXT' + '_' + str(trial) + '.txt', sep = '\t')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_txt = pd.concat([pd.Series([exec_time]), wtime_txt])

 # Define series title

 wtime_txt.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['02_TXT'] = wtime_txt.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 os.remove(path + 'TXT' + '_' + str(trial) + '.txt')

 # -------------------------------

 # 3. Feather

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Feather trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to file

 df.to_feather(path + 'Feather' + '_' + str(trial) + '.feather')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_feather = pd.concat([pd.Series([exec_time]), wtime_feather])

 # Define series title

 wtime_feather.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['03_Feather'] = wtime_feather.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 os.remove(path + 'Feather' + '_' + str(trial) + '.feather')

 # -------------------------------

 # 4. Parquet non-partitioned

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Parquet NP trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to file

 df.to_parquet(path + 'Parquet_NP' + '_' + str(trial) + '.parquet')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_parquet_NP = pd.concat([pd.Series([exec_time]), wtime_parquet_NP])

 # Define series title

 wtime_parquet_NP.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['04_Parquet_NP'] = wtime_parquet_NP.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 os.remove(path + 'Parquet_NP' + '_' + str(trial) + '.parquet')

 # -------------------------------

 # 5. Parquet single-partitioned

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Parquet SP trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to file

 df.to_parquet(path + 'Parquet_SP' + '_' + str(trial) + '.parquet', partition_cols =
['region'])

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_parquet_SP = pd.concat([pd.Series([exec_time]), wtime_parquet_SP])

 # Define series title

 wtime_parquet_SP.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['05_Parquet_SP'] = wtime_parquet_SP.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 shutil.rmtree(path + 'Parquet_SP' + '_' + str(trial) + '.parquet')

 # -------------------------------

 # 6. Parquet multi-partitioned

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Parquet MP trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to file

 df.to_parquet(path + 'Parquet_MP' + '_' + str(trial) + '.parquet', partition_cols =
['region', 'trend'])

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_parquet_MP = pd.concat([pd.Series([exec_time]), wtime_parquet_MP])

 # Define series title

 wtime_parquet_MP.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['06_Parquet_MP'] = wtime_parquet_MP.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 shutil.rmtree(path + 'Parquet_MP' + '_' + str(trial) + '.parquet')

 # -------------------------------

 # 7. Avro

 # -------------------------------

 # Define the schema

 schema = {

 'type': 'record',

 'name': 'performance_comp',

 'namespace': 'performance_comp',

 'doc': 'This schema consists of 2 int types, 1 datetime type and 6 string types',

 'fields': [

 {'name': 'title', 'type': 'string'},

 {'name': 'rank', 'type': 'int'},

 {'name': 'date', 'type': 'long'},

 {'name': 'artist', 'type': 'string'},

 {'name': 'url', 'type': 'string'},

 {'name': 'region', 'type': 'string'},

 {'name': 'chart', 'type': 'string'},

 {'name': 'trend', 'type': 'string'},

 {'name': 'streams', 'type': 'int'}

]

 }

 # Parse the schema

 parsed_schema = parse_schema(schema)

 # Convert pd.DataFrame to records (list of dictionaries)

 records = df.to_dict('records')

 for trial in range(n):

 # Start trial

 print(f'Avro trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Write to Avro file

 with open(path + 'Avro' + '_' + str(trial) + '.avro', 'wb') as file:

 writer(file, parsed_schema, records)

 file.close()

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_avro = pd.concat([pd.Series([exec_time]), wtime_avro])

 # Define series title

 wtime_avro.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['07_Avro'] = wtime_avro.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 os.remove(path + 'Avro' + '_' + str(trial) + '.avro')

 # -------------------------------

 # 8. Pickle open file

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Pickle trial {trial} of {n} started...')

