
The Motivations Behind This Blog

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory learning-resourceslearning-resources

TechnologiesTechnologies Python, Julia, R, SQL, Markdown, LaTeXPython, Julia, R, SQL, Markdown, LaTeX

WebsiteWebsite Post LinkPost Link

Hello, & welcome!

A couple of months ago, I had an idea; to create a place where people could learn Data Science & Computer
Science-related content for free by reading quality and approachable publications. This idea is far from unique;
there is already a sea of infinite web pages and online courses doing an excellent job. Still, I wanted to make it
unique in many ways; I wanted to make it my own and, of course, return the favour for all that I've learned over
the last couple of years.

I'm Pablo, a Chemical Engineering, full-time Data Scientist and Linux & Open Source enthusiast. I'm passionate
about learning things and transmitting them to others in the most transparent and rigorous way possible. This,
for me, is a crucial step in owning knowledge and is called The Feynman Technique[1]:

In this article, I'll introduce the scope of this blog, the purpose and motivations behind its inception, the added
value I'm planning to provide, the overall blog structure, a more detailed explanation of what to expect from
each section, and ways in which to collaborate.

I'll be using scripts which can be found in the Blog Article Repo.

Table of Contents

§

I. Study•

II. Teach•

III. Fill the Gaps•

IV. Simplify•

§

Why learn to program?•
It's an exciting time to learn•

It creates a feedback loop•

It provides a sense of independence•

What does it take?•

A Journey Through Data Science: A space where currents converge•
On the scope•

On the Technologies•
Python•

https://obsidian.md/
https://pabloagn.com/blog/
https://pabloagn.com/categories/learning-resources/
https://pabloagn.com/technologies/
https://pabloagn.com/blog/the-motivations-behind-this-blog/
https://github.com/pabloagn/blog/tree/master/learning-resources/the-motivations-behind-this-blog

Why learn to program?
There are multiple answers depending on who you ask, but for me, it boils down to 3 core concepts:

1. It's an exciting time to learn
The last couple of years have proven to be just the beginning of an entirely new way of understanding our world
and creating technology to improve it; code helps us abstract complex problems into simpler ones and solve
them using what we already know.

Additionally, there has been increasing pressure for private companies to release their code as open-source; this
creates more transparency and security and increases collaborative efforts in creating better and more secure
code.

2. It creates a feedback loop
Learning to program does not exclusively result in learning to write code. It's just a skill like any other, and
learning a new challenging skill has many side effects apart from learning the actual thing.

Julia•

R•

SQL•

Markdown•

LaTeX•

Other languages & technologies•

The Motivations: Winds are changing•
On the lack of rigorous mathematical knowledge•

On free education•

On cutting-edge technologies•

On sustainable & green code•

On returning the favour•

The Boat: Traversing through a sea of infinitude•

The Cabins: A place to unwind•
On the structure•

The Lighthouse: How to get involved?•
Contact me•

Forking & making pull requests•

Becoming a Patreon•
How Patron works?•

Enthusiast•

Inquisitive Programmer•

Mentee•

Conclusions•

References•

Copyright•

§

As we understand it, our brain is wired by a reward system. When exposed to a rewarding stimulus, our brain's
reward system responds by increasing the release of the dopamine neurotransmitter, which causes pleasure.

Learning something new activates the release of dopamine, making us crave more while at the same time
providing confidence to tackle other challenging tasks. If managed correctly, this mechanism can be sustainable
and become a loop of positive feedback: the more you learn, the more confident you become, and the easier it is
to wake up the following day and do the same, but better.

3. It provides a sense of independence
Not just because code can be written anywhere or because programming has unlimited applications, but also
because it can be learnt entirely for free thanks to the increasing community.

What does it take?
There's a toxic cloud of stigma and prejudices surrounding what it takes to learn to program. People often think
that programmers are born programmers and that everyone else is cancelled out of the equation by defacto;
that's simply not true (at least for 99% of the cases), and millions of converted developers are out there to prove
it.

Apart from a computer, a power outlet, and caffeine, I believe there are six skills required to start coding and
make it a sustainable activity:

§

Curiosity: If there's no curiosity, getting hooked will be almost impossible, even if the intellectual
challenge is up there. This is true especially for programming because it's a vast world. The journey never
really ends, no matter how good of a programmer you are (Wikipedia claims there are 700 + programming
languages, and that's without considering all the frameworks, utilities, services and other technologies
available)[2]. Still, while curiosity is a must, unmoderated curiosity will most certainly lead to
oversaturation and loss of impetus; programming can become a rabbit hole if done wrong.

