Polars: A Lightning-Fast DataFrame Library for Python
and Rust

@ Made with |Obsidian

B Type deep-dive v;%j Category data-science [+/* Technologies Python | [IJ Website Post Link

Of all the libraries belonging to any Data Scientist's toolbox, Pandas may be the most important one; it's built
on top of the numPy package and provides data structures and methods tailored for data manipulation and
analysis with a syntax similar to SQL queries.

The thing about Pandas is that it does not support parallelization natively, thus limiting its computation
capabilities; some Pandas tasks can be parallelized by using Dask or other libraries, but this requires external
handling and is not always the best solution.

Additionally, pandas does not support lazy execution; this means that the code is run directly, and its results are
returned immediately, which can result in running unnecessary code.

All these aspects make Pandas still attractive for relatively small computation tasks but somewhat unattractive
for more extensive data set manipulation.

Meet Polars , a DataFrame library built on Rust from the ground up, presented in two flavours: A Python and
a Rust APL

In this Deep Dive, we'll review Polars in detail using the polars API for Ppython . We'll discuss its
installation, core functionalities, basic syntax, some data transformations, reading and writing from and to
different file formats, and more.

We'll be using Python scripts which can be found in the Deep Dive Repo.

§
Table of Contents

» Preface
* Preparing our environment

» Polars data structures

+ Eager execution
+ Lazy execution

» Reading and writing multiple file formats
* Writing

+ Reading

* Basic operations
+ Exploratory methods

https://obsidian.md/
https://pabloagn.com/deep-dives/
https://pabloagn.com/categories/data-science/
https://pabloagn.com/technologies/
https://pabloagn.com/deep-dives/polars-a-lightning-fast-dataframe-library-for-python-and-rust/
https://www.dask.org/
https://github.com/pabloagn/deep-dives/tree/master/data-science/polars-a-lightning-fast-dataframe-library-for-python-and-rust

* Indexing, selecting and filtering
* Select
+ Filter
+ Filtering with multiple conditions

« Filtering with advanced operators

* Aggregations

* Joins

+ Concatenations

* Creating new columns

* Multithreaded execution

» Schemas and data types
+ Conclusions

» References

Preface

Polars is a DataFrame library/in-memory query engine written in Rust . It's built upon the safe Arrow2
implementation of the Apache Arrow specification, enabling efficient resource use and processing performance.
By doing so, it also integrates seamlessly with other tools in the Arrow ecosystem.

Unlike tools such as pask , which try to parallelize existing single-threaded libraries like Numpy and pandas ,
pPolars is designed for parallelization, resulting in breakneck processing speeds by default.

A groupby task performed on a SGB dataset resulted in the following execution times:

Method Version Date Executed Execution Time [s]
DataFrames.jl 1.1.1 May 15, 2021 9
Polars 0.8.8 June 30, 2021 11
CUDF 0.19.2 May 31, 2021 17
Spark 3.1.2 May 31,2021 34
Pandas 1.2.5 June 30, 2021 70
Arrow 4.0.1 May 31, 2021 212

TABLE I. GRouPBY ExXECUTION TIMES ON 5 GB DATA SET, H20 Al

A join task performed on a 5GB dataset resulted in the following execution times:

Method Version Date Executed Execution Time [s]
Polars 0.8.8 June 30, 2021 43
Spark 3.1.2 May 31,2021 332
DataFrames.jl 1.1.1 June 3, 2021 349
Pandas 1.2.5 June 30, 2021 628
CUDF 0.19.2 May 31, 2021 internal error
Arrow 4.0.1 May 31,2021 notyetimplemented

https://pabloagn.com/technologies/rust/
https://github.com/jorgecarleitao/arrow2
https://arrow.apache.org/docs/format/Columnar.html
https://h2oai.github.io/db-benchmark/

TABLE 2. JoIN ExEcuTtioN TIMES ON 5 GB DaAtA SET, H20 Al

The full benchmark can be consulted here.

Polars for Python exposes a complete Python API, including the full set of features to manipulate
DataFrames using an expression language similar to Pandas . It also has two different APIs:

* Alazy API
* An eager API

With eager execution, the code is run as soon as it's encountered; results are returned immediately. With /azy
execution, the code is run until the result is required.

