
Exploratory Data Analysis, Pt. 1

Made withMade with ObsidianObsidian

TypeType guided-projectguided-project

CategoryCategory data-sciencedata-science

TechnologiesTechnologies PythonPython

WebsiteWebsite Post LinkPost Link

Exploratory data analysis (EDA) is a scientific technique developed by the mathematician John Tukey in the
1970s widely used in Data Science. It consists of performing initial investigations on a data set to better
understand its nature and potentially use it for business or academic applications. This technique provides
insight quickly and is useful when working with large data sets.

There is no rule of thumb regarding the steps to perform an EDA because data varies between cases.
Additionally, the purpose of why we're using this technique in the first place also varies.

In a general way, an EDA could consist of the following:

1. Understand the structure of the data.
2. Evaluate if preprocessing is required. If so, generate a methodology for preprocessing.
3. Uncover general patterns not visible at simple sight.

1. Using statistical descriptions.
2. Using visualization techniques.

For more specific applications, we could include more advanced methods, such as studying variable correlations
using statistical methods or even testing ML methods, such as linear regression or classification techniques, to
evaluate if the information could be helpful to us.

In this 3-article Guided Project, we will discuss some popular EDA approaches, specific libraries to perform
diagnostics & statistical analysis, visualization techniques for a better understanding of our data, and more
advanced ML techniques.

We'll use Python scripts found in the Guided Project Repo.

Table of Contents

§

§

Exploratory Data Analysis methods•
Univariate, non-graphic•

Bivariate, graphic•

Multivariate, non-graphic•

Multivariate, graphic•

Why perform an EDA?•

A simple business case•
Data set usability•

Understanding our data set•

https://obsidian.md/
https://pabloagn.com/guided-projects/
https://pabloagn.com/categories/data-science/
https://pabloagn.com/technologies/
https://pabloagn.com/guided-projects/exploratory-data-analysis-pt-1/
https://github.com/pabloagn/guided-projects/tree/master/data-science/exploratory-data-analysis

Exploratory Data Analysis methods
EDA can be divided into four types, depending on the nature of our data set and the tools we use to analyze it:

1. Univariate, non-graphic
This analysis contemplates the study of a single variable using non-graphical methods. It's the simplest one of
the four. We can have an extensive data set with multiple potential study variables. Still, if we leave them all out
and focus on one, it will be a univariate analysis. This is tricky because stating the variables we will study could
be part of our EDA. The decision of which method to use should be a product of the problem statement, i.e.
what we're trying to achieve with our analysis.

2. Bivariate, graphic
This analysis contemplates the study of two variables and their potential correlation. It includes visualization
methods helpful in studying multiple variable correlations. Some of the visualization methods most commonly
used include:

3. Multivariate, non-graphic
This analysis contemplates the correlation study between 3 or more variables. If we approach this non-
graphically, we can use tools such as correlation matrices and other descriptive statistics.

4. Multivariate, graphic
This analysis contemplates the same study as above but includes visualization methods. We can use multiple
plots, but the most commonly used are:

Initial investigations•

Variable correlation study•
Using a correlation matrix•

Calculating p-values•

Conclusions•

References•

Copyright•

§

Histograms for studying the overall distribution of each variable.•

Box plots for studying the data distribution of each variable, along with some important statistics such as
mean and quartiles.

•

Scatterplots for studying the correlation between two variables.•

Bar charts with an x-axis including multiple independent variables and a y-axis including one dependent
variable.

•

Pair plots including scatter plots and histograms.•

§

Why perform an EDA?
EDA has become a big thing in Data Science. It's sometimes referred to as a vital step in understanding data,
and it's true. Still, we need to remember that not because everyone's using it, we should also be using it, at least
as the step-by-step approach we mentioned earlier.

It's very easy to get our hands on some data and start performing tests which could be useless for our case.
Before attempting to write any code, it's vital first to understand what we are trying to achieve, where this data
set came from, how it was generated and what is expected out of the analysis, and only then design a
methodology that will help us solve our business problem. True, we don't always know all these variables, and
an EDA could answer some of them, but we should at least try to have clarity on what we're trying to do.

In cases like this, it's helpful to state a business case and then design a scientific methodology that will help us
solve that problem logically.