 # Convert pd.DataFrame to records (list of dictionaries)

 records = df.to_dict('records')

 # Start timer

 start = time.time()

 file = open(path + 'Pickle' + '_' + str(trial) + '.pickle', 'wb')

 # Write open file to disk

 pickle.dump(records, file)

 file.close()

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 wtime_pickle = pd.concat([pd.Series([exec_time]), wtime_pickle])

 # Define series title

 wtime_pickle.name = 'Writing Time [s]'

 # Add measurements to dictionary

 measured_vars_w['08_Pickle'] = wtime_pickle.reset_index(drop = True)

 # Remove all files from dir except one

 for trial in range(n - 1):

 os.remove(path + 'Pickle' + '_' + str(trial) + '.pickle')

 return measured_vars_w

3. Reading performance tests
Similar to the writing performance tests section, we will start by defining our readingPerformance() function,
which will accept the following parameters :

Upon calling, it will return the following:

Once we have the expected inputs and outputs, the idea is to perform the following:

1. Declare a pandas.core.series.Series for each file format, where we will store writing times. This would
result in 8 objects in total.

2. Declare an empty dictionary measured_vars_w , used to store key-value pairs of file format-Pandas series of
measurements.

3. Define a for loop to iterate over the number of trials n .
4. Define a reading method for each file format.
5. Set a start timer variable before writing execution using the time.time() method. This will be our initial

time marker.
6. Set an end timer variable after writing execution using the time.time() method. This will be our final

time marker.
7. Calculate the exec_time for each loop by calculating the difference between end and start variables.
8. Append the exec_time to our corresponding pandas.core.series.Series object.
9. Delete the read object from memory.

10. Upon loop completion, assign a key-value pair to our measured_vars_w dictionary corresponding to the file
format and measured execution times.

11. Repeat for all remaining file formats.

We can translate our pseudocode into code:

Code

n : int•
Number of trials.•

path : str•
Path for writing results.•

df : pandas.DataFrame•
DataFrame Object containing data set.•

measured_vars_r : dict•
Execution time for each file format, with n number of trials.•

def readingPerformance(n, path, df):

 '''

 Parameters

 n : int

 Number of trials.

 path : str

 Path for result writing.

 df : pandas.DataFrame

 DataFrame Objectn containing data set.

 Returns

 measured_vars_r : dict

 Execution time for each file format, with n number of trials.

 '''

 # Declare pd.Series() for storing the measured variables for each file format

 rtime_csv = pd.Series([], dtype='float64')

 rtime_txt = pd.Series([], dtype='float64')

 rtime_feather = pd.Series([], dtype='float64')

 rtime_parquet_NP = pd.Series([], dtype='float64')

 rtime_parquet_SP = pd.Series([], dtype='float64')

 rtime_parquet_MP = pd.Series([], dtype='float64')

 rtime_avro = pd.Series([], dtype='float64')

 rtime_pickle = pd.Series([], dtype='float64')

 # Declare a dictionary for storing all series

 measured_vars_r = {}

 # -------------------------------

 # 1. CSV

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'CSV trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 df = pd.read_csv(path + 'CSV' + '_' + str(n-1) + '.csv')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_csv = pd.concat([pd.Series([exec_time]), rtime_csv])

 # Delete file from memory

 del df

 # Define series title

 rtime_csv.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['01_CSV'] = rtime_csv.reset_index(drop = True)

 # -------------------------------

 # 2. TXT

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'TXT trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 df = pd.read_csv(path + 'TXT' + '_' + str(n-1) + '.txt', sep = '\t')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_txt = pd.concat([pd.Series([exec_time]), rtime_txt])

 # Delete file from memory

 del df

 # Define series title

 rtime_txt.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['02_TXT'] = rtime_txt.reset_index(drop = True)

 # -------------------------------

 # 3. Feather

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Feather trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 df = pd.read_feather(path + 'Feather' + '_' + str(n-1) + '.feather')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_feather = pd.concat([pd.Series([exec_time]), rtime_feather])

 # Delete file from memory

 del df

 # Define series title

 rtime_feather.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['03_Feather'] = rtime_feather.reset_index(drop = True)

 # -------------------------------

 # 4. Parquet non-partitioned

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Parquet NP trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 df = pd.read_parquet(path + 'Parquet_NP' + '_' + str(n-1) + '.parquet')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_parquet_NP = pd.concat([pd.Series([exec_time]), rtime_parquet_NP])