§
Preparing our environment

Polars is offered asa python and a Rust package. In this segment, we'll only review the Python flavour; in
a future iteration, we might review its Rust counterpart.

We're going to use the Polars package. More information about this package can be found in the Polars
Official Web Page, in the Ppolars GitHub Repo, or the polars Official Documentation for python .

If we don't yet have it, we can install it:

CODE

pip install polars

We will also install some additional libraries, which are not directly related to pPolars but will be helpful for
some bonus content ahead.

CODE

pip install geopandas

pip install geopy

pip install folium

The convention is to import Polars using the pl alias, but we can select any alias we find more convenient.
For our case, we'll be using the preferred alias. We'll also import some other modules which will come in handy:

CODE

https://h2oai.github.io/db-benchmark/
https://h2oai.github.io/db-benchmark/
https://www.pola.rs/
https://github.com/pola-rs/polars
https://pola-rs.github.io/polars/py-polars/html/reference/index.html

polars pl
pandas pd

numpy np
pyarrow

os
glob

datetime datetime

folium

folium.plugins FastMarkerCluster

As of the writing of this article, the polars version downloaded is 0.16.9. We can confirm this by using the
__version__ method:

CODE

(pl.__version_)

We will also use the Airbnb Prices in European Cities data set by The Devastator. The complete set has 20 files,

one for each European city.

We can first create a new folder, datasets , inside our project folder. We can then download the entire set as a
.zip file, extract its contents, and move them to the newly created folder.

The datasets folder will contain 20 files weighing 10.2MB in total.

We can also create an outputs directory, where we will store our written files:

CODE

mkdir datasets, outputs

We will define both directories as variables inside our script:
CoDE

rDir 'datasets/’

wDir ‘outputs/’

With everything ready, we can now proceed to load our data sets and perform some basic operations.

§
Polars data structures

Similar to Pandas , Polars has two main data structures:

* Series : One-dimensional.

https://www.kaggle.com/datasets/thedevastator/airbnb-prices-in-european-cities
https://www.kaggle.com/thedevastator

* DataFrame (With a LazyFrame variation for lazy execution): Can be one or two-dimensional.

We can define a series object by enclosing the values in square brackets [] :

CODE

se = pl.Series([1, 2, 3,

type(se)

OutpPuT

polars.internals.series.series.Series

shape: (10,)
Series: '' [i64]

[

O 0 N OO U1 »h W N B

=
()

We can define a DataFrame object by enclosing our set of entries in curly brackets {3}
will correspond to a column name and each value to the column entries.

CODE

df = pl.DataFrame({'name' : ['Jack', 'Charles', 'Clarice'],
‘surname' : ['Kerouac', 'Bukowski', 'Lispector'],
'birth" : [datetime(> 3,)
datetime(, 8,)

datetime(P)]

OuTrpPuT

. Each dictionary key

Kerouac 1922-03-12 00:00:
Charles Bukowski 1920-08-16 00:00:
Clarice Lispector | 1920-12-10 00:00:

Eager execution

We will start by executing Polar commands using eager execution. This is the default method and will run our
code upon calling.

We can read one of our downloaded .csv files:

CODE

df = pl.read_csv(os.path.join(rDir, 'berlin_weekends.csv'))

This method will read our file into a polars.DataFrame object:

CODE

type(df)

OuTrpPuT

polars.internals.dataframe.frame.DataFrame

Lazy execution

As mentioned earlier, lazy operations don't execute until we call collect . This allows Polars to
optimize/reorder the query, which may lead to faster queries or fewer type errors.

There are two main ways for lazy-reading a .csv file in Polars :

* Using pl.scan_csv() .
+ Using pl.read_csv().lazy() .

Both methods perform the same operation; the main difference is that the first lazy-loads by default, while the
second includes the .lazy() method to specify that we're lazy-loading.

We canread a .csv file using either of the two methods:

CODE

df_s = pl.scan_csv(os.path.join(rDir, 'berlin_weekends.csv'))

df_1 = pl.read_csv(os.path.join(rDir, 'berlin_weekends.csv')).lazy()

As opposed to eager execution, this method will read our file into a polars.LazyFrame object:
CobE

type(df_s), type(df_1l)

OutpPuT

(polars.internals.lazyframe.frame.LazyFrame,

polars.internals.lazyframe.frame.LazyFrame)

If we try to get the head of our object, we will actually be presented with its memory location, and not the first
records.

