
Rust for Beginners

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory computer-sciencecomputer-science

TechnologiesTechnologies Rust, VS Code, PowerShell 7Rust, VS Code, PowerShell 7

WebsiteWebsite Post LinkPost Link

Rust is a compiled, multi-paradigm, low-level, statically-typed, general-purpose programming language
emphasizing performance, type safety, and concurrency. It was originally developed as a Mozilla Foundation
project in 2013 and has since steadily grown its user base. Despite being a low-level language, it provides safety
features that many high-level counterparts also present. Simply put, Rust has better safety standards than other
low-level languages (C, C++), mainly in the memory management department; Rust has a robust set of safety
tools, including null pointer dereferencing prohibition, pointer aliasing enforcement, and most notably, its
ownership and borrowing system which we'll talk about later on.

Of course, we're still talking about a low-level language meant to provide direct interaction with the hardware;
this means there has to be a way to directly (and potentially unsafely) perform low-level operations. This is
managed by Rust's unsafe component, also called unsafe Rust, which we'll not thoroughly review in this
segment.

We'll be using Rust scripts which can be found in the Blog Article Repo.

Table of Contents

§

§

To Love or Not to Love•
Safe low-level control•

Concurrency & asynchronous processing•

Backward compatibility•

Debugging•

Community & development•

What to expect•

Installation•
Rust•

Microsoft C++ Build Tools•

VS Code•

Rust VS Code extension•

Creating a project•
The project manifesto•

Including dependencies•

https://obsidian.md/
https://pabloagn.com/blog/
https://pabloagn.com/categories/computer-science/
https://pabloagn.com/technologies/
https://pabloagn.com/blog/rust-for-beginners/
https://foundation.mozilla.org/en/
https://github.com/pabloagn/blog/tree/master/computer-science/rust-for-beginners

The main function•

Compiling the project•

Commenting•
Line comment•

Block comment•

Pointers, references, and ownership•
Pointers•

References•

Ownership•

Variables•
Immutable variables•

Mutable variables•

Scope & blocks•

Constants•

Printing•

Data types•
Primitive types•

Boolean•
Boolean logic•

Integer•

Float•

String•

Character•

Never•

Sequence types•
Tuple•

Immutable tuples•

Mutable tuples•

Array•
Immutable arrays•

Mutable arrays•

Slice•

Casting data types•

Other types•
Vector•

Operators•
Alternative methods for common operators•

Power operator•

Conditional control•
If, else if, else•

Match•
A simple case•

Using compare and ordering•

Random•

Loops & iterators•
Using loop•

Using while•

Using for and range•

Using for and iter•

Using for with enumerate•

To Love or Not to Love
According to recent Stack Overflow surveys, Rust has maintained itself as the most loved programming
language since 2016; yes, even more loved than Python. It's sometimes thought of as a niche language but has
been gaining popularity in recent years.

Its main uses are around systems programming where high performance and safety are required. Some
applications include:

Collecting an iterator•

Functions•
Main function•

User-defined functions•

Functions with arguments•

Functions returning a value•

Macros•

User input•

Next steps•

Conclusions•

References•

Copyright•

§

Game engines•
Amethyst•

Bevy•

Fyrox•

Piston•

Nannou (Videogames, interactive AV installations, live performance, generative art)•

SaaS Applications•
Dropbox•

Discord (Read States service)•

Figma•

Meta (Their source control backend)•

AWS•

Infrastructure services•
Cloudflare•

Sentry•

Firecracker•

Operating systems•
There are discussions of Linux maintainers potentially adopting Rust into the Linux Kernel.•

CLI-based applications for Unix-like systems•
bat•

ripgrep•

dust•

bottom•

exa•

Cryptographic key management services•

Of course, Rust is still a relatively new language that has yet to enjoy the massive boom of other languages such
as C++, Python, Java, or JavaScript. Still, the adoption rate is increasing, and developers are pushing to grow
Rust's crate repository. Some areas, such as ML, are still to be developed further, but the efforts are there and
will hopefully continue.

So what is it that makes Rust an attractive option for systems programming? Well, as Alex Gaynor and Geoffrey
Thomas at the 2019 Linux Security Summit said:

Let us discuss what makes Rust awesome in more detail.

1. Safe low-level control
Rust provides low-level control by allowing memory management explicitly and efficiently. Rust's ownership
and borrowing model offers a safe and efficient way to manage memory, a fundamental aspect of low-level
programming. This makes it possible to write secure yet high-performance programs.

In Rust, memory is managed through ownership, meaning each value has a unique owner. When a value is no
longer needed, its owner can either move it to a new owner or free the memory it occupies.

Rust also provides borrowing, allowing multiple references to a value to exist simultaneously, but only one can
be mutable at a time. This ensures data is accessed safely and prevents data races and other synchronization
issues.

2. Concurrency & asynchronous processing
Concurrency refers to the ability of programs to perform multiple tasks simultaneously. Rust provides several
tools for concurrent programming, including threads, async/await, and channels, which allow various tasks to be
executed concurrently.

This is no special thing since other languages also have this possibility. What makes Rust attractive regarding
concurrency is the following:

Remember Polars? It's implemented in Rust. Polars uses rayon, a data-parallelism library that allows for easy
parallelization of operations on collections without requiring explicit thread management.

3. Backward compatibility
Rust highly emphasizes backward compatibility, particularly between different language versions, libraries, and
crates. This is handled by the implementation of two channels:

The stable release channel is meant for production and receives updates every six weeks. Rust guarantees that
code written for one stable release will continue to work on future stable releases as long as it adheres to Rust's

Two-thirds of Linux kernel vulnerabilities come from memory safety issues. It’s pretty much the same
everywhere. Where-ever there’s a memory problem, chances are you’ll find C or C++.

Threads in Rust are lightweight and can be created easily using Rust's standard library.•

Due to its robust compiler, many potential concurrent processing problems are pointed out at compile time.•

Rust's concurrency model is based on ownership and borrowing, which provides a safe and efficient way to
manage shared data in concurrent programs. This prevents data races and other synchronization issues that
may occur in other languages.

•

A stable release channel.•

A nightly release channel.•

https://events19.linuxfoundation.org/events/linux-security-summit-north-america-2019/
https://pabloagn.com/deep-dives/polars-a-lightning-fast-dataframe-library-for-python-and-rust/
https://pola-rs.github.io/polars/polars/export/rayon/index.html

language and API specifications.

On the other hand, the nightly release channel is meant for experimental use and receives daily updates. Code
written for the nightly release may not be backward-compatible with previous or future versions of Rust, as the
language and API specifications may change.

Rust also provides a versioning scheme for libraries and crates, which allows developers to specify which
version of a library or crate they are using. This ensures that code written for a given version of a library or crate
will continue to work on future versions of that library or crate as long as the library or crate maintains
backward compatibility.

This provides several advantages:

All these are especially important when dealing with a relatively new language that could fundamentally change
on each iteration.

4. Debugging
Rust provides two main advantages when it comes to debugging:

These two aspects make Rust's debugger useful and a pleasure to work with. It guides us through the writing of
our code and tells us when something goes wrong and exactly where the error comes from even before we
compile our program.

5. Community & development
Rust is still a fairly new programming language. Still, it has already gained an enthusiastic community of
developers known as Rustaceans (yes, this is a thing).

As of the writing of this article, the official GitHub Repo has over 4,000 contributors, while the number of
Crates in stock is currently at 110,360 (we'll go over crates further on), and the number of Crates downloaded
surpasses the 30bn mark.

What to expect
Although Rust's compiler does a great job of debugging verbose and informatively, it still has a steep learning
curve associated, mainly if we come from a high-level, dynamic programming context. However, if we compare
Rust with other low-level languages, such as C++, the frustration may not be comparable to that of
troubleshooting issues with the latter.

Ease of upgrades•

Reduced maintenance costs•

Increased adoption•

Better user experience•

It's not forgivable, at least in the secure Rust implementation; if something shouldn't be there, it will most
likely not let us compile our code.

•

The compiler error messages are verbose and informative.•

The auto-complete feature in VS Code is simply beautiful. It fills in default data types if we don't specify
them and tells us exactly which syntax we should use to do so explicitly.

•

§

https://rustaceans.org/
https://github.com/rust-lang/rust
https://crates.io/

What's hard about Rust is not exclusively the syntax, but systems programming in general, which is what this
language was designed to excel at. There is a considerable amount of computer and systems theory behind it. If
we want to learn it properly, we must at least have a generalized understanding of concepts such as memory
allocation, pointers, borrowing, and data structures.

