
Julia for Beginners

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory computer-sciencecomputer-science

TechnologiesTechnologies Julia, VS Code, Pluto, JupyterLab, PowerShell 7Julia, VS Code, Pluto, JupyterLab, PowerShell 7

WebsiteWebsite Post LinkPost Link

In our previous article, What Is Julia, and Why It Matters?, we discussed why Julia is so relevant today and
made some comparisons between other similar languages, such as Python and R. We also mentioned some of its
main characteristics and features, and concluded with some next steps to get started programming on Julia.

In this Blog Article, we'll install Julia and an awesome VS Code extension that will make programming easier
for us. We'll also take a look at two notebook environments: Pluto.jl , a great Julia-specific notebook
environment, and JupyterLab. We'll set up an environment, install some packages, and cover several practical
examples, where we will perform a general overview of Julia's main functionalities. We will close this segment
by recommending how to use Julia and some helpful next steps for those interested in this exciting, bleeding-
edge programming language.

We'll be using Julia scripts and reactive notebooks, which can be found in the Blog Article Repo. Datasets can
also be found in the datasets repo folder.

Table of Contents

§

§

What to expect•

Installation•
Julia•

VS Code•

Julia VS Code extension•

Configuring the JuliaMono Typeface•

The Julia REPL•

Creating a Working Environment from the REPL•

Installing packages using pkg from the REPL•

Getting familiar with the VS Code extension•
Using the Julia REPL inside VS Code•

Workspace variables•

Getting familiar with JupyterLab•

Getting familiar with Pluto.jl•
Writing multiple lines on a single cell•

Inserting Markdown cells•

https://obsidian.md/
https://pabloagn.com/blog/
https://pabloagn.com/categories/computer-science/
https://pabloagn.com/technologies/
https://pabloagn.com/blog/julia-for-beginners/
https://pabloagn.com/blog/what-is-julia-and-why-it-matters/
https://pabloagn.com/technologies/vs-code/
https://pabloagn.com/technologies/pluto/
https://pabloagn.com/technologies/jupyter-lab/
https://github.com/pabloagn/blog/tree/master/computer-science/julia-for-beginners
https://github.com/pabloagn/blog/tree/master/computer-science/julia-for-beginners/julia_project/datasets

What to expect
Although Julia is a relatively new language and doesn't enjoy the vast IDE support that Python has (yet), we
have limited options, but the ones currently available are superb and well-maintained. This segment will heavily
rely on VS Code since it's the IDE presently getting the most support. Some time ago, Juno was also well
maintained, but efforts have now been transferred entirely to the VS Code extension. We will also use an
extremely fun Julia-specific notebook environment called Pluto.jl , as well as the well-known JupyterLab. We

Using PlutoUI•
Creating reactive buttons•

Basic syntax•
Comments•

Variables•

Print statements•
print()•

println()•

Data types•
Integer types•

Floating-point types•

Binary and octal types•

String and Character types•
String types•

Character types•

Boolean types•

Native data structures•
Tuples•

Ranges•

Arrays•
Vectors•

Matrices•

Pairs•

Dicts•

Mathematical operators•

Flow control•
Logical operators•

Conditionals•

For loop•

While loop•

Functions•
Defining a function•

Broadcasting•

Functions with a bang !•

Next steps•

Conclusions•

References•

Copyright•

§

https://junolab.org/

will be using Microsoft Windows, but a similar installation process applies to other platforms, such as macOS &
Linux. The rest of the article can be easily translated for other platforms.

Also, we'll assume there is at least some knowledge or background in some programming language since Julia,
despite being syntactically simple, can get complex quickly; Python should do just fine since they're very
similar syntaxis-wise.

We will not rigorously explore all of Julia's functionalities since there is too much to cover. Instead, we will
review a comprehensive set of hands-on examples to start programming in Julia from scratch.

Installation
For this segment, we will need to install four main components:

We will also install some packages, which will come later when we get to the pkg package manager.

1. Julia
We will first install the latest stable release of the Julia programming language. We can head to the official Julia
Lang website downloads page. We will select the Windows 64-bit (installer). Once we have it, we'll run the
executable and follow the shown steps.

Adding Julia to PATH is important since this will ensure we can start the Julia REPL directly from our terminal
without specifying the whole absolute path for the executable. This will be useful when creating our project
environment and installing some packages.

If we missed this step for some reason, that's perfectly fine. We can simply follow the steps below:

1. Open Windows Run by using Windows Key + R .
2. Type rundll32 sysdm.cpl,EditEnvironmentVariables and hit Enter .
3. Head to user variables.
4. Find the Path variable.
5. Click Edit, and then click New.
6. Depending on whether the installation was performed using administrator or user-wide permissions, we

will need to find the Julia executable either in C:\Program Files (x86)\Julia-1.8.3\bin , or
C:\Users\ourusername\AppData\Local\Programs\Julia-1.8.5\bin .

7. Copy the corresponding absolute path and paste it directly into the new Path entry.
8. Click OK twice.
9. make sure that Julia was added to Path by opening the Windows Terminal and typing Julia . If

everything went smoothly, this command should open the Julia REPL. We can verify this by typing
VERSION inside the REPL. This should return the version we installed.

2. VS Code
If we don't yet have VS Code installed, we can get it from the official downloads page. We need to select the
Windows 8, 10, 11 executable and wait for it to download. When the installation is complete, we can verify by

§

The Julia programming language.•

Visual Studio Code.•

The Visual Studio Code Julia extension.•

The JuliaMono typeface.•

https://julialang.org/downloads/
https://code.visualstudio.com/download

opening the Visual Studio Code application directly from the Windows start menu. A detailed configuration
guide for VS Code is out of the scope of this article but can be consulted on the VS Code official documentation
site.

3. Julia VS Code extension
Once we have Julia and VS Code installed, we will proceed to install the Julia VS Code Extension:

1. Open VS code and head to the Extensions menu in the left panel. We can also open the Extensions menu by
using the shortcut Ctrl + Shift + X or by opening the command palette by typing F1 and searching for
Extensions: Install Extensions.

2. We will search for Julia, maintained by julialang, install it, and enable it. We can also get the extension by
using this link.

Now that everything's in place, we're ready to start configuring our working environment.

Configuring the JuliaMono Typeface
We mentioned the JuliaMono typeface in the last Julia article because it fits perfectly with Julia's scientific
philosophy and syntactic style. We will install the font family and make ligature adjustments to have exactly
what we want.

To begin, we will head to the official JuliaMono Typeface website. There, we will see all the documentation
available for this package. Now that we know more about this awesome font family, we will need to follow the
steps below:

1. Download the font by heading to the cormullion/juliamono repository.
2. Look for the juliamono-ttf.zip file and download it.
3. Extract the .zip file contents.
4. Open the Fonts menu by using Windows Key + R , and typing fonts.
5. Select and drag all the extracted .ttf files to the Fonts folder and wait for the installation to conclude.
6. Once we have the fonts installed, we will head to VS Code, open the command palette with R , and look

for Preferences: Open Settings (UI).
7. We will then search for the Font Family option, and locate the Editor: Font Family setting.
8. We will change whichever font we had previously designated for JuliaMono (no spaces in between).
9. We will then close the settings and open the VS Code command palette again. We will now search for

Preferences: Open User Preferences (JSON)
10. We will be presented with a JSON file which handles user-wide VS Code configuration parameters.