Q
]
=
&=

df_s.head()

OuTrPuT

<polars.LazyFrame object at ©x22FOCCFFF50>

We can display the object graph, which is a diagram of how the execution will take place upon calling collect .

CODE

df_s.show_graph()

OurpPuT

[CSV SCAN datasets/berlin weekends.csv;
7t */20;
G -]

FIGURE 1: EXECUTION PLAN GRAPH FOR LAzY DATAFRAME READING

We can include additional transformation steps to our object:

CODE

df_s_filtered (df_s.filter(pl.col("bedrooms™)
select(pl.col("metro_dist")).

sort("metro_dist")

)

And view its graph again:

CODE

df_s_filtered.show_graph()

OutpruT

SORT BY [col("metro dist")]

FAST PROJECT: [metro dist]

CSV SCAN datasets/berlin_weekends.csv;
w 2/20;
o (col("bedrooms")) >= (2i6...

FIGURE 2: EXECUTION PLAN GRAPH FOR SEVERAL LAZY TRANSFORMATIONS

We can see that the additional steps were added and are ready to be executed upon collecting our object.

We can also view this same information in text format:

CODE

df_s_filtered.describe_optimized_plan()

OurpPuT

'SORT BY [col("metro_dist")]\n FAST_PROJECT: [metro_dist]\n CSV SCAN
datasets/berlin_weekends.csv\n PROJECT 2/20 COLUMNS\n SELECTION: [(col("bedrooms")) >=
(2i64)1\n"

Which is, of course, less neat than the previous graphical method.

We can finally call collect() :

CODE

df_s_filtered.collect()

OutpPuT

shape: (124, 1)

1
| metro_dist |

.088494
.110308
.12578

.131641

.87661

.512803
.324563
.598773

§
Reading and writing multiple file formats

1. Writing

As with Pandas , Polars can write to multiple file formats, the most common ones being:

.avro
° .CSV

* .ipc

* .json

* .parquet

To illustrate some examples, we will read our entire weekdays data set into a DataFrame object, and then write
to the file formats above:

CODE

weekdays files = glob.glob(os.path.join(rDir, "*weekdays.csv"))

weekdays_list [1]

filename weekdays_files:
city = re.search('datasets\\\(.*) weekdays.csv', filename).group(1)
df_weekdays (pl.read_csv(filename).

drop(['"]1).

with_columns(pl.lit(city).

alias('city'))

)
weekdays_list.append(df_weekdays)

df_weekdays pl.concat(weekdays_list,
rechunk)

df_weekdays.shape

round(df_weekdays.estimated_size(unit="mb"), 4)

We should end up with a polars DataFrame object of shape (25500, 20) :

OuTrpPuT

(25500, 20)

3.7998

Let us explain in detail by writing the pseudocode for the steps performed:

+ Declare a list of weekday data set paths using the glob.glob() method.
+ Create an empty DataFrame list weekdays_list .

* Iterate over the list.

+ Extract the city using RegEx.

* Read each file using pl.read_csv(filename) .

+ Drop the first column, which represents the index.

*+ Assign a new column to each DataFrame object containing its city name using
pl.lit(city).alias(city') .
« Append each DataFrame to the DataFrame list weekdays_list .
+ Concatenate all DataFrames in weekdays_list , passing rechunk = True as argument (make sure that all
data is in contiguous memory).
« Get the object's shape.

* Get the object's estimated size in mb rounded to 4 decimal places.

