
Programming Best Practices: Writing Better Code

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory computer-sciencecomputer-science

TechnologiesTechnologies PythonPython

WebsiteWebsite Post LinkPost Link

Writing code can be as simple as importing the required libraries, declaring our variables, functions, and classes
as required, including some docstrings here and there, some additional comments, executing, and we're done.
While we're at it, let's skip the function & class part and drop everything as is. Even better, let's also save some
lines by stripping our file from all comments.

The result? A piece of code with absolutely no indication of what it does or how it does it, with the impossibility
of modularizing & scaling in any meaningful way. In short, a beautiful, useless creation made by us, just for us.

In this section, we will review some simple methods that will immediately bring clarity & credibility to our
code, being thus able to share it with others, understand it ourselves when re-reading it some weeks or months
later, and not perish in the process.

We will use Python as an example, but most steps will apply to any programming language.

We'll be using Python scripts which can be found in the Blog Article Repo.

Table of Contents

§

§

Legibility•
Authoring•

Comments•
Simple commenting•

Over-commenting•

Breaking comments in a new line•

Section definition•

Docstrings•

Indentation•

Line breaks, parenthesis, brackets & curly brackets•
Line breaks•

Parenthesis•

Brackets & curly brackets•

Appropriate variable naming•

Spacing•

Modularization & scalability•
Modularization•

https://obsidian.md/
https://pabloagn.com/blog/
https://pabloagn.com/categories/computer-science/
https://pabloagn.com/technologies/
https://pabloagn.com/blog/programming-best-practices-writing-better-code/
https://github.com/pabloagn/blog/tree/master/computer-science/programming-best-practices-writing-better-code

Legibility
If we were to choose one step to try and write better code, this would be the one. We can write code without any
functions whatsoever or even deliver underperforming software. Still, if the people reading our code don't even
know what it's for, what it's supposed to do, where to look, and what to change to optimize its performance,
they're better off writing the code by themselves.

Legibility is not just about filling our script with comments on every step we do (maybe when we're trying to
explicitly teach something, it might be a good idea). Legibility is about making our code understandable to
ourselves and anyone with little to no context of what we're trying to achieve.

The good thing is, if we are to improve legibility, we have some simple and handy mechanisms additional to
commenting that we can use.

1. Authoring
This is the first step we will cover and a crucial one when sharing our material. It provides the creator with a
way to assume authorship of the creation. It also gives readers and consumers a way to contact the creator in
case of any questions. We can get our hands on a beautifully written and extremely useful program, but who the
heck does this code belong to? Was it written by ChatGPT?

It is also relevant to include authoring and contact information as metadata in the code we write, especially in a
working environment, so that people will know who to blame when things go wrong (just kidding, sort of).
Jokes aside, this is true and happens more often than not. We want to provide a way for other collaborators to
reach out if our code doesn't work as expected. After all, we're assuming responsibility when submitting code to
other people.

As with several commenting techniques, Authoring comes down to personal preference, though we should
include at least the creation date, our name, and some contact information.

Typically, we enclose this metadata at the top of our script in a docstring using single ' or double " triple
quotes:

Scalability•

Performance•
Proper module import•

Built-in libraries over external ones•

Proper data structures•

List comprehensions over for loops•

for loops vs. while loops•

Multiple variable assignment•

Using decorators•

Testing & debugging•
Exception handling•

Print statements•

Dependency handling•

Conclusions•

References•

Copyright•

§

CODE

We can complement this information by specifying additional fields, such as last modification date, Python
version used, and more.

The nice thing about authoring is that several IDEs have the option to customize & introduce these lines by
default when creating a new blank document.

2. Comments

2.1 Simple commenting
Commenting is always encouraged when working with code. It lets us re-read and understand the procedures we
used some time ago and gives context to other people reading our material.

