
Polars: A Lightning-Fast DataFrame Library for Python
and Rust

Made withMade with ObsidianObsidian

TypeType deep-divedeep-dive

CategoryCategory data-sciencedata-science

TechnologiesTechnologies PythonPython

WebsiteWebsite Post LinkPost Link

Of all the libraries belonging to any Data Scientist's toolbox, Pandas may be the most important one; it's built
on top of the NumPy package and provides data structures and methods tailored for data manipulation and
analysis with a syntax similar to SQL queries.

The thing about Pandas is that it does not support parallelization natively, thus limiting its computation
capabilities; some Pandas tasks can be parallelized by using Dask or other libraries, but this requires external
handling and is not always the best solution.

Additionally, Pandas does not support lazy execution; this means that the code is run directly, and its results are
returned immediately, which can result in running unnecessary code.

All these aspects make Pandas still attractive for relatively small computation tasks but somewhat unattractive
for more extensive data set manipulation.

Meet Polars , a DataFrame library built on Rust from the ground up, presented in two flavours: A Python and
a Rust API.

In this Deep Dive, we'll review Polars in detail using the Polars API for Python . We'll discuss its
installation, core functionalities, basic syntax, some data transformations, reading and writing from and to
different file formats, and more.

We'll be using Python scripts which can be found in the Deep Dive Repo.

Table of Contents

§

§

Preface•

Preparing our environment•

Polars data structures•

Eager execution•

Lazy execution•

Reading and writing multiple file formats•
Writing•

Reading•

Basic operations•
Exploratory methods•

https://obsidian.md/
https://pabloagn.com/deep-dives/
https://pabloagn.com/categories/data-science/
https://pabloagn.com/technologies/
https://pabloagn.com/deep-dives/polars-a-lightning-fast-dataframe-library-for-python-and-rust/
https://www.dask.org/
https://github.com/pabloagn/deep-dives/tree/master/data-science/polars-a-lightning-fast-dataframe-library-for-python-and-rust

Preface
Polars is a DataFrame library/in-memory query engine written in Rust . It's built upon the safe Arrow2

implementation of the Apache Arrow specification, enabling efficient resource use and processing performance.
By doing so, it also integrates seamlessly with other tools in the Arrow ecosystem.

Unlike tools such as Dask , which try to parallelize existing single-threaded libraries like Numpy and Pandas ,
Polars is designed for parallelization, resulting in breakneck processing speeds by default.

A groupby task performed on a 5GB dataset resulted in the following execution times:

Method Version Date Executed Execution Time [s]

DataFrames.jl 1.1.1 May 15, 2021 9

Polars 0.8.8 June 30, 2021 11

cuDF 0.19.2 May 31, 2021 17

Spark 3.1.2 May 31, 2021 34

Pandas 1.2.5 June 30, 2021 70

Arrow 4.0.1 May 31, 2021 212

Table 1. Groupby Execution Times On 5 GB Data Set, H2O AI

A join task performed on a 5GB dataset resulted in the following execution times:

Method Version Date Executed Execution Time [s]

Polars 0.8.8 June 30, 2021 43

Spark 3.1.2 May 31, 2021 332

DataFrames.jl 1.1.1 June 3, 2021 349

Pandas 1.2.5 June 30, 2021 628

cuDF 0.19.2 May 31, 2021 internal error

Arrow 4.0.1 May 31, 2021 not yet implemented

Indexing, selecting and filtering•
Select•

Filter•

Filtering with multiple conditions•

Filtering with advanced operators•

Aggregations•

Joins•

Concatenations•

Creating new columns•

Multithreaded execution•

Schemas and data types•

Conclusions•

References•

§

https://pabloagn.com/technologies/rust/
https://github.com/jorgecarleitao/arrow2
https://arrow.apache.org/docs/format/Columnar.html
https://h2oai.github.io/db-benchmark/

Table 2. Join Execution Times On 5 GB Data Set, H2O AI

The full benchmark can be consulted here.

Polars for Python exposes a complete Python API, including the full set of features to manipulate
DataFrames using an expression language similar to Pandas . It also has two different APIs:

With eager execution, the code is run as soon as it's encountered; results are returned immediately. With lazy
execution, the code is run until the result is required.

Preparing our environment
Polars is offered as a Python and a Rust package. In this segment, we'll only review the Python flavour; in

a future iteration, we might review its Rust counterpart.

We're going to use the Polars package. More information about this package can be found in the Polars

Official Web Page, in the Polars GitHub Repo, or the Polars Official Documentation for Python .

If we don't yet have it, we can install it:

Code

We will also install some additional libraries, which are not directly related to Polars but will be helpful for
some bonus content ahead.

Code

The convention is to import Polars using the pl alias, but we can select any alias we find more convenient.
For our case, we'll be using the preferred alias. We'll also import some other modules which will come in handy:

Code

A lazy API•

An eager API•

§

pip install polars

pip install geopandas

pip install geopy

pip install folium

https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://www.pola.rs/
https://github.com/pola-rs/polars
https://pola-rs.github.io/polars/py-polars/html/reference/index.html

As of the writing of this article, the Polars version downloaded is 0.16.9. We can confirm this by using the
__version__ method:

Code

We will also use the Airbnb Prices in European Cities data set by The Devastator. The complete set has 20 files,
one for each European city.

