
The Types of Machine Learning Algorithms Explained

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory machine-learningmachine-learning

TechnologiesTechnologies PythonPython

WebsiteWebsite Post LinkPost Link

Machine Learning is a field focused on developing, comprehending, and utilizing computer programs that can
learn from experience to model, predict, or control certain outcomes. This discipline has gained considerable
traction in recent years as it has transformed how we approach problem-solving. Machine Learning algorithms
can analyze vast amounts of data and produce more accurate results faster than hard-coded methods in some
cases. Before Machine Learning, creating solutions to problems involved hard-coding solutions that accounted
for every variable and parameter, which became increasingly difficult as the amount of data generated increased.

Machine Learning is a permanent fixture in the technology landscape, and it is beneficial to have a general
understanding of the technology to appreciate its potential applications. As a result of this discipline, a variety of
models can be applied to different applications. These applications range from product recommendations to
image, speech, text recognition, sentiment analysis, DNA sequencing, global warming modelling, and
temperature prediction. The potential applications of Machine Learning are vast, and almost every field of study
has at least one problem where Machine Learning models can help create more efficient solutions.

In this article, we will discuss the different Machine Learning algorithm types using three different
categorization methods. We will also qualitatively compare different Machine Learning models to grasp a
generalized understanding. We will conclude this segment with some next steps for those interested in diving
deeper into this exciting discipline.

We will not discuss each model in detail since there are too many to cover in one segment. There's a dedicated
3-segment hands-on Guided Project, Exploratory Data Analysis, where we cover all the major classification
algorithms along with a detailed comparison by using an example applied on medical data. There will also be
future content covering diverse ML model implementations in detail.

We’ll be using Python scripts which can be found in the Blog Article Repo.

Table of Contents

§

§

§

Machine Learning vs traditional programming•

Classification by learning strategy•
Supervised Learning•

Regression•

Classification•

https://obsidian.md/
https://github.com/pabloagn/blog/tree/master/version-control
https://github.com/pabloagn/blog/tree/master/machine-learning
https://pabloagn.com/technologies
https://pabloagn.com/blog/the-types-of-machine-learning-algorithms-explained/
https://pabloagn.com/guided-projects/exploratory-data-analysis-pt-1/
https://github.com/pabloagn/blog/tree/master/machine-learning/the-types-of-machine-learning-algorithms-explained

Binary Classification•

Multi-class classification•

Managing unbalanced data•

Semi-Supervised Learning•
Self-training•

Co-training•

Generative models•

Graph-based methods•

Deep learning•

Unsupervised Learning•
Clustering•

Exclusive and Overlapping Clustering•

Hierarchical clustering•

Active Learning•
Process Overview•

Committee-based strategies•
Query-by-Committee•

Large margin-based strategies•
Margin Sampling•

Margin Sampling-closest Support Vectors (MS-cSV)•

Posterior probability-based strategies•

Transfer Learning•
Process overview•

Training the Source DNN•

Establishing a Base Model•

Freezing Layers•

Adding and Training New Layers•

Refining the Transferred Model•

Transfer Learning strategies•
Inductive Transfer Learning•

Transductive Transfer Learning•

Unsupervised Transfer Learning•

Reinforcement Learning•

Classification by Parametric and Non-Parametric models•
Parametric models•

Non-parametric models•

Parametric vs Non-parametric models•

Classification by Generative and Discriminative models•
Generative models•

Discriminative models•

Generative vs Discriminative models•

Next Steps•
An academic approach•

An engineering approach•

A consulting approach•

Free learning resources•

Conclusions•

References•

Copyright•

Machine Learning vs traditional
programming
What's so special about it? Why was it such a significant breakthrough in how we think of problem-solving? To
explain this, we have to refer to how traditional computation is done.

Traditional computer programming has been around for over a century, with the first known computer program
dating back to the mid-1800s. It refers to any manually created program that uses input data and executes it to
produce the output; a programmer creates the program, but without anyone programming the logic, one has to
formulate rules manually (this is what we'll be referring to as hard-coding).

For example, we can define a function that will do a specific task based on a set of logical rules we explicitly
describe. In this case, our function accepts a DataFrame object as input, evaluates each row of the age column,
and performs a mathematical operation based on each age value:

Code

§

Import modules

import pandas as pd

Example 1: Hard-coded function

Declare entries

p0 = ['Saha', 'Howard', 22, 'Secretary', 1300]

p1 = ['John', 'Moore', 32, 'Illustrator', 3000]

p2 = ['Laszlo', 'Kreizler', 35, 'Alienist', 3500]

p3 = ['Willem', 'Van Bergen', 31, 'Pampered Child', 50000]

p4 = ['Libby', 'Hatch', 30, 'Nurse', 1100]

p5 = ['Lucifer', 'Morningstar', 35, 'Club Owner', 100000]

p6 = ['Chloe', 'Decker', 34, 'Detective', 1400]

p7 = ['Dan', 'Espinoza', 36, 'Detective', 1300]

p8 = ['Mazikeen', 'Smith', 35, 'Bounty Hunter', 20000]

p9 = ['Laura', 'Palmer', 22, 'Student', 100]

p10 = ['Dale', 'Cooper', 36, 'FBI Agent', 1800]

p11 = ['Harry', 'S. Truman', 34, 'Sheriff', 1300]

p12 = ['Bobby', 'Briggs', 23, 'Student', 80]

p13 = ['Gordon', 'Cole', 55, 'FBI Agent', 2000]

Create list of lists

people_list = [p0, p1, p2, p3, p4,

 p5, p6, p7, p8,

 p9, p10, p11, p12,

 p13

]

Declare DataFrame

df = pd.DataFrame(people_list,

 columns = ['Name', 'Surname', 'Age', 'Job Position', 'Salary'])

Declare function

def myFun(df):

 '''

 Parameters

 df : Pandas DataFrame

 Contains 3 columns: Name, Surname, Age, Job Position, Salary (monthly in USD).

 Returns

 top_jobs : List

 Contains the top 7 paid job positions for a person between

 25 and 40 years old, sorted by importance.

 '''

 df_top = (df.query("`Age` >= 25 and `Age` <= 40").

 groupby('Job Position')['Salary'].mean().

 reset_index(name ='Average Salary').

 nlargest(7, 'Average Salary').

 sort_values(by='Average Salary', ascending=False).

 reset_index(drop=True)

)

 return df_top

Output

Apart from the fact that being a club owner or a pampered child could be the key in life, we can see that this
method implementation worked because we defined logical rules denoted by our query statements. These were
explicitly stated and required logical reasoning behind the curtains.

This was also feasible because we had a very limited set of rules: age and Average Salary , which we used as
features to return an output.

The problems surface when we have an extensive and potentially un-normalized set of features we need to
consider, or even worst; we don't know which ones could be leveraged to get the insight we're looking for.

In Machine Learning, the algorithm automatically formulates the rules from its input and outputs a model we
can use to perform predictions, classifications, or control.

These algorithms can go from extremely simple to extremely complex; it all depends on what we're trying to
solve, the input dimensions, and the complexity of our data set.

It's important to remember that, as grandiose as it may seem, ML is just another tool in a very extensive toolbox;
it's easy to assume that ML can be applied to every possible problem and outperform any traditional algorithm,
but the truth is, it does not substitute hard-coding entirely, nor does it do magic.

As with any tool, it has its applications and limitations and is based on rigorous mathematical and statistical
theory. In fact, Machine Learning can be thought of as a combination of probability theory, statistics &
optimization. We'll see why in a moment.

The core concepts of Machine Learning
As we already mentioned, ML algorithms build models based on sample data, known as training data, to make
predictions or decisions without being explicitly programmed to do so.

When deploying an ML model, we must consider how we will represent the knowledge, decide if our model is a
good fit for our particular case, and optimize our model to return the most optimal answer.