We can comment on a single line by using the hash symbol # :

CODE

2.2 Over-commenting
The caveat of commenting is that it is often abused to the point of replicating line by line what the code is doing.
Again, this is fine if we're teaching someone, but to the experienced programmer, this will not be necessary and
will, in turn, introduce too many reading breaks, which are not required. We can think of over-commenting as
abusing punctuation; it breaks the flow and impedes clear reading.

Fortunately, there are two simple rules to avoid over-commenting:

Both statements are important because sometimes, the code is self-explanatory. This would make writing the
following comment unnecessary:

CODE

2.3 Breaking comments in a new line

'''
Created on: Wed Jan 18 20:48:18 2023
@author: Lucifer Morningstar
contact: lucifermorningstar@gmail.com
'''

This is a comment.

Use comments to explain the why, not the how.•

Only write a comment when it's indispensable.•

Declare a while loop that prints 'Hello', and stops after 8 iterations
i = 0
while i < 8:
 print('Hello')
 i += 1

Comments are meant to be read as clearly, easily and fast as possible, but the truth is, sometimes they can get
extensive.

In some IDEs, this can cause the comment to overflow, looking unprofessional:

CODE

Breaking the comment in two or more lines improves readability:

CODE

We can also use a docstring if the comment is too long. We just have to make sure to keep format consistency
across our annotations:

CODE

2.4 Section definition
When working with long scripts, we can also use the hash symbol # to define section separators and divide our
code blocks by including some delimiter along with the comment.

The format used is purely based on personal preference but should generally be a collection of uniform
characters typically used to delimit:

CODE

Declare a list variable that will serve to store dictionaries. This is crucial since we won't
be able to retrieve the objects otherwise.
mylist = []

Declare a list variable that will serve to store dictionaries.
This is crucial since we won't be able to retrieve the objects otherwise.
mylist = []

'''
Declare a list variable that will serve to store dictionaries.
This is crucial since we won't be able to retrieve the objects otherwise.
'''
mylist = []

We can also use a different, more emphatic character combination to denote a centered title:

CODE

The important thing to remember is not to overcrowd our code. Otherwise, it could become illegible.

Also, setting a section spacing standard can help.

3. Docstrings
We already used docstrings to insert simple comments, but the main reason they were created was to be used
inside functions to explain what the object does and its expected inputs & outputs.

This is especially relevant when writing extensive code. Also, it provides a way for others, or even ourselves, to
use the function as a modular object and know exactly what to expect from a function call.

We can include a docstring inside a function by using the same format as before:

CODE

This denotes a section start point

This denotes a section end point

This denotes a subsection start point

This denotes a subsection end point

This denotes a subtitle

+---+
| This denotes a centered title |
+---+

One crucial detail to remember, is that docstrings are indentation-sensitive, meaning an improperly indented
docstring will throw an IndentationError upon execution:

CODE

OUTPUT

def addAges(age1, age2, age3):
 '''
 Parameters

 age1 : int
 Age 1, from 1 to 10.
 age2 : int
 Age 2, from 11 to 20.
 age3 : int
 Age 3, from 21 to 30.

 Returns

 sumOfAges : int
 Sum of ages 1, 2 and 3.
 '''

 sumOfAges = age1 + age2 + age3

 return sumOfAges

def addAges(age1, age2, age3):
'''
Parameters

age1 : int
 Age 1, from 1 to 10.
age2 : int
 Age 2, from 11 to 20.
age3 : int
 Age 3, from 21 to 30.

Returns

sumOfAges : int
 Sum of ages 1, 2 and 3.
'''

 sumOfAges = age1 + age2 + age3

 return sumOfAges

IndentationError: expected an indented block after function definition on line 1

4. Indentation
Indentation is used in all programming languages and has two primary purposes depending on the language
used:

Python uses indentation as part of its syntaxis. This is why the IndentationError above was raised.