 # Delete file from memory

 del df

 # Define series title

 rtime_parquet_NP.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['04_Parquet_NP'] = rtime_parquet_NP.reset_index(drop = True)

 # -------------------------------

 # 5. Parquet single-partitioned

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Parquet SP trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 df = pd.read_parquet(path + 'Parquet_SP' + '_' + str(n-1) + '.parquet')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_parquet_SP = pd.concat([pd.Series([exec_time]), rtime_parquet_SP])

 # Delete file from memory

 del df

 # Define series title

 rtime_parquet_SP.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['05_Parquet_SP'] = rtime_parquet_SP.reset_index(drop = True)

 # -------------------------------

 # 6. Parquet multi-partitioned

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Parquet MP trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 df = pd.read_parquet(path + 'Parquet_MP' + '_' + str(n-1) + '.parquet')

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_parquet_MP = pd.concat([pd.Series([exec_time]), rtime_parquet_MP])

 # Delete file from memory

 del df

 # Define series title

 rtime_parquet_MP.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['06_Parquet_MP'] = rtime_parquet_MP.reset_index(drop = True)

 # -------------------------------

 # 7. Avro

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Avro trial {trial} of {n} started...')

 # Define list of dictionaries

 lod = []

 # Start timer

 start = time.time()

 # Read from Avro file

 with open(path + 'Avro' + '_' + str(n-1) + '.avro', 'rb') as fo:

 avro_reader = reader(fo)

 for record in avro_reader:

 lod.append(record)

 # Close the BufferedReader object

 fo.close()

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_avro = pd.concat([pd.Series([exec_time]), rtime_avro])

 # Delete file from memory

 del lod

 # Define series title

 rtime_avro.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['07_Avro'] = rtime_avro.reset_index(drop = True)

 # -------------------------------

 # 8. Pickle open file

 # -------------------------------

 for trial in range(n):

 # Start trial

 print(f'Pickle trial {trial} of {n} started...')

 # Start timer

 start = time.time()

 # Read from file

 with open(path + 'Pickle' + '_' + str(n-1) + '.pickle', 'rb') as file:

4. Analysis
Once we have both the writingPerformance() and readingPerformance() functions declared, we can define an
analysis() function which will accept the following parameters:

Upon calling, it will return the following:

Once we have the expected inputs and outputs, the idea is to perform the following:

4.1 Writing performance analysis

 my_pickled_object = pickle.load(file)

 # Close the BufferedReader object

 file.close()

 # End timer

 end = time.time()

 # Calculate execution time

 exec_time = end - start

 # Append time to series

 rtime_pickle = pd.concat([pd.Series([exec_time]), rtime_pickle])

 # Delete file from memory

 del my_pickled_object

 # Define series title

 rtime_pickle.name = 'Reading Time [s]'

 # Add measurements to dictionary

 measured_vars_r['08_Pickle'] = rtime_pickle.reset_index(drop = True)

 return measured_vars_r

n : int•
Number of trials.•

path : str•
Path for writing results.•

df : pandas.DataFrame•
DataFrame Object containing data set.•

measured_vars_w : dict•
Writing time of each file format with n number of trials.
•

measured_vars_r : dict•
Reading time of each file format with n number of trials.•

stat_dw : dict•
Statistical description of measured writing times for all formats.•

stat_dr : dict•
Statistical description of measured reading times for all formats.•

size_d : dict•
Statistical description of measured file/folder sizes for all formats.•

1. Define a list tests containing the names of each file format. We will use this object as iterable.
2. Call the writingPerformance() function and assign it to a measured_vars_w object.
3. Define an empty dictionary stat_dw for saving the statistical descriptions for the writing test.
4. Iterate over the tests object, indexing the measured_vars_w dictionary on each loop and calculating its

statistical description.
5. Assign a key-value pair on each loop, consisting of the file format name as the key and the statistical

description object as the value.

4.2 Reading performance analysis
1. Call the readingPerformance() function and assign it to a measured_vars_r object.
2. Define an empty dictionary stat_dr for saving the statistical descriptions for the reading test.
3. Iterate over the tests object, indexing the measured_vars_r dictionary on each loop and calculating its

statistical description.
4. Assign a key-value pair on each loop, consisting of the file format name as the key and the statistical

description object as the value.