We can first create a new folder, datasets , inside our project folder. We can then download the entire set as a
.zip file, extract its contents, and move them to the newly created folder.

The datasets folder will contain 20 files weighing 10.2MB in total.

We can also create an outputs directory, where we will store our written files:

Code

We will define both directories as variables inside our script:

Code

With everything ready, we can now proceed to load our data sets and perform some basic operations.

Polars data structures
Similar to Pandas , Polars has two main data structures:

import polars as pl

import pandas as pd

import numpy as np

import pyarrow

import os

import glob

from datetime import datetime

Import bonus modules

import folium

from folium.plugins import FastMarkerCluster

print(pl.__version__)

mkdir datasets, outputs

rDir = 'datasets/'

wDir = 'outputs/'

§

Series : One-dimensional.•

https://www.kaggle.com/datasets/thedevastator/airbnb-prices-in-european-cities
https://www.kaggle.com/thedevastator

We can define a series object by enclosing the values in square brackets [] :

Code

Output

We can define a DataFrame object by enclosing our set of entries in curly brackets {} . Each dictionary key
will correspond to a column name and each value to the column entries.

Code

Output

DataFrame (With a LazyFrame variation for lazy execution): Can be one or two-dimensional.•

Declare series

se = pl.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

Check type

type(se)

Print object

se

polars.internals.series.series.Series

shape: (10,)

Series: '' [i64]

[

	 1

	 2

	 3

	 4

	 5

	 6

	 7

	 8

	 9

	 10

]

Declare DataFrame

df = pl.DataFrame({'name' : ['Jack', 'Charles', 'Clarice'],

 'surname' : ['Kerouac', 'Bukowski', 'Lispector'],

 'birth' : [datetime(1922, 3, 12),

 datetime(1920, 8, 16),

 datetime(1920, 12, 10)]

 })

Print object

df

Eager execution
We will start by executing Polar commands using eager execution. This is the default method and will run our
code upon calling.

We can read one of our downloaded .csv files:

Code

This method will read our file into a polars.DataFrame object:

Code

Output

Lazy execution
As mentioned earlier, lazy operations don't execute until we call collect . This allows Polars to
optimize/reorder the query, which may lead to faster queries or fewer type errors.

There are two main ways for lazy-reading a .csv file in Polars :

shape: (3, 3)

+---------+-----------+---------------------+

| name | surname | birth |

| --- | --- | --- |

| str | str | datetime[μs] |

+===+

| Jack | Kerouac | 1922-03-12 00:00:00 |

| Charles | Bukowski | 1920-08-16 00:00:00 |

| Clarice | Lispector | 1920-12-10 00:00:00 |

+---------+-----------+---------------------+

§

df = pl.read_csv(os.path.join(rDir, 'berlin_weekends.csv'))

type(df)

polars.internals.dataframe.frame.DataFrame

§

Using pl.scan_csv() .•

Using pl.read_csv().lazy() .•

Both methods perform the same operation; the main difference is that the first lazy-loads by default, while the
second includes the .lazy() method to specify that we're lazy-loading.

We can read a .csv file using either of the two methods:

Code

As opposed to eager execution, this method will read our file into a polars.LazyFrame object:

Code

Output

If we try to get the head of our object, we will actually be presented with its memory location, and not the first
records.

Code

Output

We can display the object graph, which is a diagram of how the execution will take place upon calling collect .

Code

Output

Reading a csv file using pl.scan_csv()

df_s = pl.scan_csv(os.path.join(rDir, 'berlin_weekends.csv'))

Reading a csv file using pl.read_csv().lazy()

df_l = pl.read_csv(os.path.join(rDir, 'berlin_weekends.csv')).lazy()

type(df_s), type(df_l)

(polars.internals.lazyframe.frame.LazyFrame,

 polars.internals.lazyframe.frame.LazyFrame)

df_s.head()

<polars.LazyFrame object at 0x22F0CCFFF50>

df_s.show_graph()

[CSV SCAN datasets/berlin_weekends.csv;
π */20;

σ -]

Figure 1: Execution Plan Graph For Lazy DataFrame Reading

We can include additional transformation steps to our object:

Code

And view its graph again:

Code

Output

SORT BY [col("metro_dist")]

FAST_PROJECT: [metro_dist]

CSV SCAN datasets/berlin_weekends.csv;
π 2/20;

σ (col("bedrooms")) >= (2i6...

Figure 2: Execution Plan Graph For Several Lazy Transformations

We can see that the additional steps were added and are ready to be executed upon collecting our object.

We can also view this same information in text format:

Code

df_s_filtered = (df_s.filter(pl.col("bedrooms") >= 2).

 select(pl.col("metro_dist")).

 sort("metro_dist")

)

df_s_filtered.show_graph()

Output

Which is, of course, less neat than the previous graphical method.