Even though Python code is generally not executed without the proper indentation, we still can indent
incorrectly in some cases without an error being raised. This is common when using argument continuation in
new lines:

CODE

The above code runs fine but doesn't look fine. In fact, it seems as if something were off. The reason is that,
even though Python does not raise an IndentationError , the indentation is incorrect in both cases.

We can properly indent our lists by aligning parenthesis, or in this case, brackets:

CODE

5. Line breaks, parenthesis, brackets & curly
brackets

5.1 Line breaks
Line breaks are useful but rare, often reducing the code's legibility. They can also lead to syntax errors if used
sparingly.

We can use them for specific cases, e.g. whenever we are presented with a variable containing multiple
characters.

A line break can be achieved by adding a backslash \ to the section we want to break:

CODE

As a way to improve code readability•

As part of the actual syntaxis•

mylist1 = [1, 2, 3, 4,
 5, 6, 7, 8]

mylist2 = [1, 2, 3, 4,
 5, 6, 7, 8]

mylist1 = [1, 2, 3, 4,
 5, 6, 7, 8]

mylist2 = [1, 2, 3, 4,
 5, 6, 7, 8]

5.2 Parenthesis
A better alternative to backslashes would be to enclose our variable arguments in parenthesis. This also allows
us to continue writing on a new line:

CODE

5.3 Brackets & curly brackets
As we saw before, we can enclose arguments in parenthesis to continue writing on a new line.

We can also continue arguments on a new line if we're dealing with other objects such as lists, arrays or
dictionaries.

This is extremely useful when for example, we have to specify a high-dimension array with multiple nested
brackets.

If we were to attempt a one-liner, the code would become challenging to read:

CODE

We could use line continuation to break each specific dimension into a new line:

CODE

Another example would be a JSON-like formatted object:

CODE

myvar = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + \
 9 + 10 + 11 + 12

myvar = (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 +
 9 + 10 + 11 + 12)

import numpy as np

Declare a 3-dimensional numpy array
myarr = np.array([[[10,20,30,40], [50,60,70,80]]])

import numpy as np

myarr = np.array([
 [
 [10,20,30,40],
 [50,60,70,80]
]
])

This is frankly unpleasant and overflows the document width by about three times.

We can do better by using line continuation:

CODE

6. Appropriate variable naming
When we start writing lengthier programs, it's inevitable to start losing count of the variables we declare. Or
maybe we have excellent memorization skills and don't really care what names we use, but then Juan from
Engineering, the poor guy responsible for deploying our code, sends us an email begging to send a variable
definition document because he cannot understand a thing:

CODE

Utterly dreadful, right?

We can do much better and give Juan a break:

schema = {'type': 'record','name': 'dataset','namespace': 'dataset','doc': 'This schema consists
of 1 int type and 7 string types','fields': [{'name': 'Name', 'type': 'string'},{'name': 'Age',
'type': 'int'},{'name': 'Occupation', 'type': 'string'},{'name': 'Country', 'type': 'string'},
{'name': 'State', 'type': 'string'},{'name': 'City', 'type': 'string'}]}

schema = {
 'type': 'record',
 'name': 'dataset',
 'namespace': 'dataset',
 'doc': 'This schema consists of 1 int type and 7 string types',
 'fields': [
 {'name': 'Name', 'type': 'string'},
 {'name': 'Age', 'type': 'int'},
 {'name': 'Occupation', 'type': 'string'},
 {'name': 'Country', 'type': 'string'},
 {'name': 'State', 'type': 'string'},
 {'name': 'City', 'type': 'string'}
]
}

styaway = (3, 1, 4.3, 6.5, 2)
Gobbledegook = [4, 3, 5, 6, 7, 3]
theCollywobbles = [1, 2, 3, 4, 5]
theothercollywobbles = [4, 3, 6, 7, 8, 2]
mthBreather = [8, 7, 1, 4, 5, 6]
KNickers = (1, 2, 3)
xyz = 3.1416

for w in range(len(mthBreather)):
 theothercollywobbles.append(w)
 for d in theCollywobbles:
 print(xyz)
 copyofthecollywobbles = theCollywobbles.copy()

CODE

7. Spacing
Lastly, spacing consistently and adequately will always improve our code. Spacing creates a sense of separation
and independence and instantly provides a better reading experience.