That said, for those with a background in systems programming, learning Rust will hopefully be a smooth
transition, as many of the low-level concepts are similar, if not the same, and some syntactic elements are alike.

In this segment, we will provide an introductory overview of the Rust language. We will also provide enough
theory to understand what we're programming, although we will not dive too deep into the Rustacean waters
since this is meant to be an introduction to the language.

We'll be using VS Code as well as PowerShell throughout this article.

Installation
For this segment, we will need to install three main components:

We will also install some packages, which will come later when we get to the package manager.

1. Rust
There are two main methods we can use to install the Rust programming language:

We'll stick rustup , the recommended method in the official documentation; it has a 6-week rapid release
process and supports various platforms. The complete installer documentation can be found here.

To install Rust, we will follow the steps below:

1. Head to the Rust language installation page.
2. Download the 64-bit executable.
3. Run the executable.
4. Take note of the Cargo home directory displayed in the installation prompt (usually located in

C:\Users\username\.cargo).
5. Wait for the following prompt: You can uninstall at any time... .
6. Hit Enter .
7. Wait for the following prompt: Rust is installed now. Great! .
8. Hit Enter .
9. Open a new shell and input the following: rustc --version

10. If the installed rustc version appeared, the installation succeeded.

If, instead, we got an error such as rustc command not found , it most probably means that the .cargo/bin

directory was not added to the Path environment variable. To fix this, we will need to add it manually by
following the steps below:
1. Open the Windows run command window by typing WIN+ r .

§

The Rust programming language.•

Visual Studio Code.•

The Visual Studio Code Rust extension.•

Via the rustup installer.•

Via standalone installers in the form of tarballs (.tar.gz) for Unix-like environments, a Windows installer
(.msi), or a macOS installer (.pkg).

•

https://rust-lang.github.io/rustup/
https://www.rust-lang.org/tools/install

2. Input the following: "C:\Windows\system32\rundll32.exe" sysdm.cpl,EditEnvironmentVariables
4. Select Path .
5. Click Edit... .
6. Click New .
7. Input the following: C:\Users\username\.cargo\bin .
8. Click OK .
9. Click OK .
10. Try to execute the rustc --version command again.

2. Microsoft C++ Build Tools
To compile Rust code, we will need to install the Microsoft C++ Build Tools. It is probable that we already have
this installed. If we don't, we can follow the steps below:

1. Head to the Microsoft Visual Studio Downloads Page.
2. On All Downloads, look for build tools .
3. Download the Build Tools for Visual Studio 2022 installer.
4. Install the Microsoft C++ Build Tools.

3. VS Code
If we don't yet have VS Code installed, we can get it from the official downloads page. We need to select the
Windows 8, 10, 11 executable and wait for it to download. When the installation is complete, we can verify by
opening the Visual Studio Code application directly from the Windows start menu. A detailed configuration
guide for VS Code is out of the scope of this article but can be consulted on the VS Code official documentation
site.

4. Rust VS Code extension
Once we have Rust and VS Code installed, we will proceed to install the Rust VS Code Extension:

1. Open VS code and head to the Extensions menu in the left panel. We can also open the Extensions menu by
using the shortcut Ctrl + Shift + X or by opening the command palette by typing F1 and searching for
Extensions: Install Extensions.

2. We will search for rust-analyzer , maintained by rust-lang.org, and install and enable it. We can also get
the extension using this link.

Now that everything's in place, we're ready to start configuring our working environment.

Creating a project
The first thing to do after installation is to create a Rust project. This is handled by the cargo package manager.

There are two options for creating a new project:

If we want to create a project from scratch, we can first head to our project directory:

§

Creating a new project folder.•

Using an existing folder as the project folder.•

https://visualstudio.microsoft.com/downloads/
https://code.visualstudio.com/download
https://code.visualstudio.com/docs
https://marketplace.visualstudio.com/items?itemName=rust-lang.rust-analyzer

CODE

We will then initialize our project:

CODE

Conversely, if we want to use the current directory as the project folder, we can simply change directories to our
target folder and initialize it as our project:

CODE

This command will create two components:

Once we're at it, we can mention that the .toml file format is relatively popular among the Rust developer
ecosystem, notably used by Cargo, mainly for configuration purposes.

We can optionally install a VS Code extension that will make our life easier when dealing with this file format:

1. Open VS code and head to the Extensions menu in the left panel. We can also open the Extensions menu by
using the shortcut Ctrl + Shift + X or by opening the command palette by typing F1 and searching for
Extensions: Install Extensions.

2. To install and enable it, we will search for Even Better TOML , maintained by tamasfe. We can also get the
extension by using this link.

This extension is backed by taplo and will support TOML syntax.

1. The project manifesto
If we open our Cargo.toml file, we will see that it contains some boilerplate metadata about our newly-created
project:

A .toml file general structure consists of sections and key-value pairs, similar to a Python dictionary; a
Cargo.toml file section groups similar variables together, depending on their functionality.

The complete set of sections and key-value pairs can be consulted here.

cd Projects

cargo new rust-for-beginners

cd rust-for-beginners
cargo init

A src folder: Contains our project's source code.•

A Cargo.toml file: This is the project's manifest and contains metadata needed to compile our package,
such as the project name and required dependencies.

•

package : Defines a package.•
name : The name of the package.•

version : The version of the package (not the Rust release).•

edition : The Rust edition.•

dependencies : Package library dependencies.•

https://marketplace.visualstudio.com/items?itemName=tamasfe.even-better-toml
https://taplo.tamasfe.dev/
https://doc.rust-lang.org/cargo/reference/manifest.html

Once we start including dependencies in our project, we will also start working on our manifesto. Once the file
is generated, the Cargo.toml manifesto is meant to be edited by us.

2. Including dependencies
As we mentioned, Rust dependencies are handled by Cargo. There are three main concepts that we should be
aware of:

Let us head to VS Code and open our main.rs source file. Once we open it, we'll notice that two new items
have been created in our project folder:

We'll discuss these files & folders in more detail as we move on. For now, we will focus on the main.rs file.

We will start by importing the following modules into our main file:

CODE

If we pay close attention, we can see that we used the keyword use to import a library followed by a double
colon :: , the required module(s), nested imports in the case of std::io enclosed in curly braces {} , and a
semicolon ; termination.

We can also see that two alerts pop up:

Module / Struct: A module is a way to organize code and data into logical units. A module can contain
functions, structs, enums, constants, types, and other modules.

•

Crate: A crate is a compilation unit in Rust that produces a binary or a library. It contains one or more
modules that define functions, structs, enums, traits, and other Rust language constructs. A crate can be
compiled into a binary executable or a library that other programs can use.

•

Library: A library is a special kind of crate intended to be used by other programs. It provides a collection
of reusable code that can be linked to other Rust programs. A library can be either a dynamic library (.so
or .dll) or a static library (.a or .lib). Rust libraries can be organized into modules similar to
namespaces in other languages.

•

Package: A package is a set of one or more crates built and tested together. A package contains a
Cargo.toml file that specifies the package's name, version, authors, dependencies, build script, and other

metadata. A package can be published to the Rust package registry (crates.io) to be used by other Rust
developers.

•

A Cargo.lock file: Contains exact information about our dependencies. It is maintained by Cargo and
should not be manually edited.

•

A target folder: Where the output of a build is stored.•
A debug folder: Where the debug build is stored.•

A .rustc_info.json file: Contains metadata about the compilation process and the target platform for
which the code was compiled.

•

A CACHEDIR.TAG file: Marks a directory as a cache directory. Tools that recognize the signature inside
this file will treat the directory as a cache directory and may take appropriate action, such as excluding
it from backups or indexing.

•

std::io : Standard input/output module.•

std::cmp::Ordering : Comparison module.•

rand::Rng : Random number generator module.•

use io;
use Ordering;
use Rng;

std::
std::cmp::
rand::

https://crates.io/

The first alert does not require further action; we will eventually use this module. For the second one, we will
head to our Cargo.toml manifesto and include the library version under [dependencies] :

CODE

Once we do this, the error should disappear.

3. The main function
As we will see later, every executable Rust program requires a main function. The main function serves as the
entry point to our program.

Whenever we create a new Rust project, this main function will be written by default in our main.rs file:

CODE

If we leave this as is, our program will simply print Hello, world! to stdout .