We can finally call collect() :

Code

Output

Reading and writing multiple file formats
1. Writing
As with Pandas , Polars can write to multiple file formats, the most common ones being:

df_s_filtered.describe_optimized_plan()

'SORT BY [col("metro_dist")]\n FAST_PROJECT: [metro_dist]\n CSV SCAN
datasets/berlin_weekends.csv\n PROJECT 2/20 COLUMNS\n SELECTION: [(col("bedrooms")) >=
(2i64)]\n'

df_s_filtered.collect()

shape: (124, 1)

┌────────────┐

│ metro_dist │

│ --- │

│ f64 │

╞════════════╡

│ 0.088494 │

│ 0.110308 │

│ 0.12578 │

│ 0.131641 │

│ ... │

│ 2.87661 │

│ 4.512803 │

│ 5.324563 │

│ 9.598773 │

└────────────┘

§

.avro•

.csv•

.ipc•

To illustrate some examples, we will read our entire weekdays data set into a DataFrame object, and then write
to the file formats above:

Code

We should end up with a Polars DataFrame object of shape (25500, 20) :

Output

Let us explain in detail by writing the pseudocode for the steps performed:

.json•

.parquet•

Read the entire weekdays data set

weekdays_files = glob.glob(os.path.join(rDir, "*weekdays.csv"))

weekdays_list = []

for filename in weekdays_files:

 city = re.search('datasets\\\(.*)_weekdays.csv', filename).group(1)

 df_weekdays = (pl.read_csv(filename).

 drop(['']).

 with_columns(pl.lit(city).

 alias('city'))

)

 weekdays_list.append(df_weekdays)

df_weekdays = pl.concat(weekdays_list,

 rechunk = True)

df_weekdays.shape

round(df_weekdays.estimated_size(unit='mb'), 4)

(25500, 20)

3.7998

Declare a list of weekday data set paths using the glob.glob() method.•

Create an empty DataFrame list weekdays_list .•

Iterate over the list.•

Extract the city using RegEx.•

Read each file using pl.read_csv(filename) .•

Drop the first column, which represents the index.•

Assign a new column to each DataFrame object containing its city name using
pl.lit(city).alias('city') .

•

Append each DataFrame to the DataFrame list weekdays_list .•

Concatenate all DataFrames in weekdays_list , passing rechunk = True as argument (make sure that all
data is in contiguous memory).

•

Get the object's shape.•

Now, we can write our DataFrame to different file formats. The general syntax is df.write_formatname(dir,

args) :

Code

2. Reading
Conversely, Polars can read all the file formats we wrote earlier. We'll skip the .csv file format since we
already reviewed it. For the other cases, we can use the pl.read_formatname() syntax:

Code

We can confirm that our files were read successfully by selecting a given column and getting each object's head:

Code

Output

Get the object's estimated size in mb rounded to 4 decimal places.•

Write to csv

df_weekdays.write_csv(os.path.join(wDir, 'weekdays.csv'))

Write to Parquet non-partitioned

df_weekdays.write_parquet(os.path.join(wDir, 'weekdays.parquet'))

Write to Avro

df_weekdays.write_avro(os.path.join(wDir, 'weekdays.avro'))

Write to JSON

df_weekdays.write_json(os.path.join(wDir, 'weekdays.json'))

Write to csv

df_weekdays_csv = pl.read_csv(os.path.join(wDir, 'weekdays.csv'))

Write to Parquet non-partitioned

df_weekdays_parquet = pl.read_parquet(os.path.join(wDir, 'weekdays.parquet'))

Write to Avro

df_weekdays_avro = pl.read_avro(os.path.join(wDir, 'weekdays.avro'))

Write to JSON

df_weekdays_json = pl.read_json(os.path.join(wDir, 'weekdays.json'))

df_weekdays_csv['realSum'].head(10)

df_weekdays_parquet['realSum'].head(10)

df_weekdays_avro['realSum'].head(10)

df_weekdays_json['realSum'].head(10)

shape: (10,)

Series: 'realSum' [f64]

[

	 194.033698

	 344.245776

	 264.101422

	 433.529398

	 485.552926

	 552.808567

	 215.124317

	 2771.307384

	 1001.80442

	 276.521454

]

shape: (10,)

Series: 'realSum' [f64]

[

	 194.033698

	 344.245776

	 264.101422

	 433.529398

	 485.552926

	 552.808567

	 215.124317

	 2771.307384

	 1001.80442

	 276.521454

]

shape: (10,)

Series: 'realSum' [f64]

[

	 194.033698

	 344.245776

	 264.101422

	 433.529398

	 485.552926

	 552.808567

	 215.124317

	 2771.307384

	 1001.80442

	 276.521454

]

shape: (10,)

Series: 'realSum' [f64]

[

	 194.033698

	 344.245776

	 264.101422

	 433.529398

Basic operations
1. Exploratory methods
We can use a wide range of exploratory methods to take a first look at our data. We can display our DataFrame's
shape, columns and first ten entries for the realSum column:

Code

Output

	 485.552926

	 552.808567

	 215.124317

	 2771.307384

	 1001.80442

	 276.521454

]