Python does not require us to insert spaces between characters, but if we leave our code without spacing, or
even worse, with inconsistent spacing, it will be much harder to read:

CODE

The line above generates our list object successfully and without spaces in between, of course, but the reading is
a challenge on its own.

This is why it's always good practice to be consistent about the spaces we use, how we use them, and why we
use them.

We can implement single spaces between our list arguments:

CODE

We can also implement new lines to make distinctions between different segments or operations:

CODE

myTuple = (3, 1, 4.3, 6.5, 2)
myTuple_2 = (1, 2, 3)
myList = [4, 3, 5, 6, 7, 3]
myList_2 = [1, 2, 3, 4, 5]
myList_3 = [4, 3, 6, 7, 8, 2]
myList_4 = [8, 7, 1, 4, 5, 6]
pi = 3.1416

for constants in range(len(myList_4)):
 myList_3.append(constants)

 for items in myList_2:
 print(pi)

 myList_2_copy = myList_2.copy()

myList = [1,2,3,4,5,6, 7, 8,9,10, 11]

myList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Modularization & scalability
1. Modularization
Code is meant to be modular. Sure, we can write a single script to bulk-rename n number of files. That script
would only be used for that purpose and would not require any dependence or be required by any other
program.

But the reality is that most of the code that is written is meant to be used in conjunction with other code; it's
intended to work as part of a bigger system. This is called modularization and is an extremely powerful concept
in programming.

In Python, modularization can be achieved by using different levels of abstraction, such as functions, classes
and other scripts.

Let's take an example where we want to calculate the sum of all numbers inside a list object:

CODE

OUTPUT

This code performs as expected:

def myFun(x, y, z):
 x =+ 1
 y *= 1
 z -+ 1
 t = 3

 for i in range(x):
 t -= x

 return t

§

nums = [1, 2, 3, 4, 5]

total = 0

for x in nums:
 total += x

print(f'Sum of values is: {total}')

Sum of values is: 15

It first defines our list of integer numbers.•

It then defines our initial counter total and sets it to 0.•

Still, it presents the following disadvantages:

This code can be modularized by refactoring it to a function:

CODE

We can then call our function and assign the returned variable total to n number of variables:

CODE

OUTPUT

Finally, we can call our function from an entirely different script by importing getSums() as a custom method.
For this, we need to create a new Python script, my_fun.py , in the same directory as our current script and
include our getSum function:

It then iterates over all elements of our nums list, adding each element to our counter total .•

Finally, it prints some string along with the sum of all numbers.•

The code is only usable inside the script itself, meaning we cannot call it from another script.•

We must redefine our nums object each time we want to perform a different calculation.•

We cannot assign the total calculation to another variable unless we explicitly copy the total variable.•

There's no way for the user to input a custom list of numbers if the script is run from a shell.•

def getSum(nums):
 total = 0

 for x in nums:
 total += x

 print(f'Sum of values is: {total}')

 return total

nums_1 = [1, 2, 3, 4, 5]
nums_2 = [6, 7, 8, 9, 10]
nums_3 = [11, 12, 13, 14, 15]
nums_4 = [16, 17, 18, 19, 20]

total_1 = getSum(nums_1)
total_2 = getSum(nums_2)
total_3 = getSum(nums_3)
total_4 = getSum(nums_4)

print(total_1, total_2, total_3, total_4)

Sum of values is: 15
Sum of values is: 40
Sum of values is: 65
Sum of values is: 90
15 40 65 90

CODE

OUTPUT

We can even set an alias for our getSum function upon importing:

CODE

OUTPUT

This is just scratching the surface of what abstraction can do. A more detailed study of other objects is out of the
scope of this article, but not to worry, we will get there eventually.