4. Compiling the project
Compiling and running a Rust project can be done using Cargo and consists of 3 main steps:

CODE

If the project was built successfully, we'll get the build confirmation as well as the string from our println!()

statement inside our main function:

An unused import alert for std::io : Rust knows that we have not used the module in our code; hence it
raises an alert.

•

An unresolved import for rand : We have not specified a version for the rand library; hence Rust raises
an error.

•

[dependencies]
rand = "0.8.5"

fn main() {
 println!("Hello, world!");
}

Navigate to the project directory.•

Build the project.•

Run the project.•

Navigate to the project directory
cd rust-for-beginners

Build the project
cargo build

Run the project
cargo run

OUTPUT

Else, we'll get a build error:

OUTPUT

Commenting
Comments are fragments of code that are not included for execution during compilation and running. There are
multiple ways to comment in Rust, although we will only review the two most used:

1. Line comment
We can comment on a single line by prepending our comment with a double slash // :

CODE

2. Block comment
We can comment on a block by enclosing our comment in slash asterisk symbols /* */ :

CODE

Compiling rust-for-beginners v0.1.0 (C:\Users\username\Documents\rust-for-beginners)
 Finished dev [unoptimized + debuginfo] target(s) in 0.29s

Hello, world!

Compiling rust-for-beginners v0.1.0
error: Compilation Error Message

§

Line Comment: Single line.•

Block Comment: Multiline.•

// This is a single line comment.
// Which can also be continued in the next line.

/*
This is a multiline comment
where we can include multiple lines
without having to comment each line.
*/

Pointers, references, and ownership
Before diving deeper, it's worth spending some time understanding what pointers are and how Rust's memory,
ownership, and references work. This is because these concepts are key in understanding not just Rust's
architecture but any low-level language such as C and C++; plus, it will save us a lot of frustration when we get
to variables and data types.

1. Pointers
Formally, a pointer is a derived data type that can store the memory address of other variables. It allows us to
manipulate and reference data stored in memory by directly accessing its location in memory.

Let us represent a generic block of memory using an array-like structure:

Address Value

0x0000 01100110

0x0001 00100001

0x0002 10110100

0x0003 11001010

T���� 1: R������������� O� A M����� B���� U���� A� A����-L��� S��������

Where:

In this example, the memory block contains four consecutive locations starting at address 0x0000. Each memory
location stores a byte of data represented by a sequence of 8 bits. This example's values are binary, but they can
also be represented in hexadecimal or decimal notation.

If we convert our binary sequences to decimal numbers, we get the following:

Address Value

0x0000 102

0x0001 33

0x0002 180

0x0003 202

T���� 2: B����� C��������� C�������� T� D������ N������

If we look closer, the addresses in our memory block are simply numbers represented in hexadecimal form; the
0x character preceding all the address values denotes we're talking about a hexadecimal value, where the

number following would be the actual hexadecimal value.

To convert it to decimal, we simply solve for the following:

§

The address is the location inside the memory block.•

The value is the data stored at that particular address.•

0x0001 = 0x16
3
+ 0x16

2
+ 0x16

1
+ 1x16

0

Simplifying:

Thus, our decimal number would be 1.

Following this logic, we could define a value in our memory block as an address; this is the definition of a
pointer: a value that happens to be an address in memory.

If we substitute the value corresponding to the memory address 0x0002 for another address within the same
block and convert the remaining binary representations to hexadecimal 0x notation, we would end up with the
following:

Address Value

0x0000 0x0066

0x0001 0x0021

0x0002 0x0001

0x0003 0x00CA

T���� 3: M����� B���� C��������� A P������ A� A������ 0�0002, R���������� A������ 0�0001, O�
V���� 0�0021

Now we have a pointer, but why is this relevant? Well, in Rust, we have three types of pointers:

We'll focus on the most common type: references.

2. References
In Rust, a reference is a type of pointer that lets us borrow values without taking ownership. This means that we
can include an additional layer of abstraction (e.g., referencing a value without directly interacting with it),
which allows us to borrow values without copying them. Borrowing rules are validated on compile time by the
borrow checker.

This can be much more efficient than making copies of large data structures and is especially important in
performance-critical code, where reducing memory usage can improve program speed and reduce resource
consumption.

As we will see, references in Rust are created using the ampersand & operator. For example, if we want to
define a reference to the str data type and assign it to a variable, we can use the following syntax:

CODE

Not to worry. We'll dive deeper into variable declarations when we get to variables.

0x0001 = 0x4096 + 0x256 + 0x16 + 1x1

References•

Raw pointers•

Smart pointers•

fn main() {
 let _mystring:&str = "string";
}

3. Ownership
We've already seen an example of borrowing using a data type reference (i.e., the str data type has an owner,
and we borrow it from that owner to define a new variable). This concept is part of a broader idea called
ownership.

Ownership in Rust is based on the concept of a unique owner for each value. When a value is created, it is
associated with a unique owner responsible for managing the value's memory allocation and lifetime. The owner
can be a variable, a function, or a data structure.

Apart from borrowing, we can also transfer ownership using Rust's move semantics; when a value is assigned to
another owner, the original owner is said to have "moved" the value. The new owner takes over responsibility
for the value's memory allocation and lifetime, and the original owner becomes invalid.

With this concept, we've also introduced another key idea in Rust: memory safety.

When an owner goes out of scope or is no longer needed, Rust automatically frees the memory associated with
the value. This ensures that Rust programs are memory safe, efficient, and free from common low-level
programming errors such as dangling pointers, use-after-free, and data races. In short, ownership ensures that
there is always exactly one owner for the value and that the owner is responsible for managing the value's
memory allocation and lifetime.

Now that we have a general understanding of pointers, references, and ownership, we can discuss variables.

Variables
There are several different variable types depending on their structure. Generally, we use let to define a
variable under the current scope. There are also static variables, although we won't be covering them here.

We must remember that Rust cares about unused variables; if we declare a variable and don't reference it
anywhere in our code, the compiler will throw an error unless we prepend our variable name with an underscore
_ . This tells Rust that the defined variable is meant to be used as a placeholder, and thus the compiler will

ignore it:

CODE

The first declaration won't throw an error if left unreferenced, while the second one will.

We can also use underscores _ in between digits when dealing with numeric variables to denote thousand
separators; this will increase legibility while not having any consequence during compilation:

CODE

§

fn main() {
 let _myplaceholder:i32 = 34;
 let myplaceholder:i32 = 34;
}

https://en.wikipedia.org/wiki/Dangling_pointer
https://encyclopedia.kaspersky.com/glossary/use-after-free/
https://www.mathworks.com/products/polyspace/static-analysis-notes/what-data-races-how-avoid-during-software-development.html

OUTPUT

As expected, the value will be printed without the underscore characters.

If we recall, we installed a Rust extension for VS Code. This extension provides helpful features such as data
type inference upon declaring a variable. We cannot see it directly in our code, but the extension is using the
compiler to include the following:

CODE

Note the i32 specification after the name of our variable.

We can also assign multiple variables in a single statement using tuples (we'll discuss tuples later in the
segment):

CODE

OUTPUT

1. Immutable variables
Variables in Rust are immutable by default; when a variable is immutable, we can't change a value once a value
is bound to a name. This is the default behavior for security purposes; we don't have to keep track of the
variables and how they change throughout our program if they cannot be changed in the first place unless we
explicitly decide to do so.

The simplest way to define a mutable variable inside a function is as follows:

fn main() {
 // Using underscores as separators
 let mynum_immut = 7_000_000;
 println!("{}", mynum_immut);
}

7000000

fn main() {
 // Using underscores as separators
 let mynum_immut: i32 = 7_000_000;
 println!("{}", mynum_immut);
}

fn main() {
 // Multiple variable assignment
 let (myvar1, myvar2, myvar3) = (1, 2, 3);
 println!("{} {} {}", myvar1, myvar2, myvar3);
}

1 2 3

CODE

Where:

2. Mutable variables
Mutable variables can change throughout our code. The simplest way to define a mutable variable inside a
function is as follows:

CODE

Where:

3. Scope & blocks
As we have mentioned, variable bindings in Rust have a scope. Scopes are important since they indicate to the
compiler when borrows are valid, when resources can be freed, and when variables are created or destroyed.

A block or block expression is a control flow expression and anonymous namespace scope for items and
variable declarations.