•

Selectivity: It's a great thing to want to learn, but without selectivity, curiosity turns into a spiral of chaos
and confusion. Having criteria as to whether what you're learning is valuable is considered part of the
sanity check.

•

Tolerance to frustration: When learning to code, there can and will be multiple things that will go wrong,
potentially simultaneously, and more probably when you're already having a bad day. Still trying to figure
out how, but this happens more often than not. Tolerance is not just learning to endure but also to back up,
get some air, and return the next day to find out you already figured it out while in your sleep.

•

Continuity & consistency: As with any learning activity, steadiness is key. This creates familiarity
between concepts; it helps us learn to connect the dots faster, and things suddenly start making more sense.

•

Modesty: Getting overconfident is easy, especially when starting. In fact, I would say it's natural. But if
programming has taught me something, it's that without modesty, you'll never own your mistakes, and
whenever a bug appears, you'll go into severe denial; this will make you either quit because "the interpreter
hates me and made a fowl play", because "if I couldn't handle this one, how am I going to keep up?"

•

Managing expectations: This one is closely related to the latter; if the expectations are too high, you will
feel pressured to keep up and start comparing with other people, lose confidence, abuse coffee, and
eventually enter into kernel panic. If the expectations are too low, then you might always feel you're doing
perfectly fine, except when that technical interview comes, and well, we all know the rest of the story;
coding needs to push the boundaries of what we think we are capable of, while at the same time knowing
we are capable of doing it.

•

§

A Journey Through Data Science: A space
where currents converge
Programming is not just about programming; it's more about curiosity and becoming obsessed with something
so badly you cannot let go, tricking your reward system into a feedback loop. A Journey Through Data
Science was created as an enabler for that feedback loop to happen.

1. On the scope
The blog is mainly about Data Science and Computer Science-related topics with a hands-on, business
approach, but it really covers whatever life throws in my path; this curiosity thing I mentioned is genuine. I like
to research new languages and technologies, adopt them, crack them and write about them if I think they
provide value.

2. On the Technologies
I'll mainly be covering the following languages:

Python

Python's syntax has been often referred to as pseudo-code-like, and that's because it really reads as such.

Let us define a decoder that will accept an encrypted message and return a decrypted one:

C���

What is it?
Python is a high-level, general-purpose, object-oriented programming language. It's currently the basis for
Data Science and Machine Learning and the second most used language as of 2022, with 15.7 million
developers.

•

Why learn it?
It's easy yet flexible, has an outstanding community, 200,000+ packages, and can be used for virtually
anything.

•

O�����

Julia

import string

def decodeString(**kwargs):
 '''
 Parameters

 **kwargs : list, list
 An encrypted message.
 A list of uppercase alphabet letters.

 Returns

 decoded : string
 A decoded message.
 '''

 decoded = ''.join([my_alphabet[x] if x >=0 else ' ' for x in my_list])

 print(decoded)

 return decoded

Declare message and alphabet
my_list = [0, -1,
 9, 14, 20, 17, 13, 4, 24, -1,
 19, 7, 17, 14, 20, 6, 7, -1,
 3, 0, 19, 0, -1,
 18, 2, 8, 4, 13, 2, 4]

my_alphabet = list(string.ascii_uppercase)

decodeString()

A JOURNEY THROUGH DATA SCIENCE

What is it?
Julia is a high-level, dynamically and statically typed programming language, but most importantly, Julia is
extremely fast; it's like Python on steroids.

•

Why learn it?
Well, let us refer to the creators themselves:

•

— Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman[3]

Julia is a new love of mine, and I'll be using it extensively in this blog, maybe even eventually replacing Python.

Let us replicate the decoder function now in Julia:

C���

O�����

We want a language that's open source, with a liberal license. We want the speed of C with the dynamism of
Ruby. We want a language that's homoiconic, with true macros like Lisp, but with obvious, familiar
mathematical notation like Matlab. We want something as usable for general programming as Python, as
easy for statistics as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab, and
as good at gluing programs together as the shell. Something that is dirt simple to learn yet keeps the most
serious hackers happy. We want it interactive, and we want it compiled. (Did we mention it should be as fast
as C?)

function decodeString(my_arr, my_alphabet)
 #=
 Parameters

 my_arr : array
 An encrypted message.