Depending if we have already configured something beforehand, we will be presented with different settings.
We will need to add an additional JSON entry called editor.fontLigatures . Font ligatures are glyphs that
combine the shapes of specific sequences of characters into a new form that makes for a more harmonious
reading experience. A typical example is the fi ligature, which combines a lowercase f and a lowercase i into a
single glyph so that the shoulder of the f doesn’t clash with the dot of the i.

The JuliaMono typeface has a selection of ligatures we can choose to enable or not, depending on our specific
taste. For the complete set of ligatures, we can head to cormullion's blog. There, we will be presented with all
the options we can add, along with some examples.

We will have to select the ligature codes we're interested in and set them in the user configuration file we
previously opened:

§

https://code.visualstudio.com/docs
https://marketplace.visualstudio.com/items?itemName=julialang.language-julia
https://juliamono.netlify.app/
https://github.com/cormullion/juliamono
https://cormullion.github.io/pages/2020-07-26-JuliaMono/#contextual_and_stylistic_alternates_and_ligatures

CODE

We can now save our JSON file and close it.

The Julia REPL
The Julia REPL (Read-Eval-Print-Loop) is Julia's shell, which we'll use extensively to configure our
environment and download packages.

We can access the REPL using two methods:

To open it from PowerShell, we can type Julia:

CODE

We will be presented with the Julia logo, as well as the version we're using and some additional documentation
information:

OUTPUT

We can exit the Julia REPL by typing exit() .

Creating a Working Environment from
the REPL

"editor.fontLigatures": "'zero', 'ss01', 'ss02', 'ss03', 'ss04', 'ss05', 'ss06', 'ss07', 'ss08',
'ss11', 'ss12', 'ss13', 'ss14', 'ss15', 'ss20'"

§

By calling it from PowerShell•

By using it from within VS Code (we'll review this later on)•

julia

 _
 _ _ _(_)_ | Documentation: https://docs.julialang.org
 (_) | (_) (_) |
 _ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
 | | | | | | |/ _` | |
 | | |_| | | | (_| | | Version 1.8.3 (2022-11-14)
 _/ |__'_|_|_|__'_| | Official https://julialang.org/ release
|__/ |

§

The first thing we'll do before we install our packages is set up a working environment (similar to a Python
virtual environment). For this, we will head to our working folder:

CODE

We will then access the Julia REPL and use the right bracket] to access Julia's pkg package manager. This
will change the prompt and tell us which Julia version we're currently using:

F����� 1: J���� PKG P����� F��� T�� REPL

We will then type generate followed by our project_name :

CODE

OUTPUT

This will create our environment folder containing two files:

OUTPUT

We can then head back to VS Code, select File, Open Folder, and choose our environment folder. We can
ensure we're using the right environment by opening the VS Code command palette and selecting the Julia:

cd computer-science/julia-for-beginners

generate project_name

Generating project julia_project:
 julia_for_beginners\Project.toml
 julia_for_beginners\src\julia_project.jl

Project.toml will contain the environment name , the environment UUID , the author , and the project
version (not to be confused with the Julia version we're using)

•

julia_for_beginners.jl will be our main project file (Julia files have the .jl extension). If we open our
file, we can see that we have some information already there:

•

module julia_project
greet() = print("Hello World!")
end # module julia_project

Change Current Environment option. This will display all the Julia environments we have currently set up. We
can select the environment name we just created, and it will automatically be set as default for this folder (if it
has not already done so).

We can make a simple test by opening our julia_project.jl file, deleting the existing contents, typing some
code, and executing it:

CODE

OUTPUT

We can then proceed to install some useful packages.

Installing packages using pkg from the
REPL
Julia uses its own package manager called pkg . It's installed by default on all Julia releases.

We may notice that once we're inside pkg and inside our project folder, the environment is not active by default
(the left prompt will display our current environment). Before installing our packages, we must activate our
environment; otherwise, the packages will be installed in the global environment rather than in the one we just
created. For this, we will type the following inside pkg :

CODE

OUTPUT

We are now inside our environment and ready to start installing the packages we'll use throughout this segment.

Installing packages in Julia is extremely simple. There are two main ways we can follow:

CODE

println("This is our first Julia Project!!")

This is our first Julia Project!!

§

activate .

Activating new project at `C:\Users\username\Documents\computer-science\julia-for-beginners`

We can directly use the pkg package manager from the Julia REPL by typing the right bracket] symbol.
We can then install a package:

•

CODE

Note that for the first option, we don't enclose our package_name in quotes, while with the second approach, we
do need to enclose the package name in quotes.

Let us now install the DataFrames package directly from pkg inside the Julia REPL.

CODE

OUTPUT

Once we install our first package, a new file named Manifest.toml will be created. This file is important since it
will contain all the currently installed packages, their dependencies, UUIDs and versions.

To install multiple packages at once, we can use a Julia script which calls Pkg and installs the required
packages. We'll create a new packages.jl file inside our environment. We will then include the following and
run it:

CODE

The following packages will be installed:

add package_name

We can also call pkg from within a Julia script or the Julia REPL without having to enter pkg :•

using Pkg
Pkg.add("Package Name")

add DataFrames

Precompiling project...
 9 dependencies successfully precompiled in 37 seconds. 18 already precompiled.

pkgs = ["DataFrames", "Plots", "CSV", "Pluto", "PlutoUI", "IJulia", "TypeTree"]

using Pkg

Pkg.add(pkgs)

DataFrames•

Plots•

CSV•

Pluto•

PlutoUI•

IJulia•

TypeTree•

This will take some time since Julia first needs to download the packages if we still don't have them in our local
machine and then precompile them.

In the end, we should get a similar output as the one below:

OUTPUT

We can test that our required packages were installed by closing the packages.jl script, going back to our
julia_project.jl file, and loading a couple of random packages by using the using command. This imports

our required packages and makes them available for our session:

CODE

Alternatively, we can also import our packages using commas , :

CODE

If everything goes well, the plot should appear on a new window. It can also be accessed by heading to the Julia
Extension menu in the left panel and expanding the PLOT NAVIGATOR menu. We should have our first plot
figure, plot_01 . We can click on it, and it will display.

OUTPUT

66 dependencies successfully precompiled in 235 seconds. 396 already precompiled.

using DataFrames
using Plots

Test libraries
x = range(0, 10, length=100)
y = sin.(x)
plot(x, y)

z = round.(y, digits=4)

print(z)

using DataFrames, Plots

Test libraries
x = range(0, 10, length=100)
y = sin.(x)
plot(x, y)

z = round.(y, digits=4)

print(z)

OUTPUT

F����� 2: A S����� P��� C������ U���� T�� PLOTS P������

To uninstall a package from our current environment, we can go to our environment's Julia REPL and type the
following:

CODE

We can then confirm that our package has been removed, by opening our environment's Project.toml file:

CODE

[0.0, 0.1008, 0.2006, 0.2984, 0.3931, 0.4839, 0.5696, 0.6496, 0.723, 0.7889, 0.8469, 0.8962,
0.9364, 0.967, 0.9878, 0.9985, 0.999, 0.9893, 0.9696, 0.9399, 0.9007, 0.8523, 0.7952, 0.73,
0.6574, 0.5781, 0.4928, 0.4026, 0.3082, 0.2107, 0.1111, 0.0103, -0.0906, -0.1906, -0.2886,
-0.3837, -0.4748, -0.5612, -0.6418, -0.7158, -0.7826, -0.8414, -0.8916, -0.9327, -0.9643,
-0.9861, -0.9978, -0.9994, -0.9908, -0.972, -0.9434, -0.9051, -0.8576, -0.8014, -0.737, -0.6651,
-0.5864, -0.5017, -0.412, -0.318, -0.2207, -0.1213, -0.0206, 0.0804, 0.1805, 0.2787, 0.3742,
0.4658, 0.5526, 0.6338, 0.7086, 0.7761, 0.8358, 0.8869, 0.9289, 0.9615, 0.9843, 0.9971, 0.9997,
0.9921, 0.9744, 0.9467, 0.9094, 0.8629, 0.8075, 0.7439, 0.6727, 0.5947, 0.5106, 0.4213, 0.3277,
0.2308, 0.1315, 0.0308, -0.0701, -0.1703, -0.2688, -0.3646, -0.4566, -0.544]

using Pkg
Pkg.rm("Symbolics")

We should not see the removed package nor its UUID referenced in the [deps] section.

If we are getting errors regarding unresolved dependencies, we can resolve them from our environment's Julia
REPL:

CODE

This command will rebuild our Manifest.toml file if a conflict is found.

When working with environments, the instantiate command is a handy tool. It will install all dependencies
required for the project on Manifest.toml . In simpler terms, we can clone a Julia repository containing a
Manifest.toml file and run this command; it will install all the packages required for the project.

We can execute this command directly from our environment's Julia REPL:

CODE

Getting familiar with the VS Code
extension
Julia's VS Code extension offers multiple functionalities:

The complete official documentation can be found here.

code .\Project.toml

using Pkg
Pkg.resolve()

using Pkg
Pkg.instantiate()

§

Syntax highlighting•

Snippets: latex and user-shared snippets•

Julia specific commands•

Integrated Julia REPL•

Code completion•

Hover help•

A linter•

Code navigation•

Tasks for running tests, builds, benchmarks and build documentation•

A debugger•

A plot gallery•

A grid viewer for tabular data•

Integrated support for Weave.jl•

https://www.julia-vscode.org/docs/stable/
https://github.com/julia-vscode/julia-vscode/wiki/Snippets
https://github.com/julia-vscode/julia-vscode/wiki/Commands
https://github.com/julia-vscode/julia-vscode/wiki/REPL
https://github.com/julia-vscode/julia-vscode/wiki/IntelliSense
https://github.com/julia-vscode/julia-vscode/wiki/Information#hover-help
https://github.com/julia-vscode/julia-vscode/wiki/Information#linter
https://github.com/julia-vscode/julia-vscode/wiki/Navigation

1. Using the Julia REPL inside VS Code
We can open a Julia REPL that already has our active environment by opening the VS Code command palette
and selecting Julia: Start REPL. We can also do this directly by using the alt + j + o (Julia open) key
combination. We can confirm that we're using our current environment by entering into pkg using the right
bracket] ; our environment will display on the REPL prompt. This method knows which Julia environment to
use by looking at the Project.toml & Manifest.toml files inside our current folder. If it finds none, it will
default to the global Julia environment.

We can directly run a script in the current environment REPL by using the ctrl + F5 key combination. To
clear our REPL, we use the ctrl + l key combination. We can also directly input commands into the
environment REPL, and they will run.

If we would like to run a single code selection, we can select the code we'd like to run and use the ctrl +
shift key combination. This is very useful since we don't have to run the entire script, as previously defined
variables will not get deleted upon execution.

We can also run a Julia script directly from our Windows terminal inside VS Code. The catch is that we will
need to specify an additional --project parameter for the correct environment REPL to execute our script.
Otherwise, the script will be executed by the global Julia environment:

CODE

2. Workspace variables
We can view our workspace variables by heading to the Julia menu in the left panel, expanding the
WORKSPACE tab, and expanding the Julia REPL tab. This tab will show us all the imported packages for the
current session and all the defined variables.

Julia VS Code extension has a built-in variable visualizer similar to Spyder. We can access any object by
clicking the table icon at the right of the variable we wish to visualize:

julia --project .\julia_project.jl

F����� 3: V���������� A V������� I� T�� VS C��� O����� V�����

The beauty of this method is that it works for variables and tables.

To illustrate this, we'll create a very simple .csv file by heading to the EXPLORER tab on the left panel,
clicking on New Folder..., and naming it datasets :

F����� 4: C������� A N�� D������� F����� I� VS C���

We'll then create a .csv file inside our datasets folder, and name it test.csv :

F����� 5: C������� A N�� CSV F��� I� VS C���

We will open this file and populate it with the following:

CODE

We will now read the CSV file into a DataFrame object. We already have the two required packages installed, so
we'll only need to import them to our current session:

CODE

We can now head back to the Julia menu in the left panel, expand our WORKSPACE tab, and open our table in
VS Code.

OUTPUT

F����� 6: T���� V��� I� VS C���

We can also display any figure in the VS Code viewer by using the following syntax inside our script:

Name, Age, Occupation
John, 34, Scientist
Mary, 25, Astronaut
Paul, 27, Writer

using CSV, DataFrames

df_1 = CSV.read("datasets/test.csv", DataFrame)

CODE

Upon execution, this method will automatically open our table in a new tab.

This table view has some nice features we can take advantage of to visualize and explore a newly imported data
set quickly. We can search, sort and filter by using the navigation buttons on each column header:

F����� 7: S�����, S��� � F����� U���� T�� T���� V��� I� VS C���

Getting familiar with JupyterLab
As mentioned earlier, Julia supports two primary notebook environments: JupyterLab & Pluto.jl . JupyterLab
is very popular among Data Scientists & Data Analysts and supports various languages.

If we recall the package installation segment above, we already added a package named IJulia to our
environment. This package provides a Julia kernel for JupyterLab.

To launch a new JupyterLab session, we can open a new PowerShell instance, head to our working folder and
open a new JupyterLab session:

CODE

OUTPUT

vscodedisplay(df_1)

§

cd \julia_project

jupyter-lab

F����� 8: J������L�� S������

We can create a new Julia notebook, rename it as julia_project.ipynb and confirm that we started this session
under our target working environment by importing a package we already installed:

CODE

A detailed guide on using JupyterLab is out of the scope of this article. Still, the official documentation is
extremely helpful for those looking to dive deeper into this awesome notebook environment.

Once our session and notebook are ready, we can practically use them as we would with any other programming
language.

Getting familiar with Pluto.jl
The other notebook environment we will discuss in this article is Pluto.jl . It's Julia-specific, extremely fun to
use, has a minimal interface, and shares many similarities with JupyterLab.

Pluto can be installed using pkg . We can also complement our installation by getting the PlutoUI package; it
will provide some additional html"<input>" functionalities. Since we already did this, we can head to our
environment's Julia REPL, and import the Pluto package:

CODE

We will then run the package:

using CSV

§

using Pluto

https://jupyterlab.readthedocs.io/en/stable/
https://plutojl.org/

CODE

Upon execution, a new Pluto session will be created and launched in our system's default browser:

OUTPUT

OUTPUT

F����� 9: P���� S������

We will be presented with Pluto's main menu, where we will create a new notebook by selecting the Create a
new notebook option. We will name it julia_project_pluto.jl (it's important to include the .jl extension).