§

df.shape

df.columns

df['realSum'].head(10)

df['realSum'].tail(10)

(1200, 20)

['',

 'realSum',

 'room_type',

 'room_shared',

 'room_private',

 'person_capacity',

 'host_is_superhost',

 'multi',

 'biz',

 'cleanliness_rating',

 'guest_satisfaction_overall',

 'bedrooms',

 'dist',

 'metro_dist',

 'attr_index',

 'attr_index_norm',

 'rest_index',

 'rest_index_norm',

 'lng',

 'lat']

shape: (10,)

Series: 'realSum' [f64]

[

	 185.799757

	 387.49182

	 194.914462

	 171.777134

	 207.768533

	 162.428718

	 521.875292

	 155.417407

	 171.777134

	 147.237543

]

shape: (10,)

Series: 'realSum' [f64]

[

	 162.428718

	 231.840703

	 127.605871

	 175.049079

	 156.585959

	 84.83687

	 134.617182

	 134.617182

	 160.091614

	 359.680284

]

We can notice some interesting details:

We can also perform a statistical description:

Code

Output

If we want to take a random entry sample, we can do so:

Code

Output

The df.columns method returns a list , as opposed to Pandas which returns a
pandas.core.indexes.base.Index object.

•

The df.head() method returns a polars.internals.series.series.Series object, similar to Pandas , which
returns a pandas.core.series.Series .

•

The df.head() method also returns the column data type, which in the case of realSum is float64 .•

df.describe()

+------------+------------+-------------+

| describe | column_0 | realSum |

| --- | --- | --- |

| str | f64 | f64 |

+=======================================+

| count | 1200.0 | 1200.0 |

| null_count | 0.0 | 0.0 |

| mean | 599.5 | 249.252516 |

| std | 346.554469 | 240.584178 |

| min | 0.0 | 64.971487 |

| max | 1199.0 | 5856.081144 |

| median | 599.5 | 192.460503 |

+------------+------------+-------------+

...

df.sample(5)

2. Indexing, selecting and filtering
Polars offers two main ways of indexing or filtering a DataFrame:

The square brackets [] method works similarly to Pandas but has limited usage in Polars ; it only works in
eager mode, and operations on multiple columns are not parallelized.

This method is recommended in the following cases:

2.1 Select
We can select the realSum column:

Code

Output

+-----+------------+-----------------+

| | realSum | room_type |

| --- | --- | --- |

| i64 | f64 | str |

+====================================+

| 636 | 139.29139 | Private room |

| 13 | 577.498364 | Entire home/apt |

| 240 | 291.203141 | Entire home/apt |

| 15 | 127.605871 | Private room |

| 707 | 755.819389 | Private room |

+-----+------------+-----------------+

Using square brackets [] .•

Using the select and filter methods.•
The select method is used to select columns.•

The filter method is used to select rows.•

To extract a scalar value from a DataFrame .•

To convert a DataFrame column to a Series .•

For exploratory data analysis and to inspect some rows and/or columns.•

df.select(pl.col("realSum"))

We can see that the pl.col() method was used; this method accepts one main parameter, name , where we can
directly specify the column name or include a regular expression. Regular expressions should start with ^ and
end with $.

We can use a regular expression to select all the columns containing room :

Code

Output

Three columns were returned, which coincides with the expected columns from our df.columns output.

To select every column or exclude a column, we can use the following:

Code

┌────────────┐

│ realSum │

│ --- │

│ f64 │

╞════════════╡

│ 185.799757 │

│ 387.49182 │

│ 194.914462 │

│ 171.777134 │

│ ... │

│ 134.617182 │

│ 134.617182 │

│ 160.091614 │

│ 359.680284 │

└────────────┘

df.select(pl.col("^room.*$"))

┌─────────────────┬─────────────┬──────────────┐

│ room_type ┆ room_shared ┆ room_private │

│ --- ┆ --- ┆ --- │

│ str ┆ bool ┆ bool │

╞═════════════════╪═════════════╪══════════════╡

│ Private room ┆ false ┆ true │

│ Entire home/apt ┆ false ┆ false │

│ Private room ┆ false ┆ true │

│ Private room ┆ false ┆ true │

│ ... ┆ ... ┆ ... │

│ Private room ┆ false ┆ true │

│ Private room ┆ false ┆ true │

│ Entire home/apt ┆ false ┆ false │

│ Entire home/apt ┆ false ┆ false │

└─────────────────┴─────────────┴──────────────┘

To select based on the dtype of the columns:

Code

Output

2.2 Filter
We can also filter by bedrooms using a boolean comparison, select the metro_dist column, sort it ascendingly
and get the first five entries:

Code

Output

Selecting all

df.select(pl.col("*"))

Selecting all except

df.select(pl.exclude("realSum"))

df.select(pl.col(pl.Int64))

shape: (1200, 5)