 my_alphabet : vector
 Uppercase letters of the alphabet

 Returns

 decoded : string
 A decoded message.
 =#

 decoded = join([if x ≥ 0 my_alphabet[x+1] else ' ' end for x in my_arr])

 println(decoded)

 return decoded

end

Declare message and alphabet
my_arr = [0 -1 [
 9] 14 20 17 13 4 24 -1 [
 19] 7 17 14 20 6 7 -1 [
 3] 0 19 0 -1 [
 18] 2 8 4 13 2 4]

my_alphabet = collect('A':'Z')

decodeString(my_arr, my_alphabet)

R

Let us define our decoder function yet again, now in R:

C���

O�����

SQL

A JOURNEY THROUGH DATA SCIENCE

What is it?
R is a programming language for statistical analysis, graphics representation and reporting. It was created
by statisticians to statisticians; it specializes in statistical modelling and computing and offers a wide
variety of packages for doing so.

•

Why learn it?
Apart from statistical applications, R can be used to tackle a variety of tasks: from web applications to
mathematical and scientific computing to econometrics to quantitative analysis.

•

library(comprehenr)

decodeString <- function(my_list, my_alphabet) {

 paste(
 to_list(
 for(x in my_list) ifelse(x >= 0, my_alphabet[x+1], ' ')
),
 collapse = '')

}

my_list = list(0, -1,
 9, 14, 20, 17, 13, 4, 24, -1,
 19, 7, 17, 14, 20, 6, 7, -1,
 3, 0, 19, 0, -1,
 18, 2, 8, 4, 13, 2, 4)

my_alphabet = LETTERS

decodeString(my_list, my_alphabet)

A JOURNEY THROUGH DATA SCIENCE

What is it?
SQL is a domain-specific language used to manage data in relational databases. Although multiple SQL
systems are available, we'll concentrate efforts on MySQL.

•

Suppose you're already using SQL in your job for data extraction. In that case, you can rely more on it for data
transformation processes since it's faster than other languages when querying and aggregating. And even if
you're not currently using it, learning and experimenting with SQL can provide valuable insight into your
company's data structure.

SQL is a declarative language, meaning it's easy to read and write. The code is, for the most part, self-
explanatory.

Let us create a simple table and calculate the lifespan of fiction writers:

C���

O�����

FirstName LastName Birth Death Lived

Leo Tolstoy 1828 1910 82

Mark Twain 1835 1910 75

Fyodor Dostoevsky 1821 1881 60

Joris-Karl Huysmans 1848 1907 59

Charles Dickens 1812 1870 58

Dante Alighieri 1265 1321 56

T���� 1. S��� F������ W������ A�� T���� L������� O� T��� E����

Even though life in the 13th century was for sure though, Dante surpassed the average life expectancy of the
time by almost double his age.[4]

Why learn it?
SQL is key in almost any data-related job. It's the language used to extract & transform data from relational
servers.

•

CREATE TABLE WRITERS (
 FirstName varchar(255),
 LastName varchar(255),
 Birth varchar(255),
 Death varchar(255)
);

INSERT INTO WRITERS (FirstName, LastName, Birth, Death)
VALUES ('Charles', 'Dickens', 1812, 1870),
 ('Mark', 'Twain', 1835, 1910),
 ('Fyodor', 'Dostoevsky', 1821, 1881),
 ('Leo', 'Tolstoy', 1828, 1910),
 ('Joris-Karl', 'Huysmans', 1848, 1907),
 ('Dante', 'Alighieri', 1265, 1321);

SELECT *, Death-Birth
AS Lived
FROM WRITERS
ORDER BY Lived DESC

Markdown

We can create a simple document containing a LaTeX expression, and an unordered list.

C���

O�����
The Normal Distribution, also known as the Gaussian distribution, is the most widely known and used of all
distributions and is used to approximate a variety of real-world phenomena. It's symmetric around the mean and
has two parameters:

A given random variable is normally distributed with mean and standard variance :

Where:

LaTeX

What is it?
Markdown is a simple yet powerful markup language supporting multiple syntax elements such as headers,
ordered and unordered lists, images, tables, diagrams, LaTeX and even HTML & CSS code.

•

Why learn it?
It provides a distraction-free typing experience, enjoys compatibility with a multitude of platforms and
applications, is extremely easy to learn, and is natively supported by GitHub & GitHub Gists. Also, dozens
of fully-featured Markdown editors exist, such as Obsidian, Draft.js, Ulysses, and even VS Code.