A block can be defined by using curly brackets:

CODE

fn main() {
 let mystring_immut:&str = "Hello World";
}

mystring_immut is the variable name.•

&str is the borrowed form of the str type.•

Hello World is the value assigned to the variable.•

fn main() {
 let mut mystring_mut:String = String::new();
}

mut refers to the variable being mutable.•

mystring_mut refers to the variable name.•

String refers to the data type.•

new() tells Rust to create this as a new variable.•

Variables defined inside a block using let will not be accessible outside that block. However, variables defined
outside a block using let will be accessible from within a given block.

This concept also applies to functions, where we can define a variable under the current scope that will not be
accessible outside of that function.

Constants
Constants in Rust are different from immutable variables in that they are computed at compilation time (and can
be used in other compile-time computation), and hence the run time is faster, as it does need to compute it again;
immutable variables are always computed at run time (all const occurrences will be replaced by the value
assigned on compilation). Additionally, immutable variables are defined under the current scope (are not defined
globally), while constants are global.

Let us elaborate further by using an example:

CODE

As we might have noticed, we define a const using uppercase letters.

OUTPUT

Conversely, if we try to do the same for an immutable variable, the compiler won't even let us declare it outside
our function:

fn main() {
 // Defining a block
 let var_outsideblock = 49;
 {
 // Inside a block
 let var_insideblock = 7;
 println!("Inside 1: {}", var_insideblock);
 println!("Inside 2: {}", var_outsideblock);
 }

 // Outside a block
 println!("Outside: {}", var_outsideblock);
}

§

// Define constant outside main function
const HELLO: &str = "Constant Hello";

fn main() {
 // Print constant from inside main function
 println!("{}", HELLO);
}

Constant Hello

CODE

OUTPUT

Printing
There are multiple ways we can use to print values in Rust. Below are the two most commonly used:

We might have noticed the exclamation mark ! at the end of each statement because both printing methods are
macros (we'll discuss macros later on).

Printing a string literal in Rust can be achieved using the print!() macro without any additional arguments:

CODE

OUTPUT

This method will not include a newline at the end of each print statement, so it's sometimes best to use the
println!() macro instead:

CODE

// Define an immutable variable outside main function
let mystring_immut = 7;

fn main() {
 println!("{}", mystring_immut);
}

consider using `const` or `static` instead of `let` for global variables

§

print!()•

println!()•

fn main() {
 // Print a string in same line
 print!("Hello ");
 print!("World");
}

Hello World

OUTPUT

However, suppose we would like to print other data types different than string literals, such as integer literals,
float literals, or variables. In that case, we need to include a string literal format argument using curly brackets
{} , a placeholder for our variable(s).

CODE

OUTPUT

We can add multiple placeholders, with the arguments to print separated by a comma , :

CODE

OUTPUT

We can also add text with the placeholder to format our output:

CODE

fn main() {
 // Print a string in newline
 println!("Hello");
 println!("World");
}

Hello
World

fn main() {
 // Print an integer using a string literal format argument
 println!("{}", 7);
}

7

fn main() {
 // Multiple placeholders
 println!("The numbers are: {} and {}", 7, 4);
}

The numbers are: 7 and 4

If we want to print variables, we can do so by including the same string literal format argument as before:

CODE

OUTPUT

Data types
We mentioned that Rust is a statically-typed language. This means that all data types must be explicitly known
to the interpreter before compiling. We have two options when dealing with data types:

When working with data types in Rust, there are some core concepts we need to take into account:

There are 17 main data types in Rust, which can in turn, be divided into six categories:

Although we will only cover primitive and sequence types in this segment, the full documentation can be
consulted here.

1. Primitive types
Primitives refer to the basic data types built into the language and not defined in terms of other data types. There
are four main primitive data types in Rust:

fn main() {
 // Format output with additional text
 println!("The number is: {}", 7);
}

fn main() {
 let intvar = 7421;
 println!("{}", intvar);
}

7421

§

To explicitly define the data type.•

To let the Rust compiler fill in a default data type based on the variable's assigned value.•

If we have a variable of some type, T , we own the data associated with T . If we have a variable of type
&T , then we don't own the data; we're borrowing it.

•

Primitive types•

Sequence types•

User-defined types•

Function types•

Pointer types•

Trait types•

https://doc.rust-lang.org/book/ch03-02-data-types.html

1.1 Boolean
The boolean type can take one of two possible values:

We can define a simple boolean variable:

CODE

OUTPUT

1.1.2 BOOLEAN LOGIC

Boolean values can be operated on using boolean logic or boolean operators. There are five main boolean
operators in Rust. Given two variables, a and b , we can define them as follows:

1.2 Integer
As mentioned, there are signed and unsigned integer types. The main difference between the two is that:

An integer type can also be classified based on its minimum and maximum number of bits (capacity), e.g., i8

(signed) will accept a number from -128 to 127, while i16 (signed) will accept a number from -32,768 to
32,767.

Boolean - bool•

Numeric - integer i (signed or unsigned) and float f•

Textual - char and str•

Never - !•

true : Has the bit pattern 0x01•

false : Has the bit pattern 0x00•

fn main() {
 let boolean_var:bool = true;
 println!("{}", boolean_var);
}

true

Logical not: !a•

Logical or: a | b•

Logical and: a & b•

Logical xor: a ^ b•

Logical comparisons:•
Equal to: a == b•

Greater than: a > b•

Greater than or equal to: a >= b•

Less than: a < b•

Less than or equal to: a <= b•

A signed integer can hold negative values.•

An unsigned integer can hold a larger positive value and no negative value.•

This does not just apply to Rust but is common to all programming languages (it's just that dynamically typed
languages handle this automatically for us) and directly related to the computer hardware and how a system
stores information in memory.

Below is the complete list of signed integer data types:

Type Minimum Maximum

i8 -(27) 27-1

i16 -(215) 215-1

i32 -(231) 231-1

i64 -(263) 263-1

i128 -(2127) 2127-1

T���� 4: S����� I������ T���� W��� T���� R��������� M������ A�� M������ V�����

As well as their unsigned counterparts:

Type Minimum Maximum

u8 0 28-1

u16 0 216-1

u32 0 232-1

u64 0 264-1

u128 0 2128-1

T���� 5: U������� I������ T���� W��� T���� R��������� M������ A�� M������ V�����

It's important to note that the default type for any Rust program will be i32 (i.e., if we define an integer
numeric variable without explicitly stating its data type, the compiler will most probably suggest i32 as its
data type).

We can define an integer variable under the current scope:

CODE

We can also directly check the maximum number possible for a given data type using the following syntax:

CODE

OUTPUT

fn main() {
 let mynum_i32:i32 = 2000;
}

fn main() {
 println!("Max size for u8 is: {}", u8::MAX);
}

https://doc.rust-lang.org/reference/types/numeric.html
https://doc.rust-lang.org/reference/types/numeric.html

If we try to define a variable with a data type where our value is out of its range, we will get the following error:

CODE

OUTPUT

1.3 Float
Similar to integers, floating-point values can be classified by bit size and defined by the IEEE 754 standard. The
only difference is that there are only two different types we can declare:

We can define a floating-point variable under the current scope:

CODE

As with integer types, there is a default floating-point type suggested previously to compilation time; the default
type for any Rust program will be f64 (i.e., if we define a floating-point numeric variable without explicitly
stating its data type, the compiler will most probably suggest f64 as its data type).

We mentioned precision when discussing the floating-point types available in Rust. This attribute is common to
all floating-point types denoting the number of digits after the radix point.

Single precision means a limited set of possible numbers after the radix point, while double precision means
more possible numbers.

More concretely, single-precision floating-point numbers provide roughly 6 to 7 significant decimal digits, while
double-precision numbers provide approximately 14.

1.4 String
Strings are slightly different in terms of how we use them in Rust; strings and slices are only accessible via
references (borrowing), thus when we declare a string using the str data type, for example, we will have to
prepend our data type with an ampersand & .

A reference consists of a pointer into memory which cannot be changed directly by the owner of the reference
since the owner is not the actual owner of the underlying type.

Max size for u8 is: 255

fn main() {
 let mynumber:u8 = 256;
}

literal out of range for `u8`

f32 : "binary32" type is 32 bits in size and has single precision.•

f64 : "binary64" type is 64 bits in size and has double precision.•

fn main() {
 let mynum_f32:f32 = 3.1416;
}

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Decimal_separator#Radix_point
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

There are two types of strings in Rust:

To define an empty String , we can use the following syntax:

CODE

We can append to, iterate over, and replace items in a String :

CODE

Note that the first entry we pushed was actually a character char and not a string String . As we'll see shortly,
these two data types are different and, thus, are declared differently:

String indexing can be achieved given that we first convert our String to a heap-allocated String:

CODE

String : Is stored as a vector of bytes that can be changed but is always guaranteed to be a valid UTF-8
sequence.

