
What are GitHub Gists and How to Use Them

Made withMade with ObsidianObsidian

TypeType blogblog

CategoryCategory version-controlversion-control

TechnologiesTechnologies GitHub,Python,VS Code,Markdown,HTML,CSS,GitHub,Python,VS Code,Markdown,HTML,CSS,

WebsiteWebsite Post LinkPost Link

GitHub Gists is a tool developed by GitHub which provides a simple way to share code snippets with other
people. Gist snippets work similarly to a conventional GitHub repository in that they can be forked and cloned;
each gist is a repository. They can be public or secret and even created without a GitHub account.

GitHub Gists has become a valuable tool among the developer community since it supports multiple features
such as version control, commenting, snippet embedding in websites and quick setup without creating a
repository.

Also, it provides a more minimal approach to GitHub repositories since it does not support issues, pull requests,
projects or actions.

In this article, we will discuss how to use Gists, their different features, main use cases, using the Gist VS Code
extension and performing some hands-on examples.

Code can be found in the Blog Article Repo. Gists can be found in the GitHub Gists Repo.

Table of Contents

§

§

§

Use cases•

How to use GitHub Gists?•
Creating a new gist•

Managing gists in VS Code•

Examples•
Creating a Gist for authoring using docstrings•

Creating a code snippet embed•

Creating a tabular data snippet embed•

Creating a Markdown snippet embed•

Formatting gists using CSS•

Conclusions•

Appendix•

https://obsidian.md/
https://github.com/pabloagn/blog/tree/master/version-control
https://github.com/pabloagn/blog/tree/master/version-control
https://pabloagn.com/technologies
https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/
https://github.com/pabloagn/blog/tree/master/version-control/what-are-github-gists-and-how-to-use-them
https://gist.github.com/pabloagn/29b071b8e1c6bd83d9aea39a537ec931
https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/#appendix

Use cases
There are multiple use cases for GitHub Gists. Because of its versatility and simplicity:

How to use GitHub Gists?
1. Creating a new gist
We can create a new gist by heading to the GitHub Gists homepage:

References•

Copyright•

§

We can use them for quickly sharing code snippets with other people.•

We can embed them in our website, which a conventional GitHub repository does not allow.•
We can use an HTML embed link, and the snippet will automatically display along with a code
window. It is worth mentioning that any update in the gist will directly reflect on the embed.

•

They're also supported by practically every content management software (Medium even has a
dedicated interface for them).

•

We can use them to share annotations in Markdown.•

We can use them to display tabular data using a .csv extension. These will render as actual tables when
embedded.

•

§

We can then define a gist description. This is equivalent to the repository description field on GitHub.•

We must also include a file name with its extension for Gists to be able to provide syntax highlighting and
proper formatting.

•

Then, we can input the gist content.•

From there, we can choose to create a secret gist or a public gist. We can change this later in the settings, as
with conventional GitHub repositories.

•

We can have multiple files belonging to the same gist. We can add more files by using the Add files button.•

https://gist.github.com/

Figure 1. Creating A New Gist From The GitHub Gists Homepage

We can view our created gists by clicking on View your gists:

Figure 2. View Your Gists

From there, we can:

Managing GitHub Gists using VS Code
VS Code has an extension for GitHub Gists management written in TypeScript. It adds several valuable
functionalities, such as creating & managing gists, inserting text fragments from gists, and more.

We can get started by going into VS Code, heading to extensions, and looking for Gist. We can then install the
Gist extension by Ken Howard:

Display the gist as well as any comments.•

Edit, delete or star the gist.•

Create an embed link and use it in any content creation platform.•

Create a share link which can be sent to anyone.•

Create an HTTPS link for cloning the repo.•

Create an SSH link for cloning the repo.•

Download to GitHub Desktop.•

Download as .zip file.•

§

https://marketplace.visualstudio.com/items?itemName=kenhowardpdx.vscode-gist

Figure 3. Gist VS Code Extension

Upon installation, we will authenticate our profile with GitHub by creating a Gist profile, but first, we need to
create a new GitHub Personal Access token:

We will need to save this token somewhere safe (and clearly not in any Public Repository; otherwise, the token
will deactivate automatically) since we cannot see it again.

We will then go back to VS Code and select Create Profile . We will select a Common profile:

Figure 4. Create A New Gist Profile In VS Code

We will then input the key we generated, press enter , create a Profile Name, and press enter again.

To create and track a new gist from VS Code, we can:

Upon creation, we will receive a confirmation message and will be able to view our newly created gist in the
browser.

The best thing is that we can update our gist at any time by simply inputting additional code and saving the
document (most of the time, it even autosaves the content, so it practically updates as we type). The Gist
extension will handle the commit & push process for us.

Head to GitHub.•

Select the Profile icon.•

Select Settings.•

Go to the Developer Settings section at the bottom of the left panel.•

Select Personal Access Tokens.•

Generate a new Personal Access Token.•
Specify a Token description.•

Specify Expiration.•

On Selected Scopes, check the gist option only.•

Select Generate token.•

Open a new blank document.•

Input our snippet.•

Open the command palette by typing Ctrl + Shift + p or f1 (Windows).•

Search for the Create New Gist command.•

Input our gist name along with the file extension.•

Input our gist description.•

Decide if our gist will be Public or Secret.•

https://github.com/

One thing to remember is that when we create a new gist from an existing file, that file will not become the gist;
instead, the extension will copy it and create a new gist in return.