Now, we can write our DataFrame to different file formats. The general syntax is df.write_formatname(dir,

args)

CODE

df_weekdays.write_csv(os.path.join(wDir, ‘weekdays.csv'))

df_weekdays.write_parquet(os.path.join(wDir, ‘weekdays.parquet"'))

df_weekdays.write_avro(os.path.join(wDir, ‘weekdays.avro'))

df_weekdays.write_json(os.path.join(wDir, ‘weekdays.json'))

2. Reading

Conversely, Polars can read all the file formats we wrote earlier. We'll skip the .csv file format since we
already reviewed it. For the other cases, we can use the pl.read_formatname() syntax:

CODE

df_weekdays _csv = pl.read_csv(os.path.join(wDir, 'weekdays.csv'))
df_weekdays_parquet = pl.read_parquet(os.path.join(wDir, 'weekdays.parquet'))
df_weekdays_avro = pl.read_avro(os.path.join(wDir, ‘weekdays.avro'))

df_weekdays_json = pl.read_json(os.path.join(wDir, ‘weekdays.json"))

We can confirm that our files were read successfully by selecting a given column and getting each object's head:
CobDE

df_weekdays_csv['realSum'].head(10)
df_weekdays_parquet['realSum'].head(10)

df_weekdays_avro['realSum'].head(10)

df_weekdays_json['realSum'].head(10)

OuTPUT

shape: (10,)
Series: 'realSum' [f64]
[
.033698
.245776
.101422
.529398
.552926
.808567
.124317
2771.307384
1001.80442
276.521454

shape: (10,)
Series: 'realSum' [f64]
[
.033698
.245776
.101422
.529398
.552926
.808567
215.124317
2771.307384
1001.80442
276.521454

shape: (10,)

Series: 'realSum' [f64]

[
194.033698
344.245776
264.101422
433.529398
485.552926
552.808567
215.124317
2771.307384
1001.80442
276.521454

shape: (10,)
Series: 'realSum' [f64]
[

194.033698
344.245776
264.101422
433.529398

485.552926
552.808567
215.124317
2771.307384

1001.80442
276.521454

Basic operations

1. Exploratory methods

We can use a wide range of exploratory methods to take a first look at our data. We can display our DataFrame's
shape, columns and first ten entries for the realsum column:

CODE

df.shape
df.columns

df['realSum'].head(10)
df['realSum'].tail(10)

OutpruTt

(1200, 20)

[
‘realSum’,
‘room_type"',
'room_shared’,
'room_private',
'person_capacity’',
'host_is_superhost',
‘multi’,
‘biz',
‘cleanliness_rating',
'guest_satisfaction_overall’,
'bedrooms’,
'dist’,
'metro_dist',
‘attr_index',
‘attr_index_norm',
'rest_index',
'rest_index_norm',
"Ing’,
'lat']

shape: (10,)
Series: 'realSum' [f64]

.799757
.49182

.914462
.777134
.768533
.428718
.875292
.417407
.777134
.237543

shape: (10,)

Series: 'realSum' [f64]

[
162.428718
231.840703
127.605871
175.049079
156.585959
84.83687
134.617182
134.617182
160.091614
359.680284

We can notice some interesting details:

* The df.columns method returns a 1list , as opposed to Pandas which returns a
pandas.core.indexes.base.Index object.

* The df.head() method returns a polars.internals.series.series.Series object, similar to Pandas , which
returns a pandas.core.series.Series
* The df.head() method also returns the column data type, which in the case of realsum is floaté4 .

We can also perform a statistical description:

CODE

df.describe()

null count

mean 249.252516
std 346.554469 240.584178
min 0.0 64.971487
max 1199.0 5856.081144
median 192.460503

If we want to take a random entry sample, we can do so:

CODE

df.sample(5)

OuTrpPuT

139.29139 Private room

577.498364 | Entire home/apt |
291.203141 | Entire home/apt |
127.605871 | Private room |
755.819389 Private room

_________________ I

2. Indexing, selecting and filtering

Polars offers two main ways of indexing or filtering a DataFrame:

+ Using square brackets [] .
+ Using the select and filter methods.
* The select method is used to select columns.

* The filter method is used to select rows.

The square brackets [] method works similarly to pandas but has limited usage in Polars ; it only works in
eager mode, and operations on multiple columns are not parallelized.

This method is recommended in the following cases:

+ To extract a scalar value from a DataFrame .
» To convert a DataFrame columntoa Series .

+ For exploratory data analysis and to inspect some rows and/or columns.

2.1 Select

We can select the realsum column:

CODE

df.select(pl.col("realSum™"))

OutpPuT

.799757
.49182
.914462

.777134

.617182
.617182
.091614
.680284

We can see that the pl.col() method was used; this method accepts one main parameter, name , where we can
directly specify the column name or include a regular expression. Regular expressions should start with ~ and
end with § .