2. Scalability
A scalable code does not require frequent modifications to maintain performance when handling varying
workloads. This can be achieved from several viewpoints and strongly depends on what the code is intended to
perform.

When handling large data sets, for example, it is important to think of the following:

Further information on Big Data file formats can be found in my 3-article series 6 Big Data File Formats
Compared.

This is just one example, but there are multiple measures that can be taken to secure scalability and execution
integrity.

from my_fun import getSum

nums_5 = [-3, -2, -1, 0, 1, 2, 3]
total_5 = getSum(nums_5)

Sum of values is: 0

from my_fun import getSum as sumVals

nums_6 = [-3, -2, -1, 0, 1, 2, 3]
total_5 = sumVals(nums_6)

Sum of values is: 0

Properly define the file format(s) to be used.•

Properly define a schema to be used and keep consistency.•

Properly define the objects that will be used to store the information.•

Properly define the aggregation levels that will be taking place.•

Manage memory according to the expected data set size.•
A simple del after using an object will clear it from memory.•

https://pabloagn.com/blog/6-big-data-file-formats-compared-pt-1/

Performance
Although this area requires a little bit of experience and additional knowledge in algorithmic design &
computational complexity, we can at least perform the basics to ensure our code does what it's supposed to in
the least amount of time possible, consuming the least amount of resources. This is called refactoring and is
crucial, especially when productionizing code.

We want to be efficient with the execution times & memory management while performing the same operation.

Of course, there are countless variables we can optimize, such as using a faster programming language for
starters. Nonetheless, we can focus on the most basic mechanisms we can implement while still using Python as
our trusty fellow.

1. Proper module import
If we are using a single module from a vast library, why import the whole thing? We can refer to this principle
as the bring just what you need approach.

When we import a module, the Python interpreter has to look for it and then load it into the cache. Suppose we
import the whole library without specifying the module we're using. In that case, all modules belonging to that
library are saved on the cache and are ready to be employed upon a user request:

CODE

This is unnecessary and takes cache space that should not be taken in the first place.

We can instead import a specific module by explicitly declaring it upon importing the library:

CODE

This method is also helpful since we won't call the array method using the np.array form. Instead, we can
call it directly as arr :

CODE

Of course, there are some caveats to this, the main one being we can get confused about where the arr method
came from. We can reduce this by using meaningful names as our method aliases.

§

import numpy as np

myarr = np.array([1, 2, 3])

from numpy import array as arr

from numpy import array as arr

myarr = arr([1, 2, 3])

2. Built-in libraries over external ones
As stated before, when we import a module, the Python interpreter performs, in a general way, a search
consisting of the following steps:

1. Search in the sys.modules dictionary
1. If found, return it.
2. If not found, call find_spec() on each sys.meta_path

1. If spec is found, create it and add it to sys.modules

By default, built-in Python methods are already located in sys.modules . This means that the Python interpreter
will find it during the first step.

In contrast, if we import an external module for the first time, Python will have to perform the remaining steps,
which takes additional time.

This is not a big deal since it only happens the first time we import a module. Nonetheless, it's always a better
option to use built-in modules in favour of external ones if the built-in option has better performance.

Also, built-in modules will probably be more common among fellow programmers, thus skipping the step of
installing a new library just for our code.

Finally, built-in modules are written in C , whereas external modules can be written in slower languages such as
Python.

3. Proper data structures
Some Python data structures are used more often than others due to their popularity and ease of manipulation.
For example, tuples, lists and dictionaries are all prevalent data structures and can be found on virtually any
Python code.

The thing about clinging to a fixed data structure for everything is that sometimes that option may underperform
in specific tasks when compared to other alternatives:

4. List comprehensions over for loops
List comprehensions are syntactic constructs that allow us to create lists based on the values of another list.
for loops can do the same but present higher execution times.