4.3 File size analysis
1. Declare an empty dictionary size_d for storing the file size values.
2. For each file, calculate its size using the os.path.getsize method.
3. For each folder (parquet partitions), recursively calculate its size using the f.stat().st_size method.
4. Convert file sizes:

1. The os.path.getsize method returns the file size in bytes, so we need to divide the result by to
get our measurements in MB units.

2. The f.stat().st_size method returns the folder size in bytes, so we need to divide the result by
 to get our measurements in MB units.

We can translate our pseudocode into code:

Code

1, 0242

1, 0242

def analysis(n, path, df):

 '''

 Parameters

 n : int

 Number of trials.

 path : str

 Path for result writing.

 df : pandas.DataFrame

 DataFrame Objectn containing data set.

 Returns

 measured_vars_w : dict

 Writing time of each file format, with n number of trials.

 measured_vars_r : dict

 Reading time of each file format, with n number of trials.

 stat_dw : dict

 Statistical description of measured writing times for all formats.

 stat_dr : dict

 Statistical description of measured reading times for all formats.

 size_d : dict

 Statistical description of measured file/folder sizes for all formats.

 '''

 # Define all tests for including in statistical description

 tests = ['01_CSV',

 '02_TXT',

 '03_Feather',

 '04_Parquet_NP',

 '05_Parquet_SP',

 '06_Parquet_MP',

 '07_Avro',

 '08_Pickle']

 # -------------------------------

 # Writing Analysis

 # -------------------------------

 # Perform writing experiment and get measured_vars_w dictionary

 measured_vars_w = writingPerformance(n, path, df)

 # Define statistical results dict

 stat_dw = {}

 # Statistical Description for Writing

 # Extract each set of values, describe them and save them in a new dict

 for i in tests:

 stat_v = measured_vars_w[i].describe()

 stat_dw[i] = stat_v

If we closely examine lines 1049 through 1059 , we see that we need to declare different methods for
calculating file sizes & folder sizes.

We can then call our analysis() function and assign the outputs to 5 different objects:

Code

 # -------------------------------

 # Reading Analysis

 # -------------------------------

 # Perform reading experiment and get measured_vars_r dictionary

 measured_vars_r = readingPerformance(n, path, df)

 # Define statistical results dict

 stat_dr = {}

 # Statistical Description for Reading

 # Extract each set of values, describe them and save them in a new dict

 for i in tests:

 stat_v = measured_vars_r[i].describe()

 stat_dr[i] = stat_v

 # -------------------------------

 # File Size Analysis

 # -------------------------------

 # Define size results dict

 size_d = {}

 # Calculate file & dir sizes

 size_d['01_CSV'] = os.path.getsize(path + 'CSV' + '_' + str(n-1) + '.csv') / (1024**2)

 size_d['02_TXT'] = os.path.getsize(path + 'TXT' + '_' + str(n-1) + '.txt') / (1024**2)

 size_d['03_Feather'] = os.path.getsize(path + 'Feather' + '_' + str(n-1) + '.feather') /
(1024**2)

 size_d['04_Parquet_NP'] = os.path.getsize(path + 'Parquet_NP' + '_' + str(n-1) + '.parquet')
/ (1024**2)

 path_Parquet_SP = Path(path + 'Parquet_SP_19.parquet')

 size_d['05_Parquet_SP'] = sum(f.stat().st_size for f in path_Parquet_SP.glob('**/*') if
f.is_file()) / (1024**2)

 path_Parquet_MP = Path(path + 'Parquet_MP_19.parquet')

 size_d['06_Parquet_MP'] = sum(f.stat().st_size for f in path_Parquet_MP.glob('**/*') if
f.is_file()) / (1024**2)

 size_d['07_Avro'] = os.path.getsize(path + 'Avro' + '_' + str(n-1) + '.avro') / (1024**2)

 size_d['08_Pickle'] = os.path.getsize(path + 'Pickle' + '_' + str(n-1) + '.pickle') /
(1024**2)

 # Return a dictionary including the actual measured time values of all methods

 # Return a dictionary including the statistical description of all methods

 return measured_vars_w, measured_vars_r, stat_dw, stat_dr, size_d

Output

The shapes of our objects match the output requirements, as we have eight tested file formats.