A simple business case
Lung cancer is the most common cancer worldwide, accounting for 2.1 million new cases and 1.8 million deaths
in 2018. In 1987, it surpassed breast cancer to become the leading cause of cancer deaths in women. An
estimated 154,050 Americans are expected to die from lung cancer in 2018, accounting for approximately 25
per cent of all cancer deaths. The number of deaths caused by lung cancer peaked at 159,292 in 2005 and has
since decreased by 6.5% to 148,945 in 2016. [1]

Smoking, a main cause of small and non-small cell lung cancer, contributes to 80% and 90% of lung cancer
deaths in women and men, respectively. Men who smoke are 23 times more likely to develop lung cancer.
Women are 13 times more likely than compared to non-smokers. [1-1]

Lung cancer can also be caused by occupational exposures, including asbestos, uranium and coke (an important
fuel in the manufacture of iron in smelters, blast furnaces and foundries). The combination of asbestos exposure
and smoking greatly increases the risk of developing lung cancer.[1-2]

Our client, an insurance company, has asked us to conduct a correlational study between different behavioural &
genetic characteristics and lung cancer incidence. For this, they provided a medical dataset containing a set of
anonymous patients and their medical files generated upon hospital admission.

1. Data set usability
For this example, we will use the Lung Cancer Prediction Dataset by The Devastator which can be found on
Kaggle.

One crucial step before selecting a data set is to verify its usability. Typically, this would be part of the actual
EDA process, but Kaggle already gives us helpful information. We can head to the Usability section, where we
will find a usability score and a detailed breakdown.

For our case, we have the following parameters as of February 2023:

Completeness · 100%

§

Subtitle•

Tag•

Description•

https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link
https://www.kaggle.com/thedevastator

Credibility · 100%

Compatibility · 100%

This tells us that according to Kaggle, our data set is entirely usable, complete, fully credible & fully
compatible.

Evaluating usability is important because we might have an initial idea which is not feasible due to the nature of
the data set. In real life, we may not have the privilege of choosing between data sets and selecting the most
complete or credible. Still, we can talk to the people responsible for the data generation to understand better
what we're dealing with. This is a common practice in the industry, especially when the data is generated in-
house and does not come from an external source; we can talk with the data engineers responsible for data
sourcing and get a complete description of the data structure and maybe even some usability parameters. In
some cases, we can even request a data reformatting previous to data import if this is something we would
deploy in a production environment and notice inconsistencies with how the data is being handled. Again, every
situation is different, and there is no rule of thumb for how to deal with data sets during the preprocessing steps.

Kaggle also offers a section including the data set head and a simple histogram for each column. Since this
feature would most likely not be in our hands when working with real-world data, we will skip it and figure it
out ourselves.

Now that we know more about the usability of our data set, we can download it.

2. Understanding our data set
We will first import the required modules. These will be used throughout the entire Guided Project:

Code

Cover Image•

Source/Provenance•

Public Notebook•

Update Frequency•

License•

File Format•

File Description•

Column Description•

We will also define our plot parameters beforehand:

Code

We will then load our .csv file as a Pandas DataFrame object:

Data manipulation modules

import pandas as pd

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

import xlsxwriter

System utility modules

import os

import shutil

from pathlib import Path

Plotting modules

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sns

Statistical modules

from scipy.stats import pearsonr

Before anything else, delete the Matplotlib

font cache directory if it exists, to ensure

custom font propper loading

try:

 shutil.rmtree(matplotlib.get_cachedir())

except FileNotFoundError:

 pass

Define main color as hex

color_main = '#1a1a1a'

Define title & label padding

text_padding = 18

Define font sizes

title_font_size = 17

label_font_size = 14

Define rc params

plt.rcParams['figure.figsize'] = [14.0, 7.0]

plt.rcParams['figure.dpi'] = 300

plt.rcParams['grid.color'] = 'k'

plt.rcParams['grid.linestyle'] = ':'

plt.rcParams['grid.linewidth'] = 0.5

plt.rcParams['font.family'] = 'sans-serif'

plt.rcParams['font.sans-serif'] = ['Lora']

Code

The first thing we can do is grasp a general understanding of the data set shape and its data types:

Code

Output

We can see that our Data Frame contains 1,000 rows and 26 columns. We can also see that 24 columns have
int64 as their data type, and two have object , in this case, meaning string types.