One thing to bear in mind is that although list comprehensions are valuable, they can and will reduce readability
for people not accustomed to their single-line structure. This is why it's bad practice to include more than two or
three nested arguments in list comprehensions (we must also remember that Python code is meant to be highly
readable, and we don't want to take that away):

CODE

Instead of using a list , we can employ a set , which is implemented using hash tables, and offers better
performance on tasks involving searching.

•

If we are not mutating the values inside our list , we can even use a tuple as a faster alternative.•

If we have a collection of homogeneous data types, we can also use an array instead of a list for better
performance in some applications.

•

Instead of using the traditional dict data structure, we can use the external microdict alternative based
on hash tables.

•

Instead of using a pandas.DataFrame , we can use an array if we plan on performing linear algebra
operations. This would also provide better performance.

•

https://en.wikipedia.org/wiki/Hash_table

OUTPUT

We can actually compare execution times by using a larger range :

CODE

OUTPUT

5. for loops vs. while loops

Conventional for loop
mylist_1 = []
for i in range(20):
 mylist_1.append(i)

List comprehension
mylist_2 = [i for i in range(20)]

Print resulting objects
print(mylist_1)
print(mylist_2)

[0, 1, 2, 3, 4]
[0, 1, 2, 3, 4]

import time

num_trials = 100000000

Conventional for loop
start = time.time()
mylist_1 = []

for i in range(num_trials):
 mylist_1.append(i)

end = time.time()
print('For loop execution time:', end-start, 'seconds')

List comprehension
start = time.time()

mylist_2 = [i for i in range(num_trials)]

end = time.time()

print('List comprehension execution time:', end-start, 'seconds')

For loop execution time: 4.528107166290283 seconds
List comprehension execution time: 2.702324628829956 seconds

Each loop method has its advantages and disadvantages. It's just a matter of evaluating which one suits our
needs best.

while loops, while incredibly powerful, can sometimes underperform their for loop counterpart (and we say
sometimes because there are times when a while loop is a better alternative).

On the other hand, for loops, as opposed to while loops, don't have to verify a specified condition to
continue, making their execution faster.

They can also iterate through a series of values using the range() function, implemented in C , and thus much
faster.

6. Multiple variable assignment
When we're assigning multiple variables, we have two options:

Of course, if we have multiple variables to assign, the first approach would offer significantly better readability
than the second one. Still, if we're dealing with a small set of variables, we can use the one-line approach:

CODE

Both methods produce the same result. The one-line approach simply saves us some space and can often
improve readability.

7. Using decorators
This is a more advanced topic and requires us to learn what a decorator is in the first place. A decorator is a
function that takes another function as an argument, extends the behaviour of the latter without explicitly
modifying it, and returns a new, decorated function.

This sounds confusing, but we can simplify it by using an example:

Let us imagine we have a function myFun , which accepts two integer numbers and prints them:

CODE

Assign each of them using a separate new line.•

Assign them all at once in a single line.•

New line variable assignment
myvar_1 = 1
myvar_2 = 2
myvar_3 = 3
myvar_4 = 4
myvar_5 = 5

Single line variable assignment
myvar_1, myvar_2, myvar_3, myvar_4, myvar_5 = 1, 2, 3, 4, 5

OUTPUT

Let us now imagine that we would like to extend the behaviour of myFun , because our function is too simple,
but we don't want to change its syntax in any way.

We can define a decorator function decoratorFun :

CODE

Our decoratorFun prints two strings:

What we want to do now is wrap our original function myFun print statement around our decorator function
decoratorFun strings. We can add a @decoratorFun indicator on top:

CODE

OUTPUT

Define a simple function
def myFun(x, y):
 print(x, y)

myFun(7, 77)

7 77

Define a decorator function
def decoratorFun(decoratedFun):

 def wrapperFun(*args, **kwargs):
 print('Start decorator')
 decoratedFun(*args, **kwargs)
 print('End decorator')

 return wrapperFun

Start decorator•

End decorator•

@decoratorFun
Define a simple function
def myFun(x, y):
 print(x, y)

myFun(7, 77)

Start decorator
7 77
End decorator

We have effectively extended the functionality of our simple function myFun without changing anything (not
even its arguments).