•

&str : Also called string literal, it's a slice that always points to a valid UTF-8 sequence and can be used to
view into a String .

•

fn main() {
 let mut mystring1 = String::new();
}

fn main() {
 // Insert a character
 mystring1.push('X');

 // Insert a string
 mystring1.push_str("Y Z");

 // Iterate over words by splitting at whitespaces
 for i in mystring1.split_whitespace() {
 println!("{}", i);
 }

 // Replace a string
 let mystring2: String = mystring1.replace("X", "W X");
 println!("{}", mystring2);

}

String: ""•

Character: ''•

OUTPUT

We can also generate a non-empty String :

CODE

So it seems we included a duplicate is string in there, so we might want to eliminate it. We mentioned that a
String type is stored as a vector of bytes that can be changed. Thus, we can first convert our String to a

vector and then remove duplicate entries:

CODE

OUTPUT

Once we have a vector, it's easy to perform various operations & transformations, as we'll see when we get to
vectors.

1.5 Character

fn main() {
 // First convert to heap-allocated string
 let myheapstring: String = mystring2.to_string();
 println!("Heap: {}", myheapstring);

 // Then index
 let mysubstring2 = &myheapstring[1..6];
 println!("Substring: {}", mysubstring2);
}

Heap: W XY Z
Substring: XY Z

fn main() {
 let mystring3 = String::from("This is is a non-empty string");
}

fn main() {
 // First convert to vector
 let mut myvec1: Vec<String> = mystring3.split_whitespace().map(str::to_string).collect();
 println!("{:?}", myvec1);

 // Then remove duplicates
 myvec1.dedup();
 println!("{:?}", myvec1);
}

["This", "is", "is", "a", "non-empty", "string"]
["This", "is", "a", "non-empty", "string"]

A character char is similar to a string, the main difference being the first is always four bytes, while the latter
doesn't have to be composed of just four-byte chunks.

We can declare a char under the current scope by using single quotes '' :

CODE

If we try to include more than one character, we will get an error:

CODE

OUTPUT

1.6 Never
The never type ! is a type with no values, representing the result of incomplete computations. As of Rust
1.68.2 (current version as of April 2023), the ! type can only appear in function return types. Expressions of
type ! can be coerced into any other type.

2. Sequence types
There are three main sequence data types in Rust:

2.1 Tuple
A tuple can have members of different types but cannot change size. Different data types mean we must define
each item's types inside the tuple. Also, tuples are immutable by default, but we can define a mutable tuple using
the mut keyword.

2.1.1 IMMUTABLE TUPLES

A tuple is defined using the following syntax:

CODE

fn main() {
 let mychar:char = 'a';
}

fn main() {
 let mychar:char = 'ab';
}

character literal may only contain one codepoint
Syntax Error: Literal must be one character long

Tuple - (Type_1 , Type_2, Type_n)•

Array - [Type ; Expression]•

Slice - [Type]•

We can index the contents of a tuple:

CODE

OUTPUT

We may have noticed that the indexing method differs from other languages. We don't use the typical square
bracket notation [] to index a tuple. Instead, we use the dot notation . .

2.1.1 MUTABLE TUPLES

A mutable tuple is defined using the mut keyword:

CODE

OUTPUT

Although tuples have multiple use cases, they also have limitations due to their nature (relation with structs):

fn main() {
 let mytuple: (i32, i32, &str, f32, bool) = (12, 14, "16", 18.0, true);
}

fn main() {
 let mytuple: (i32, i32, &str, f32, bool) = (12, 14, "16", 18.0, true);

 println!("{}", mytuple.0)
}

12

fn main() {
 // Define a mutable tuple
 let mut mytuple_mut: (i32, i32, &str, f32, bool) = (12, 14, "16", 18.0, true);

 println!("Original: {:?}", mytuple_mut);

 // Mutate the tuple
 mytuple_mut.0 = 14;

 println!("Mutated: {:?}", mytuple_mut);
}

Original: (12, 14, "16", 18.0, true)
Mutated: (14, 14, "16", 18.0, true)

Tuples cannot be used as iterable sets.•

We cannot return the length of a tuple directly (we can write a function to do so, but it gets messy and is not
performance-friendly).

•

2.2 Array
An array is strictly implemented; it has to be defined at compile time (using literals), be of a single data type,
cannot change in size, and is immutable by default.

2.2.1 IMMUTABLE ARRAYS

An immutable array can be defined using squared brackets [] :

CODE

If we recall, Rust is statically typed; thus, we have to define the data type of all the variables we write.
Additionally, arrays cannot change in size, and their size must be known to the compiler on compile time, so we
include this size as part of the variable declaration.

We can perform multiple operations on an array:

CODE

OUTPUT

We must remember that Rust uses zero-based numbering, meaning the first element of any sequential data
structure will always be 0 .

Printing arrays is slightly different since the println!() macro with the simple {} formatter cannot handle
array structures. If we want to print an array using this macro, we need to change the print formatting to include

Tuples can be printed using the same format method as with arrays (as we'll see in a moment, they require
different formatting).

•

Long Tuples (more than 12 elements) cannot be printed.•

Tuples have fixed length - that is, the number of values they can store is fixed. We call this "arity".•

The elements of a tuple have no name, although we can access its values using an index.•

fn main() {
 let myarr:[i32; 10] = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
}

fn main() {
 // Index the first element
 println!("{}", myarr[0]);

 // Get its length
 println!("{}", myarr.len());

 // Multiply the first element by a scalar
 println!("{}", myarr[0] * 10);
}

10
10
100

:? inside the curly brackets {} :

CODE

OUTPUT

2.2.2 MUTABLE ARRAYS

We can also define a mutable array by prepending the mut keyword to the variable name:

CODE

OUTPUT

We can also iterate over an array, although we'll review this once we get to the Iterators section later.

2.3 Slice
A slice is a dynamically sized type representing a "view" into a sequence of type T elements. The slice type is
written as [T] .

Slices are useful for allowing safe, efficient access to a portion of an array without copying. For example, we
might want to reference just one line of a file read into memory. By nature, a slice is not created directly but
from an existing variable. Slices have a length, can be mutable or not, and in many ways, behave like arrays.

fn main() {
 let myarr:[i32; 10] = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
 println!("{:?}", myarr);
}

[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

fn main() {
 // Define a mutable array
 let mut myarr_mut:[i32; 10] = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];

 // Print the original array
 println!("Original: {:?}", myarr_mut);

 // Substitute a value
 myarr_mut[0] = 1000;

 // Print the mutated array
 println!("Mutated: {:?}", myarr_mut);
}

Original: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
Mutated: [1000, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Some moments ago, we used slices to extract a substring from a String . We can do the same for other data
types as well:

CODE

OUTPUT

The source type must also be mutable for us to declare a mutable slice from another type.

3. Casting data types
We can convert to different data types using explicit type conversion, called casting. If we try to convert a type
implicitly, the compiler will return an error.

A casting in Rust is achieved using the as keyword:

CODE

OUTPUT

Note that when casting a floating-point number to an int type, Rust will truncate the number up to the decimal
part, meaning it will not get rounded up or down; it will simply remove the latter.

fn main() {
 // Declare mutable array
 let mut myarr2: [i32; 5] = [1, 2, 3, 4, 5];

 // Declare mutable slice
 let myslice5 = &mut myarr2[1..4];

 // Mutate slice
 myslice5[0] = 100;
 println!("Slice 5: {:?}", myslice5);
}

Slice 1: [2, 3, 4]
Slice 2: [1, 2, 3, 4]
Slice 3: [2, 3, 4, 5]
Slice 4: [1, 2, 3, 4, 5]
Slice 5: [100, 3, 4]

fn main() {
 let myfloat: f32 = 32.7;
 println!("{}", myfloat);
 let myint: i32 = myfloat as i32;
 println!("{}", myint);
}

32.7
32

Other types
We already discussed three sequence data types: tuple , array , and slice .

Data structures or collections:

1. Vector
Vectors in Rust are re-sizable arrays (if defined as mutable). What makes them attractive vs. other data types is
that they have associated several methods we can use to interact with them. In fact, we just saw how a collection
of strings or characters could be converted to a vector, opening the possibility to sort, remove duplicates, and
perform all sorts of interesting operations.