If we would like to open a gist from within VS Code, we can open the command palette and select the Open

Gist command. The extension will create a temporary file on C:\Users\username\AppData\Local\Temp .

Below is a complete list of commands we can use:

We can also change default Public or Secret gists and current profile settings.

Examples
We will be reviewing four examples. They can be consulted in the example-gists-1.py gist. Outputs for each
case can be found in the Appendix section.

1. Creating a Gist for authoring using docstrings
As mentioned earlier, we can create a new gist containing a specific docstring and add it to any file.

We will start by creating a new file in VS Code and populate it with the following:

Code

We will create a new gist by going to the command palette and executing the GIST: Add file command.

We can use the following attributes:

We can confirm that our gist was created by visualizing it on the browser.

GIST: Create New Gist

GIST: Open Gist

GIST: Open Favorite Gist

GIST: Delete Gist

GIST: Delete File

GIST: Add File

GIST: Open Gist In Browser

GIST: Insert Text From Gist File

§

"""

Created on WEEKDAY MTH DAY HH:MM:SS YYYY

@author: Our Name

GitHub: Our GitHub URL

Website: Our Website URL

Contact: Contact Information

"""

Name: authoring-docstring.py•

Description: Authoring docstring containing date, author, GitHub URL, Website URL and contact
information

•

Type: Secret•

https://gist.github.com/pabloagn/29b071b8e1c6bd83d9aea39a537ec931
https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/#appendix

We can then create a new file in VS Code named authored-script.py , open the command palette, execute the
Insert Text From Gist File command, choose our authoring-docstring.py gist, and the text is inserted into

our new document.

This can be further automated by assigning custom keymaps to the command used.

For the output example, refer to the Appendix, example-gists-1.py .

2. Creating a code snippet embed
We can directly embed a script to our website using gists. The embed renders in a code window and is updated
whenever we commit changes to our gist. We will start by creating a new blank file on VS Code and naming it
embed-script.py .

We will then import our newly created authoring docstring by going to the command palette, executing the
Insert Text From Gist File command and selecting our authoring-docstring.py gist.

Next, we can define a simple function which will accept two arguments as inputs and return a new object:

Code

Output

def myFun(my_list):

 '''

 Parameters

 my_list : list

 Contains a set of integer numbers.

 Returns

 sum_of_nums : int

 The sum of the numbers inside my_list.

 '''

 print(f'List contains {len(my_list)} numbers.')

 sum_of_nums = 0

 for i in my_list:

 sum_of_nums += i

 print(f'Sum of numbers is {sum_of_nums}.')

 return sum_of_nums

my_list = [1, 2, 3, 4, 5]

myFun(my_list)

List contains 5 numbers.

Sum of numbers is 15.

https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/#appendix

Now that we know that our function works as expected, we can create a new gist by opening the command
palette and executing the GIST: Create New Gist command with the following parameters:

It is important to set our new gist as Public. Otherwise, we won't be able to embed it.

We can either click the Open Gist on Browser button, use the GIST: Open Gist in Browser command, or head to
our GitHub Gists homepage, where we will see our newly created gist. We will now copy the embed URL into
our website post using an HTML code block.

For the output example, refer to the Appendix, example-gists-2.py .

3. Creating a tabular data snippet embed
Gists let us include a .csv tabular file. When uploaded to GitHub Gists, the snippet renders into an actual table
with exciting properties, as we will see in this example.

We will start by creating a new blank file on VS Code and naming it tabular-data.csv . We will then populate
our table with four columns and ten entries:

Code

We will create a new gist by using the GIST: Create New Gist command with the following parameters:

We can then open our gist in a browser. When a gist containing tabular data is generated, it's rendered as an
actual table. We can look for values using the Search this file filter. Finally, we can copy the embed URL and
add it to our website using an HTML code block.

Unfortunately, the search functionality is apparently unavailable on embeds and is limited to the GitHub Gists
page (maybe we're missing something, and this can actually be done).

For the output example, refer to the Appendix, example-gists-3.csv .

4. Creating a Markdown snippet embed

Name: embed-script.py•

Description: A simple function that adds all elements of a list•

Type: Public•

Name,Surname,Age,Occupation

Godfrey,Hazel,40,Dancer

Chloe,Evan,15,Poet

Charles,Dickens,210,Writer

Marcy,Zak,32,Nurse

Leo,Tolstoy,195,Writer

Calista,Harve,25,Nurse

Sebastian,Duane,32,Musician

Oscar,Wilde,169,Writer

Mandalyn,Gabby,12,Student

Mia,Natasha,1,Toddler

Name: tabular-data.csv•

Description: A sample of random people•

Type: Public•

https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/#appendix
https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/#appendix

Gists support virtually any programming language, including markup languages such as Markdown.