These steps apply to any ML algorithm deployment process and can be summarized as follows:

Call function with df

print(myFun(df))

 Job Position Average Salary

0 Club Owner 100000.0

1 Pampered Child 50000.0

2 Bounty Hunter 20000.0

3 Alienist 3500.0

4 Illustrator 3000.0

5 FBI Agent 1800.0

6 Detective 1350.0

§

Representation: What the model looks like; how knowledge is represented.•

Evaluation: How good models are differentiated; how programs are evaluated .•

Every model works differently, meaning the mathematical & statistical theory behind may differ. Still, they all
follow a generalized set of steps to provide a solution to the problem we define:

1. Data Collection: Collect relevant data for the problem we're trying to solve. This can be from existing
datasets or by collecting new data.

2. Data Preparation: Clean and preprocess the data to remove any irrelevant or inconsistent data points,
handle missing values, and transform the data into a format suitable for analysis.

3. Feature Selection/Extraction: Select or extract the most important features from the data relevant to the
problem we're trying to solve. This step is crucial because it can significantly impact the model's
performance.

4. Model Selection: Choose an appropriate machine learning algorithm for the problem we're trying to solve.
This involves understanding the characteristics of the data, the type of problem we're trying to solve, and
the desired output.

5. Model Training: Train the model on the data to learn the patterns and relationships between the input
features and the target variable. This involves selecting appropriate hyperparameters and using
optimization techniques to minimize the error between the predicted and actual values.

6. Model Evaluation: Evaluate the model's performance on a separate dataset not used for training. This
helps to ensure that the model is not overfitting to the training data and can generalize well to new data.

7. Model Tuning: Fine-tune the model by adjusting hyperparameters or trying different algorithms to
improve its performance on the evaluation dataset.

8. Deployment: Deploy the model in a production environment and integrate it into a more extensive system
to make predictions on new data. This involves considerations such as model versioning, monitoring, and
security.

Finally, we have several ways to classify the different types of ML models. The classification methods depend
on the following:

Classification by learning techniques
Machine Learning algorithms can be classified by how they learn. There are three main types and some other
subclassifications:

1. Supervised Learning
Supervised Learning is a machine learning approach that employs labelled datasets to train algorithms that can
accurately classify data or forecast outcomes. A labelled dataset can be viewed as data with tags that define what
the data represents.

If we look at our previous example, we used a DataFrame with five columns:

Code

Optimization: The process for finding good models; how programs are generated.•

How they learn•

How they represent data associations•

How they conceptualize a potential solution•

§

Supervised Learning•

Unsupervised Learning•

Reinforcement Learning•

Output

This means that our data is labelled; it has identifiable tags which we can use to make sense of the information it
presents.

More specifically, in the Machine Learning context, a label is the specific vector we're trying to predict or use to
classify. This depends on the problem we're trying to solve.

For example, we could use our DataFrame df to train a model which predicts a person's Salary based on other
attributes such as Age and Job Position . These attributes would be called features, and the target to predict, in
this case, Salary , would be our label. We could solve this problem either by regression or classification; these
are the two main subclasses of Supervised Learning.

1.1 Regression
Regression is most commonly known since it's taught very early in math courses and has multiple applications,
from market analysis to financial analysis to trend forecasting. It requires us to have continuous data points.

The most common and straightforward type of regression is Linear Regression (LR), which consists of fitting a
straight line to a set of value pairs () to predict unseen values of a dependent variable given an independent
variable value . This method uses the general equation of a straight line to fit data:

Where:

Which can be written in terms of Machine Learning notation:

Where:

After obtaining the fundamental straight-line equation, we can initiate the process by assigning random weights
and assessing how well the line fits the data. The accuracy of the line can be determined using an error function.
In the case of Linear Regression, the most commonly used function is a modified version of the Mean Squared
Error (MSE) function, known as the Squared Error Cost Function.

We can first define the expression for the simpler MSE:

print(df.columns)

Index(['Name', 'Surname', 'Age', 'Job Position', 'Salary'], dtype='object')

x, y y

x

y = m ⋅ x + b

 is the dependent variable.• y

 is the slope or gradient (how steep the line is).• m

 is the independent variable.• x

 is the y-intercept (the value of when)• b y x = 0

h(x) = θ0 + θ1x

 is the label.• h(x)

, are weights.• θ0 θ1

 is the input feature.• x

MSE =
1

n

n

∑
i=1

(Yi − Ŷi)
2

Where:

And then translate it to the Squared Error Cost Function:

Where:

What Linear Regression does, is minimize this function by changing the weights iteratively. This is done by
calculating the partial derivatives of with respect to and :

Where and are updated simultaneously on each iteration.

This method we just defined is called Gradient Descent, a first-order iterative optimization algorithm for
finding a local minimum of a differentiable function. It's widely used in Machine Learning and Linear
Programming to optimize multiple models.

In the end, we're left with a combination of parameters , which best fit our straight line to the data points.

Of course, Linear Regression, as its name suggests, is used to predict data which presents linear correlation.
There are other methods for predicting non-linear continuous data, such as Polynomial Regression.

1.2 Classification
As its name suggests, this subcategory of Supervised Learning aims to classify data by assigning a label to a
data input. This method works for linear and non-linear discrete data.

There are multiple classification applications, a very simple case being the classification of Spam Email. Let us
look at an example:

1.2.1 Binary classification
A Spam detector takes a number of previously engineered features as inputs:

 are the number of data points.• n

 is the observed value.• Yi ith

 is the predicted value.• Ŷi ith

J(θ) =
1

2m

m

∑
i=1

(hθ(x
(i)) − Y (i))2

 are the number of data points.• m

 is the predicted value.• hθ(x
(i)) ith

 is the observed value.• Y (i) ith

J(θ0, θ1) θ0 θ1

d

dθ0
J(θ0, θ1) = θ0 + θ1x − Y (i)

d

dθ1
J(θ0, θ1) = (θ0 + θ1x − Y (i))x

θ0 θ1

(θ0, θ1)

Subject Features:•
Number of capitalized words.•

Sum of all the character lengths of words.•

Number of words containing letters and numbers.•

Max of the ratio of digit characters to all characters in each word.•

Header Features:•
Hour of the day when the email was sent.•

URL Features:•

https://en.wikipedia.org/wiki/Linear_programming

It then classifies each entry as Spam or Not Spam, so our output would be binary:

Some of the most used binary classification algorithms are:

1.2.2 Multi-class classification
A classification algorithm can work not just with binary outputs but multiple ones. This is called a multi-class
classification algorithm. Let us look at a simple example.

We wish to input different animal descriptors and let our model decide which animal species we're talking
about:

The number of all URLs in the email body.•

The number of unique URLs in the email body.•

Payload Features:•
Number of words containing letters and numbers.•

Number of words containing only letters.•

Spam: 1•

Not Spam: 0•

Logistic Regression (LR)•

k-Nearest Neighbors (KNN)•

Decision Trees (DCT)•

Support Vector Machines (SVM)•

Gaussian Naïve Bayes (GNB)•

Bernoulli Naïve Bayes (BNB)•

Physical Attributes:•
Haired: Bool•

Feathered: Bool•

Toothed: Bool•

Whiskered: Bool•

Leg Number: Int•

Tail: Bool•

Fins: Bool•

Anatomical Attributes:•
Eggs: Bool•

Milk: Bool•

Airborne: Bool•

Aquatic: Bool•

Predator: Bool•

Venomous: Int•

Physiological / Behavioral Attributes:•
Domestic: Bool•

Aggressive: Int•

Supports cold temperatures: Bool•

Supports hot temperatures: Bool•

Tough skin: Bool•

Spiny/horned skin: Bool•

Blends in or camouflages with the environment: Bool•

Our model will intend to classify each entry as a different species, so our output would be multi-class,
dependent on the number of classes we have for our training set:

Some of the most used multi-class classification algorithms are:

1.2.3 Managing unbalanced data
We need a balanced data set for a typical classification algorithm to work without special treatment. This means
that the ratio of classes must be roughly equal (e.g. from the first example, spam emails, non-spam
emails).