We can use a regular expression to select all the columns containing room :
CoDE

df.select(pl.col("~room.*$"))

OuTrpPuT

I
| room_type room_shared room_private |

| str bool bool

Private room false
Entire home/apt | false
Private room false

Private room false

Private room false
Private room false

Entire home/apt false

Entire home/apt | false

Three columns were returned, which coincides with the expected columns from our df.columns output.

To select every column or exclude a column, we can use the following:

CODE

df.select(pl.col("*"))

df.select(pl.exclude("realSum™))

To select based on the dtype of the columns:

CODE

df.select(pl.col(pl.Int64))

OuTrpPuT

(1200, 5)

2.2 Filter

We can also filter by bedrooms using a boolean comparison, select the metro_dist column, sort it ascendingly
and get the first five entries:

CODE

(df.filter(pl.col("bedrooms"
select(pl.col("metro_dist")).

sort("metro_dist").
head(5)
)

OutpruT

1
| metro_dist |

| fea

0.088494
0.110308
0.12578

0.131641
0.135447

Similar to Pandas , the execution order of a statement is from top to bottom, meaning it will filter the bedrooms
column first and get the head of the resulting object last.

2.3 Filtering with multiple conditions

We want to look for a clean place hosting two people with a single bedroom. We want to sort descending by
cleanliness_rating and be able to identify the site by its GPS coordinates.

Let us filter rooms with person_capacity =2, bedrooms = 1, and sorting descending by cleanliness_rating :
CODE

berlin_places (df.filter((pl.col("person_capacity")
(pl.col("bedrooms"))).
groupby(['lat', 'lng'], maintain_order
agg(pl.col("cleanliness_rating").mean()).
sort('cleanliness_rating', descending

)

OutpruT

cleanliness_rating |

As we move further, we can see a pattern in Polars syntax; it's very similar to SQL's while simultaneously
being related to Pandas . Polars almost writes as a declarative language, with each transformation step
exposing clear steps. Clarity increases if we separate each statement in a newline continuation.

Since we don't have the actual addresses for the places we would like to study, we will use the geolocation
libraries we installed earlier to visualize these coordinates in a folium map:

CODE

berlin_places (df.filter((pl.col("person_capacity")
(pl.col("bedrooms")) e
sort('cleanliness_rating', descending
head(10)
)

berlin_map = folium.Map(
location=[berlin_places[@]['lat'][@], berlin_places[@]['1lng'][@]],
tiles="cartodbpositron’,
zoom_start B

FastMarkerCluster(data=1ist(zip(berlin_places['lat'], berlin_places['lng']))).add_to(berlin_map)

berlin_map.save(os.path.join(wDir, 'berlin_places.html'))

OutpruT

FIGURE 3: BERLIN PLACE COORDINATES IN AN HTML FoLio Map

It seems like we should be looking for places near the Neukoélln and Friedrichshain-Kreuzberg boroughs.

2.4. Filtering with advanced operators

We can make use of more advanced filtering operators to narrow our search:

CODE

(df.filter(pl.col("bedrooms").is_between(2, 4)).
select(pl.col(['bedrooms', 'room_type'])).
head(5)

)

(df.filter(pl.col("bedrooms").is_null()).
select(pl.col(['bedrooms', 'room_type'])).
head(5)

)

OutpPuT

Entire home/apt
Entire home/apt
Entire home/apt
Private room

Entire home/apt

3. Aggregations

Similar to Pandas , we can use the groupby method to group different columns and perform aggregations using
various functions.

Let us group by room_shared and calculate the average cleanliness_rating for each case:

CODE

(df.groupby (['room_shared'], maintain_order
agg(pl.col("cleanliness_rating").mean())

cleanliness_rating |

It appears that shared rooms are slightly behind in terms of cleanliness.

It's important to note that we're not using Python's aggregation methods; the methods are Polars
implementations, meaning they're optimized for working with pPolars DataFrame objects.

4. Joins

Polars supports several join strategies accessible by specifying the strategy argument.
The main strategies are:

* inner : Produces a DataFrame that contains only the rows where the join key exists in both DataFrames.