The downside to vectors is that they accept values with a single data type.

We can define an empty vector or a populated immutable vector using the following syntax:

CODE

OUTPUT

We might have noticed that we appended an exclamation mark at the end of the vec statement. As we have
seen with println!() , we're using a macro.

We can also define a mutable vector and perform some operations on it:

CODE

§

Vector•

Hash map•

fn main() {
 // Define an empty vector
 let myvector1: Vec<i32> = Vec::new();
 println!("{:?}", myvector1);

 // Define a populated mutable vector
 let myvector2: Vec<i32> = vec![10, 20, 30, 40];
 println!("{:?}", myvector2);
}

[]
[10, 20, 30, 40]

OUTPUT

If we had not defined the push() method after declaring our mutable vector, the compiler would've thrown an
error. This is because Rust checks if a mutable set was, in fact, mutated at some point in the code. If this is not
the case, Rust requires us to roll back to an immutable object. This feature is part of Rust's security measures
and becomes useful when designing complex programs.

We can perform more operations on vectors, although we'll not cover them all in this segment. The complete
documentation can be consulted here.

We will also not include hash maps. Still, they can be consulted here.

Operators
Rust has a collection of default logical, arithmetic, and method operators. Each operator is available to a data
type or set of data types based on their nature.

Below are the most commonly used operators, although the full set can be consulted here.

fn main() {
 // Define a populated mutable vector and perform some operations
 let mut myvector3: Vec<i32> = vec![50, 60, 70, 80];

 // Append number
 myvector3.push(90);

 // Index first component
 println!("{}", myvector3[0]);

 // Verify if a given value exists
 match myvector3.get(1) {
 Some(60) => println!("Number 60 is in the vector."),
 _ => println!("Number 60 is not in the vector."),
 };

 // Print length of vector
 println!("{:?}", myvector3.len());
}

50
Number 60 is in the vector.
4

§

https://doc.rust-lang.org/rust-by-example/std/vec.html
https://doc.rust-lang.org/rust-by-example/std/hash.html
https://doc.rust-lang.org/book/appendix-02-operators.html

Operator Example Explanation

! ident!(...), ident!{...}, ident![...] Macro expansion

!= expr != expr Nonequality comparison

% expr % expr Arithmetic remainder

%= var %= expr Arithmetic remainder and assignment

& &expr, &mut expr Borrow

& expr & expr Bitwise AND

&= var &= expr Bitwise AND and assignment

&& expr && expr Short-circuiting logical AND

* expr * expr Arithmetic multiplication

*= var *= expr Arithmetic multiplication and assignment

* *expr Dereference

+ expr + expr Arithmetic addition

+= var += expr Arithmetic addition and assignment

, expr, expr Argument and element separator

- - expr Arithmetic negation

- expr - expr Arithmetic subtraction

-= var -= expr Arithmetic subtraction and assignment

. expr.ident Member access

.. .., expr.., ..expr, expr..expr Right-exclusive range literal

..= ..=expr, expr..=expr Right-inclusive range literal

/ expr / expr Arithmetic division

/= var /= expr Arithmetic division and assignment

: pat: type, ident: type Constraints

; expr; Statement and item terminator

<< expr << expr Left-shift

<<= var <<= expr Left-shift and assignment

< expr < expr Less than comparison

<= expr <= expr Less than or equal to comparison

= var = expr, ident = type Assignment/equivalence

== expr == expr Equality comparison

=> pat => expr Part of match arm syntax

> expr > expr Greater than comparison

>= expr >= expr Greater than or equal to comparison

>> expr >> expr Right-shift

>>= var >>= expr Right-shift and assignment

Operator Example Explanation

^ expr ^ expr Bitwise exclusive OR

^= var ^= expr Bitwise exclusive OR and assignment

| pat | pat Pattern alternatives

| expr | expr Bitwise OR

|= var |= expr Bitwise OR and assignment

|| expr || expr Short-circuiting logical OR

T���� 6: M��� C����� O�������� I� R���

For example, we can use arithmetic operators:

CODE

OUTPUT

1. Alternative methods for common operators
Some mathematical operations which would be directly defined in other languages as operators, are not
available in Rust. Two common examples are the power and the modulus operator.

1.1 Power operator
We can elevate any number to the power by using the .pow method:

fn main() {
 let mut myvar1: i32 = 14;
 let mut myvar2: i32 = 16;

 // Arithmetic operations
 println!("Addition: {}", myvar1 + myvar2);
 println!("Subtraction: {}", myvar1 - myvar2);
 println!("Product: {}", myvar1 * myvar2);
 println!("Division: {}", myvar1 / myvar2);

 // Arithmetic operations with assignment
 myvar1 += 1;
 myvar2 /= 2;
 println!("Addition with assignment: {}", myvar1);
 println!("Division with assignment: {}", myvar2);
}

Addition: 30
Subtraction: -2
Product: 224
Division: 0
Addition with assignment: 15
Division with assignment: 8

n
th

https://doc.rust-lang.org/book/appendix-02-operators.html

CODE

OUTPUT

The power exponent must be of type u , which means it can only contain a positive value. If we try to define
our exponent as a signed integer i , we will get an error in return.

Conditional control
As with many other programming languages, Rust provides a couple of ways to control the flow of our program
using conditional statements.

1. If, else if, else
We can define a simple if , else if , else statement using double ampersand operators && to logically test
two conditions using and :

CODE

OUTPUT

fn main() {
 let base:i32 = 7;
 let power: u32 = 2;
 let elevated:i32 = base.pow(power);
 println!("{}", elevated);
}

49

§

fn main() {
 let firstnum:i32 = 7;
 let secondnum:i32 = 15;
 let thirdnum:i32 = 14;

 if (secondnum > firstnum) && (secondnum > thirdnum) {
 println!("Number {} is the biggest one of the series.", secondnum);
 } else if (firstnum > secondnum) && (firstnum > thirdnum) {
 println!("Number {} is the biggest one of the series.", firstnum);
 } else {
 println!("Number {} is the biggest one of the series.", thirdnum);
 }
}

Number 15 is the biggest one of the series.

We can do something similar with double pipes || to test for or :

CODE

OUTPUT

We can also test a statement by assigning our condition to a variable. This is relevant when we have conditions
that are confusing or large, and we would like to provide more clarity to the reader:

CODE

OUTPUT

2. Match
Rust provides pattern matching via the match keyword, which can be used similarly to a C switch or a bash
case statement. match is not a method nor a library, but is built into the Rust language itself.

We can think of a match implementation as a collection of cases where all the cases are compared against a
given value.

2.1 A simple case
The generic syntax for match is as follows:

CODE

fn main() {
 if (firstnum % 2 == 0) || (secondnum % 2 == 0) || (thirdnum % 2 == 0) {
 println!("There is at least one even number here.");
 }
}

There is at least one even number here.

fn main() {
 let firstnum:i32 = 7;
 let fourthnum:i32 = 49;
 let base: u32 = 2;
 let numbertest:bool = if firstnum.pow(base) == fourthnum {true} else {false};
 println!("{}", numbertest);
}

true

https://www.w3schools.com/c/c_switch.php
https://linuxize.com/post/bash-case-statement/

OUTPUT

We might have noticed some interesting details:

Related to the point above, it's important to mention that when working with match statements, the options
must be exhaustive, meaning we cannot let room for result ambiguity. If we do, the compiler will return an error:

CODE

OUTPUT

2.2 Using compare and ordering
Earlier in this segment, we imported the comparison library, including the Ordering method
std::cmp::Ordering . We can use the cmp() method to make direct comparisons between variables using a

fn main() {
 let mynum:u32 = 14;
 let mynum_reminder:u32 = mynum%2;
 match mynum_reminder {
 0 => println!("The number {} is even.", mynum),
 1 => println!("The number {} is odd.", mynum),
 _ => println!("{} is not a number.", mynum),
 };
}

The number 14 is even.

We use a fat arrow symbol => to point to the result if a given case is true.•

We use a comma , to separate each case.•

We use curly brackets {} to enclose the set of cases to evaluate.•

We close our match statement by using a semicolon ; .•

We include an underscore sign _ as the last condition. This tells match to include all other possible cases
apart from 0 and 1 ; even though by common sense, we only have two possible options for the reminder
calculation (0 , 1) as its type is unsigned (i.e., we cannot have negative values), we could ask the user to
input a value for mynum , opening the possibility for a None value. If we wanted to be more thorough with
a more complex set of cases, we could also include MIN and MAX as boundaries.