We can then proceed to print the head of our object to see what our data looks like:

Code

df = pd.read_csv('cancer patient data sets.csv')

print(df.shape)

print(df.dtypes)

(1000, 26)

index int64

Patient Id object

Age int64

Gender int64

Air Pollution int64

Alcohol use int64

Dust Allergy int64

OccuPational Hazards int64

Genetic Risk int64

chronic Lung Disease int64

Balanced Diet int64

Obesity int64

Smoking int64

Passive Smoker int64

Chest Pain int64

Coughing of Blood int64

Fatigue int64

Weight Loss int64

Shortness of Breath int64

Wheezing int64

Swallowing Difficulty int64

Clubbing of Finger Nails int64

Frequent Cold int64

Dry Cough int64

Snoring int64

Level object

dtype: object

Output

Upon taking a closer look at the output, we can confirm that the two object type variables are, in fact, strings.
The other variables appear to be categorical, except for age , which is numerical.

A categorical variable is a variable that can take on one of a limited and usually fixed range of possible values.
A categorical variable is limited by the data set itself, and its meaning and magnitude are assigned by the data
set author.

Categorical variables can be classified as nominal or ordinal.

A categorical nominal variable describes a name, label or category without natural order. An example could be a
binary representation of sex, i.e. male = 0, female = 1.

A categorical, ordinal variable is one whose values are defined by an order relation between the different
categories. An example could be the level of exposure to a given chemical, i.e. low exposure = 1, medium
exposure = 2, high exposure = 3.

As we will see soon, having categorical variables as integers instead of strings is helpful since many ML
methods accept categorical variables as arrays of integers. The act of converting non-numerical variables to
numerical values is called dummifying, though we will not cover it here in detail.

This information will also be beneficial once we start designing our features for an ML model implementation, a
process also called feature engineering.

Before moving to the next step, we can check for null values in any of our columns:

Code

Output

The output tells us that our data set does not contain any null value. This was also specified in the
Completeness parameter inside the Usability section.

We can also remove the index column:

print(df.head())

 index Patient Id Age Gender ... Frequent Cold Dry Cough Snoring Level

0 0 P1 33 1 ... 2 3 4 Low

1 1 P10 17 1 ... 1 7 2 Medium

2 2 P100 35 1 ... 6 7 2 High

3 3 P1000 37 1 ... 6 7 5 High

4 4 P101 46 1 ... 4 2 3 High

[5 rows x 26 columns]

print(df.isnull().values.any())

False

Code

Finally, we can also confirm that we have a unique set of patient ID's, so as not to include duplicates in our
analysis:

Code

Output

3. Initial investigations
In order to make more sense of the data set, we can perform some simple statistical descriptions of each
variable. This will help us understand how we can start using our data, its limitations and, eventually, start
designing potential prediction methodologies.

We can begin by performing a statistical description of our variables:

Code

Output

df.drop(columns = "index", inplace = True)

print(df['Patient Id'].nunique())

1000

round(df.describe().iloc[1:,].T, 2)

Some of these variables can be verified by common sense. We know, for example, that Age values should
belong to a close interval. We also know we should have two unique values for the Gender variable.

We can get to know our sample better by plotting a Kernel Density Estimate (KDE) plot to visualize the Age

distribution. This method will return a plot for a smoothed probability density function:

Code

 mean std min 25% 50% 75% max

Age 37.17 12.01 14.0 27.75 36.0 45.0 73.0

Gender 1.40 0.49 1.0 1.00 1.0 2.0 2.0

Air Pollution 3.84 2.03 1.0 2.00 3.0 6.0 8.0

Alcohol use 4.56 2.62 1.0 2.00 5.0 7.0 8.0

Dust Allergy 5.16 1.98 1.0 4.00 6.0 7.0 8.0

OccuPational Hazards 4.84 2.11 1.0 3.00 5.0 7.0 8.0

Genetic Risk 4.58 2.13 1.0 2.00 5.0 7.0 7.0

chronic Lung Disease 4.38 1.85 1.0 3.00 4.0 6.0 7.0

Balanced Diet 4.49 2.14 1.0 2.00 4.0 7.0 7.0

Obesity 4.46 2.12 1.0 3.00 4.0 7.0 7.0

Smoking 3.95 2.50 1.0 2.00 3.0 7.0 8.0

Passive Smoker 4.20 2.31 1.0 2.00 4.0 7.0 8.0

Chest Pain 4.44 2.28 1.0 2.00 4.0 7.0 9.0

Coughing of Blood 4.86 2.43 1.0 3.00 4.0 7.0 9.0

Fatigue 3.86 2.24 1.0 2.00 3.0 5.0 9.0

Weight Loss 3.86 2.21 1.0 2.00 3.0 6.0 8.0

Shortness of Breath 4.24 2.29 1.0 2.00 4.0 6.0 9.0

Wheezing 3.78 2.04 1.0 2.00 4.0 5.0 8.0

Swallowing Difficulty 3.75 2.27 1.0 2.00 4.0 5.0 8.0

Clubbing of Finger Nails 3.92 2.39 1.0 2.00 4.0 5.0 9.0

Frequent Cold 3.54 1.83 1.0 2.00 3.0 5.0 7.0

Dry Cough 3.85 2.04 1.0 2.00 4.0 6.0 7.0

Snoring 2.93 1.47 1.0 2.00 3.0 4.0 7.0

Output

Figure 1. Patient Age Kernel Density Estimate Plot

We can see that our population distribution is skewed towards the centre-left. The range of age with the highest
number of incidences lies between 22 and 26 years of age. We can also notice an increased number of cases in
the range of 38 to 40 years.

Now that we have an idea of the overall age distribution for our sample, we can try to understand the age
distribution for each level of Cancer affectation. For this, we have the Level variable available, denoting illness

Create figure

plt.figure('Patient Age Distribution')

Plot the age distribution

sns.kdeplot(df['Age'], color = color_main)

Enable grid

plt.grid(True, zorder=0)

Set xlabel and ylabel

plt.xlabel("Age", fontsize=label_font_size, labelpad=text_padding)

plt.ylabel("Patient Density", fontsize=label_font_size, labelpad=text_padding)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('Patient Age KDE', fontsize=title_font_size, pad=text_padding)

Optional: Save the figure as a png image

plt.savefig('plots/' + '01_patient_age_KDE.png', format = 'png', dpi = 300, transparent = True)

Close the figure

plt.close()

severity.

The way we can do this is by using a boxplot:

Code

Output

Create figure

plt.figure('Patient Age Distribution For Different Severities')

Plot the age distribution for different illness severities

sns.boxplot(x='Level',

 y='Age',

 data=df,

 order=["Low", "Medium", "High"],

 color=color_main,

 medianprops=dict(color="white", label='median'),

 boxprops=dict(alpha=0.8))

Enable grid

plt.grid(True, zorder=0)

Set xlabel and ylabel

plt.xlabel("Illness Severity", fontsize=label_font_size, labelpad=text_padding)

plt.ylabel("Patient Age Distribution", fontsize=label_font_size, labelpad=text_padding)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('Patient Age Distribution For Different Severities', fontsize=title_font_size,
pad=text_padding)

Remove subplot title

plt.suptitle('')

Optional: Save the figure as a png image

plt.savefig('plots/' + '02_patient_age_distribution_for_different_severities.png', format =
'png', dpi = 300, transparent = True)

Close the figure

plt.close()

Figure 2. Patient Age Distribution For Different Severities

This gives us little information; for low severity, patients range primarily from 25 to 43 years, the median being
roughly 33 years of age. For medium & high severity, the median age appears to be slightly higher,
approximately 38 and 36 years, consecutively. We also seem to have one outlier in the Medium severity group.

We can further investigate if the Gender variable plays a role in the illness severity for our sample. We can do
so by using a grouped bar chart:

Code

Output

Create figure

plt.figure('Patient Gender Composition For Different Severities')

Plot the age distribution for different illness severities

df_group = df.groupby(['Level', 'Gender'])['Patient Id'].count().reset_index()

sns.catplot(data=df_group,

 kind="bar",

 x="Level",

 y="Patient Id",

 hue="Gender",

 palette = sns.color_palette("rocket"),
 alpha=0.8,

 order=["Low", "Medium", "High"]

)

Enable grid

plt.grid(True, zorder=0)

Set xlabel and ylabel

plt.xlabel("Illness Severity", fontsize=label_font_size, labelpad=text_padding)

plt.ylabel("Number of Patients", fontsize=label_font_size, labelpad=text_padding)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('Number of Patients For Different Severities', fontsize=title_font_size,
pad=text_padding)

Remove subplot title

plt.suptitle('')

Optional: Save the figure as a png image

plt.savefig('plots/' + '03_patient_gender_count_for_different_severities.png', format = 'png',
dpi = 300, transparent = True)

Close the figure

plt.close()

Figure 3. Patient Gender Count For Different Severities

This tells us more about the potential nature of illness affectation in our sample; medium and high affectation
levels are more prevalent in men, while low affectation levels are roughly equal. This is by no means a
quantitative analysis and does not provide a potential correlation. We must employ more rigorous statistical
methods to start generating a valid hypothesis.