•

The Normal Distribution, also known as the Gaussian distribution, is the most widely known and
used of all distributions and is used to approximate a variety of real-world phenomena. It's
symmetric around the mean and has two parameters: (σ,μ)

A given random variable X is normally distributed with mean μ and standard variance
σ^{2}:

$$X \sim \mathcal{N}(\mu,\sigma^{2})$$

Where:
- σ is the standard deviation.
- μ is the mean or expected value.

(σ, μ)

X μ σ2

X ∼ N (μ, σ2)

 is the standard deviation.• σ

 is the mean or expected value.• μ

What is it?
LaTeX is not a language per se but a software system for document preparation using the TeX typesetting
system. It's tailored explicitly to scientific writing, supports a variety of syntactic objects, and can be
further expanded using a vast collection of available packages. Unlike Markdown, it has a learning curve
associated.

•

https://github.com/pabloagn/documentation/blob/master/writing-and-formatting/markdown.md
https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/

We can write the normal distribution density function, along with a plot of the actual distribution:

C���

O�����

Why learn it?
It makes mathematical equations beautiful to stare at. Also, it gives the user excellent control over the
formatting of documents. We can define templates and classes that, once customized, we can reuse by
simply importing them into our environment.

•

\documentclass{article}
\usepackage{pgfplots}
\usepackage{mathtools,amssymb}
\usepackage{tikz}
\usepackage{xcolor}
\pgfplotsset{compat=1.7}
\begin{document}
\pgfmathdeclarefunction{gauss}{2}{\pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
}

\begin{tikzpicture}

\begin{axis}[no markers, domain=0:10, samples=100,
axis lines*=left, xlabel=x, ylabel=$f(x)$,
height=6cm, width=10cm,
xticklabels={-4, -3, -2, -1, 0, 1, 2, 3, 4}, ytick=\empty,
enlargelimits=false, clip=false, axis on top,
grid = major]
\addplot [fill=black!20, draw=none, domain=-3:3] {gauss(0,1)} \closedcycle;
\addplot [fill=gray!20, draw=none, domain=-3:-2] {gauss(0,1)} \closedcycle;
\addplot [fill=gray!20, draw=none, domain=2:3] {gauss(0,1)} \closedcycle;
\addplot [fill=blue!20, draw=none, domain=-2:-1] {gauss(0,1)} \closedcycle;
\addplot [fill=blue!20, draw=none, domain=1:2] {gauss(0,1)} \closedcycle;
\end{axis}
\end{tikzpicture}

\begin{displaymath}
f(x)=\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}
\end{displaymath}

\end{document}

F����� 1: T�� PDF O� T�� N����� D�����������

Other languages & technologies
Apart from the languages above, I'll also be including the following:

Additionally, we'll be working mostly on the following IDEs and environments:

We'll also be using some additional technologies:

f(x) =
1

√2πσ2
e

−
(x−μ)2

2σ2

Spark: A multi-language engine specialized for parallel computing tasks. Apache Spark has integrations
with Java, Scala, Python & R.

•

Scala: A highly scalable language, useful for building fault-tolerant, highly concurrent systems, and an
ideal companion when supported by tools like Apache Spark.

•

DAX: The functional programming language that everybody loves (nobody said ever). This one is a
headache but extremely useful when working with Data Analysis since it constitutes the basis of PowerBI
calculations along with Power Query M.

•

Rust: The most loved language for several consecutive years. It's used for software applications such as
game engines, operating systems, file systems, browser components, simulation engines for virtual reality,
and of course, Machine Learning. I'm just getting started on this one, but we will crack it open eventually.

•

C++: The defacto language for high-performance. I'm planning on including it for guided projects in the
future.

•

VS Code•

JupyterLab•

Pluto•

Spyder•

RStudio•

IntelliJ Idea•

The Motivations: Winds are changing
For better or for worse, things are changing fast; open-source is getting an insane amount of traction, ultra-high-
performance languages are being cooked, obsolete social media platforms are being left behind, targeted add
companies are shooting themselves in the foot, and the list goes on and on; everything is being laid out for what
seems to be an exciting series of years ahead. Technology is becoming demonopolized, democratized, and fully
accessible to the public, and with that come advantages but also responsibilities.

1. On the lack of rigorous mathematical knowledge
Machine Learning is an exciting discipline that years ago was reserved for academics in research environments.
Now, thanks to approachable libraries and frameworks, it has become accessible to the public. This is a
considerable breakthrough no doubt, but it also has its drawbacks.