We might run into instances where our data set is unbalanced and cannot resample from the population. In this
case, there are some methods we can use:

2. Semi-Supervised Learning
Semi-supervised learning (SSL) is a machine learning technique that utilizes both labelled and unlabeled data
to improve the performance of models, even when only a portion of the dataset has labels. This approach treats
labelled and unlabeled data points differently. For labelled data, traditional supervised learning techniques are
used to adjust model weights, while for unlabeled data, the algorithm minimizes the variation in predictions
between similar training examples.

A typical example where semi-supervised learning can be helpful is text document classification, where
obtaining a large number of labelled text documents can be challenging and time-consuming. By combining a

Platypus•

Tiger•

Alpaca•

Horse•

Dog•

Cat•

Guinea pig•

Decision Tree Classifier (DCT)•

Random Forest Classifier (RF)•

Extreme Gradient Boosting Ensemble Classifier (XGBoost) (Experimental Support as of Version 1.6)•

Gaussian Naïve Bayes (GNB)•

Bernoulli Naïve Bayes (BNB)•

Support Vector Machines (SVM)•

Adaptive Boosting Ensemble Classifier (AdaBoost)•

≈ 50% ≈ 50%

Under-sampling: Involves reducing the size of the abundant class to balance the dataset. This method is
effective when there is sufficient data available. By keeping all samples in the rare class and randomly
selecting an equal number of samples in the abundant class, a balanced new dataset can be obtained for
further modelling.

•

Over-sampling: Can be used when the quantity of data is insufficient. This approach balances the dataset
by increasing the size of rare samples.

•

Clustering abundant groups: Involves clustering the abundant class into groups instead of relying on
random samples to cover the variety of training samples. Only the medoid (center of cluster) is kept for
each group, and the model is then trained with the rare class and the medoids only.

•

Selecting an appropriate model: Can also help to handle unbalanced data. Specific classification models,
such as the Extreme Gradient Boosting (XGBoost) algorithm, are particularly effective at handling
imbalanced datasets.

•

small number of labelled text documents with a large amount of unlabeled text data, the algorithm can learn
from the labelled data while also classifying the unlabeled data in the training set.

Semi-supervised algorithms leverage pseudo-labelling to achieve this objective. The model is first trained using
the small set of labelled data, similar to supervised learning until it produces satisfactory results. The model is
then used to predict the outputs of the unlabeled data, which generates pseudo-labels that may not be entirely
accurate. These pseudo labels are then associated with the labelled data, and the inputs in the unlabeled data are
linked to the inputs in the labelled data. Finally, the model is retrained using this combined data to minimize
errors and increase accuracy.

We can look at a summary of the steps below:

1. Collect both labelled and unlabeled data: In semi-supervised learning, gathering both labelled and
unlabeled data is important. The labelled data has known categories, while the unlabeled data does not.

2. Train the model with the labelled data: The first step is to use traditional supervised learning techniques
to train the model using the labelled data. This allows the model to learn the patterns in the labelled data.

3. Generate pseudo-labels with the unlabeled data: Once the model is trained with labelled data, it can be
used to predict labels for the unlabeled data. These predicted labels are called pseudo-labels.

4. Combine the labelled and pseudo-labelled data: The labelled and pseudo-labelled data are combined by
associating the predicted labels with the input data in the labelled data.

5. Retrain the model using the combined data: The combined data is used to retrain the model using
traditional supervised learning techniques. This allows the model to learn from both the labelled and
pseudo-labelled data, making it able to generalize to new data points.

6. Evaluate the model's performance: Finally, evaluating the model's performance is important. This can be
done by using performance metrics such as accuracy or precision or by testing the model on validation
data.

There are five main approaches we can use with semi-supervised learning:

2.1 Self-training
Any existing supervised classification or regression method can be modified to apply semi-supervised learning.
This involves training a model with a small amount of labelled data, using it to predict labels for the unlabeled
data, and then adding the most confident predictions to the labelled dataset. Finally, the model is retrained using
the updated labelled data.

2.2 Co-training
Co-training can be utilized as an alternative approach to traditional classifier training in scenarios with a limited
amount of labelled data. Unlike the typical training process, co-training involves training two separate
classifiers based on different data views. These distinct views comprise sets of features that provide
supplementary information about each instance and are considered independent, given the class. Moreover, each
view is self-sufficient and can accurately predict the class of the sample data by using each feature set
separately.

2.3 Generative models
Generative models such as the Naïve Bayes algorithm and Gaussian mixture models can be used in semi-
supervised learning. These models learn the underlying probability distribution of the data and use this

Self-training•

Co-training•

Generative models•

Graph-based methods•

Deep Learning•

information to make predictions. We will discuss them in more detail further on.

2.4 Graph-based methods
Graph-based semi-supervised learning methods use the data structure to construct a graph where nodes
represent instances and edges represent the similarity between instances. These models can effectively use
labelled and unlabeled data to learn and make predictions by leveraging this graph structure.

2.5 Deep Learning
Deep learning models such as autoencoders and generative adversarial networks (GANs) can be used in semi-
supervised learning to leverage labelled and unlabeled data. These models learn the underlying structure of the
data to make predictions.

3. Unsupervised Learning
Unsupervised learning is a machine learning technique that utilizes algorithms to examine and group unlabeled
datasets. This technique is capable of identifying hidden patterns or data groupings without the need for human
intervention. Unsupervised learning has three primary applications: clustering, association, and dimensionality
reduction.

3.1 Clustering
The clustering method groups data based on similarities or differences without requiring labels; only a set of
data points with features is needed. This approach is commonly used to uncover underlying patterns or
tendencies that are not easily discernible.

Clustering is particularly helpful when working with large volumes of seemingly uncorrelated data.

3.1.1 Exclusive and Overlapping Clustering
Exclusive clustering, also known as "hard" clustering, is a technique that assigns each data point to only one
cluster.

One of the most popular algorithms for exclusive clustering is the K-means clustering algorithm, originally
developed for signal processing. K-means clustering partitions a dataset into clusters based on the nearest
mean, also called a cluster centroid or center, which serves as a prototype for the cluster. The resulting clusters
are referred to as Voronoi cells:

k

Figure 1: Voronoi Diagram Illustrating How Colony Area Is Split Into Tessellated Cells

In the figure above, we can see two different partition sets: The first one denotes a Voronoi diagram with 25
partitions, while the second one has 26 partitions, where one cell splits into two cells (denoted with the red
color). Typically, each cluster will encapsulate a set of data points; the critical aspect to consider in this method
is to define the correct number of cells so as not to underfit or overfit the model (i.e. we don't want a single cell
for a single data point)

3.1.2 Hierarchical clustering
Hierarchical clustering methods are categorized into agglomerative and divisive. Agglomerative clustering
involves isolating data points as separate groupings and merging them iteratively based on similarity until one
cluster is achieved. There are four primary similarity measurement methods used in agglomerative clustering,
which include:

Ward's linkage: A method similar to ANOVA in which the linkage function determining the distance
between two clusters is calculated by computing the increase in the error sum of squares (ESS) after
fusing two clusters into a single cluster.

•

Average linkage: The linkage function is calculated by finding the average distance between objects in the
first and second clusters.

•

Complete (or maximum) linkage: This method involves starting with each element in its own cluster and
then sequentially combining clusters until all elements are in the same cluster. It's also referred to as
"farthest neighbors clustering."

•

Dendrogram: The resulting clustering can be represented as a dendrogram, which displays the sequence of
cluster fusion and the distance at which each fusion occurred.