Of course, this is as simple as it gets, but we can imagine using decorators involving more complex functions
and classes.

Testing & debugging
1. Exception handling
If we go back to the Docstrings section and take a closer look at the function we defined, there is nothing in the
code impeding the user from inputting a wrong parameter. Sure, we defined a docstring telling the user what to
do, but we did nothing to ensure how the function would behave if the user gave an integer number out of the
specification bounds as input or, even worse, the wrong type.

In the best-case scenario, the user reads the docstring and understands what to do. In the worst-case scenario, the
user doesn't even know what a data type is and inputs something like this:

CODE

What would happen? Well, the first thing to bear in mind is that if we input garbage, we get garbage. That is if
we don't have a handler for these types of slips (which happens often and can easily break a precarious
program).

Fortunately, with this particular input, the program would not break. Instead, it would simply concatenate the
three ages (not sure what's worse):

§

def addAges(age1, age2, age3):
 '''
 Parameters

 age1 : int
 Age 1, from 1 to 10.
 age2 : int
 Age 2, from 11 to 20.
 age3 : int
 Age 3, from 21 to 30.

 Returns

 sumOfAges : int
 Sum of ages 1, 2 and 3.
 '''

 sumOfAges = age1 + age2 + age3

 return sumOfAges

addAges('1', '1', '0')

OUTPUT

We can see that not only is the intended operation wrong, but the returned object is a string.

The user could slip more subtly and input something like this:

CODE

OUTPUT

And there we have it, lads; the user broke our program in 2 tries. He even got upset because "some unintelligible
nonsense appeared on his screen, even though he did everything right". Good luck explaining that to our boss.

We could've avoided this by using exception handlers.

These handy methods allow us to redirect errors such as the one we encountered and do something productive
with them. A custom exception can:

The catch is, formulating appropriate exceptions is more challenging than it looks because we have to think
outside the box; we have to consider every possible way our program could break. This methodology is called
Test to Fail.

Exception handling is so critical that a poorly-written program with incorrect exception handling could quickly
become vulnerable to attacks (an SQL injection can be prevented by proper input exception handling).

The logical way an exception works, in its most simple way, is as follows:

We can translate a simple example into code:

CODE

'110'

addAges('1', 2, 3)

TypeError: can only concatenate str (not "int") to str

Return a more explanative message error to the user or even the programmer.•

Prevent the program from breaking by bypassing the error and redirecting the flow.•

Try to catch the error beforehand, and actually try to fix it.•

We know what the user might input.•

If the input is wrong in this way, perform that action.•

If the input is wrong in this other way, perform that other action.•

Here we have implemented an exception handler to ensure that the user is inputting the correct data type, in this
case, a real integer number.

OUTPUT

We can level up a notch and actually try to correct the input by using a try except combination:

CODE

def inputNum(num):
 '''
 Parameters

 num : int
 Num, a real integer number.

 Returns

 num_s : str
 num as string type.
 '''
 if type(num) != int:
 raise TypeError('Please input a real integer number')

 else:
 num_s = str(num)

 return num_s

inputNum('a')

TypeError: Please input a real integer number

OUTPUT

Of course, we will never be able to cast a string type to an integer type by using this simple piece of code.
However, we can cast a float type to an integer type:

CODE

OUTPUT

With this simple step, we've not only impeded a significant catastrophe but also made our code more flexible,
letting the user input float types and get the same answer. We just need to be careful to include what the int()

method will actually do. In our case, it truncates the float number and does not round it up to the nearest integer.

Going back to our original example, we can include exception handlers to ensure that the user knows what to
input:

CODE

def inputNum(num):
 '''
 Parameters

 num : int
 Num, a real integer number.