4. Variable correlation study
There are multiple statistical methods and visualization techniques that can come in handy. For studying a
potential bivariate correlation, we typically use correlation matrices for tabular-like visualizations or
scatterplots for graphical visualizations. The first provides a quantitative result, while the latter provides a
qualitative result.

Since we have a large number of variables and we don't know which ones we could use to predict illness
severity, we will start by using a variation of the correlation matrix by employing a correlation heat map.

4.1 Using a correlation matrix

A correlation matrix is a standard statistical technique which generates pairs for all variables and calculates a
correlation coefficient, including all variables paired with themselves denoted in the matrix diagonal.

Pandas has a built-in method, df.corr() , which accepts a Data Frame and returns a correlation matrix
populated with correlation coefficients for each pair of variables. The advantage of this method is that we can
decide between three different correlation methods, the default being the Pearson correlation coefficient. This
will be important because of the nature of our data.

For our example, the Pearson coefficient is not helpful since we have categorical, ordinal data (The Pearson
correlation method is adequate for continuous, linear variables). A better approach for our case would be to
employ a rank correlation coefficient such as Spearman's or Kendall's; both are included in the df.corr()

method.

If we are to use the Spearman correlation, we must consider some assumptions:

The first assumption is covered. The second assumption is more problematic since we have yet to determine if
all of our variable pairs are monotonic, i.e. as one variable increases, the other one increases (monotonically
increasing), or as one variable decreases, the other one decreases (monotonically decreasing).

We can perform a simple test by using a pair plot. This visualization technique plots pairwise relationships in a
dataset in the form of scatterplots, including all variables with themselves denoted in the diagonal of the output
matrix as histograms. It's very similar to our heat map approach, only that we're plotting the variables, so first,
we will need to select the ones we will include.

Referring back to our business case:

In the end, we're left with the following:

We will also need to convert our Levels variable to a categorical, ordinal numerical format:

Code

Our data must be at least ordinal.•

The scores on one variable must be monotonically related to the other variable.•

We're looking for risk factors that could result in higher Lung Cancer severity levels, such as smoking
habits and air pollution exposure levels.

•

We're not looking for symptomatic variables describing the patient's actual health status, such as sneezing,
coughing or snoring. This would be irrelevant to our client.

•

We will also not include the Gender variable since it does not comply with our ordinal assumption.•

Patient Id (As an identifier, though we will not include it in the correlation analysis)•

Age•

Air Pollution•

Alcohol use•

Dust Allergy•

OccuPational Hazards•

Genetic Risk•

chronic Lung Disease•

Balanced Diet•

Obesity•

Smoking•

Passive Smoker•

Level•

Output

Define variables to keep

ordinal_vars = ['Patient Id',

 'Age',

 'Air Pollution',

 'Alcohol use',

 'Dust Allergy',

 'OccuPational Hazards',

 'Genetic Risk',

 'chronic Lung Disease',

 'Balanced Diet',

 'Obesity',

 'Smoking',

 'Passive Smoker',

 'Level']

Create new Data Frame

df_corr = df[ordinal_vars]

Map Level to numeric values

illness_level_dict = {'Low' : 1,

 'Medium' : 2,

 'High': 3}

df_corr['Level'] = df_corr['Level'].map(illness_level_dict)

Remove Patient Id variable for correlation study

df_corr_m = df_corr.drop(columns = ['Patient Id'])

Plot a pair plot

Create figure

plt.figure('Pair Plot', figsize=(20, 22))

Plot Pair Plot

g = sns.pairplot(df_corr_m)

Enable grid

plt.grid(True, zorder=0)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

g.fig.suptitle('Pairplot for All Categorical Variables', y=1.02, fontsize=title_font_size)

Optional: Save the figure as a png image

plt.savefig('plots/' + '04_pairplot_categorical_variables.png', format = 'png', dpi = 300,
transparent = True)

Close the figure

plt.close()

Figure 4. Pair Plot For Categorical Risk Factors

It's challenging to see the actual data points data because of our number of variables. We could analyze our
variables pair by pair and investigate each case, but this would take more time and, in our case, is unnecessary.
Also, our data set is small, and we're working with discrete categorical data, so our scatterplots will display
separated data points in many cases. Nevertheless, if we pay close attention, we will notice that, in most cases,
variable combinations present increasing monotonicity.