Performance results
We now have everything we need to make sense of the data we just generated.

In this example, the quantity of data is manageable since we only have eight file formats and 20 measurements
per format. Regardless, it is always a good practice to visualize the results in a plot as a first step.

1. Plotting the results
We'll proceed with some visualization techniques appropriate for the results we have.

1.1 Bar chart for file sizes

Call analysis function

measured_vars_w, measured_vars_r, stat_dw, stat_dr, size_d = analysis(n, path, df)

Print the type and shape of each object

print(type(measured_vars_w))

print(len(measured_vars_w))

print(type(measured_vars_r))

print(len(measured_vars_r))

print(type(stat_dw))

print(len(stat_dw))

print(type(stat_dr))

print(len(stat_dr))

print(type(size_d))

print(len(size_d))

<class 'dict'>

8

<class 'dict'>

8

<class 'dict'>

8

<class 'dict'>

8

<class 'dict'>

8

§

A bar chart is a simple way to visualize data quickly. We can generate a bar chart using the matplotlib.pyplot

module:

Code

If we save the figure directly and then close it, the image will be written in the path we specify and will not
display on our IDE.

If we examine line 1181 , we used an additional library called seaborn to include the additional parameter
sns.despine() . This module is handy when dealing with statistical analysis visualizations. However, we will

not use it in this particular section and will limit ourselves to using the matplotlib.pyplot module.

Output

Create figure

plt.figure('File Sizes Bar Chart')

Plot the file sizes

plt.bar(size_d.keys(), size_d.values(), color = color_main)

Enable grid

plt.grid(True, zorder=0)

Set xlabel and ylabel

plt.xlabel('File Format', fontsize=label_font_size, labelpad=text_padding)

plt.ylabel('File Size [GB]', fontsize=label_font_size, labelpad=text_padding)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('File/Folder Sizes in Gigabytes', fontsize=title_font_size, pad=text_padding)

Optional: Save the figure as a png image

plt.savefig('performance_results/' + 'file_sizes_bar_chart_tp.png', format = 'png', dpi = 300,
transparent = True)

plt.savefig('performance_results/' + 'file_sizes_bar_chart_bg.png', format = 'png', dpi = 300,
transparent = False)

Close the figure

plt.close()

Figure 1.1: Bar Chart Denoting File/Folder Sizes In MB For Each File Format

1.2 Boxplot for writing times
A boxplot is a visualization method widely used in Data Science & statistical analysis. Its purpose is to describe
the distribution of experimental measurements, including useful visual information about the set.

A detailed discussion of the boxplot components is out of the scope of this article. That will be covered in
another blog post.

We can generate a boxplot using the matplotlib.pyplot module:

Code

Output

Figure 1.2: Boxplot Denoting The Distribution Of 20 Trials Of Writing Times For Each File
Format

Create figure

plt.figure('Writing Times Boxplot')

Plot the writing times

plt.boxplot(measured_vars_w.values(),

 labels = measured_vars_w.keys(),

 showmeans=True)

Enable grid

plt.grid(True, zorder=0)

Set xlabel and ylabel

plt.xlabel("File Format", fontsize=label_font_size, labelpad=text_padding)

plt.ylabel("Writing Time [s]", fontsize=label_font_size, labelpad=text_padding)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('Writing Time in Seconds', fontsize=title_font_size, pad=text_padding)

Optional: Save the figure as a png image

plt.savefig('performance_results/' + 'writing_time_scattered_boxplots_tp.png', format = 'png',
dpi = 300, transparent = True)

plt.savefig('performance_results/' + 'writing_time_scattered_boxplots_bg.png', format = 'png',
dpi = 300, transparent = False)

Close the figure

plt.close()

1.3 Boxplot for reading times
We can perform a similar treatment to our reading time results:

Code

Output

Create figure

plt.figure('Reading Times Boxplot')

Plot the writing times

plt.boxplot(measured_vars_r.values(),

 labels = measured_vars_r.keys(),

 showmeans=True)