 Returns

 num_s : str
 num as string type.
 '''
 if type(num) != int:
 try:
 num_i = int(num)
 num_s = str(num_i)
 except ValueError:
 raise TypeError('Please input a real integer number')

 else:
 num_s = str(num)

 return num_s

inputNum('a')

TypeError: Please input a real integer number

inputNum(3.56)

'3'

These are just some examples; we could improve it even further, but the point is made.

The one thing we must remember about this section is that good code will not only have a significant portion
dedicated to handling errors but will do it appropriately and elegantly.

2. Print statements
Print statements allow us to make fewer typing and logical mistakes by outputting useful messages about
specific sections. We can use print statements to debug or output messages to the anxious user.

Even though we sometimes feel like printing every step to ensure we're not losing it, we should moderate
ourselves and not go too bananas; otherwise, we might turn an anxious user into an angry user.

Print statements are intended to inform about important processes in our code, e.g. for each iteration of a loop,
print the file number we're reading, along with the total number of files pending to read.

They can also be used to debug specific sections, specifically when working with functions and have no
visibility of the values assigned inside.

The key to remember is to avoid abusing them and remove any debugging print statements we used when
signing off our code to another person.

def addAges(age1, age2, age3):
 '''
 Parameters

 age1 : int
 Age 1, from 1 to 10.
 age2 : int
 Age 2, from 11 to 20.
 age3 : int
 Age 3, from 21 to 30.

 Returns

 sumOfAges : int
 Sum of ages 1, 2 and 3.
 '''
 if (type(age1) != int) | (type(age2) != int) | (type(age3) != int):
 raise TypeError('Please input an integer number.')

 elif (age1 <= 0) | (age2 <= 0) | (age3 <= 0):
 raise AttributeError('All numbers have to be positive and non-zero.')

 elif (age1 < 10) | (age2 < 20) | (age3 < 30):
 raise AttributeError('Age 1 must be between 1 and 10. '\
 'Age 2 must be between 11 and 20. '\
 'Age 3 must be between 21 and 30. ')

 else:
 sumOfAges = age1 + age2 + age3

 return sumOfAges

Dependency handling
Lastly, dependencies play a huge role in avoiding execution errors and ensuring maintainability. There are
multiple mechanisms we can put into place to ensure that our code will run smoothly across environments:

Conclusions
We've reviewed multiple yet simple mechanisms we can employ to make our code cleaner, more elegant,
modular, usable, scalable and safer. These measures can not only help us become better programmers but better
collaborators. It will make reading code a pleasure instead of an agonizing process and instantly boost our
credibility.

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

§

Specify the dependencies required in a readme file, and pack it along with our code. Also, add it to the
project repository if we're using version control.

•

Create a .yml file to specify and handle the required environment.•

Make sure the packages we're using are up-to-date and actively maintained.•
This is not always possible, but we can try to include the least amount of unmaintained packages in
our code to ensure the least amount of conflicts.

•

If we create a proprietary package we're using for some project, we need to keep the file handy and, if
possible, upload it to a version control software such as GitHub.

•

Make sure we're using the correct methods and that they'll not be deprecated soon.•
This is an easy one. Most methods output a warning if they're about to be deprecated in future
versions. We need to be proactive with these warnings and substitute the old methods in favour of
updated ones before it's too late and our angry user turns into an exasperated user.

•

§

§

Python Documentation, Built-in Exceptions•

Python Documentation, Errors & Exceptions•

Towards Data Science, What happens when you import a Python module?•

Towards Data Science, 3 data structures for faster Python Lists•

§

https://pabloagn.com/technologies/github/
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/tutorial/errors.html
https://towardsdatascience.com/what-happens-when-you-import-a-python-module-ad6c0efd2640
https://towardsdatascience.com/3-data-structures-for-faster-python-lists-f29a7e9c2f92