Because of the increase in ML popularity, accessibility, and all the cool stuff that has been achieved with
Machine Learning, there's a huge misconception that ML is the solution to every problem; someone once told
me that "the simpler solution is almost always the best solution", and I've come to realize this is especially
important to remember in an era where overcomplication and sophistication appear to be a rule of thumb.

There's a generalized rush to learn ML concepts as fast as possible; watching as many tutorials on scikit-learn

& TensorFlow as possible, reading volumes of Medium articles on how to fine-tune hyperparameters and
perform feature engineering, asking the same "is this approach convenient, and why" Stack Overflow question
on ten different threads, and in the end, deploying a solution based on the 100 iterations of a Miss. Kate
Connolly surviving the Titanic crash while realizing that an ML model is actually a terrible idea for the target
problem and that it could be solved with a simpler approach sounds too familiar.

This recipe-style strategy has become far too common, and I firmly believe that mathematical theory should be
a key part of ML adoption. Otherwise, who becomes responsible for fine-tuning the racist ML chatbot that John,
the intern, deployed? Not Miss. Kate Connolly, I suppose.

2. On free education
I've always been passionate about open-source technologies and non-profit learning resources. I learned to
program for free, and I know for sure it had a lot to do with what I've achieved so far.

Especially in learning how to code, I strongly believe that free learning resources provide extreme value, and I
intend to do just that.

3. On cutting-edge technologies

GitHub & GitHub Gists•

WinSCP•

DBeaver•

Obsidian•

CodePen•

Datapane•

PowerBI•

Texmaker•

§

There's too much to learn in 2023, but there are some clear patterns on future trends: it seems that high
performance is the new direction, and it makes sense; we cannot deploy all those ambitious models if we don't
have the workhorses to sustain them.

Also, ML is at its peak: it's disrupting how we use and write code. GitHub Copilot and transformer models are
good examples.

One of the motivations for this blog is to exhaustively look for cutting-edge languages, technologies, libraries
and methods that offer the highest performance and the most advanced capabilities.

4. On sustainable & green code
As ML approaches take place in this new way of solving problems, energy consumption also skyrockets. Let us
look at what the ChatGPT training algorithm involved:

OpenAI trained its GPT-3 model on 45 terabytes of data. To train the final version of MegatronLM, a language
model similar to but smaller than GPT-3, Nvidia ran 512 V100 GPUs over nine days.

A single V100 GPU can consume between 250 and 300 watts. If we assume 250 watts, then 512 V100 GPUS
consumes 128,000 watts, or 128 kilowatts (kW). Running for nine days means the MegatronLM's training costs
27,648-kilowatt hours (kWh).

The average household uses 10,649 kWh annually, according to the U.S. Energy Information Administration.
Therefore, training the final version of MegatronLM used almost the amount of energy three homes use in a
year.[5]

Sustainable code is an entirely new and exciting concept to me and will have its secure place in this space.

5. On returning the favour
I remember very well the first script I wrote some years back. I also remember that without the help of that
vibrant university colleague of mine who introduced me to this rabbit hole, I would not have been able to do it.
My preconception of Linux was that of an obscure technology used exclusively by Mr. Elliot Alderson to cause
mayhem inside EvilCorp. Then, I realized most servers out there run on Linux systems, and yes, Kali Linux
does actually exist.

Help can arrive in the form of a colleague, a YouTube Channel, or a passive-aggressive Stack Overflow
moderator. It really makes no difference; what really matters is that help is out there, one ChatGPT query away.

The Boat: Traversing through a sea of
infinitude
Why create a new blog when so many free resources are already available?

The idea is to leverage two main concepts:

§

The Feynman Technique: Helping others learn to code results in knowledge ownership, making this a
win-win approach.

•

Provide added value: By making this a responsive, structured, well-organized, distraction-free and
minimalist Blog without ads, sponsorships, annoying cookies or referral fees while keeping the entire
source code open and providing a business-oriented approach whenever possible.

•

https://github.com/features/copilot

The Cabins: A place to unwind
1. On the structure
This website is divided into five main pillars:

Each article contains the following:

Each GitHub repository contains the following:

The Lighthouse: How to get involved?
1. Contact me
You can reach out anytime by heading to my website's Contact form and saying hi. I'm currently based in
Mexico City, so kindly expect a delay if you're in a different time zone.