•

https://www.researchgate.net/publication/338842775_The_recent_advances_in_the_mathematical_modelling_of_human_pluripotent_stem_cells

Figure 2: Dendrogram With Data Points On The X-Axis And Cluster Distance On The Y-Axis

In divisive clustering, in contrast, a single data cluster is divided based on the differences between data points.

4. Active Learning
Active learning (AL), also known as optimal experimental design, allows for interactive labelling of data by the
user with the desired outputs using an information source called a teacher or oracle.

This technique is useful when labelling data manually is costly, and there is an abundance of unlabeled data. As
the learner chooses the examples, the number of examples required for learning a concept can be much lower
than in normal supervised learning. In such scenarios, learning algorithms can actively seek labelling from the
teacher.

As a reference, the Google Cloud project offers two pricing tiers per 1,000 units per human labeller; Tier 1
pricing applies to the first 50,000 units per month, and Tier 2 pricing applies to the next 950,000 units per month
in the project, up to 1,000,000 units:

Single (or minimum) linkage: This method combines two clusters in each step based on the closest pair of
elements that don't yet belong to the same cluster.

•

https://www.datanovia.com/en/courses/hierarchical-clustering-in-r-the-essentials/

Data type Objective Unit Tier 1 Tier 2

Image Classification Image $35 $25

Image Bounding box Bounding box $63 $49

Image Segmentation Segment $870 $850

Image Rotated box Bounding box $86 $60

Image Polygon/polyline Polygon/Polyline $257 $180

Video Classification 5sec video $86 $60

Video Object tracking Bounding box $86 $60

Video Event Event in 30sec video $214 $150

Text Classification 50 words $129 $90

Text Entity extraction Entity $86 $60

Table 1: Pricing Details In USD Of Data Labelling By Google Cloud Platform/1000 Units

Based on the abovementioned costs, labelling 100,000 images with approximately five bounding boxes and two
labellers per image for a specialized ML model would cost USD$112,000. Similarly, if we label 10,000 medical
images, where each image requires about 15 semantically segmented objects and three labellers for accuracy,
the cost would be roughly USD$391,500.

Labelling costs could be even higher for larger projects, which is the case for many current large-scale models.
However, Active Learning can help reduce training costs significantly by predicting the missing labels, thus
bypassing the need for extensive labelling. This technique, called inductive bias, involves reducing the version
space for the problem by predicting missing labels.

In general, data points to be labelled are selected and prioritized strategically over less relevant data points. This
approach often results in better outcomes than randomly selecting data points for labelling.

Crowdsourcing frameworks such as Amazon Mechanical Turk (MTurk) have implemented this method,
allowing workers to label data provided by requesters and participate in the active learning loop of the model.

4.1 Process overview
The basic idea behind Active Learning algorithms can be summarized as follows:

Given a total sample of data , the following steps are taken:

1. A small subset of the data set is manually labelled.
2. The model is trained on the labelled subset .
3. After training, the model is used to predict the class of the remaining data points.
4. A score is assigned to each unlabeled data point based on the predictions made by the model.
5. Based on the prioritization score, a strategy is chosen to select the next set of data points to be labelled.
6. The process can be iteratively repeated by training a new model on the newly labelled data set, updating

the prioritization scores, and selecting the next set of data points to be labelled until the desired level of
accuracy is achieved.

There are three main sub-sampling strategies we can use in an Active Learning approach:

T

S T

S

Committee-based Strategies•

Large margin-based Strategies•

Posterior probability-based Strategies•

https://cloud.google.com/ai-platform/data-labeling/pricing
https://en.wikipedia.org/wiki/Inductive_bias
https://en.wikipedia.org/wiki/Version_space_learning
https://www.mturk.com/

4.2 Committee-based strategies
When multiple models are built, informative data samples can be selected from the predictions generated by
these models. This ensemble of models is referred to as a committee. If the committee contains different
models, a single data sample can have predictions. Sampling can be based on voting, variance produced (in
the case of a regressor), or disagreement between the models.

There are three main approaches to committee-based strategies. We will only discuss the first method since it
applies to various problems. The other two methods can be studied in more detail using the provided links:

4.2.1 Query-by-Committee (QBC)
This method was initially introduced by Seung et al. in 1992[1]. The approach employs disagreement among a
group of hypotheses to choose data points for labelling. Two practical implementations of this approach are
Query by Bagging and Query by Boosting, which use Bagging and Boosting to construct the committees.

The overall process can be summarized in the following steps:

1. Construct a committee of models , where can be any real positive number greater than 1. A committee
can also be referred to as an ensemble of models. To achieve this, we can use the following:

2. The sum of committee models must represent some area of the version space.
3. All models above are being trained on , where is our labeled set.
4. Whenever one query (unlabeled data point) comes in, our committee models will have competing

hypotheses as to which label is the right one; each model will provide a vote.
5. We will then devise a way to measure committee disagreements (i.e. how similar or different two

probability distributions are). We can use the following:

Vote entropy can be defined using the following expression:

Where:

For a discrete random variable, the KL divergence can be expressed in terms of the logarithmic ratio of two
PMFs:

Where:

n

n

Query by Committee (QBC)•

Entropy-based Query by Bagging (EQB)•

Adaptive Maximum Disagreement (AMD)•

C θi i

Query by Bagging•

Query by Boosting•

L L

Vote entropy•

Kullback–Leibler divergence (KL divergence)•

Jensen–Shannon divergence (JS divergence), or information radius (IRad)•

X ∗
VE = argmax

x
−∑

i

V (yi))

C

log(V (yi)

C

 is a label.• yi

 is the vote.• V (yi)

 is the committee size.• C

DKL(P ||Q) = ∑
x∈X

P(x)log(
P(x)

Q(x)
)

 is the set of all possible variables for .• X x

https://www.currentscience.ac.in/Volumes/119/06/0934.pdf
https://ieeexplore.ieee.org/abstract/document/6051478

Which calculates the expectation of the logarithmic difference between the probabilities and , where the
expectation is taken using the probability .

For a continuous random variable, we modify the KL divergence expression to include PDFs instead of PMFs:

Where:

Upon careful observation, we can see that the ratio used in both expressions allows us to compare two
probability functions, whether they are probability mass functions (PMFs) or probability density functions
(PDFs). For any input , the value of the ratio shows us how much more likely is to occur under
compared to .

If the ratio value is larger than 1, is the more probable model. On the other hand, if the ratio value is smaller
than 1, is the more probable model.

When the logarithm is taken, a ratio value of 0 indicates that both models fit the data equally well. However,
values larger than 0 suggest that is the better model, meaning it fits the data better. Conversely, values smaller
than 0 indicate that is the superior model.

Finally, the JS divergence is based on the KL divergence; we have the following expression:

Where:

Upon careful examination, we can notice that the JS divergence approach has a similar treatment to the KL
divergence approach. The primary distinction is that the JS divergence calculates the geometric mean of the
differences between the two distributions.

4.3 Large margin-based strategies
A margin-based learning algorithm is an algorithm that chooses a hypothesis by minimizing a loss function

 while using the margin of distances contained in the subset of labelled or training examples.

Below are the general steps involved in the process:

1. The algorithm is given a set of training examples, , drawn from a specific distribution.
2. A version space is provided.
3. A margin function is defined, representing the margin of an example concerning the hypothesis function.
4. A margin-based loss function such as the one mentioned above is provided.
5. The margin-based algorithm returns a hypothesis scoring function that minimizes the loss over the

training examples to choose a hypothesis scoring function.

 is the probability mass function (PMF) of a given discrete distribution.• P(x)

 is the probability mass function (PMF) of a given discrete distribution.• Q(x)

Both and are defined on the sample space .• P(x) Q(x) X

p q

p

DKL(P ||Q) = ∫
∞

−∞

p(x)log(
p(x)

q(x)
)

 is the probability density function (PDF) of a given continuous distribution.• p(x)

 is the probability density function (PDF) of a given continuous distribution.• q(x)

x x p(x)

q(x)

p(x)

q(x)

log

p

q

DJS(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M)

• D(A||B) = ∑N
i ailog(ai

bi
)

• M = 1
2 (P + Q)

L : R → [0, ∞) Sl

m S = (xi, yi)

F

ρ

L

A f̂ ∈ F

There are some margin-based loss functions we can use, one being the hinge loss which is widely used in SVM
models:

A margin-based active learning approach employs a margin function in conjunction with a querying
function by assuming that the current classifier typically makes accurate predictions on the training
data. The algorithm selects those unlabeled examples with the smallest margin and, consequently, the lowest
certainty.