Enable grid

plt.grid(True, zorder=0)

Set xlabel and ylabel

plt.xlabel("File Format", fontsize=label_font_size, labelpad=text_padding)

plt.ylabel("Reading Time [s]", fontsize=label_font_size, labelpad=text_padding)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('Reading Time in Seconds', fontsize=title_font_size, pad=text_padding)

Optional: Save the figure as a png image

plt.savefig('performance_results/' + 'reading_time_scattered_boxplots_tp.png', format = 'png',
dpi = 300, transparent = True)

plt.savefig('performance_results/' + 'reading_time_scattered_boxplots_bg.png', format = 'png',
dpi = 300, transparent = False)

Close the figure

plt.close()

Figure 1.3: Boxplot Denoting The Distribution Of 20 Trials Of Reading Times For Each File
Format

2. Exporting the results in a tabular format
We can also write our results in an Excel file. This is a valuable technique whenever we want to share or store
information that took a fair amount of time to generate (imagine explaining to our boss why we had to re-run a
2-hour performance test just to get the results back).

An Excel file is also a very friendly tabular format that everyone understands. It can be used to make further
analyses such as pivoting or calculating statistical measures (, , , , among others).

For this part, we will be writing four .xlsx files, two for writing results and two for reading results. Each file
will have eight tabs, each consisting of the file format and the writing and reading times in seconds,
respectively:

Code

mean min max stdev

Side-by-side comparison
1. Consolidated results

Format
Size

[MB]
Avg. Writing Time

[s]
Writing Method

Avg. Reading Time
[s]

Reading Method

.csv 2,954 67.4 df.to_csv() 37.1 pd.read_csv()

.txt 2,941 60.4 df.to_csv() 39.6 pd.read_csv()

.feather 1,216 6.6 df.to_feather() 4.7 pd.read_feather()

.parquet 604 12.9
df.to_parquet()

(NP)
5.5 pd.read_parquet()

.parquet 919 11.0
df.to_parquet()

(SP)
5.9 pd.read_parquet()

.parquet 1,417 22.4
df.to_parquet()

(MP)
13.6 pd.read_parquet()

.avro 2,455 55.9 fastavro writer() 59.5 fastavro reader()

.pickle 1,539 17.6 pickle.dump() 9.1 pickle.load()

Define function to export results to Excel file

def results_to_excel(dseries_dict, path):

 """Write dictionary of dataframes to separate sheets, within

 1 file."""

 writer = pd.ExcelWriter(path, engine='openpyxl')

 for tab_name, dseries in dseries_dict.items():

 dseries.to_excel(writer, sheet_name=tab_name)

 writer.close()

Define file for writing results

path_w = 'performance_results/' + 'measured_vars_w.xlsx'

path_dw = 'performance_results/' + 'stat_dw.xlsx'

Call function on writing results

results_to_excel(measured_vars_w, path_w)

results_to_excel(stat_dw, path_dw)

Define file for reading results

path_r = 'performance_results/' + 'measured_vars_r.xlsx'

path_dr = 'performance_results/' + 'stat_dr.xlsx'

Call function on reading results

results_to_excel(measured_vars_r, path_r)

results_to_excel(stat_dr, path_dr)

§

Figure 2: Chart Containing File/Folder Sizes Rounded To Integer Values, Average Writing &
Reading Times From 20 Measurements Rounded To One Decimal, And Writing/Reading Methods

Used For Each Case

Note: Keep in mind that these values vary across systems. CPU processing power, RAM capacity, and other
variables directly affect reading & writing times. Please refer to the Appendix section for the full list of machine
specifications used in this experiment.

2. Interpretation
We can see that the .csv & .txt file formats had the largest file sizes, while the non-partitioned .parquet

had the smallest file size. .parquet folder sizes increased almost linearly as we increased the number of
partitions, which makes sense if we remember that a partitioned file creates a directory hierarchy beneath the
main directory.

For writing times, we can see that most of our measures were more or less consistent except with the .pickle

file format. This is denoted by the two outliers visible in Figure 1.2 and can be due to processes starting in the
background, thus reducing resources and introducing noise in the measurements. We can mitigate or at least
reduce this phenomenon by tightening our experimental conditions.