+------+-----------------+-------+-----+----------+

| | person_capacity | multi | biz | bedrooms |

| --- | --- | --- | --- | --- |

| i64 | i64 | i64 | i64 | i64 |

+===+

| 0 | 2 | 0 | 0 | 1 |

| 1 | 6 | 0 | 1 | 2 |

| 2 | 5 | 0 | 1 | 1 |

| 3 | 2 | 0 | 0 | 1 |

| ... | ... | ... | ... | ... |

| 1196 | 4 | 1 | 0 | 1 |

| 1197 | 4 | 1 | 0 | 1 |

| 1198 | 3 | 0 | 0 | 1 |

| 1199 | 4 | 1 | 0 | 1 |

+------+-----------------+-------+-----+----------+

(df.filter(pl.col("bedrooms") >= 2).

 select(pl.col("metro_dist")).

 sort("metro_dist").

 head(5)

)

Similar to Pandas , the execution order of a statement is from top to bottom, meaning it will filter the bedrooms

column first and get the head of the resulting object last.

2.3 Filtering with multiple conditions
We want to look for a clean place hosting two people with a single bedroom. We want to sort descending by
cleanliness_rating and be able to identify the site by its GPS coordinates.

Let us filter rooms with person_capacity = 2, bedrooms = 1, and sorting descending by cleanliness_rating :

Code

Output

┌────────────┐

│ metro_dist │

│ --- │

│ f64 │

╞════════════╡

│ 0.088494 │

│ 0.110308 │

│ 0.12578 │

│ 0.131641 │

│ 0.135447 │

└────────────┘

berlin_places = (df.filter((pl.col("person_capacity") == 2) &

 (pl.col("bedrooms")) == 1).

 groupby(['lat', 'lng'], maintain_order=True).

 agg(pl.col("cleanliness_rating").mean()).

 sort('cleanliness_rating', descending = True)

)

┌──────────┬──────────┬────────────────────┐

│ lat ┆ lng ┆ cleanliness_rating │

│ --- ┆ --- ┆ --- │

│ f64 ┆ f64 ┆ f64 │

╞══════════╪══════════╪════════════════════╡

│ 52.4915 ┆ 13.42344 ┆ 10.0 │

│ 52.47842 ┆ 13.5244 ┆ 10.0 │

│ 52.51229 ┆ 13.45862 ┆ 10.0 │

│ 52.49265 ┆ 13.43842 ┆ 10.0 │

│ ... ┆ ... ┆ ... │

│ 52.49937 ┆ 13.35408 ┆ 6.0 │

│ 52.573 ┆ 13.42254 ┆ 6.0 │

│ 52.49168 ┆ 13.30429 ┆ 5.0 │

│ 52.51526 ┆ 13.46914 ┆ 4.0 │

└──────────┴──────────┴────────────────────┘

As we move further, we can see a pattern in Polars syntax; it's very similar to SQL's while simultaneously
being related to Pandas . Polars almost writes as a declarative language, with each transformation step
exposing clear steps. Clarity increases if we separate each statement in a newline continuation.

Since we don't have the actual addresses for the places we would like to study, we will use the geolocation
libraries we installed earlier to visualize these coordinates in a folium map:

Code

Output

Figure 3: Berlin Place Coordinates In An HTML Folio Map

It seems like we should be looking for places near the Neukölln and Friedrichshain-Kreuzberg boroughs.

Multiple filtering

berlin_places = (df.filter((pl.col("person_capacity") == 2) &

 (pl.col("bedrooms")) == 1).

 sort('cleanliness_rating', descending = True).

 head(10)

)

Creating a folium map, initializing view with first item

berlin_map = folium.Map(

 location=[berlin_places[0]['lat'][0], berlin_places[0]['lng'][0]],

 tiles='cartodbpositron',

 zoom_start=12,

)

Adding remaining coordinates

FastMarkerCluster(data=list(zip(berlin_places['lat'], berlin_places['lng']))).add_to(berlin_map)

Export map to HTML file and visualize using any browser

berlin_map.save(os.path.join(wDir, 'berlin_places.html'))

2.4. Filtering with advanced operators
We can make use of more advanced filtering operators to narrow our search:

Code

Output

3. Aggregations
Similar to Pandas , we can use the groupby method to group different columns and perform aggregations using
various functions.

Let us group by room_shared and calculate the average cleanliness_rating for each case:

Code

Filter between range

(df.filter(pl.col("bedrooms").is_between(2, 4)).

 select(pl.col(['bedrooms', 'room_type'])).

 head(5)

)

Filter null values

(df.filter(pl.col("bedrooms").is_null()).

 select(pl.col(['bedrooms', 'room_type'])).

 head(5)

)

shape: (5, 2)

+----------+-----------------+

| bedrooms | room_type |

| --- | --- |

| i64 | str |

+============================+

| 2 | Entire home/apt |

| 2 | Entire home/apt |

| 3 | Entire home/apt |

| 2 | Private room |

| 2 | Entire home/apt |

+----------+-----------------+

shape: (0, 2)

+----------+-----------+

| bedrooms | room_type |

| --- | --- |

| i64 | str |

+======================+

+----------+-----------+

Output

It appears that shared rooms are slightly behind in terms of cleanliness.

It's important to note that we're not using Python's aggregation methods; the methods are Polars

implementations, meaning they're optimized for working with Polars DataFrame objects.

4. Joins
Polars supports several join strategies accessible by specifying the strategy argument.

The main strategies are:

We can perform a join operation:

Code

(df.groupby(['room_shared'], maintain_order=True).
 agg(pl.col("cleanliness_rating").mean())

)

┌─────────────┬────────────────────┐

│ room_shared ┆ cleanliness_rating │

│ --- ┆ --- │

│ bool ┆ f64 │

╞═════════════╪════════════════════╡

│ false ┆ 9.462995 │

│ true ┆ 8.973684 │

└─────────────┴────────────────────┘

inner : Produces a DataFrame that contains only the rows where the join key exists in both DataFrames.•

left : Produces a DataFrame that contains all the rows from the left DataFrame and only the rows from
the right DataFrame where the join key exists in the left DataFrame.

•

outer : Produces a DataFrame that contains all the rows from both DataFrames.•

cross : Performs the cartesian product of the two DataFrames.•

Output

5. Concatenations
While a join operation is most often performed over the horizontal axis, a concat operation is performed
over the vertical axis.

This can help us stack DataFrame objects, given they're of the same dimensions and data types:

Code

Declare dataframes

df_writers = pl.DataFrame(

 {

 'name' : ['Jack', 'Charles', 'Clarice'],

 'surname' : ['Kerouac', 'Bukowski', 'Lispector'],
 'birth' : [datetime(1922, 3, 12),

 datetime(1920, 8, 16),

 datetime(1920, 12, 10)]

 }

)

df_books = pl.DataFrame(

 {

 'name' : ['Jack', 'Charles', 'Clarice'],

 'surname' : ['Kerouac', 'Bukowski', 'Lispector'],
 'book' : ['On The Road',

 'Ham On Rye',

 'The Passion According to G.H.']

 }

)

Join

df_writers = df_writers.join(df_books, on=['name', 'surname'], how="left")

Print result

df_writers

shape: (3, 4)

+---------+-----------+---------------------+-------------------------------+

| name | surname | birth | book |

| --- | --- | --- | --- |

| str | str | datetime[μs] | str |

+===+

| Jack | Kerouac | 1922-03-12 00:00:00 | On The Road |

| Charles | Bukowski | 1920-08-16 00:00:00 | Ham On Rye |

| Clarice | Lispector | 1920-12-10 00:00:00 | The Passion According to G.H. |

+---------+-----------+---------------------+-------------------------------+

Output

It seems like we got a SchemaError . The reason is that despite coming from the same source and having the
same shape, our data sets have different data types in one of their columns, person_capacity . A SchemaError

can represent the same as a TypeError ; the only difference is that Polars uses schemas to define DataFrame
objects.

In order to solve this conflict, we have two options:

Since there are no half-persons, we can proceed with the second option:

Code

We can verify that our operation was performed successfully by getting the unique values for city from our
resulting DataFrame:

Code

Read two different DataFrames

df_berlin = pl.read_csv(os.path.join(rDir, 'berlin_weekends.csv'))

df_vienna = pl.read_csv(os.path.join(rDir, 'vienna_weekends.csv'))

Add city column to each one

df_berlin = (df_berlin.

 with_columns(pl.lit('Berlin').

 alias('city'))

)

df_vienna = (df_vienna.

 with_columns(pl.lit('Vienna').

 alias('city'))

)

Concatenate them on vertical axis

df_berlin_vienna = pl.concat([df_berlin, df_vienna])

SchemaError: cannot vstack: because column datatypes (dtypes) in the two DataFrames do not match
for left.name='person_capacity' with left.dtype=i64 != right.dtype=f64 with
right.name='person_capacity'

Cast person_capacity from df_berlin to float64 data type.•

Cast person_capacity from df_vienna to int64 data type.•

Due to SchemaError, we need to cast data type from column person_capacity

df_vienna = df_vienna.with_columns(pl.col("person_capacity").cast(pl.Int64))

Try concatenation again

df_berlin_vienna = pl.concat([df_berlin, df_vienna])

Output

6. Creating new columns
We already reviewed an example of creating new columns in Polars in the Writing section. The general syntax
for this operation includes the following methods (the alias() method is only required when we're trying to
assign a new column which is the product of an aggregation operation):

We can define a new column based on another object:

Code

Output

(df_berlin_vienna.groupby(['city'], maintain_order=True).

 agg(pl.col('lat').n_unique().

 alias('unique_latitudes')

)

)

shape: (2, 2)

┌────────┬──────────────────┐

│ city ┆ unique_latitudes │

│ --- ┆ --- │

│ str ┆ u32 │

╞════════╪══════════════════╡

│ Berlin ┆ 1076 │

│ Vienna ┆ 1462 │

└────────┴──────────────────┘

with_columns()•

alias()•

Define a numpy array of ones

new_col = np.random.random([len(df)])

Assign new column to dataframe

df = df.with_columns(pl.Series(name="new_col", values=new_col))

We can also define a new column name after some operation such as an aggregation:

Code

Output

It's important to note that alias() is a method belonging to the pl.col() method and not to the DataFrame
object. This makes sense since alias() aims at renaming or giving a name to a given column.

Multithreaded execution
Polars uses an approach called split-apply-combine to process data. Multithreaded execution happens on both

the split and apply phases.

We can describe this process applied to a groupby() operation as follows:

┌──────────┬──────────┬──────────┐

│ lng ┆ lat ┆ new_col │

│ --- ┆ --- ┆ --- │

│ f64 ┆ f64 ┆ f64 │

╞══════════╪══════════╪══════════╡

│ 13.42344 ┆ 52.4915 ┆ 0.414997 │

│ 13.503 ┆ 52.509 ┆ 0.397309 │

│ 13.468 ┆ 52.519 ┆ 0.277131 │

│ 13.47096 ┆ 52.51527 ┆ 0.429678 │

│ ... ┆ ... ┆ ... │

│ 13.53187 ┆ 52.40874 ┆ 0.06139 │

│ 13.53301 ┆ 52.40712 ┆ 0.810651 │

│ 13.70702 ┆ 52.42405 ┆ 0.92665 │

│ 13.691 ┆ 52.37 ┆ 0.853674 │

└──────────┴──────────┴──────────┘

(df.groupby(['room_shared'], maintain_order=True).
 agg(pl.col('cleanliness_rating').mean().

 alias('average_cleanliness')

)

)

shape: (2, 2)

┌─────────────┬─────────────────────┐

│ room_shared ┆ average_cleanliness │

│ --- ┆ --- │

│ bool ┆ f64 │

╞═════════════╪═════════════════════╡

│ false ┆ 9.462995 │

│ true ┆ 8.973684 │

└─────────────┴─────────────────────┘

§

x y

1

2

3

5

4

6

a

a

b

c

b

c

x y

1

2

a

a

x y

3

4

b

b

x y

5

6

c

c

split

x y

3a

x y

7b

x y

11c

apply

x y

3a

7b

11c

combine

Em
ba

rr
as

si
ng

ly
 p

ar
al

le
l

data

Figure 4: Polars Multithreaded Approach

For the hashing operations performed during the split phase, Polars uses a multithreaded lock-free approach
that is illustrated in the following schema:

Data is loaded and contained in a Polars DataFrame object.•

Upon calling a groupby() operation, this DataFrame is split into partitions.• n

The aggregating operation is applied to each partition separately and in parallel.•

All partitions are then combined to build the final return object.•

https://pola-rs.github.io/polars-book/user-guide/dsl/groupby.html

thread 0
x y

1

2

3

5

4

6

a

c

c

a

b

b

[1, 5]

[4, 6]

a

b

[2, 3]c

HASH + BUILD HASHTABLE

HASH

h(x) % 0 == 0

thread 1

[2, 3]ch(x) % 1 == 0

[1, 5]

[4, 6]

a

b

CHEAP COMBINE

Figure 5: Polars Hashing Operations

A multithreaded approach makes execution faster since multiple tasks are being processed simultaneously. That
is not to say that we can use whichever method or function we wish and still be parallelized; if we were to use a
lambda or a custom Python function to apply during a parallelized phase, Polars speed would be capped

running Python code preventing any multiple threads from executing the function.

This is important to remember; if we're looking to maximize efficiency, the idea is to use native Polars

functions and methods whenever possible.

Schemas and data types
As mentioned earlier, Polars works with schemas; the term schema is originally defined in a relational
database context, representing how the data may relate to other tables or data models. In APIs such as PySpark

or Polars , a schema is the data set type definition.

When working with Python, we often do not have to pay attention to the data types since Python is a
dynamically typed language, meaning data type definitions are unnecessary. This applies, of course, when we
have the data types we need; otherwise, we cast the data to their required data types.

Dynamic typing does not mean data types are ignored or not required, but they are inferred upon execution. This
is a resource-intensive task, especially with large data sets. Also, not having a predefined schema can cause data
type errors such as the one we encountered earlier; when we loaded our data sets, Polars inferred the data
types based on the data set values.

Polars supports a wide variety of data types:

§

https://pola-rs.github.io/polars-book/user-guide/dsl/groupby.html

Class Type Description

Numeric Float32 32-bit floating point type.

Numeric Float64 64-bit floating point type.

Numeric Int16 16-bit signed integer type.

Numeric Int32 32-bit signed integer type.

Numeric Int64 64-bit signed integer type.

Numeric Int8 8-bit signed integer type.

Numeric UInt16 16-bit unsigned integer type.

Numeric UInt32 32-bit unsigned integer type.

Numeric UInt64 64-bit unsigned integer type.

Numeric UInt8 8-bit unsigned integer type.

Date /
Time

Date Calendar date type.

Date /
Time

Datetime Calendar date and time type.

Date /
Time

Duration Time duration/delta type.

Date /
Time

Time Time of day type.

Nested List(*args, **kwargs) List.

Nested Struct(*args, **kwargs) Struct.

Other Boolean Boolean type.

Other Binary Binary type.

Other Categorical A categorical encoding of a set of strings.

Other Null Type representing Null / None values.

Other Object Type for wrapping arbitrary Python objects.

Other Utf8 UTF-8 encoded string type.

Other Unknown
Type representing Datatype values that could not be determined

statically.

Table 3: Polars Data Types

To avoid these errors and make processing more efficient, we can use a predefined schema:

Code

https://pola-rs.github.io/polars/py-polars/html/reference/datatypes.html

Output

The problem with predefining a schema upon data set reading is that if a given value does not match the
predefined data type, it will return an error; the dtype=schema argument will not try to cast the elements. It will
only try to set them.

What we can do to solve this issue is load our data set without inferring its schema and then cast all columns
using our schema dictionary:

Code

Define schema

schema = {'' : pl.Int64,

 'realSum' : pl.Float64,

 'room_type' : pl.Utf8,

 'room_shared' : pl.Boolean,

 'room_private' : pl.Boolean,

 'person_capacity' : pl.Int64,

 'host_is_superhost' : pl.Boolean,

 'multi' : pl.Int64,

 'biz' : pl.Int64,

 'cleanliness_rating' : pl.Float64,

 'guest_satisfaction_overall' : pl.Float64,

 'bedrooms' : pl.Int64,

 'dist' : pl.Float64,

 'metro_dist' : pl.Float64,

 'attr_index' : pl.Float64,

 'attr_index_norm' : pl.Float64,

 'rest_index' : pl.Float64,

 'rest_index_norm' : pl.Float64,

 'lng' : pl.Float64,

 'lat' : pl.Float64,

 'strict' : pl.Boolean,

 }

Read dataframe

df = pl.read_csv(os.path.join(rDir, 'vienna_weekends.csv'), dtypes = schema)

ComputeError: Could not parse `4.0` as dtype Int64 at column 'person_capacity' (column number 6).

The current offset in the file is 270 bytes.

You might want to try:

- increasing `infer_schema_length` (e.g. `infer_schema_length=10000`),

- specifying the correct dtype with the `dtypes` argument

- setting `ignore_errors` to `True`,

- adding `4.0` to the `null_values` list.

If we look closely, we included a new parameter, infer_schema_length=0 , which tells Polars that we don't
want an inferred schema. This will set the data type to Utf8 for all columns.

Output

The problem with this approach is that pl.Boolean type casting accepts a capitalized string. Since we have
some columns with their boolean value in lowercase, this method also returns an error.

We can fix this by adding an exception handling specifically for these types of errors:

Code

Whenever an exception is raised, we regenerate the entire column by making a logical comparison against
"true" . This fills our target column with actual boolean values, so we don't have to cast it afterwards.

This, of course, is somewhat problematic in cases when we don't fully know the nature of our data since any
exception will be caught and treated as if it were a pl.Boolean type casting error.

We can do further manipulations and perfect our exception handling, but that is out of the scope of this segment.

When designing a data-loading pipeline, we must account for all these details; otherwise, our program will
underperform and even break.

Conclusions
In this segment, we've gone from zero to Polars ; it's a lot to digest, but the important thing is that we covered
the most relevant functionalities and can extend from here by consulting external resources.

For those already familiar with Pandas , this remarkable cheatsheet covers Polars translations of the most
relevant Pandas operations.

Load Vienna data set without infering schema

df = pl.read_csv(os.path.join(rDir, 'vienna_weekends.csv'), infer_schema_length=0)

Iteratively cast data types

for i, x in schema.items():

 df = df.with_columns(pl.col(i).cast(x), strict = False)

ArrowErrorException: NotYetImplemented("Casting from LargeUtf8 to Boolean not supported")

for i, x in schema.items():

 try:

 df = df.with_columns(pl.col(i).cast(x), strict = False)

 # If we encounter a boolean lowercased column, we need to treat it specially

 except:

 df = df.with_columns(pl.col(i) == 'true')

 df = df.with_columns(pl.col(i).cast(x), strict = False)

§

https://www.rhosignal.com/posts/polars-pandas-cheatsheet/

One disadvantage of Polars is the lack of community discussion; Pandas is everywhere, all the time, and there
is a vast amount of resources out there. Hopefully, more people will adopt Polars in the future.

Finally, it's important to keep in mind that, as we reviewed, Polars accepts Pandas -like syntax, but that does
not mean we should use it if we want to maintain the high performance Polars was designed to output;
according to the Polars User Guide, "if your Polars code looks like it could be Pandas code, it might run, but
it likely runs slower than it should."

References

Copyright
Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

§

Polars Official Page, Home•

Polars User Guide•

Cheatsheet for Pandas to Polars•

Polars Official Page, GroupBy•

Polars Official Page, Data Types•

§

https://www.pola.rs/
https://pola-rs.github.io/polars-book/user-guide/
https://www.rhosignal.com/posts/polars-pandas-cheatsheet/
https://pola-rs.github.io/polars-book/user-guide/dsl/groupby.html
https://pola-rs.github.io/polars/py-polars/html/reference/datatypes.html