There are two primary approaches to margin-based active learning. However, we will only elaborate on the first
approach since it constitutes the generalized version. The second approach, Margin Sampling-closest Support
Vectors (MS-cSV), can be studied in more detail using the following link:

4.3.1 Margin Sampling (MS)
Margin Sampling (MS) is a method specific to the margin-based active learning approach that takes advantage
of the geometric properties of Support Vector Machines (SVM).

For a binary classification problem with a labelled training set and the corresponding labels ,
the primary objective of MS is to select examples with the smallest distance to the decision boundary from a set
of unlabeled samples.

In a binary classification problem, the distance between a sample and the decision boundary can be expressed
as:

Where:

Therefore, the candidate selected into the training set is the one respecting the following condition:

After selecting the example with the minimum distance to the decision boundary in the set of unlabeled
samples, the algorithm adds and its true label to the labelled training set while simultaneously removing
from the unlabeled training set .

4.3.2 Margin Sampling-closest Support Vectors (MS-cSV)
This strategy involves storing the positions and distances of each data sample from the support vectors. For each
support vector, the algorithm selects a data sample that has the smallest distance from that support vector. As a

f̂ = argminf ′∈F

m

∑
i=1

L(ρ(x, y, f))

Lhinge = max(0, 1 − ρ(x, y, f))

ρ(x, y, f)

Q(x, y, f)

Margin Sampling (MS)•

Margin Sampling-closest Support Vectors (MS-cSV)•

S = (xi, yi) yi ∈ ±1

n

f(qj) =
m

∑
i=1

αiyiK(xi, qj) + b

 is a kernel matrix.• K

 is the support vector coefficient.• α

 is the support vector.• xi

 is the support vector candidate.• qj

 are the labels of the support vectors.• yi

x′ = argmin
qj∈U

|f(qj)|

x′

x′ L x′

U

https://en.wikipedia.org/wiki/Hinge_loss
https://ai.stanford.edu/~koller/Papers/Tong+Koller:ICML00.pdf
https://towardsdatascience.com/kernel-function-6f1d2be6091

result, we can have more than one unlabeled data sample in every iteration, eliminating the disadvantage of
simple margin sampling, which only selects a single data sample for querying a human oracle per iteration.

4.4 Posterior probability-based strategies
A Bayesian Neural Network (BNN) is an extended classical Neural Network with posterior inference to control
over-fitting. More generally, the Bayesian approach applied to a conventional Neural Network results in a
probabilistic model; everything has a probability distribution attached to it, including model parameters (weights
and biases in neural networks).

We can still take an input vector and feed it through a BNN, but the result will be a distribution instead of a
single value. In other words, if we provide an input to the network, the BNN will assign a probability to each
possible output.

Gaussian Processes (GPs) are probabilistic models as well. GPs relate to BNN in that a Neural Network with a
single layer converges to a GP when its layer width is taken to infinity. Furthermore, in the case of a BNN, the
weights are distributions, and the mean and covariance can be estimated by drawing samples from the weight
distributions and calculating forward passes. For a non-Bayesian network, the Dropout can be used instead.

This relationship is interesting because it allows us to approximate a BNN to a Gaussian Process. This is
relevant because Gaussian Processes are fully defined by their mean and covariance functions.
Thus we can compute the network's mean and covariance for the unlabeled and labelled points.

Figure 3: Distribution In Function Space Corresponding To The Distribution Theta In Parameter
Space (Red Lines), And Samples From This Distribution (Black Dots).

The above diagram displays a plot of one-dimensional outputs of a neural network for two inputs against each
other. The black dots represent the neural network's computed function for these inputs with randomly drawn
parameters from a distribution called . The red lines represent the probability iso-contours for the joint
distribution of network outputs induced by . Essentially, this distribution in function space corresponds to
the distribution in parameter space, and the black dots are samples from this distribution. For neural

μ(t) cov(t, t′)

p(θ)

p(θ)

p(θ)

https://en.wikipedia.org/wiki/Neural_network_Gaussian_process

networks that are infinitely wide, the distribution over functions computed by the NN is a Gaussian process.
Thus, for any finite set of network inputs, the joint distribution over network outputs is a multivariate Gaussian.

Let us assume we have already trained a BNN on some labelled data and want to know which unlabeled points
should be labelled to improve the model. We want to choose points for which the network has high uncertainty.
When we add such points to the training data, the uncertainty will probably reduce, and the predictions will
improve.

The estimated mean and covariance, using the approach above, completely define the Gaussian Process
approximation of the Neural Network. The process defines the so-called posterior variance for every point in
the pool. This variance is precisely the measure of uncertainty needed for Active Learning: If a point in the
collection has a high variance, the network has a high uncertainty about its prediction, and the point should be
selected.

After adding several high variance points from the unlabeled subset to the labelled subset, the network training
is resumed, and the model quality should improve. This switch between adding points and re-training the
network is usually performed iteratively until we get the accuracy we're looking for.

5. Transfer Learning
Transfer Learning (TL) is an ML methodology that focuses on storing knowledge gained while solving one
problem and applying it to a different but related problem. Transfer Learning is mainly used in Deep Learning
given the massive resources required to train DNNs or the large and challenging datasets on which deep
learning models are trained.

5.1 Process overview
Before we dive into specifics, let us generalize and consider a source Deep Neural Network we would like to
train and transfer to another problem.

In a general way, a TL approach consists of the following steps:

Let us explain in detail each of the steps involved:

5.1.1 Training the Source DNN
This step is critical since the transfer success will heavily depend on the source model we select. We can either
build a source model and train it ourselves or select a pre-trained model. The main thing to remember is we need
to ensure that we have a strong correlation between the knowledge of the source model and the target domain
for them to be compatible.

For pre-trained models, specifically DNNs, we have some options:

Train the source DNN on a base dataset, or get a pre-trained model.•

Create a new base model replacing the last layer from the source model.•

Freeze layers.•

Add new layers and train them on our new data set.•

Improve the model via fine-tuning.•

Computer Vision•
VGG-16•

VGG-19•

Inception V3•

XCeption•

ResNet-50•

5.1.2 Establishing a Base Model
Our base model architecture must closely resemble the source model we choose to employ. We have two
options: either we can download the pre-existing network weights, which will save us the time of further
training, or we will have to train our model from scratch using the network architecture.

5.1.3 Freezing Layers
Freezing layers selectively is a crucial step in Transfer Learning. This entails freezing the initial layers from the
pre-trained model to evade the additional work of teaching the basic model features.

If we fail to freeze the initial layers, we will lose all the learning that has already transpired. This will be no
different from training the model from scratch and will waste time and resources.

5.1.4 Adding and Training New Layers
The frozen layers must consist exclusively of the generalized aspects of our dataset. If we freeze too many
layers, our model will be incapable of generalizing to the task at hand; conversely, if we remove too many
layers, it will exert the extra effort of learning what it already knows.

As a result, the new layers should be used to predict the specialized tasks of the model, typically comprising the
final output layers.

Once we have the added layers, we must train them using our target dataset; the pre-trained model’s final output
is likely to differ from the output we require for our model. For example, pre-trained models trained on a given
dataset may output a different number of classes than we require for our specific target model.