As with JupyterLab, we will make sure we have installed Pluto in the correct environment:

CODE

After this command, we will need to restart our Pluto instance since it will reload with additional UI features
enabled.

Pluto.run()

[Info: Loading...
[Info: Listening on: 127.0.0.1:1234, thread id: 1
┌ Info:
└ Opening http://localhost:1234/?secret=t6tEXgJ3 in your default browser... ~ have fun!
┌ Info:
│ Press Ctrl+C in this terminal to stop Pluto
└

using PlutoUI

We can display the Shortcuts menu using the F1 shortcut. The relevant shortcuts we will use in this segment
will be:

1. Writing multiple lines on a single cell
Unlike with JupyterLab, if we try to write multiple lines of code in a single cell and execute, Pluto will
complain:

CODE

OUTPUT

We need to wrap our code in a begin end statement:

CODE

OUTPUT

Shift + Enter : Run cell•

Ctrl + Enter : Run cell and add cell below•

Del or Backspace : Delete empty cell•

Ctrl + C : Copy selected cells•

Ctrl + X : Cut selected cells•

Ctrl + V : Paste selected cells•

Ctrl + M : Toggle markdown•

§

x = "Hello"
b = "World"
println(x, b)

Multiple expressions in one cell.
How would you like to fix it?
- [Split this cell into 3 cells](http://localhost:1234/edit?id=5cff5130-afd3-11ed-18db-
8554d52bda68#), or

- [Wrap all code in a _begin ... end_ block.](http://localhost:1234/edit?id=5cff5130-afd3-11ed-
18db-8554d52bda68#)

1. **top-level scope**@_none:1_

begin
 x = "Hello"
 b = "World"
 println(x, b)
end

Conversely we can include each new line in a different cell:

CODE

OUTPUT

2. Inserting Markdown cells
As with JupyterLab, Pluto supports Markdown cells. To insert a Markdown cell, we can add a new cell and
use the ctrl + m keyboard shortcut:

CODE

OUTPUT

THIS IS A MARKDOWN H4 HEADER

This is a LaTeX expression:

We can hide the actual Markdown code and keep the output by using the eye icon at the left of any Markdown
cell:

HelloWorld

d = "Hello"

t = "World"

println(d, t)

HelloWorld

md"""
This is a Markdown H4 header
- This is a list item
- This is a second list item

This is a LaTeX expression:
$f(x)=x^2+x^3+x^4$
"""

This is a list item•

This is a second list item•

f(x) = x2 + x3 + x4

F����� 10: H����� M������� C���

3. Using PlutoUI
We mentioned that PlutoUI brings interesting UI functionalities to a Pluto notebook.

We can display all of PlutoUI methods:

CODE

OUTPUT

varinfo(PlutoUI)

name size summary

BuiltinsNotebook 356.538 KiB Module

Button 144 bytes DataType

CheckBox 144 bytes DataType

Clock 184 bytes DataType

ClockNotebook 280.173 KiB Module

ColorPicker 40 bytes UnionAll

ColorStringPicker 144 bytes DataType

ConfirmNotebook 274.660 KiB Module

CounterButton 144 bytes DataType

DateField 160 bytes DataType

DatePicker 160 bytes DataType

DownloadButton 152 bytes DataType

Dump 152 bytes DataType

FilePicker 144 bytes DataType

LabelButton 144 bytes DataType

LocalResource 0 bytes LocalResource (generic function with 1 method)

MultiCheckBox 80 bytes UnionAll

MultiCheckBoxNotebook 280.652 KiB Module

MultiSelect 80 bytes UnionAll

NumberField 192 bytes DataType

PasswordField 144 bytes DataType

PlutoUI 650.302 KiB Module

Print 0 bytes Print (generic function with 1 method)

Radio 168 bytes DataType

RangeSlider 240 bytes DataType

RangeSliderNotebook 277.834 KiB Module

RemoteResource 256 bytes DataType

Resource 256 bytes DataType

Scrubbable 248 bytes DataType

ScrubbableNotebook 278.749 KiB Module

Select 152 bytes DataType

Show 80 bytes UnionAll

Slider 40 bytes UnionAll

TableOfContents 176 bytes DataType

TableOfContentsNotebook 284.140 KiB Module

name size summary

TerminalNotebook 283.801 KiB Module

TextField 208 bytes DataType

TimeField 160 bytes DataType

TimePicker 0 bytes TimePicker (generic function with 2 methods)

WebcamInput 200 bytes DataType

WebcamInputNotebook 295.818 KiB Module

WithIOContext 40 bytes UnionAll

as_html 0 bytes #4 (generic function with 1 method)

as_mime 0 bytes as_mime (generic function with 2 methods)

as_png 0 bytes #4 (generic function with 1 method)

as_svg 0 bytes #4 (generic function with 1 method)

as_text 0 bytes #4 (generic function with 1 method)

br 20 bytes HTML{String}

confirm 0 bytes confirm (generic function with 1 method)

with_terminal 0 bytes with_terminal (generic function with 1 method)

T���� 1: A�������� P����UI M������

3.1 Creating reactive buttons
We see that we have a Button method available. We can create a new button object and then assign a macro to
it so that we can use it to interact with our notebook in multiple ways:

Let us define a button and bind it to a variable my_var :

CODE

We can then define a code block which will contain our my_var variable, along with some actions to be
executed:

CODE

If we execute the code above for the first time, our variable will be instantiated:

OUTPUT

@bind my_var Button("We Love Julia")

data = let
 my_var
 f = rand(2)
 println("🖤", round.(f, digits=4), "🖤")
end

We can now click on our defined button, and the cell will be referenced again, thereby running the code block
we defined:

F����� 11: T������� A B����� C������ U���� P����UI

We can see that a new pair of random numbers was generated.

We can also create Radio buttons, which can be assigned to a macro that reactively displays information
depending on the option selected:

CODE

When we select William Shakespeare, he properly introduces himself:

OUTPUT

As we can imagine, there are many instances where these reactive objects could be useful. One such example
would be flow control, where we could define breakpoints within a function. Another great application would be
for debugging purposes, or we could also use buttons for dynamically displaying visuals.

Basic syntax
Now that we have some tools in our hands, we can start reviewing the basic Julia syntax. We will find many
similarities with Python syntax; that's because Python is extremely easy to write, and Julia inherited a wide

🖤[0.7841, 0.4072]🖤

@bind writer Radio(["William Shakespeare", "Alexandre Dumas", "Victor Hugo"])

println("Hi, I'm ", writer)

Hi, I'm William Shakespeare

§

range of syntactic elements from it.

For this section, we will create a new Pluto notebook and name it basic_syntax.jl .

1. Comments
As with Python, we can define single-line or multiline comments:

CODE

We can also define comments after a variable definition:

CODE

2. Variables
We can define variables by using the equal = sign:

CODE

OUTPUT

This is a single-line comment

#=
This is a multiline comment
=#

my_var = 3.1416 # This is Pi

begin
 # Assigning integer
 x = 10

 # Assigning string types
 y = "Hello World"

 # Assigning float types
 z = -3.1416

 # Using a Unicode character as variable name
 λ = 30

 println(x)
 println(y)
 println(z)
 println(λ)
end

We need to be careful when assigning variables; e.g. if we define the + operator as a new variable, we will
overwrite the actual Base:.+ method and start getting all kinds of errors, additional to being extremely hard to
debug. We must remember reserved characters since Julia will not throw errors if we reassign them.