2. Fork & make pull requests

§

Blog: Technical articles or essays, and can be single or serialized.•

Deep Dives: Specialized articles exploring modules, libraries, extensions and plugins in detail.•

Guided Projects: Hands-on, step-by-step projects containing difficulty level & suggested prerequisites.•

Portfolio: Single or collaborative projects containing author, date started & completed, current status,
version & license.

•

Documentation: Markdown documents for programming languages & technologies.•

One associated category.•

One or more associated technologies.•

Created & updated timestamps.•

Approximate reading time.•

A comprehensive index.•

A code-output structure.•

Syntax-highlighted code blocks displaying the programming language used, with the capacity to copy and
paste code.

•

LaTeX expressions rendered as .svg objects.•

Article PDF download links.•

Embed responsive objects such as Gists, Datapanes, and more to support content.•

Dark mode toggle (only supported in the desktop version).•

GitHub repository links for quick access.•

The article's Markdown source code, including all LaTeX expressions if applicable.•

The article's PDF document.•

The source code for all scripts used.•

Plots, charts and other visual objects supporting the article.•

§

https://pabloagn.com/contact/
https://pabloagn.com/blog/
https://pabloagn.com/deep-dives/
https://pabloagn.com/guided-projects/
https://pabloagn.com/portfolio/
https://pabloagn.com/documentation/

All my code is open source; you're free to fork and create pull requests for any GitHub repository. I will be sure
to review your commits and merge them if they add value to the project.

3. Become a Patreon
The publicity-free compromise is genuine, and I intend to enforce it. I believe monetary contributions should be
voluntary and based exclusively on each one's decision.

This is why I've set up a Patron account; it will allow me to maintain this blog's associated costs without
incurring other monetization techniques.

3.1 How Patron works?
Patreon is a membership platform that provides business tools for content creators to run a subscription service.
Patreon for A Journey Through Data Science has 3 tiers:

3.2 Enthusiast
Aimed at helping support the creation of weekly Data Science content while getting access to discussions in the
official Discord Server.

3.3 Inquisitive Programmer
Aimed to get the extra mile and learn the nuts and bolts of Data Science by getting monthly bonus material,
early access to article drafts, and access to a private channel in the official Discord Server.

3.4 Mentee
Aimed at receiving guidance for your next project, orientation for working in the industry, deciding which
branch of Data Science is right for you, creating your portfolio, or even debugging some code by providing
access to the Patron's community, exclusive voting power & personalized requests, personalized 1-on-1s for any
Data Science-related task you plan to tackle next, and access to a private channel in the official Discord Server.

If you're interested in becoming a Patreon, you can head to the Membership section, where you'll be presented
with the three options. Just select the one that suits you best.

4. Join the Discord Server
I've created a Discord Server containing general and exclusive channels. The general channels are completely
free, while the exclusive ones are reserved for Patreons, and include the following:

Enthusiast•

Inquisitive Programmer•

Mentee•

A Mentorship channel for collaborative and 1-on-1 sessions.•

A Suggestions channel where proposals are directly translated into pipelined posts & projects. Pipeline
review and adjustment will take place once per month.

•

An Early Access channel where I'll release post drafts and source code before committing to the
corresponding repository.

•

https://www.patreon.com/AJourneyThroughDataScience
https://www.patreon.com/AJourneyThroughDataScience/membership

Conclusions
There's much to cover in the following months, and I'm genuinely excited to begin this new journey with you. It
will be challenging for you as well as for myself, but in the end, I know it'll be worth the sweat.

Thank you for giving yourself the time to read all this craziness, and hope you enjoy the content as much as I
enjoyed designing this Blog.

Happy coding, and until next time.

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

1. University of Colorado Boulder, The Feynman Technique↩
2. Wikipedia, List of Programming Languages↩
3. Julia, Why We Created Julia↩
4. AgeUp, A Brief History of Human Longevity↩
5. TechTarget, Energy consumption of AI poses environmental problems↩

§

§

University of Colorado Boulder, The Feynman Technique•

Wikipedia, List of Programming Languages•

Julia, Why We Created Julia•

AgeUp, A Brief History of Human Longevity•

TechTarget, Energy consumption of AI poses environmental problems•

§

§

https://www.colorado.edu/artssciences-advising/resource-library/life-skills/the-feynman-technique-in-academic-coaching
https://en.wikipedia.org/wiki/List_of_programming_languages
https://julialang.org/blog/2012/02/why-we-created-julia/
https://learn.age-up.com/blog/a-brief-history-of-human-longevity/
https://www.techtarget.com/searchenterpriseai/feature/Energy-consumption-of-AI-poses-environmental-problems