Thus, we must train the last layers with our dataset to ensure that the output meets our problem's specifications.

5.1.5 Refining the Transferred model
To improve the accuracy of the transferred model, we may need to fine-tune the frozen layers, depending on the
accuracy of the source model we chose and how similar the source dataset is to our target dataset.

Fine-tuning consists of unfreezing some parts of the base model and training the entire model again on the
whole dataset with a shallow learning rate. This technique can help increase the model's performance on the
new dataset while preventing overfitting.

It may be necessary to repeat this step multiple times until we achieve a transferred model that meets the
requirements of our problem.

5.2 Transfer Learning strategies

NLP•
GPT-3•

Microsoft MT-DNN•

Google BERT•

RoBERTa•

Huggingface Transformers•

ULMFit•

XLNet•

Word2Vec•

GloVe•

FastText•

Depending on the problem we're trying to solve, the domain of the application, and the availability of datasets,
there are three main strategies for TL:

The selection of an appropriate transfer learning strategy depends on various factors, including the problem to
be solved, the application's domain, and the datasets' availability.

Generally, there are three primary strategies for transfer learning, and they can be determined by answering
three key questions:

Answering these questions helps determine which transfer learning strategy to use for a particular task.

5.2.1 Inductive Transfer Learning
In this scenario, the source and target domains are the same, yet the source and target tasks differ. The
algorithms utilize the source domain's inductive biases to help improve the target task. Depending upon whether
the source domain contains labelled data or not, this can be further divided into two subcategories, similar to
multitask learning and self-taught learning, respectively.

5.2.2 Transductive Transfer Learning
In this scenario, there are similarities between the source and target tasks, but the corresponding domains are
different. In this setting, the source domain has a lot of labelled data, while the target domain has none.

5.2.3 Unsupervised Transfer Learning
This setting is similar to inductive transfer, focusing on unsupervised tasks in the target domain. The source and
target domains are similar, but the tasks are different. In this scenario, labelled data is unavailable in either of the
domains.

Transfer Learning is an extensive and ever-growing topic, and there's a wide range of techniques specific to
given domains. We will not cover further details on this segment. Still, an in-depth review containing additional
strategies and mathematical modelling can be found here.

6. Reinforcement Learning
Reinforcement Learning (RL) is an ML technique that enables a model to learn in an interactive environment
by trial and error using feedback from its own actions and experiences; in short, the model will learn from its
own mistakes using a system of rewards and punishments as signals for positive and negative behaviour.

Compared to unsupervised learning, reinforcement learning is different regarding goals. While the goal in
unsupervised learning is to find similarities and differences between data points, in the case of reinforcement
learning, the goal is to find a suitable model that would maximize the total cumulative reward of the agent.

Some key terms that describe the basic elements of an RL problem are:

Inductive Transfer Learning•

Transductive Transfer Learning•

Unsupervised Transfer Learning•

What aspects of knowledge can be transferred from the source domain to the target domain to improve the
target task's performance?

•

When should knowledge transfer be utilized, and when should it be avoided, to ensure improved
performance in the target task without degradation?

•

Given the specifics of the target domain and task, how should knowledge be transferred from the source
model to the target model?

•

https://arxiv.org/pdf/1911.02685.pdf

A generalized RL algorithm follows the step-by-step process below:

1. Initially, the RL agent observes the current state of the environment.
2. The agent selects an action to take based on the current state.
3. The environment responds with a new state and a reward signal.
4. The agent receives the reward signal and updates its knowledge of the environment and the value of the

action taken.
5. The agent then utilizes the updated knowledge to choose the following action.
6. This process repeats iteratively, with the agent learning from the feedback received at each step and

adjusting its behaviour accordingly.
7. Eventually, the agent's actions will converge towards an optimal policy that maximizes the expected long-

term reward.

This process can be represented as a feedback loop, where the agent interacts with the environment and receives
feedback in the form of rewards. The agent's ultimate goal is to learn the most suitable sequence of actions to
maximize the cumulative reward over time.

RL algorithms can be categorized as model-based and model-free methods and value-based and policy-based
methods, depending on the approach used to learn and optimize the policy.

The model-based and model-free classification types can be summarized as follows:

The value-based and policy-based classification types can be summarized as follows:

There are several types of RL algorithms available. Below are some of the most common ones:

RL algorithms present several advantages, including:

Environment: Physical world in which the agent operates.•

State: Current situation of the agent.•

Reward: Feedback from the environment.•

Policy: Method to map agent's state to actions.•

Value: Future reward an agent would receive by acting in a particular state.•

Model-Based RL: Learn a model of the environment, which can be used to simulate future states and
rewards. This allows the agent to plan ahead and make informed decisions.

•

Model-Free RL: Do not learn a model of the environment. Instead, they directly learn a mapping from
states to actions and use trial and error to improve this mapping over time.

•

Hybrid RL: Combine elements of both model-based and model-free approaches, allowing for more
flexible and efficient learning.

•

Value-Based RL: They learn by estimating the value of each state or state-action pair in the environment.
These algorithms aim to find the optimal policy that maximizes the expected cumulative reward by
learning the optimal value function.

•

Policy-Based RL: They learn by directly searching for the optimal policy, which is a mapping from states
to actions that maximize the expected cumulative reward. These algorithms learn a parametric or non-
parametric representation of the policy that can be optimized using gradient-based methods.

•

Q-Learning•

State-Action-Reward-State-Action (SARSA)•

Actor-Critic•

Deep Reinforcement Learning (DRL)•

Policy Gradients•

Monte Carlo Methods•

Temporal Difference (TD) Learning•

Flexibility: RL can be applied to various applications, from games to robotics to financing. It can learn to
perform complex tasks that would be difficult or impossible to program directly.

•

Classification by Parametric and Non-
Parametric models
As we have seen, machine learning models can be classified by the types of inputs they accept as well as their
functioning. We can also look at ML algorithms regarding how they map data points.

1. Parametric Models
Parametric models are machine learning models that use a mathematical equation to relate inputs and outputs.
For example, Linear Regression is a parametric model that uses a straight-line equation to fit data points on a
plane, while Logistic Regression uses the sigmoid function to classify data. These models are based on
predetermined mathematical formulas to generate outputs.

Other examples of parametric models include:

Parameters of these models can include:

2. Non-parametric models
In contrast, Non-parametric models do not make strong assumptions about the form of the mapping function;
they instead learn from the data itself. A prevalent supervised example would be the Decision Tree Classifier,
which is based on a hierarchical structure.

Other non-parametric examples include:

Adaptability: RL algorithms can adapt to changes in the environment, making them useful in dynamic and
unpredictable settings.

•

Efficiency: RL algorithms can learn quickly from large amounts of data, making them useful in
applications where speed is crucial.

•

Generalization: RL algorithms can generalize what they have learned to new situations, allowing them to
perform well in problems they have not encountered before.

•

Optimization: RL algorithms can optimize complex and non-linear systems, finding the best policies to
achieve a particular goal.