If we messed up and assigned a reserved name to a variable, we can reset it to its Base method:

CODE

If we recall, we can use Unicode characters as variable names in Julia. Of course, it's tedious to always refer to a
Unicode character cheat sheet and copy and paste the required character. With Julia, we can simply use the
backslash \ character followed by the character name we're looking for and hit TAB . This will automatically
insert the Unicode character:

CODE

OUTPUT

The character names are equivalent to LaTeX names, so if we're already familiar with LaTeX syntax, we should
feel right at home.

If we're unsure about a specific character's name, we can start typing the name that would make more sense and
then hit TAB . Pluto will display the entire list of available characters, where we can select the one we're looking
for:

F����� 12: "H����" U������ C�������� S���������� P�������� B� P����

10
Hello World
-3.1416
30

+ = Base.:+

\lambda

λ

https://pabloagn.com/technologies/latex/

We can also assign multiple variables using a single line:

CODE

OUTPUT

3. Print statements
There are multiple methods we can use to print in Julia. The two most used are:

3.1 print
The print statement will print to stdout without a newline in between, even if we specify the statements in
two separate lines of code:

CODE

OUTPUT

3.2 println
In contrast, the println method (print line) will include a newline at the end of each call:

CODE

γ, θ = 300, 200

println(γ, " + ", θ)

300 + 200

print•

println•

π, ℯ = 3.1416, 0.5772

begin
 print(π)
 print(ℯ)
end

3.14160.5772

OUTPUT

There are more printing methods available, but we're not going to dive deeper since the two we mentioned will
suffice for almost any situation.

4. Data types
Julia's type system is dynamic but gains some of the advantages of static type systems by making it possible to
indicate that certain values are of specific types.

Julia has a wide variety of types, which can be classified into supertypes or subtypes, depending on the
hierarchy of our data type.

We can view Julia's Signed types in an ASCII tree-like structure by using the TypeTree.jl package:

CODE

OUTPUT

We can go even higher in the tree structure and display all Number subtypes:

CODE

OUTPUT

begin
 println(π)
 println(ℯ)
end

3.1416
0.5772

using TypeTree

print(join(tt(Signed), ""))

Signed
 ├─ BigInt
 ├─ Int128
 ├─ Int16
 ├─ Int32
 ├─ Int64
 └─ Int8

print(join(tt(Number), ""))

We can also display all the subtypes belonging to the Any supertype. We will truncate the output since there are
too many entries to fit in one code block:

CODE

OUTPUT

Number
 ├─ Complex
 └─ Real
 ├─ AbstractFloat
 │ ├─ BigFloat
 │ ├─ Float16
 │ ├─ Float32
 │ └─ Float64
 ├─ AbstractIrrational
 │ └─ Irrational
 ├─ Integer
 │ ├─ Bool
 │ ├─ Signed
 │ │ ├─ BigInt
 │ │ ├─ Int128
 │ │ ├─ Int16
 │ │ ├─ Int32
 │ │ ├─ Int64
 │ │ └─ Int8
 │ └─ Unsigned
 │ ├─ UInt128
 │ ├─ UInt16
 │ ├─ UInt32
 │ ├─ UInt64
 │ └─ UInt8
 └─ Rational

print(join(tt(Any), ""))

There are multiple data types in Julia. We will only review the most used ones:

4.1 Integer types
Julia has a total of 10 integer subtypes, where 5 of them are signed, and 5 are unsigned:

Type Signed? Number of bits Smallest value Largest value

Int8 ✓ 8 -2^7 2^7 - 1

UInt8 8 0 2^8 - 1

Int16 ✓ 16 -2^15 2^15 - 1

UInt16 16 0 2^16 - 1

Int32 ✓ 32 -2^31 2^31 - 1

UInt32 32 0 2^32 - 1

Int64 ✓ 64 -2^63 2^63 - 1

UInt64 64 0 2^64 - 1

Int128 ✓ 128 -2^127 2^127 - 1

UInt128 128 0 2^128 - 1

Bool N/A 8 false (0) true (1)

T���� 2: I������ T����, E�������� F��� J����'� O������� D������������

Any
 ├─ AbstractArray
 │ ├─ AbstractRange
 │ │ ├─ LinRange
 │ │ ├─ OrdinalRange
 │ │ │ ├─ AbstractUnitRange
 │ │ │ │ ├─ Base.IdentityUnitRange
 │ │ │ │ ├─ Base.OneTo
 │ │ │ │ ├─ Base.Slice
 │ │ │ │ └─ UnitRange
 │ │ │ └─ StepRange
 │ │ └─ StepRangeLen
 │ ├─ Base.ExceptionStack
 │ ├─ Base.LogicalIndex
 │ ├─ Base.MethodList
 │ ├─ Base.ReinterpretArray
 │ ├─ Base.ReshapedArray
 │ ├─ Base.SCartesianIndices2
 │ ├─ BitArray
 │ ├─ CartesianIndices
 │ ├─ Core.Compiler.AbstractRange
 │ │ ├─ Core.Compiler.LinRange
 │ │ ├─ Core.Compiler.OrdinalRange
 │ │ │ ├─ Core.Compiler.AbstractUnitRange
 ...

https://docs.julialang.org/en/v1/base/numbers/#Core.Int8
https://docs.julialang.org/en/v1/base/numbers/#Core.UInt8
https://docs.julialang.org/en/v1/base/numbers/#Core.Int16
https://docs.julialang.org/en/v1/base/numbers/#Core.UInt16
https://docs.julialang.org/en/v1/base/numbers/#Core.Int32
https://docs.julialang.org/en/v1/base/numbers/#Core.UInt32
https://docs.julialang.org/en/v1/base/numbers/#Core.Int64
https://docs.julialang.org/en/v1/base/numbers/#Core.UInt64
https://docs.julialang.org/en/v1/base/numbers/#Core.Int128
https://docs.julialang.org/en/v1/base/numbers/#Core.UInt128
https://docs.julialang.org/en/v1/base/numbers/#Core.Bool
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/

We can define a variable and declare it as Int32 type by using double colon :: after the variable definition:

CODE

We can verify the variable type by using the typeof method:

CODE

OUTPUT

We can also test if our variable is of a specific type, by using the isa operator:

CODE

OUTPUT

We can convert or promote an existing variable data type to a different type using the convert method if
required. In this example, we convert from Int64 to its unsigned version:

CODE

OUTPUT

4.2 Floating-point types
Julia has three different floating-point types depending on the maximum number of accepted bits:

d::Int64 = 1000

typeof(d)

Int64

d isa Int64

true

δ = convert(UInt64, d)

δ = 0x00000000000003e8

Type Precision Number of bits

Float16 half 16

Float32 single 32

Float64 double 64

T���� 3: F�������-P���� T����, E�������� F��� J����'� O������� D������������

We can define a new variable and set its type to Float64 , even if our initial declaration doesn't have decimal
precision:

CODE

OUTPUT

4.3 Binary and octal types
Julia also supports binary and octal systems. We can declare a variable and then cast it to its binary form:

CODE

OUTPUT

CODE

OUTPUT

g::Float64 = 1000

g

1000.0

begin
 β = 7
 typeof(β)
end

Int64

β_1 = bitstring(β)

β_1 = "000111"

https://docs.julialang.org/en/v1/base/numbers/#Core.Float16
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://docs.julialang.org/en/v1/base/numbers/#Core.Float32
https://en.wikipedia.org/wiki/Single_precision_floating-point_format
https://docs.julialang.org/en/v1/base/numbers/#Core.Float64
https://en.wikipedia.org/wiki/Double_precision_floating-point_format
https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/

4.4 String and Character types

4.4.1 STRING TYPES

String types are defined by enclosing the value in double quotes "" :

CODE

Note that we mentioned double quotes "" and not single quotes '' . This is because, unlike Python, single
quotes are used to define characters and not strings. We'll discuss character objects in a moment.

CODE

OUTPUT

As with Python, we can index a string and return a substring:

CODE

OUTPUT

We can also index a single element, but the returned object will be of a different type:

CODE

OUTPUT

Instead of returning a String type, this operation returned a character type.

CODE

σ = "This is the greek letter sigma"

typeof(σ)

String

σ[13:17]

"greek"

σ[1]

'T': ASCII/Unicode U+0054 (category Lu: Letter, uppercase)

OUTPUT

4.4.2 CHARACTER TYPES

Character objects (Char) are 32-bit primitive data types. They have a special literal representation and
appropriate arithmetic behaviour. They can also be converted into numeric values representing a Unicode code
point.

We can define a Char by using single quotes '' :

CODE

OUTPUT

This tells us the Unicode representation for . If we perform a Google Search, we can see that, in fact, U+03C0

is the Unicode representation of .

Unicode characters can also be represented numerically. We can convert a Char object to its Int

representation:

CODE

OUTPUT

typeof(σ[1])

Char

my_char = 'π'

my_char = 'π': Unicode U+03C0 (category Ll: Letter, lowercase)

π

π

begin
 my_int_char = '?'
 println(my_int_char)
 println(typeof(my_int_char))
 my_int_char = Int(my_int_char)
 println(my_int_char)
 println(typeof(my_int_char))
end

?
Char
63
Int64

If we perform a Google Search, we can see that the numeric representation of the ? Unicode character is, in
fact, 63, and our new data type is Int64 .

We can convert our numerical representation back to a Char type by performing the inverse operation:

CODE

OUTPUT

We can use multiple string & character methods such as unions, concatenations, interpolations, repetitions,
conversions, and advanced regex techniques. We will not explore all the possibilities; the complete
documentation can be consulted here.

4.5 Boolean types
Boolean types can be defined by using lowercase letters:

CODE

CODE

OUTPUT

In Julia, Bool is a subtype of Integer ; true equals 1, while false equals 0. We can do numerical operations
on Bool types without the need for any type conversion:

CODE

Char(my_int_char)

'?': ASCII/Unicode U+003F (category Po: Punctuation, other)

begin
 b = true
 t = false
end

begin
 println(typeof(b))
 println(typeof(t))
end

Bool
Bool

b - 1

https://www.techonthenet.com/unicode/chart.php
https://en.wikipedia.org/wiki/Regular_expression
https://docs.julialang.org/en/v1/base/strings/

OUTPUT

5. Native data structures
Julia has several native data structures. They are abstractions of data that represent some form of structured data.
We will cover the most used ones. There are also multiple data structures not native to Julia, such as DataFrames
and SparseArrays, but we won't be covering those here.

5.1 Tuples
A tuple is a fixed-length container that can hold multiple different types. It's an immutable object, meaning it
cannot be modified after its instantiation.

To construct a tuple, we can use parentheses () to delimit the beginning and end, along with commas , as
delimiters between values:

CODE

OUTPUT

We can index a tuple by using brackets [] :

CODE

OUTPUT

What we cannot do, is mutate a tuple object:

CODE

OUTPUT

0

my_tuple = (1, "2", '3', "four", "🚀")

my_tuple = (1, "2", '3', "four", "🚀")

my_tuple[5]

"🚀"

my_tuple[5] = λ

We can iterate over the items of a tuple (we'll cover for loops in more detail soon enough):

CODE

OUTPUT

There's also a special type of tuple called NamedTuple . We will not cover it here, but it can be consulted in the
official documentation.

5.2 Ranges
A range in Julia represents an interval between start and stop boundaries. We can define a range by using the
start:stop syntax:

CODE

OUTPUT

We can index a range and iterate over its elements:

CODE

MethodError: no method matching setindex!(::Tuple{Int64, String, Char, String, String}, ::Int64,
::Int64)
 top-level scope@Local: 1[inlined]

for i in my_tuple
 println(i)
end

1
2
3
four
🚀

my_range = 1:7

my_range = 1:7

https://juliadatascience.io/data_structures

OUTPUT

We can also build an array comprehension (similar to Python's list comprehensions) by using a range in
combination with a for loop, all enclosed in brackets [] :

CODE

OUTPUT

5.3 Arrays
In Julia, there are no list objects as in Python. We instead have arrays. They are mutable, can be one-
dimensional or multi-dimensional, and can hold multiple objects.

There are two main array subtypes in Julia:

5.3.1 VECTORS

Vectors are one-dimensional objects that can be defined using brackets:

CODE

begin
 my_range_2 = 1:7
 println(my_range_2[7])

 for i in my_range_2
 println(i)
 end
end

7
1
2
3
4
5
6
7

begin
 my_array_comp = [x for x in 1:7]
 println(my_array_comp)
end

[1, 2, 3, 4, 5, 6, 7]

Vectors•

Matrices•

If we take a look at our my_vector data type, we can see that we have a Vector containing Int64 objects:

CODE

OUTPUT

We can also declare a mixed-type Vector object:

CODE

OUTPUT

When no supertype is given, the default one is Any – a predefined abstract type that all objects are instances of
and all types are subtypes of. In type theory, Any is commonly called "top" because it is at the apex of the type
graph.

5.3.2 MATRICES

We can declare matrices in multiple ways.

We can use a collection of vectors nested inside brackets [] (it's important to note that, unlike Python, we're
not using commas to separate each vector):

CODE

OUTPUT

my_vector = [1, 2, 3]

typeof(my_vector)

Vector{Int64} (alias for Array{Int64, 1})

begin
 my_vector_2 = [1, 2, "3"]
 typeof(my_vector_2)
end

Vector{Any} (alias for Array{Any, 1})

begin
 my_matrix = [[1, 2] [3, 4] [5, 6]]
 println(typeof(my_matrix))
 println(my_matrix)
end

We can also declare a matrix of undefined values by specifying it's dimensions and content's data type:

CODE

OUTPUT

In Linear Algebra, it's common to use matrices of ones and zeros:

CODE

OUTPUT

It's also common to specify matrices of random values. We can do so by using the Base rand method:

CODE

OUTPUT

Matrix{Int64}
[1 3 5; 2 4 6]

begin
 my_matrix_2 = Matrix{Float64}(undef, 4, 2)
 println(typeof(my_matrix_2))
 println(my_matrix_2)
end

Matrix{Float64}
[0.0 0.0; 0.0 0.0; 0.0 0.0; 0.0 0.0]

begin
 my_matrix_zeros = zeros(4, 2)
 my_matrix_ones = ones(4, 2)
 println(my_matrix_zeros)
 println(my_matrix_ones)
end

[0.0 0.0; 0.0 0.0; 0.0 0.0; 0.0 0.0]
[1.0 1.0; 1.0 1.0; 1.0 1.0; 1.0 1.0]

rand(5,5)

This method will return a matrix of dimension , with Float64 type values between 0 and 1.