* left : Produces a DataFrame that contains all the rows from the left DataFrame and only the rows from
the right DataFrame where the join key exists in the left DataFrame.

* outer : Produces a DataFrame that contains all the rows from both DataFrames.
* cross : Performs the cartesian product of the two DataFrames.

We can perform a join operation:

CODE

df_writers = pl.DataFrame(

{

'name' : ['Jack', 'Charles', 'Clarice'],

"surname' : ['Kerouac', 'Bukowski', 'Lispector'],

'birth' : [datetime(5 385 s
datetime(, 8, 16),
datetime(,)]

df_books pl.DataFrame(
{
'name’ : ['Jack', 'Charles', 'Clarice'],
"surname' : ['Kerouac', 'Bukowski', 'Lispector'],
"book' : ['On The Road',
'Ham On Rye',

'The Passion According to G.H.']

df_writers = df_writers.join(df_books, on=['name', ‘'surname'], how="left")

df_writers

OurpPuT

shape: (3, 4)

Kerouac 1922-03-12 00:00:00 | On The Road
Charles | Bukowski 1920-08-16 00:00:00 | Ham On Rye
Clarice | Lispector | 1920-12-10 00:00:00 | The Passion According to G.H.

it B B T T B e e e T e +

5. Concatenations

While a join operation is most often performed over the horizontal axis, a concat operation is performed
over the vertical axis.

This can help us stack DataFrame objects, given they're of the same dimensions and data types:

CODE

df_berlin = pl.read_csv(os.path.join(rDir, 'berlin_weekends.csv'))

df_vienna pl.read_csv(os.path.join(rDir, 'vienna_weekends.csv'))

df_berlin (df_berlin.
with_columns(pl.lit('Berlin').
alias('city'))
)

df_vienna (df_vienna.
with_columns(pl.lit('Vienna').
alias('city'))
)

df_berlin_vienna = pl.concat([df_berlin, df_vienna])

OutpruT

SchemaError: cannot vstack: because column datatypes (dtypes) in the two DataFrames do not match

for left.name='person_capacity' with left.dtype=i64 != right.dtype=f64 with

right.name="person_capacity'

It seems like we got a schemaError . The reason is that despite coming from the same source and having the
same shape, our data sets have different data types in one of their columns, person_capacity . A SchemaError
can represent the same as a TypeError ; the only difference is that polars uses schemas to define DataFrame
objects.

In order to solve this conflict, we have two options:

* Cast person_capacity from df_berlin to floate4 data type.
+ Cast person_capacity from df_vienna to inte4 data type.

Since there are no half-persons, we can proceed with the second option:

CODE

df_vienna = df_vienna.with_columns(pl.col("person_capacity").cast(pl.Int64))

df_berlin_vienna = pl.concat([df_berlin, df_vienna])

We can verify that our operation was performed successfully by getting the unique values for city from our
resulting DataFrame:

CODE

(df_berlin_vienna.groupby(['city'], maintain_order

agg(pl.col('lat').n_unique().
alias('unique_latitudes"')

)

OuTPUT

shape: (2, 2)

r— 1
| city i unique_latitudes |
I |
| str E u32

| —— E—

| Berlin i |
1
1
1

| vienna

6. Creating new columns

We already reviewed an example of creating new columns in Polars in the Writing section. The general syntax
for this operation includes the following methods (the atias() method is only required when we're trying to
assign a new column which is the product of an aggregation operation):

* with_columns()

* alias()

We can define a new column based on another object:

CODE

new_col = np.random.random([len(df)])

df = df.with_columns(pl.Series(name="new_col", values=new_col))

OutpPuT

.414997
.397309

.277131
.429678

.06139
.810651
.92665
.853674

We can also define a new column name after some operation such as an aggregation:

CODE

(df.groupby (['room_shared'], maintain_order
agg(pl.col('cleanliness_rating').mean().
alias('average cleanliness')

)

OutpruT

shape: (2, 2)

1
room_shared average_cleanliness

bool

9.462995
8.973684

It's important to note that alias() is a method belonging to the pl.col() method and not to the DataFrame
object. This makes sense since alias() aims at renaming or giving a name to a given column.

§
Multithreaded execution

Polars uses an approach called split-apply-combine to process data. Multithreaded execution happens on both
the split and apply phases.

We can describe this process applied to a groupby() operation as follows:

+ Data is loaded and contained in a Polars DataFrame object.

+ Upon calling a groupby() operation, this DataFrame is split into n partitions.

+ The aggregating operation is applied to each partition separately and in parallel.
* All partitions are then combined to build the final return object.

data split apply combine
X y
a 1 X y
_— >
X y a 2 a 3
a 1 \
X y
a 2 X y
% a 3
8
b 3 b 3 a X y
2
> — & e —— b 7
b 4 b 4 % b 7
2 c 11
E
c 5 =)
c 6 X y
c 5 X y /
_— >
© 6 © 11

FIGURE 4: Powars MULTITHREADED APPROACH

For the hashing operations performed during the split phase, Polars uses a multithreaded lock-free approach
that is illustrated in the following schema:

https://pola-rs.github.io/polars-book/user-guide/dsl/groupby.html

/ thread 0 \ .,

X y ‘e
S a (1, 5] .
. 1| h(x) % 0 =—
b [4.6] R
c 2 a [1,5]
c 3 b [4, 6]
. A K / thread 1 N ¢ [2,3]
a 5 N 2
- h(x) % 1 ==0 c 2,3] -
b 6

HASH + BUILD HASHTABLE CHEAP COMBINE

I::> I::>

FIGURE 5: Pouars HASHING OPERATIONS

A multithreaded approach makes execution faster since multiple tasks are being processed simultaneously. That
is not to say that we can use whichever method or function we wish and still be parallelized; if we were to use a

lambda or a custom Python function to apply during a parallelized phase, polars speed would be capped
running Python code preventing any multiple threads from executing the function.

This is important to remember; if we're looking to maximize efficiency, the idea is to use native Polars
functions and methods whenever possible.

§
Schemas and data types

As mentioned earlier, Polars works with schemas; the term schema is originally defined in a relational
database context, representing how the data may relate to other tables or data models. In APIs such as Pyspark
or Polars , a schema is the data set type definition.

When working with Python, we often do not have to pay attention to the data types since Python is a
dynamically typed language, meaning data type definitions are unnecessary. This applies, of course, when we
have the data types we need; otherwise, we cast the data to their required data types.

Dynamic typing does not mean data types are ignored or not required, but they are inferred upon execution. This
is a resource-intensive task, especially with large data sets. Also, not having a predefined schema can cause data
type errors such as the one we encountered earlier; when we loaded our data sets, Polars inferred the data
types based on the data set values.

Polars supports a wide variety of data types:

https://pola-rs.github.io/polars-book/user-guide/dsl/groupby.html

Class Type Description
Numeric Float32 32-bit floating point type.
Numeric Float64 64-bit floating point type.
Numeric Inti6 16-bit signed integer type.
Numeric Int32 32-bit signed integer type.
Numeric Int64 64-bit signed integer type.
Numeric Ints 8-bit signed integer type.
Numeric UIntl6 16-bit unsigned integer type.
Numeric UInt32 32-bit unsigned integer type.
Numeric UInt64 64-bit unsigned integer type.
Numeric UInts 8-bit unsigned integer type.
Date /
. Date Calendar date type.
Time
Date / .
] Datetime Calendar date and time type.
Time
Date / . .
] Duration Time duration/delta type.
Time
Date / .
] Time Time of day type.
Time
Nested List(*args, **kwargs) List.
Nested Struct(*args, **kwargs) Struct.
Other Boolean Boolean type.
Other Binary Binary type.
Other Categorical A categorical encoding of a set of strings.
Other Null Type representing Null / None values.
Other Object Type for wrapping arbitrary Python objects.
Other Utfe UTF-8 encoded string type.
Type representing Datatype values that could not be determined
Other Unknown

statically.

TABLE 3: Pouars DATA TYPES

To avoid these errors and make processing more efficient, we can use a predefined schema:

CODE

https://pola-rs.github.io/polars/py-polars/html/reference/datatypes.html

schema {'" : pl.Inte4,
'realSum' : pl.Float64,
'room_type' : pl.Utfs8,
'room_shared' : pl.Boolean,
'room_private' : pl.Boolean,
'person_capacity' : pl.Inté4,
'host_is_superhost' : pl.Boolean,
'multi' : pl.Inté64,
'biz"' : pl.Inté64,
‘cleanliness_rating' : pl.Float64,

'guest_satisfaction_overall' : pl.Float64,
'bedrooms' : pl.Int64,

'dist' : pl.Floaté64,
'metro_dist' : pl.Float64,
‘attr_index' : pl.Floaté4,
‘attr_index_norm' : pl.Float64,
'rest_index' : pl.Float64,
'rest_index_norm' : pl.Float64,
‘lng' : pl.Floaté64,

‘lat' : pl.Floaté64,

‘strict' : pl.Boolean,

df = pl.read_csv(os.path.join(rDir, ‘'vienna_weekends.csv'), dtypes schema)

OuTrpPuT

ComputeError: Could not parse 4.0 as dtype Int64 at column 'person_capacity' (column number 6).
The current offset in the file is 270 bytes.

You might want to try:

- increasing “infer_schema_length® (e.g. “infer_schema_length=10000"),

- specifying the correct dtype with the “dtypes’ argument

- setting "ignore_errors’ to “True’,
- adding "4.0° to the "null_values 1list.

The problem with predefining a schema upon data set reading is that if a given value does not match the
predefined data type, it will return an error; the dtype=schema argument will not try to cast the elements. It will
only try to set them.

What we can do to solve this issue is load our data set without inferring its schema and then cast all columns
using our schema dictionary:

CODE

df = pl.read_csv(os.path.join(rDir, 'vienna_weekends.csv'), infer_schema_length=0)

i, x schema.items():
df = df.with_columns(pl.col(i).cast(x), strict

If we look closely, we included a new parameter, infer_schema_length=0 , which tells Polars that we don't
want an inferred schema. This will set the data type to utfs for all columns.

OuTrpPuT

ArrowErrorException: NotYetImplemented("Casting from LargeUtf8 to Boolean not supported")

The problem with this approach is that pl.Boolean type casting accepts a capitalized string. Since we have
some columns with their boolean value in lowercase, this method also returns an error.

We can fix this by adding an exception handling specifically for these types of errors:

CODE

schema.items():

df = df.with_columns(pl.col(i).cast(x), strict

df = df.with_columns(pl.col(i) "true')
df = df.with_columns(pl.col(i).cast(x), strict

Whenever an exception is raised, we regenerate the entire column by making a logical comparison against
"true" . This fills our target column with actual boolean values, so we don't have to cast it afterwards.

This, of course, is somewhat problematic in cases when we don't fully know the nature of our data since any
exception will be caught and treated as if it were a pl.Boolean type casting error.

We can do further manipulations and perfect our exception handling, but that is out of the scope of this segment.

When designing a data-loading pipeline, we must account for all these details; otherwise, our program will
underperform and even break.

Conclusions

In this segment, we've gone from zero to Polars ; it's a lot to digest, but the important thing is that we covered
the most relevant functionalities and can extend from here by consulting external resources.

For those already familiar with pandas , this remarkable cheatsheet covers Polars translations of the most
relevant Pandas operations.

https://www.rhosignal.com/posts/polars-pandas-cheatsheet/

One disadvantage of Polars is the lack of community discussion; Pandas is everywhere, all the time, and there
is a vast amount of resources out there. Hopefully, more people will adopt Polars in the future.

Finally, it's important to keep in mind that, as we reviewed, Polars accepts Pandas -like syntax, but that does
not mean we should use it if we want to maintain the high performance pPolars was designed to output;
according to the polars User Guide, "if your Polars code looks like it could be pandas code, it might run, but
it likely runs slower than it should."”

References

* polars Official Page, Home
* Polars User Guide

* Cheatsheet for Pandas to Polars
* polars Official Page, GroupBy

* polars Official Page, Data Types

Copyright

Pablo Aguirre, Creative Commons Attribution 4.0 International, All Rights Reserved.

https://www.pola.rs/
https://pola-rs.github.io/polars-book/user-guide/
https://www.rhosignal.com/posts/polars-pandas-cheatsheet/
https://pola-rs.github.io/polars-book/user-guide/dsl/groupby.html
https://pola-rs.github.io/polars/py-polars/html/reference/datatypes.html