Now that we have a general notion of our variable pair trends, we can conduct a Spearman correlation analysis:

Code

Output

Spearman Correlation Analysis

Create figure

plt.figure('Spearman Correlation Heatmap for Risk Factor Variables', figsize=(20,18))

Create the correlation matrix

df_corr_ms = df_corr_m.corr(method='spearman')

Plot using heat man

sns.heatmap(round(df_corr_ms, 2), annot=True, cmap=sns.cm.rocket_r)

Enable grid

plt.grid(True, zorder=0)

Remove bottom and top separators

sns.despine(bottom=True)

Add plot title

plt.title('Spearman Correlation Heatmap for Risk Factor Variables', fontsize=title_font_size,
pad=text_padding)

Remove subplot title

plt.suptitle('')

Optional: Save the figure as a png image

plt.savefig('plots/' + '05_spearman_correlation_heatmap_risk_factor_categorical_variables.png',
format = 'png', dpi = 300, transparent = True)

Close the figure

plt.close()

Figure 5. Spearman Correlation Heatmap For Categorical Risk Factors

We can see that most of our variables have at least some degree of correlation (Spearman's Rank Correlation
Coefficient goes from -1 to +1).

The variable with the weakest correlation in all cases is Age , while the variable presenting the strongest
correlation with the Level variable appears to be Obesity followed by Balanced Diet and, interestingly
enough, Passive Smoker along with Alcohol Use and Genetic Risk .

To make more sense of our results, we can consult a table of correlation coefficient values and their
interpretation:

Correlation Coefficient for a Direct
Relationship

Correlation Coefficient for an Indirect
Relationship

Relationship Strength of the
Variables

0.0 0.0 None/trivial

0.1 -0.1 Weak/small

0.3 -0.3 Moderate/medium

0.5 -0.5 Strong/large

1.0 -1.0 Perfect

Table 1. Correlation Coefficient Values and Their Interpretation

Taken from “Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach”.

4.2 Calculating p-values
Calculating correlation coefficients is not enough to determine the degree of correlation between two variables.
If we were to deliver our analysis as is, the results would lack statistical significance; as we know, there's a
possibility that two variables can be correlated by chance and that, in reality, one or both of the variables were
generated randomly. A p-value test will help us analyze that.

Formally, a p-value is a statistical measurement used to validate a hypothesis against observed data. It measures
the probability of obtaining the observed results, assuming that the null hypothesis is true. The lower the p-
value, the greater the statistical significance of the observed difference.[2]

We can perform a p-value test for the Spearman Correlation analysis using the scipy.stats spearmanr module.
We write the df_corr_ms and the df_pvals_ms DataFrame objects to an Excel Workbook as part of our client
deliverable. If we wanted to report these results to our client, we could opt for a tabular format.

For this, we can use the ExcelWriter handler method along with the xlsxwriter engine, which can be installed
using pip if required:

Code

Code

pip install xlsxwriter

We can take a look at our correlation test results as well as the associated p-values:

Output

x Age
Air

Pollution
Alcohol

use
Dust

Allergy
OccuPational

Hazards
Genetic

Risk

chronic
Lung

Disease

Balanced
Diet

Obesity Smokin

Age 1.0 0.06 0.14 0.04 0.05 0.04 0.11 -0.03 0.06 0.04

Air Pollution 0.06 1.0 0.69 0.64 0.55 0.65 0.6 0.5 0.58 0.36

Alcohol use 0.14 0.69 1.0 0.84 0.85 0.85 0.75 0.58 0.62 0.52

Dust Allergy 0.04 0.64 0.84 1.0 0.88 0.82 0.69 0.65 0.68 0.39

OccuPational
Hazards

0.05 0.55 0.85 0.88 1.0 0.88 0.86 0.68 0.71 0.47

Genetic Risk 0.04 0.65 0.85 0.82 0.88 1.0 0.79 0.64 0.7 0.48

chronic Lung
Disease

0.11 0.6 0.75 0.69 0.86 0.79 1.0 0.62 0.59 0.52

Balanced
Diet

-0.03 0.5 0.58 0.65 0.68 0.64 0.62 1.0 0.64 0.66

Obesity 0.06 0.58 0.62 0.68 0.71 0.7 0.59 0.64 1.0 0.4

Smoking 0.04 0.36 0.52 0.39 0.47 0.48 0.52 0.66 0.4 1.0

Passive
Smoker

0.02 0.52 0.49 0.58 0.52 0.54 0.52 0.72 0.65 0.62

Level 0.08 0.62 0.68 0.7 0.66 0.68 0.61 0.69 0.82 0.48

Copy of dataframe to compare against itself

df_corr_c = df_corr_m.copy()