If we would like to explore our matrix objects in more detail, we can employ dimension methods:

CODE

OUTPUT

Finally, we can index our matrix similar to indexing other objects such as tuples or vectors:

CODE

OUTPUT

5×5 Matrix{Float64}:
 0.685521 0.667868 0.368505 0.579188 0.67113
 0.869676 0.477044 0.576164 0.717674 0.348186
 0.163335 0.257388 0.841889 0.469516 0.409196
 0.253942 0.527152 0.808858 0.800833 0.609731
 0.4401 0.718082 0.748828 0.284882 0.410565

n × n

begin
 my_matrix_rand = rand(5,5)
 println(length(my_matrix_rand))
 println(ndims(my_matrix_rand))
 println(size(my_matrix_rand))
end

25
2
(5, 5)

The length method will return the total number of elements in our matrix.•

The ndims method will return the number of dimensions.•

The size method will return our matrix's size in row-column notation.•

my_matrix_rand_2 = rand(2,5)

begin
 println(my_matrix_rand_2[1])
 println(my_matrix_rand_2[2, 1])
 println(my_matrix_rand_2[end])
end

0.9069052054266634
0.4401923900688668
0.8721676196514414

Arrays are the base for linear algebra in Julia and many other languages such as Python (by using np.arrays).
This is why there is a multitude of different methods we can use to manipulate these objects. We will not cover
them in detail but can be consulted on the Julia's official documentation page.

5.4 Pairs
Pairs hold two objects which typically belong to each other. They are similar to Python's dictionaries but are
limited to one pair of objects. Pairs are specifically used in broadcasting operations, which we'll review later on.

We can define a Pair by using the following notation:

CODE

We can access a Pair's elements by using the first and last methods:

CODE

OUTPUT

5.5 Dicts
Dicts are mappings from keys to values. By mapping, we mean that if you give a Dict some key, the Dict can
tell us which value belongs to that key. Dicts are mutable and accept multiple objects.

We can define a Dict using the following syntax:

CODE

Typically, keys are denoted by string type objects and have to be unique within a given Dict . If we
accidentally define duplicated keys, Julia will keep the latter and discard the previous definition:

CODE

my_matrix_rand_2[1] will return the first element of our matrix.•

my_matrix_rand_2[2, 1] will return the element located in the second row, first column.•

my_matrix_rand_2[end] will return the last element in our matrix. The begin method can also be used to
get the first element.

•

my_pair = "My Number" => 7

begin
 println(first(my_pair))
 println(last(my_pair))
end

My Number
7

my_dict = Dict("ONE" => 1, "TWO" => 2, "THREE" => 3)

https://docs.julialang.org/en/v1/base/arrays/

OUTPUT

Similar to Python, we can retrieve a given value by referring to its key:

CODE

OUTPUT

We can also substitute a given value inside our Dict object:

CODE

OUTPUT

As we can see, this is an in-place operation that will mutate our Dict object.

We can also iterate over key-value pairs by using a for loop:

CODE

OUTPUT

begin
 my_dict_2 = Dict("ONE" => 1, "ONE" => 2, "THREE" => 3)
 println(my_dict_2)
end

Dict("ONE" => 2, "THREE" => 3)

my_dict["ONE"]

1

begin
 my_dict["ONE"] = 7
 println(my_dict)
end

Dict("ONE" => 7, "THREE" => 3, "TWO" => 2)

for i in my_dict
 println(i)
end

We can do the same, but this time, extracting key-value pairs separately:

CODE

OUTPUT

6. Mathematical operators
Mathematical operators in Julia work very similarly to Python's. We can consult the complete set by heading
to the official documentation page.

Expression Name Description

+x unary plus the identity operation

-x unary minus maps values to their additive inverses

x + y binary plus performs addition

x - y binary minus performs subtraction

x * y times performs multiplication

x / y divide performs division

x ÷ y integer divide x / y, truncated to an integer

x \ y inverse divide equivalent to y / x

x ^ y power raises x to the y th power

x % y remainder equivalent to rem(x,y)

T���� 3: M����������� O�������� I� J����, E�������� F��� O������� D������������

We can perform any mathematical operation using the following syntax:

CODE

"ONE" => 7
"THREE" => 3
"TWO" => 2

for (i, j) in my_dict
 println(i, " => ", j)
end

ONE => 7
THREE => 3
TWO => 2

https://docs.julialang.org/en/v1/manual/mathematical-operations/
https://docs.julialang.org/en/v1/manual/mathematical-operations/

OUTPUT

We can also use the updating operator forms for each case above. These operators update our variable without
the need to redefine it:

Expression Name Description

x += y binary plus performs addition

x -= y binary minus performs subtraction

x *= y times performs multiplication

x /= y divide performs division

x ÷= y integer divide x / y, truncated to an integer

x \= y inverse divide equivalent to y / x

x ^= y power raises x to the y th power

x %= y remainder equivalent to rem(x,y)

T���� 4: M����������� U������� O�������� I� J����, E�������� F��� J����'� O�������
D������������

7. Flow control
Flow control in Julia can be achieved by using multiple built-in methods. The most popular are:

7.1 Logical operators
There are six basic logical or comparison operators in Julia:

begin
 my_num_1 = 7
 my_num_2 = 2
 my_vec_1 = [3, 4, 5]
 println(my_vec_1 * my_num_1)
end

[21, 28, 35]

Logical operators•

Conditionals•

For loops•

While loops•

https://docs.julialang.org/en/v1/manual/mathematical-operations/

Expression Name

== equality

!= , ≠ inequality

< less than

<= , ≤ less than or equal to

> greater than

>= , ≥ greater than or equal to

T���� 5: L������ O�������� I� J����, E�������� F��� J����'� O������� D������������

We can perform a logical comparison by using the following syntax:

CODE

OUTPUT

7.2 Conditionals
A complete Julia conditional evaluation includes 4 parts:

We can either stick with just the if end statement combination if we have only one condition to evaluate or
include the whole structure:

CODE

begin
 e = 1
 f = 2
 println(e>f)
end

false

if•

elseif•

else•

end•

begin
 for i in 1:10
 if i%2 != 0
 println("Odd number")
 else
 println("Even number")
 end
 end
end

https://docs.julialang.org/en/v1/manual/mathematical-operations/

OUTPUT

7.3 For loops
We have already seen some for loop examples; they are very similar to their Python counterpart, except that
we don't require a colon : at the end of the statement, and we need to add an end statement at the end of our
declaration:

CODE

OUTPUT

7.4 While loops
Similarly, we can define a while loop by using the syntax below:

CODE

Odd number
Even number
Odd number
Even number
Odd number
Even number
Odd number
Even number
Odd number
Even number

begin
 for i in 0:9
 println(i+1)
 end
end

1
2
3
4
5
6
7
8
9
10

OUTPUT

8. Functions
Functions in Julia, as in many other languages, are essential. Functions are similarly implemented in Julia
compared to Python. Still, they have many additional features, such as broadcasting and native multiple
dispatch support, which expand their functionality in ways Python simply can't by default.

8.1 Defining a function
We can define a function by using the following syntax:

CODE

OUTPUT

We can then call our function:

CODE

begin
 i = 7

 while i >= 1
 println(i)
 i -= 1
 end
end

7
6
5
4
3
2
1

function my_fun(x,y)
 x + y
 end

my_fun (generic function with 1 method)

begin
 call_to_fun = my_fun(1, 2)
 println(call_to_fun)
end

OUTPUT

Even though we did not include a return statement, our function will return the output of the only method
available inside of it.

We can define our function in a more compact form:

CODE

Since, as we have mentioned, Julia accepts Unicode characters as part of its syntax, we could even write our
own sum function:

CODE

We can call it just as we would any other function:

CODE

OUTPUT

This non-return method works when we have one single value we would like to return, but we may also want to
return multiple values:

CODE

We can then call our function:

CODE

3

my_fun_2(x,y) = x + y

∑(x,y) = x + y

∑(7, 7)

14

function my_fun_3(x, y)
 a = x*y
 b = x+y
 return a, b
end

OUTPUT

We can of course declare nested functions, thus expanding the functionality of our parent function.

8.2 Broadcasting
Broadcasting is an extremely powerful concept in Julia, especially when performing vector & matrix
operations. It lets us broadcast operations over the elements of the input objects. Broadcasting can be achieved
using the dot . operator, which applies to any function or arithmetic operation.

We can define a function my_fun_b that will take a matrix as input, square each of its elements, and return the
result.

We will first start by creating a matrix and an Int variable that will serve as inputs:

CODE

We can then define our function my_fun_b :

CODE

If we call our function with my_matrix_b as its argument without broadcasting, we will get the squared matrix (
) as a result, and not the element-wise operation:

CODE

OUTPUT

println(my_fun_3(7, 7))

(49, 14)

my_matrix_b = rand(4, 4)

function my_fun_b(x)
 return x^2
end

M × M

display(my_fun_nb(my_matrix_b))

4×4 Matrix{Float64}:
 1.26661 0.519347 1.13055 1.23636
 2.17724 1.23979 1.87389 1.73158
 0.63514 0.201745 0.51771 0.589747
 0.809722 0.554337 0.859173 0.652899

This is not what we're looking for. Instead, we can use the broadcasting operator when calling our function. The
dot . operator will go just after our function call and before the opening parenthesis (for our arguments:

CODE

OUTPUT

We can see that we now get the result we were looking for.

8.3 Functions with a bang !
The bang ! symbol in Julia is used to differentiate mutating vs non-mutating operations. When we call a
method along with ! , it will mutate our input variable.

We can use the sort() method as example:

CODE

OUTPUT

As we can see, the way we called our function did not mutate the original structure of my_vec_a .

If we want to mutate it, we can use sort!() instead of sort() :

CODE

display(my_fun_nb.(my_matrix_b))

4×4 Matrix{Float64}:
 0.896748 0.0097358 0.165206 0.648777
 0.812765 0.904707 0.794022 0.309314
 0.198626 0.000761553 0.113611 0.094145
 0.0153391 0.158666 0.417942 0.133245

begin
 my_vec_a = [1, 4, 5, 8, 3, 0]
 println(sort(my_vec_a))
 println(my_vec_a)
end

[0, 1, 3, 4, 5, 8]
[1, 4, 5, 8, 3, 0]

begin
 my_vec_b = [1, 4, 5, 8, 3, 0]
 println(sort!(my_vec_b))
 println(my_vec_b)
end

OUTPUT

Next steps
We covered a tiny sample of what Julia can do. This language has endless potential and can be used by many
professionals and enthusiasts looking for a high-performance, bleeding-edge alternative to the current options.

Now that we know the basics of the Julia programming language, there are multiple paths we can choose to
follow:

Conclusions
In this segment, we installed the Julia programming language from scratch along with Visual Studio as an IDE
and the Visual Studio Julia extension as a handy tool. We also reviewed two great notebook environment
options: JupyterLab and Pluto.jl .

Once we had our installations ready, we learned to use the Julia REPL from the Windows Terminal and from
within VS Code using the Julia extension. We also learned how to create project environments, install packages
within our environment, manage them appropriately, and write our first Julia program.

Finally, we introduced some of Julia's core concepts, accompanied by hands-on examples using Pluto.jl and
PlutoUI .

Julia is a language that has been gaining consistent popularity throughout the last few years. It was introduced as
a fresh approach to scientific programming and is sure to become a building block for aspiring Data Scientists in
the near future. It has so many innovative features that it's hard to look the other way and continue using the
well-established Data Science languages we have been using for several years.

[0, 1, 3, 4, 5, 8]
[0, 1, 3, 4, 5, 8]

§

Data Science & Machine Learning: Julia for Data Scientists would be a great next step for those
interested in using this language for big data processing & parallelization, Machine Learning algorithm
design & deployment, statistical analysis, and more.

•

Optimization: Julia for Optimization and Learning imparted by the Czech Technical University in Prague,
provides excellent introductory material for those interested in Optimization & Machine Learning
techniques.

•

Linear Algebra: Julia stands up when performing linear algebra-related operations. There is a huge
collection of packages and documentation available. A great first step would be Basic Linear Algebra in
Julia, imparted by the extremely well-versed Dr. Jane Herriman.

•

Integral & Differential Calculus: No scientific language is complete without a robust set of calculus
methods, and Julia, of course, is no exception. There is a great series of articles by jverzani aiming to cover
the basics of calculus using Julia, ranging from simpler undergraduate concepts to more intermediate
topics.

•

Documentation: Julia can also be used for documentation purposes. In particular, the Documenter.jl
package offers excellent capabilities to write in Markdown offering a simple and easy-to-understand
interface.

•

§

app://obsidian.md/index.html
https://juliateachingctu.github.io/Julia-for-Optimization-and-Learning/stable/
https://www.cvut.cz/en/
https://www.youtube.com/watch?v=IFkQ0aB6eHs
https://twitter.com/janeherriman
https://jverzani.github.io/CalculusWithJuliaNotes.jl/
https://github.com/jverzani
https://documenter.juliadocs.org/stable/
https://pabloagn.com/technologies/markdown/

Julia allows us to stop and think if what we're doing and how we're doing it is the most optimal way. It's an
ambitious project that aims to change how we look at high-performance scientific computing.

One thing to consider is that Julia is fast-evolving; each iteration brings on new changes, which might be small
but can also consist of a complete refactoring of base functionality. This is critical because a library that worked
yesterday with a given syntax might not work the same way today. Still, this is always part of the process of any
programming language, and really, the most exciting one; witnessing a group of passionate people build the
foundations for the future is always inspiring.

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

§

Talk Julia, Setting Up VS Code for Julia•

Julia Data Science, Data Structures•

Julia Documentation, Data Types•

Julia Documentation, Functions•

Geeks for Geeks, Broadcasting across arrays in Julia•

Julia Documentation, Arrays•

Pluto Documentation, Pluto.jl•

§

https://www.youtube.com/watch?v=KesuPOlBB_o
https://juliadatascience.io/data_structures
https://docs.julialang.org/en/v1/manual/types/
https://docs.julialang.org/en/v1/manual/functions/
https://www.geeksforgeeks.org/broadcasting-across-arrays-in-julia/
https://docs.julialang.org/en/v1/base/arrays/
https://docs.juliahub.com/Pluto/OJqMt/0.9.10/