•

fn main() {
 let mynum:u32 = 14;
 let mynum_reminder:u32 = mynum%2;
 match mynum_reminder {
 0 => println!("The number {} is even.", mynum),
 1 => println!("The number {} is odd.", mynum),
 };
}

Non-exhaustive patterns: `2_u32..=u32::MAX` not covered.
Ensure that all possible cases are being handled by adding a match arm with a wildcard pattern or
an explicit pattern as shown: `,

simpler syntax:

CODE

OUTPUT

We have just reviewed a couple of match implementations, but this is just a tiny sample; it includes a variety of
methods that can be used to make more complex comparisons and even destructure items such as tuples, arrays,
slices, and even pointers in a variety of ways. The complete documentation can be consulted here.

Random
At the beginning of this segment, we imported the rand::Rng random number generator module. Rust has
multiple ways to generate random numbers, though we'll only discuss a couple.

The first method consists of using the rand::thread_rng.gen_range() random number generator:

CODE

Where:

The value corresponding to the myrandnum variable will change randomly after each assignment.

fn main() {
 let mynum1:u32 = 14;
 let mynum2:u32 = 15;
 match mynum1.cmp(&mynum2) {
 Ordering::Less => println!("{} is less than {}.", mynum1, mynum2),
 Ordering::Greater => println!("{} is greater than {}.", mynum1, mynum2),
 Ordering::Equal => println!("{} is equal to {}.", mynum1, mynum2),
 };
}

14 is less than 15.

§

use rand:Rng;

fn main() {
 let myrandnum = thread_rng().gen_range(1..11);
}

rand::

myrandnum will be a random number generator.•

gen_range(1..11) will denote a generator taking values from 1 up to 10 (inclusive).•

§

https://doc.rust-lang.org/rust-by-example/flow_control/match.html

Loops & iterators
Loops & iterators in Rust are patterns that allow sequential access to a collection of values, one at a time. They
are similar in concept to loops and iterators from other languages, such as for and while loops and the
iter() function in Python, but are defined differently.

There are four main ways we can use to iterate over a set of values:

1. Using loop
We can loop through a set of values using the loop keyword. A loop iterates infinitely many times until a
break statement is encountered; it will keep looping through the block we define as the body of our loop

statement until a break statement is encountered or an error is returned:

CODE

OUTPUT

If we look closely at the output, the program did run, but we got an error in the end; the loop did not stop until
our counter index was out of the array's range.

If we want to stop the loop before the index goes out of range, we must explicitly specify a conditional
statement:

CODE

Using loop•

Using while•

Using for•

Using iterators iter() or range•

fn main() {
 // Define loop (without counter condition check)
 loop {
 println!("{}", myarray[mycounter]);

 // Increase counter
 mycounter += 1;
 }
}

1
2
3
4
5
thread 'main' panicked at 'index out of bounds: the len is 5 but the index is 5'
error: process didn't exit successfully: `target\debug\rust-for-beginners.exe` (exit code: 101)

OUTPUT

This method is unproductive since we must manually check each iteration's condition. There are more
productive methods to loop over sets.

2. Using while
A slightly more familiar method would be a while loop. Like other languages, it can run a loop while a given
condition is true.

Following the same example as above, we can define a while loop:

CODE

fn main() {
 // Define an array
 let myarray:[i32; 5] = [1,2,3,4,5];

 // Define a counter as a mutable variable
 let mut mycounter:usize = 0;

 // Define loop (without counter condition check)
 loop {
 // First, check condition. If it's true, break
 if mycounter >= myarray.len() {
 break;
 }

 // If condition is false, execute code
 println!("{}", myarray[mycounter]);

 // Increase counter
 mycounter += 1;
 }
}

1
2
3
4
5

In contrast to the loop we defined earlier, here we must set our condition as mycounter to be strictly less <

than the length of our array. If we were to set it as less than or equal to <= , whenever the loop reaches myarray

= 5 , the index is out of range, and the program returns an error.

3. Using for and range
A for loop is also widely used in other programming languages. The main difference is that in Rust, we must
use a range along with it if we don't have an iterable set in hand.

The basic construct consists of the following:

CODE

OUTPUT

We can already see that the syntax is cleaner than a loop or even a while loop. There are a couple of details
we must remember, though:

fn main() {
 // Define an array
 let myarray:[i32; 5] = [1,2,3,4,5];

 // Define a counter as a mutable variable
 let mut mycounter:usize = 0;

 // Define loop
 while mycounter < myarray.len() {

 println!("{}", myarray[mycounter]);

 // Increase counter
 mycounter += 1;
 }
}

fn main() {
 // Define an array
 let myarray:[i32; 5] = [1,2,3,4,5];

 // Define loop
 for i in 0..myarray.len() {
 println!("{}", myarray[i]);
 }
}

1
2
3
4
5

We define a range by using the start..end notation.•

4. Using for and iter
We can use iterator sets to iterate directly over them. To loop through a collection of values such as an array, we
first have to define an iterable set, for example, by using a previously-defined array:

CODE

OUTPUT

This is by far the cleanest method in terms of syntaxis since we can even define our iterator after the for loop
declaration:

CODE

OUTPUT

The range is denoted as [start, end) , where end is not inclusive, while start is.•

The index i may or may not be referenced inside the loop (i.e., we know that in Rust, we get errors if we
leave a variable unreferenced. An index in a for loop does not require referencing)

•

fn main() {
 // Define an array
 let myarray:[i32; 5] = [1,2,3,4,5];

 // Define an iterable set
 let myiter = myarray.iter();

 // Define loop
 for i in myiter {
 println!("{}", i)
 }
}

1
2
3
4
5

fn main() {
 // Define an array
 let myarray:[i32; 5] = [1,2,3,4,5];

 // Define loop including iterable set
 for i in myarray.iter() {
 println!("{}", i)
 }
}

5. Using for with enumerate
Last but not least, we can use a for loop with the enumerate() method.

The enumerate method will return an index value pair per iteration, both of which we will assign to two separate
variables:

CODE

OUTPUT

6. Collecting an iterator
If we define an iterator using a range , we can transform it back to another data structure, such as a vector or an
array.

We do this by using the collect() method:

CODE

OUTPUT

1
2
3
4
5

fn main() {
 // Define loop including iterable set and enumerate
 for (index, item) in myarray.iter().enumerate() {
 println!("{}: {}", index, item);
 }
}

0: 1
1: 2
2: 3
3: 4
4: 5

fn main() {
 // Define a range iterator
 let myrange = 1..12;

 // Collect iterator to vector
 let mycollectedrange: Vec<i32> = myrange.collect();
 println!("{:?}", mycollectedrange);
}

Functions
Functions in Rust can be declared by using the following syntax:

CODE

Where:

It's important to note that, unlike other languages, all code in Rust, except counted cases such as constants, must
be written inside a function or a module. Similarly, functions must be called from within other functions or
modules.

1. Main function
In Rust, the main function is used to signal the start of program execution and control flow throughout the
program. It does not accept any arguments and should be included (although it's not required) as the first
function in our program. Until now, we've stuck to using the main function exclusively; it gets executed
directly upon compilation and run of our application.

A typical main function syntax is shown below:

CODE

As we discussed, we do not have to explicitly call our main function since it gets executed directly. It makes
sense, then, to include all our other function calls inside the main function.

2. User-defined functions
Apart from the main function, we can define our own using the following syntax:

CODE

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

§

fn myfun(args) {
 function_body;
}

args represents the arguments we will pass to our function.•

function_body represents our function's content, terminated by a semicolon ; (content should be
indented using 4 spaces).

•

fn main() {
 function_body;
}

Since we have not yet defined another function other than main , we need to call myfun1 from within main :

CODE

OUTPUT

3. Functions with arguments
As usual, if we want to declare a function that accepts arguments, we must declare each argument's type in the
function definition:

CODE

OUTPUT

4. Functions returning a value
If we want to define a function that returns a value to the user, we can use two different methods:

The first one is useful when we're simply performing one operation, while the latter is clearer when reading:

CODE

fn myfun1() {
 let myint: i32 = 100;
 println!("{}", myint);
}

fn main() {
 myfun1();
}

100

fn myfun2(myarg1: i32, myarg2: f32) {
 println!("{}, {}", myarg1, myarg2);
}

fn main() {
 myfun2(21, 22.3);
}

21, 22.3

Without explicitly including a return statement.•

Explicitly including a return statement.•

OUTPUT

We can also return multiple values as outputs using a tuple () ; the assignment in the main function would also
be handled with a tuple () .