We will start by creating a new blank file on VS Code and naming it markdown-document.md . We will then insert
some markdown code on our document:

Code

We will create a new gist by using the GIST: Create New Gist command with the following parameters:

We can then open our gist in a browser. When a gist containing Markdown formatting is generated, it's
automatically rendered. Finally, we can copy the embed URL and add it to our website using an HTML code
block.

For the output example, refer to the Appendix, example-gists-4.md .

Markdown

A brief introduction

Markdown is a lightweight markup language used for creating formatted text. It was created in
2004 by John Gruber & Aaron Swartz and has been widely adopted by various document-creation
software applications. Markdown accepts basic markup syntax; depending on the application, it
supports extended syntax for more advanced formatting.

Markdown supports multiple elements such as:

- Headers from H1 up to H6

- Paragraph body

- Unordered lists

- Ordered lists

- Inline code

- Code snippets

- Many other elements

Markdown also supports more advanced formatting, such as:

1. Diagramming

2. Topographic objects

3. LaTeX Code

Markdown can also include images:

![alt text](https://raw.githubusercontent.com/pabloagn/digital-assets/master/markdown-cheatsheet-
asset-1.jpg "Digital Asset Inline")

Markdown is amazing

We could keep on mentioning Markdown capabilities, but we would not end.

Instead, we can consult the [Markdown Documentation]
(https://github.com/pabloagn/documentation/blob/master/writing-and-
formatting/markdown.md#markdown), which includes all of the beforementioned, plus more.

Name: markdown-document.csv•

Description: An introduction to Markdown•

Type: Public•

https://pabloagn.com/technologies/markdown/
https://pabloagn.com/blog/what-are-github-gists-and-how-to-use-them/#appendix

Formatting gists using CSS
A nice feature is that we can format our Markdown code or any other code snippet inside a gist embed by using
CSS code.

For this section, we will use CodePen, a web-based social development environment for front-end designers and
developers.

We can head to CodePen.io, create a new Pen, and enclose our embed link in a <div> :

Code

We can then define some variables to help us representing colors:

Code

We can then set a fixed width and center the contents inside our <div> using CSS:

Code

Now that we have our layout ready, we can begin styling different selectors. Gists have one main class, .gist ,
from where we can start. We can then select further sub-classes depending on what we're trying to change:

Code

<div class="gist-container">

 <script src="our-embed-url-1"></script>

 <script src="our-embed-url-2"></script>

 <script src="our-embed-url-3"></script>

</div>

:root

{

 --all-text-white: #f2f2f2;

 --code-background: #1b1e28;

}

.gist-container

{

 width: 40%;

 margin: auto;

}

https://codepen.io/

Although it's generally bad practice, we need to use the !important property for some selectors since their style
is inherited from the default GitHub Gists theme and thus overwritten. We must remember this fact carefully if
we're working with a more extensive CSS sheet.

This process requires tinkering and a browser inspector to select the appropriate classes. Still, the good thing is
that some repositories and gists already contain nice-looking templates and fragments. Below are a few
examples:

This was just a sample of what can be done; a complete dark mode CSS implementation, including code
snippets, Markdown and .csv tables, can be found on the github-gists-formatting gist. The gist also includes
HTML code for giving structure.

Pens used in this section can be found here.

Conclusions
We have reviewed what gists are, how to create different types of gists, how to embed them into our website and
how to format them using simple HTML & CSS code. As we can see, gists are extremely simple yet powerful
and can be used for many applications. They are supported in virtually any content management software and
provide a way to showcase code snippets, tables and other types of content without requiring any knowledge of
web development.

/* Gist Background */

.gist

{

 background: transparent !important;

}

/* Meta Bottom tag */

.gist .gist-meta

{

	 color: var(--all-text-white) !important;

	 background-color: var(--code-background) !important;

	 border-radius: 0 0 6px 6px !important;

}

.gist .gist-file

/* Box Border Color */

{

 border-color: var(--table-borders) !important;

 filter: drop-shadow(5px 5px 10px rgba(26, 26, 26, 0.2));

}

lonekorean / gist-syntax-themes (This was the repository used as a base to generate the complete style
sheet for this example)

•

adimancv/css_dark_mode_gist_embed_code.css•

just-jeb/embed-gist-dark-theme.css•

§

https://gist.github.com/pabloagn/a5819eed79f3af22fc51c0f444c6ef48
https://codepen.io/pabloagn/pen/GRBYMQE
https://github.com/lonekorean/gist-syntax-themes
https://gist.github.com/adimancv/eb2f4b46d3c95e6b8fe4dd52375236b2
https://gist.github.com/just-jeb/27d97d675c7d21ed441dd1458f72cb4a

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

§

GitHub Gists, Documentation•

jnrbsn/better-gist-styles.css•

wataru420/compressed.css•

§

https://docs.github.com/en/rest/gists?apiVersion=2022-11-28
https://gist.github.com/jnrbsn/578379/d443a558d060e40744e5d5d9a21c853942ff3ca7
https://gist.github.com/wataru420/2048287