Writing .feather files consistently consumed the least amount of time, followed by the single partitioned
.parquet file and non-partitioned .parquet file consecutively. We can also clearly see that the .csv and
.txt file formats were the worst performing, followed by the .avro format.

For reading times, the story is slightly different: Reading from the .avro file consumed the most amount of
time (25 seconds more than the second worst case), along with the highest standard deviation value of all file
formats (, meaning 7 seconds of deviation from the mean). This is due to the fact that the fastavro

library provides an iterator reading object, meaning the script had to iterate over each row and append it to an
object (in our case, a list). This additional step adds an extra layer of computational complexity, therefore
increasing reading times.

In contrast, the .feather file format took the least amount of time to read, closely followed by the non-
partitioned & single-partitioned .parquet files.

Use cases
From the results obtained in the previous section, we can see that the .feather file format offers consistently
fast writing & reading speeds when compared to the other file formats. Also, the file size is considerably
smaller. However, as we previously mentioned, this format is not recommended for long-term storage due to its
binary form instability.

A great alternative to handling big data would be the stabler .parquet file format: Both non-partitioned and
single-partitioned forms presented low writing & reading speeds and relatively small file sizes compared to the
other formats.

Even though the non-partitioned approach was the overall highest performing, it is not always the best option:
when dealing with large data sets that contain multiple aggregation levels, partitioning lets us divide the
aggregation levels into subfolders, making the information accessible by blocks, meaning we would not require
to read the entire file to extract a single column field group. This is especially important with big data since
Python reads data and stores it in memory, so a single-partitioned 1TB .parquet file would be practically

stdev = 7

§

impossible to read (parsing by blocks could do the trick, but then, this is what .parquet partitioning achieves
more elegantly, right?).

Another high-performing case was the .pickle file format, but we did not mention it as a first or even second
option for two extremely relevant reasons:

These two reasons alone make .pickle files more of a niche solution for interchanging Python objects and
most definitely not apt for production environments.

Lastly, the two worst performing file formats, .csv and .txt , which ironically are the most popular, present
all of the advantages that we mentioned earlier, but have substantial limitations if we want to ensure a proper
and secure data writing & loading environment; the single fact that these two file formats don't preserve data
types is a good-enough reason to evaluate other alternatives.

Conclusions
In summary, not all "big data" file formats are tailored for handling big data. This is counterintuitive,
nonetheless true. Each was created with a specific purpose and is better or worse at some applications than
others.

Serialized formats, for example, present several advantages over non-serialized formats. Still, the inverse also
happens: serialized formats may lose stability across versions and usually consume more processing resources
when serializing/deserializing objects.

Before implementing a format, especially in a production environment, it's essential to make a detailed
assessment of which formats will be used and how the encoding will be handled. Also, when working with other
collaborators, setting a strict standard for data formatting & handling is of vital importance and, more often than
not, overlooked in favor of implementing the "easier way".

Appendix
1. Experimental conditions
Below you can find a list of the parameters that were used to obtain these results:

It's platform specific.•

Malicious code can be easily injected, creating potential vulnerabilities in our environment.•

§

§

Python Build: Python 3.11.1 (tags/v3.11.1:a7a450f, Dec 6 2022, 19:58:39) MSC v.1934 64 bit (AMD64)
on win32

•

Operating System: Windows 11 Home, Version 22H2•

Processor: 12th Gen Intel Core i9-12900H, 2.50 GHz•

RAM: 64 GB DDR5•

§

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

Apache Spark, Parquet Files•

Vertica, Using Partition Columns•

This Pointer, Deleting Directories Recursively•

XlsxWriter, Creating Excel files with Python and XlsxWriter•

§

https://spark.apache.org/docs/latest/sql-data-sources-parquet.html
https://www.vertica.com/docs/10.0.x/HTML/Content/Authoring/ExternalTables/UsingPartitions.htm
https://thispointer.com/python-how-to-delete-a-directory-recursively-using-shutil-rmtree/
https://xlsxwriter.readthedocs.io/