Macros
Macros in Rust are a way of writing code that writes other code. In simpler terms, a macro expands to produce
more code than the code we've written manually. All macros are terminated using an exclamation mark ! .

A simple macro example is println!(arg) , which prints arg in a newline.

Although we'll not be discussing macros in detail, the full set of Rust macros can be consulted here.

User input
We can accept user inputs using the std::io module. The simplest way to define user input is as follows:

CODE

fn myfun3(myarg1: i32, myarg2: i32) -> i32 {
 myarg1 * myarg2
}

fn myfun4(myarg1: i32, myarg2: i32) -> i32 {
 let op1: i32 = myarg1 - 2;
 let op2: i32 = myarg2 - 4;
 let op3: i32 = op1 * op2;

 return op3;
}

fn main() {
 // Assign output of myfun3
 let myoutput3: i32 = myfun3(7, 7);
 println!("{}", myoutput3);

 // Assign output of myfun4
 let myoutput4: i32 = myfun4(7, 7);
 println!("{}", myoutput4);
}

49
15

§

§

https://doc.rust-lang.org/reference/macros-by-example.html

Where:

If the return value is Ok , the user input will be stored in our variable mystring_mut , which we can use in our
code as with any other variable of the same type.

Next steps
We covered just a fraction of what Rust can do. This language has endless potential for systems programming,
web development, cryptographic applications, cross-platform development, CLI-based application development,
and many more exciting applications.

Regardless of what we're trying to achieve, the most probable next step to get more familiar with the language is
to consult the official documentation. Rust provides three ways to do so:

There are also a number of unofficial free resources online:

Additionally, there are some additional books to complement the learning process:

use io;

fn main() {
 // Mutable variable
 let mut mystring_mut:String = String::new();

 // Accept user input
 stdin().read_line(&mut mystring_mut)
 .expect("Didn't Receive Input");
}

std::

io::

read_line is a method belonging to the std::io::BufRead method, which reads a line of input, appending
it to the specified buffer.

•

&mut denotes a mutable reference to our previously declared binding variable.•

mystring_mut is the binding variable name.•

expect : The read_line method will return a result of type enum (provide a way of saying a value is one
of a possible set of values), where the result will be either Ok or Err . If the input reading fails, the
read_line method will return Err , along with the error message inside the expect method.

•

§

The Rust Book: The first stop for most aspiring Rustaceans, this book is available as an online index or as
an e-book / paperback published by No Starch Press.

•

The Interactive Rust book: A cool experiment by Brown University aimed at transforming the Rust book
into an interactive environment containing quizzes, highlighting, visualizations, and many more features.

•

Rust by example: An extremely user-friendly collection of runnable examples that illustrate various Rust
concepts and standard libraries.

•

Rustlings (highly recommended): A collection of small Rust exercises covering all fundamental topics.•

Rust Tutorial Full Course: This segment was heavily inspired by Derek Banas's material. Rust Tutorial
Full Course is a great introductory video covering the key aspects of the language.

•

Rust 101 Crash Course: A great 6-hr marathon including a comprehensive overview of Rust's most
relevant features as well as practice exercises.

•

Programming Rust, 2nd Edition by O'Reilly: Hands-down the best complementary book to consult.•

Rust Programming Cookbook: Yet another fully packed book containing all the nits and grits of Rust.•

Rust in Action: A great resource whose cover resembles that of Charles Mulligan's Steakhouse.•

https://doc.rust-lang.org/stable/book/
https://nostarch.com/rust-programming-language-2nd-edition
https://rust-book.cs.brown.edu/
https://doc.rust-lang.org/rust-by-example/
https://github.com/rust-lang/rustlings
https://www.youtube.com/watch?v=ygL_xcavzQ4
https://www.youtube.com/watch?v=lzKeecy4OmQ
https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/
https://www.packtpub.com/product/rust-programming-cookbook/9781789530667
https://www.manning.com/books/rust-in-action

I would also heavily advise visiting three key places:

In terms of what could be learned next, I would recommend tackling the following topics, all of which can be
consulted in the official documentation:

And last but not least, the best advice anyone will ever give: stop reading and write some code.

Conclusions
In this segment, we installed the Rust programming language from scratch along with Visual Studio as an IDE
and the Visual Studio Rust extension.

We learned how to create Rust projects using cargo, install packages, manage them appropriately using our
project's manifesto, and write our first Rust program.

We also explained some of the theory behind the Rust language, including its main advantages, as well as core
concepts regarding low-level programming, such as memory allocation, pointers, references, and ownership.

Finally, we provided some next steps for those interested in becoming Rustaceans.

Rust is extensive and has a variety of features available that make systems programming easier and safer. It has
a vast community of enthusiasts and experts constantly advising on subjects ranging from full implementations
to syntactical details to complex multi-threading systems. Additionally, the official learning resources are
impressive; interactive books and problem sets provide an entertaining medium to practice Rust.

The Rust Community: Where Rustaceans talk about Rust.•

The Official Rust Repo: Where Rust and issues live (useful when trying to debug).•

creates.io: Where Rust crates are hosted. Taking a tour around crates.io could shed additional light on
Rust's capabilities.

•

Reinforcement of key concepts:•
Borrowing•

Variable shadowing•

Heap vs. stack memory•

Concurrency•

Threads & multi-threading•

Traits•

Other key types:•
Box•

Hash Maps•

Structs•

Other pointer types•

Further modularization:•
Closures•

Modules•

User & file interaction:•
File I/O•

File manipulation•

More elaborate handling if user inputs•

Buffer•

§

https://www.rust-lang.org/community
https://github.com/rust-lang/rust
https://crates.io/
https://doc.rust-lang.org/book/ch04-02-references-and-borrowing.html
https://doc.rust-lang.org/rust-by-example/variable_bindings/scope.html
https://doc.rust-lang.org/rust-by-example/std/box.html
https://doc.rust-lang.org/book/ch16-00-concurrency.html
https://doc.rust-lang.org/book/ch16-01-threads.html
https://doc.rust-lang.org/rust-by-example/trait.html
https://doc.rust-lang.org/book/ch15-01-box.html
https://doc.rust-lang.org/rust-by-example/std/hash.html
https://doc.rust-lang.org/rust-by-example/custom_types/structs.html
https://doc.rust-lang.org/reference/types/pointer.html
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/rust-by-example/mod.html
https://doc.rust-lang.org/rust-by-example/std_misc/file.html
https://doc.rust-lang.org/rust-by-example/std_misc/file/read_lines.html
https://doc.rust-lang.org/std/io/index.html
https://docs.rs/buffer/latest/buffer/

This is, without a doubt, a sophisticated language based on a sophisticated set of rules designed to make systems
programming safer and more efficient. We only hope it will eventually get the adoption it deserves.

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

§

Peter Wayner, 7 reasons to love the Rust language—and 7 reasons not to•

Rust Lang, Safe & Unsafe Rust•

Codilime, Rust vs. C++•

Techrepublic, The most loved and most disliked programming languages revealed in Stack Overflow
survey

•

Derek Banas, Rust Tutorial Full Course•

Rust Lang, Rustup•

Rust Lang, The Manifest Format•

Rust Lang, Cargo Toml vs. Cargo Lock•

Rust Lang, Types•

LogRocket, Rust Iterators•

Rust Lang, Operators•

Brandeis University, Arrays, Vectors, and Slices in Rust•

§

https://www.infoworld.com/article/3675391/7-reasons-to-love-the-rust-language-and-7-reasons-not-to.html
https://doc.rust-lang.org/nomicon/meet-safe-and-unsafe.html
https://codilime.com/blog/rust-vs-cpp-the-main-differences-between-these-popular-programming-languages/
https://www.techrepublic.com/article/the-most-loved-and-most-disliked-programming-languages-revealed-in-stack-overflow-survey/
https://www.youtube.com/watch?v=ygL_xcavzQ4
https://forge.rust-lang.org/infra/other-installation-methods.html#rustup
https://doc.rust-lang.org/cargo/reference/manifest.html
https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html
https://doc.rust-lang.org/reference/types.html
https://blog.logrocket.com/rust-iterators-closures-deep-dive/
https://doc.rust-lang.org/book/appendix-02-operators.html
https://www.cs.brandeis.edu/~cs146a/rust/doc-02-21-2015/book/arrays-vectors-and-slices.html