•

§

Perceptrons•

Simple Neural Networks•

Linear Support Vector Machines•

The coefficients of the equation of a straight line in Linear Regression.•

The coefficients of a polynomial in Non-linear Regression.•

The support vectors in a Support Vector Machine.•

The weights in a Neural Network.•

k-Nearest Neighbors (KNN)•

Random Forests•

Gradient Boosting Machines (GBM)•

Support Vector Machines with non-linear kernels (SVM)•

Neural Networks (NN)•

Gaussian Mixture Models (GMM)•

https://machinelearningmastery.com/a-gentle-introduction-to-sigmoid-function/

3. Parametric vs Non-parametric models
This question is trickier since it implicates the nature of the problem we're trying to solve. Still, we can
summarize both models in a comparative table to have a better understanding of the two types:

Parameter Parametric Models Non-Parametric Models

Parameter
usage

Use a fixed number of parameters to build the
model

Use a flexible number of parameters
to build the model

Data
assumptions

Consider strong assumptions about the data
Consider fewer assumptions about the

data

Computational
effort

Are usually less computationally expensive
Are usually more computationally

expensive

Performance
Are usually faster performing due to a

predefined set of parameters
Are usually slower due to undefined

parameters

Data volume
requirement

Usually require less data Usually require more data

Simplicity Are usually simpler and easier to understand
Are usually more complex since we

don't fully know the underlying model

Flexibility
Are less flexible since they assume one fixed

functional form
Are extremely flexible since there's no

predefined functional form

Accuracy
Can, in some cases, be less accurate if the data
is complex or does not fit the underlying model

Can be highly accurate if the data is
complex, but can also cause

overfitting

Table 2: Qualitative Comparison Between Parametric And Non-Parametric ML Models

Classification by Generative and
Discriminative models
Another way to classify ML models is to think of them in terms of how they model a solution to the problem
we're trying to solve; we can divide them into two main types:

Both methods can be used for classification purposes and categorized as supervised, semi-supervised or
unsupervised.

1. Generative models

Principal Component Analysis (PCA)•

§

Generative models•

Discriminative models•

Generative models aim to populate datasets by modelling their joint probability distribution, . They
predict conditional distributions to populate a specific class with data points. These models rely predominantly
on probability distributions to populate classes.

The training process of a generative model involves learning the parameters of the probability distribution.
There are many types of generative models, but they all share the same basic idea of learning a probability
distribution that can generate new data.

Once the model has been trained, it can be used to generate new data by sampling from the learned distribution.
The process of generating new data can be done in various ways depending on the specific type of generative
model.

For example, a Gaussian mixture model (GMM) can generate new data by sampling from a mixture of Gaussian
distributions. Similarly, a generative adversarial network (GAN) generates new data by pitting two neural
networks against each other: one network generates new data, while the other tries to distinguish between the
generated data and real data from the training set.

To better illustrate the concept, let us consider a classification example:

1. We are presented with a labelled dataset consisting of two labels: .
2. Our objective is to train a model to accurately classify new data points as either or .
3. A Generative model creates two separate models, one describing the distribution of points and another

describing the distribution of points. It learns the distribution of each class, which is a function that
describes the likelihood of observing a particular feature vector given the class label. The models can be
thought of as probability density functions that describe the data distribution for each class.

4. When presented with an unseen data point, our model determines probabilistically to which distribution it
is most likely to belong.

Thus, the decision boundary for a Generative model is determined by the probability or likelihood that a specific
data point belongs to a given distribution.

Binary classification is one of the simpler generalizations, but Generative models can perform much more
complex tasks, particularly in the painting and synthetic visual art generation:

p(x, y)

+/−

+ −

+
−

Figure 4: “Creation Of Adam” By Genel Jumalon. The Initial Concepts For This Painting
(Pictured Below) Were Produced By The AI Image Generator App Midjourney. Afterwards,

Jumalon Illustrated The Above Based On Those Concepts.

Let us explain the generalized steps of how this is achieved:

1. Collect a dataset of visual art: The first step in creating a generative model for visual art is to collect a
dataset of visual art we want to generate new examples of. This dataset can include paintings, drawings, or
any other type of visual art.

2. Preprocess the dataset: Before training the generative model, we need to preprocess the dataset. This may
include resizing the images, normalizing pixel values, and performing data augmentation to increase the
size of the dataset.

3. Train the generative model: The next step is to train the generative model using the preprocessed dataset.
Several types of generative models can be used for visual art creation, such as Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), and Autoregressive models. During training, the
generative model learns to generate new images similar to the images in the training dataset. The model is
trained on a loss function that measures the difference between the generated and real images in the dataset.

4. Generate new art: Once the generative model is trained, we can use it to generate new art. To generate a
new piece of art, we sample a random noise vector from a normal distribution and pass it through the
generative model. The model's output is a new image generated from the learned distribution.

5. Evaluate the generated art: The final step is to evaluate the generated art. This can be done using various
metrics, such as perceptual similarity, diversity, and visual quality. The evaluation can improve the
generative model by fine-tuning the model's parameters or adjusting the loss function.

Now, let us explain in more detail how these models work:

Variational Autoencoders (VAEs): They work by learning to encode an image into a low-dimensional
latent space and then decode the latent vector back into an image. The model is trained to minimize the
difference between the input and reconstructed images in the pixel space while encouraging the latent
space to follow a normal distribution. Once trained, we can sample random points from the latent space and
decode them into new images.

•

https://www.sciencefriday.com/segments/ai-art/
https://towardsdatascience.com/understanding-latent-space-in-machine-learning-de5a7c687d8d

Other generative models include:

2. Discriminative models
In contrast to Generative models, Discriminative models work by defining boundaries between classes. They
learn to predict the labels of new examples based on their input features; the models are trained to minimize the
difference between the predicted labels and the true labels in the training data.

Let us continue with the previous generalized binary classification example:

1. Given that we have the same data set and want to classify new data points as or , a Discriminative
model will build a boundary separating the two classes.

2. It will not focus on analyzing the whole population; instead, it will look at the distance to the nearest
data points and draw a boundary that separates them in the most optimal way.

We have already mentioned some examples of discriminative models in the previous classification types:

3. Generative vs Discriminative models
It heavily depends on the problem we're trying to solve and the nature and volume of our data set:

Generative Adversarial Networks (GANs): They consist of two neural networks: a generator and
discriminator networks. The generator is trained to generate images that fool the discriminator, while the
discriminator is trained to distinguish between real and fake images. The generator network takes random
noise as input and produces an image, while the discriminator network takes an image as input and predicts
whether the image is real or fake.

•

Autoregressive models: They model the conditional probability of each pixel in an image given the
previous pixels. The model generates an image one pixel at a time, sampling from the conditional
distribution for each pixel. The model is trained to maximize the log-likelihood of the training images.

•

Gaussian Mixture Model (GMM)•

Naïve Bayes Classifier•

Hidden Markov Model (HMM)•

Boltzmann Machines•

Restricted Boltzmann Machines (RBMs)•

Deep Belief Networks (DBNs)•

Conditional Random Fields (CRFs)•

+ −

+/−

Decision Trees (DT)•

Random Forests (RF)•

Gradient Boosting Machines (GBM)•

Support Vector Machines (SVMs)•

Neural Networks (NN)•

K-Nearest Neighbors (KNN)•

Linear Discriminant Analysis (LDA)•

Quadratic Discriminant Analysis (QDA)•

Maximum Entropy (MaxEnt)•

In a classification problem context, a Generative model will generally underperform a Discriminative
model in terms of execution time if we have a large data set. This is because the first considers the entire
population, while the latter can ignore the points further from the decision boundary.

•

Conversely, if we have a limited data set, a Discriminative model will generally underperform a
Generative model in test accuracy since the latter will place a given structure on the model that will often
prevent overfitting.

•

We can summarize both models in a comparative table to have a better understanding of the two types:

Parameter Generative Models Discriminative Models

Modeling
Learn the boundary between classes by

building a probability distribution for each
class.

Learn the boundary between classes
providing classification splits

Assumptions An underlying distribution No underlying distribution

Complex
relationships

Better at complex models
Underperforms in more complex models

since it does not take the whole population
into account

Probabilistic Mostly probabilistic Probabilistic or non-probabilistic

Training
sample size

Require less training examples Require more training examples

Overfitting
Prevent overfitting with limited data set

sizes because of the generalized structure
(distribution) of the classes

Are more prone to overfitting with limited
data set sizes

Decision
boundary

Traced where one model becomes more
likely

Traced where the separation between
classes is more optimal based on nearest

data points

Labeled /
Unlabeled

data

Especially high-performing on unlabeled
data

Not designed for unlabeled data

Computational
performance

Decreases with increasing data set volume
Decreases less than with Generative

models

Outlier
detection

performance
Generally work for outlier detection Do not work well for outlier detection

Synthetic data
generation

Can easily be used to generate data points
from the modelled distributions

Cannot generate synthetic data since they
do not consider a distribution (they do not

have the full class picture)

Table 3: Qualitative Comparison Between Generative And Discriminant ML Models

Next steps

If we are presented with unlabeled data, a Discriminative model will generally underperform a Generative
model since the first doesn't require labelled data; it learns by modelling distributions.

•

If we would like to generate samples based on the assigned classes, a Generative model would offer the
actual class distribution, from where we could easily sample data points. A Discriminative model would not
provide such a distribution, thus, we could not generate samples.

•

§

There are multiple ways of approaching how to further learn about ML techniques depending on what we're
trying to achieve. In this article, we will mention three:

Disclaimer: None of the links provided are affiliate links. The selected resources are of my own choosing.

1. An academic approach
Research Science / Machine Learning Science is mainly interested in developing new models using what we
already have as theoretical basis and further expanding it. This approach is scientific in nature and involves
rigorous and extensive experimentation applying domain knowledge from the following areas:

Suggested material includes the following programs:

2. An engineering approach
Machine Learning Engineering is a discipline mainly interested in deploying developed and trained ML
models in a production environment. This approach is more Software Engineering-oriented and involves domain
knowledge from the following areas:

Suggested material includes the following programs:

An academic approach•

An engineering approach•

A consulting approach•

Linear Algebra•

Differential and Integral Calculus•

Graph Theory•

Linear Programming•

Nonlinear Programming•

Convex Optimization•

Simulation Techniques•

Probability Theory•

Statistical Modeling•

Computer Science•

Machine Learning with Python, MIT•

Supervised Machine Learning, Andrew Ng & Stanford•

Deep Learning Specialization, Andrew Ng•

Machine Learning with Python, IBM•

Machine Learning Specialization, Andrew Ng & Stanford•

Computer Science•

Full-Stack Software Engineering•

Parallel Computing•

ETL Techniques•

Cloud Computing•

Containerization & Orchestration•

DevOps & Agile Systems•

CS50's Introduction to Computer Science, Harvard•

Introduction to Machine Learning in Production, Andrew Ng•

MLOps Specialization, Andrew Ng•

https://www.edx.org/es/course/machine-learning-with-python-from-linear-models-to
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/learn/machine-learning-with-python
https://www.coursera.org/specializations/machine-learning-introduction
https://www.edx.org/es/course/introduction-computer-science-harvardx-cs50x
https://www.coursera.org/learn/introduction-to-machine-learning-in-production
https://www.coursera.org/specializations/machine-learning-engineering-for-production-mlops

3. A consulting approach
Many companies in different sectors are in the look for new methods which allow them to optimize existing
processes. Several firms specialize in providing Machine Learning Consulting services to clients to cover this
demand. This approach is more Business-oriented and involves domain knowledge from the following areas:

Suggested material would include the following programs:

4. Free learning resources
Finally, there are several YouTube channels providing high-quality content:

Conclusions
In this segment we discussed in a general way how a typical Machine Learning model is implemented and how
it works. We mentioned 3 different types for classifying ML models according to how they learn, how they
represent data associations and how they conceptualize a potential solution. We also discussed the most
important subclassifications, the most relevant strategies currently available, the main models comprising them,
and a simplified mathematical model for the most relevant cases. Finally, we performed some comparisons
between subclasses and strategies, and gave an overall recommendation for when to use which one.

Machine Learning is getting all the attention since major breakthroughs have been achieved recently. With the
exponential growth of data & processing power, and the increasing demand for intelligent systems, ML has
become a critical component in many industries, from healthcare to finance, manufacturing to transportation.

Because so much can be done using ML, it's important to know all the angles we can take in order to solve
problems of different domains using ML techniques, while at the same time evaluating if this approach is the

Machine Learning Specialization, DeepLearning•

Machine Learning in Production, DataBricks•

Business Consulting•

Project Management•

Software Engineering•

Cloud Computing•

Machine Learning in Business, MIT Sloan•

Managing Machine Learning Projects, Google•

sentdex•

Data School•

Artificial Intelligence - All in One•

DeepLearningAI•

Machine Learning with Phil•

Jeremy Howard•

StatQuest with Josh Starmer•

Stanford Online•

MIT OpenCourseWare•

freeCodeCamp.org•

§

https://www.deeplearning.ai/courses/machine-learning-specialization/
https://www.databricks.com/learn/training/catalog/ml-production
https://www.edx.org/es/course/mit-sloan-machine-learning-in-business-online-program?term=machine+learning&plp=true
https://www.coursera.org/learn/machine-learning-business-professionals
https://www.youtube.com/@sentdex
https://www.youtube.com/@dataschool
https://www.youtube.com/@ArtificialIntelligenceAllinOne
https://www.youtube.com/@Deeplearningai
https://www.youtube.com/@MachineLearningwithPhil
https://www.youtube.com/@howardjeremyp
https://www.youtube.com/@statquest
https://www.youtube.com/@stanfordonline
https://www.youtube.com/@mitocw
https://www.youtube.com/@freecodecamp

right one for our specific case.

This segment went over the tip of what can be done; there is extensive research currently being made on new
methods and more sophisticated algorithms, and we're just getting started.

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

1. Advances in Neural Information Processing Systems 5 (NIPS 1992)↩︎

§

IBM, What is supervised learning?•

IBM, What is unsupervised learning?•

Machine Learning Mastery, What Is Semi-Supervised Learning?•

Towards Data Science, Active Learning in Machine Learning•

Analytics Vidhya, Commonly used Machine Learning Algorithms•

Research Gate, Spam-detection Features•

KD Nuggets, Managing Unbalanced Data•

DataRobot, Semi-supervised Learning•

IBM, Unsupervised Learning•

Laura E. Wadkin, Sirio Orozco-Fuentes, Irina Neganova, The recent advances in the mathematical
modelling of human pluripotent stem cells

•

Neptune AI, Active Learning Strategies•

Abbassi Saber Nawfal, Active Learning Scenarios and Techniques•

Anna-Lena Popkes, Kullback-Leibler Divergence•

Maria-Florina Balcan, Andrei Broder, and Tong Zhang, Margin based Active Learning•

Dan Roth and Kevin Small, Margin-based Active Learning for Structured Output Spaces•

Machine Learning Mastery, Transfer Learning•

V7 Labs, A Newbie-Friendly Guide to Transfer Learning•

§

§

https://www.ibm.com/topics/supervised-learning
https://www.ibm.com/topics/unsupervised-learning
https://machinelearningmastery.com/what-is-semi-supervised-learning/
https://towardsdatascience.com/active-learning-in-machine-learning-525e61be16e5
https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
https://www.researchgate.net/figure/Top-5-spam-detection-features-19_tbl2_275647490
https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-data.html
https://www.datarobot.com/blog/semi-supervised-learning/
https://www.ibm.com/topics/unsupervised-learning
https://www.researchgate.net/figure/a-Voronoi-diagram-illustrating-how-colony-area-is-split-into-tessellated-cells-b-The_fig5_336013919
https://neptune.ai/blog/active-learning-strategies-tools-use-cases
https://www.slideshare.net/web2webs/active-learning-scenarios-and-techniques
https://alpopkes.com/posts/machine_learning/kl_divergence/
http://tongzhang-ml.org/papers/colt07-active.pdf
http://www.kevinsmall.org/pdf/RothSm06a.pdf
https://machinelearningmastery.com/transfer-learning-for-deep-learning/
https://www.v7labs.com/blog/transfer-learning-guide