pvalmat = np.zeros((df_corr_m.shape[1], df_corr_c.shape[1]))

for i in range(df_corr_m.shape[1]):

 for j in range(df_corr_c.shape[1]):

 # Pearson correlation test

 corrtest = spearmanr(df_corr_m[df_corr_m.columns[i]], df_corr_c[df_corr_c.columns[j]])

 pvalmat[i,j] = corrtest[1]

Dataframe for p-values

df_pvals_ms = pd.DataFrame(pvalmat, columns=df_corr_m.columns, index=df_corr_c.columns)

Round results

df_corr_ms = round(df_corr_ms, 4)

df_pvals_ms = round(df_pvals_ms, 6)

Export to Excel sheet

writer = pd.ExcelWriter('outputs/Risk_Factor_Analysis.xlsx', engine = 'xlsxwriter')

df_corr_ms.to_excel(writer, sheet_name = 'Spearman_Corr_Coef')

df_pvals_ms.to_excel(writer, sheet_name = 'Spearman_Pvals')

writer.close()

Table 2. Spearman Correlation Coefficients For Chosen Potential Risk Factor Categorical
Variables

x Age
Air

Pollution
Alcohol

use
Dust

Allergy
OccuPational

Hazards
Genetic

Risk

chronic
Lung

Disease

Balanced
Diet

Obesi

Age 0.0 0.04961 1e-05 0.200319 0.083138 0.206234 0.000568 0.28732 0.0567

Air Pollution 0.04961 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Alcohol use 1e-05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Dust Allergy 0.200319 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OccuPational
Hazards

0.083138 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Genetic Risk 0.206234 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

chronic Lung
Disease

0.000568 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Balanced
Diet

0.28732 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Obesity 0.056733 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Smoking 0.197169 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Passive
Smoker

0.635466 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Level 0.012026 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 3. Spearman P-Values For Chosen Potential Risk Factor Categorical Variables

If we look closer at our p-values, we can see that for virtually all variables except for Age , the result is
negligible (very close to 0). This means there is a 0% chance that a random process generated the results from
our sample. In contrast, there's a 1.2% chance of random events causing the ' Age' with 'Level' correlation.

This tells us enough of what we need to know to start designing a predictive model.

In the next part of this 3-segment Guided Project, we will go over nine different classification algorithms and
compare their performance.

Conclusions
In this segment, we introduced the concept of EDA. We put it into practice by conducting correlational studies,
specifically, the Spearman correlation test and a statistical significance analysis to unveil potential risk factors
for patients with three different severity levels of Lung Cancer.

Countless articles and posts suggest different statistical methods without any theoretical background. It's
essential to understand the underlying theory behind the methods we're using for our analysis. This is easier said

§

https://pabloagn.com/guided-projects/exploratory-data-analysis-pt-2/
app://obsidian.md/index.html

than done, but we must be rigorous in our techniques. Otherwise, we could be delivering biased information to
our client.

Finally, choosing the proper visualization methods is vital since each object has a purpose; we could also be
misleading our client if we chose incorrect visualization techniques.

References

Copyright
Pablo Aguirre, GNU General Public License v3.0, All Rights Reserved.

1. American Lung Association, Lung Cancer Fact Sheet↩︎↩︎↩︎
2. Investopedia, P-Value: What It Is, How to Calculate It, and Why It Matters↩︎

§

Kaggle, Detailed Exploratory Analysis With Python•

Lung.org, Lung Cancer Fact Sheet•

§

§

https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet
https://www.investopedia.com/terms/p/p-value.asp#:~:text=A%20p%2Dvalue%20is%20a,significance%20of%20the%20observed%20difference.
https://www.kaggle.com/code/ekami66/detailed-exploratory-data-analysis-with-python/notebook
https://www.lung.org/lung-health-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet

