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In the last part of this 3-segment Guided Project, we introduced the concept of Exploratory Data Analysis
(EDA). We made some initial data exploration and chose a set of risk factors which could be potentially used to
predict the severity of a given patient's Lung Cancer condition. We also introduced a simple business case
requested by our client, an insurance company, and proceeded to analyze a data set provided.

In this section, we will go over 12 different classification algorithms. We will start by preparing our data. We
will then discuss, in a very general way, the underlying theory behind each model and its assumptions. We will
finally implement each method step-by-step and make a performance comparison.

We'll use Python scripts found in the Guided Project Repo.

The generated plots and test results from the last segment can also be found in the plots and outputs folder
respectively.
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Classification model implementation
Classification models are a subset of supervised machine learning algorithms. A typical classification model
reads an input and tries to classify it based on some predefined properties. A straightforward example would be
the classification of a mail containing spam vs one without spam.
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The other type of supervised algorithm, perhaps more familiar, is regression models. These differ because they
don't classify our inputs but predict continuous variables. A typical example would be predicting the stock
market behaviour for a given asset.

1. Selecting our methods
We can implement multiple supervised models to try to predict the severity of Lung Cancer for a given patient.
It's always a good idea to test at least a set of different models and compare their accuracy. Since we have
categorical, ordinal variables, we will test different classification algorithms.

It's also important to consider that not every classification algorithm is appropriate for every classification
problem. Each model is based on assumptions that may render it unusable for certain applications.

In this example, we will be working with 12 classification models, which we'll explain in more detail further on:

2. Creating a Virtual Environment
Before anything else, we need to check our current Python version. This is important because although we'll not
be using tensorflow  directly, we will require it for our Deep Neural Network model using keras , and
tensorflow  currently supports *Python versions 3.7 - 3.10:

Code

Output

We can consult each operating system's tensorflow  installation requirements here.

If we have a Python version within the range above, we'll be fine and can skip to the module installation part.
Otherwise, we have two options:

Multinomial Logistic Regression•

Decision Tree•

Random Forest•

Support Vector Machine•

K-Nearest Neighbors•

K-Means Clustering•

Gaussian Naïve Bayes•

Bernoulli Naïve Bayes•

Stochastic Gradient Descent•

Gradient Boosting•

Extreme Gradient Boosting•

Deep Neural Networks•

import sys

sys.version


'3.11.1 (tags/v3.11.1:a7a450f, Dec  6 2022, 19:58:39) [MSC v.1934 64 bit (AMD64)]'


Install an older version of Python user-wide or system-wide, and use it as our default interpreter.•

Create a new virtual environment containing a downgraded Python version.•

https://www.tensorflow.org/install/pip


The second option is always best practice because another program we wrote might be using a newer Python
version. If we replace our current Python version with an older one, we could break any program we wrote
using more recent versions. Virtual environments handle these types of conflicts; we can have multiple Python
installations and selectively choose which environment to work with, depending on each case.

Since we require a different Python version than the one we have, we will first download and install our target
version by heading to the Python Releases for Windows site.

We will then select the version that we want to download. For this case, we will use Python 3.10.0 - Oct. 4, 2021
by getting the corresponding 64-bit Windows installer. Upon download, we will execute the installer and wait
for it to conclude. A new Python version will be installed on our system.

Since we installed it user-wide, the executable will be found on
C:/Users/our_username/AppData/Local/Programs/Python . We must remember this path since we will use it to point

to the Python version upon our venv  creation.

We will then create a new virtual environment dedicated to this project. For this, we will need to first cd  into
our project directory:

Code

We will then create the environment using the built-in venv  package. We can provide whichever name we like.
Since we don't have Python 3.10 specified in PATH , we will need to refer to it by specifying the full absolute
path.

Code

We will see that a new folder was created on our working directory:

Code

Output

We can then activate our environment:

Code

cd 'C:/Users/our_username/exploratory-data-analysis'


C:\Users\our_username\AppData\Local\Programs\Python\Python310\python.exe -m venv 'eda_venv'


ls


eda_venv

outputs

plots

cancer patient data sets.csv

exploratory-data-analysis-1.py

exploratory-data-analysis-2.py


https://www.python.org/downloads/windows/
https://www.python.org/downloads/release/python-3100/


We must remember that this Activate.ps1  is intended to be run by Microsoft PowerShell. We must check
which activate  version to use if we're running a different shell. The activate.bat  file should be executed for
cmd .

We are now inside our virtual environment using Python 3.10. To confirm, we can look at the left of our
command prompt, which should display eda_venv .

In order to start using the new environment in our IDE, there's one additional step we must perform; this heavily
depends on which IDE we're using, but typically we'll have to point it to our new interpreter
( eda_venv/Scripts/python.exe ) by specifying its path on our preferences menu.

We can manage the required dependencies for our project by using a requirements.txt  file. If we're using a
version control system such as GitHub, the best practice is to add our eda_venv  folder to our .gitignore  file.
For this, we will create a new requirements.txt  file and place it in our folder project:

Code

We will then include the following and save it:

Code

cd eda_venv\Scripts


.\Activate.ps1


On Spyder:•

We can head to Tools, Preferences, Python Interpreter.•

We can then input the interpreter's path.•

On VS Code:•

We can open the command palette by pressing F1 .•

We can then search for Python: Select Interpreter.•

We can input our interpreter's path.•

cd exporatory-data-analysis


New-Item requirements.txt


matplotlib

seaborn

numpy

pandas

scipy

scikit-learn

keras

xgboost

tensorflow==2.10

xlsxwriter

visualkeras

pydot

pydotplus


https://pabloagn.com/technologies/github/


If we're using a Windows machine, we can install tensorflow r2.10  since this was the last release to support
GPU processing on native Windows. We can also stick with the tensorflow-cpu  package since our data set is
not extensive, but tensorflow  leverages GPU processing power to perform faster, especially in deep learning
models. We will use the GPU-powered tensorflow  package for this segment, hence the version definition on
our requirements.txt  file.

We will also need to install the NVIDIA CUDA Toolkit & the CUDA Deep Neural Network (cuDNN) library if
we wish to enable GPU processing. We can head to the CUDA Toolkit Downloads page and get the version for
our case (it's important to read all CUDA requirements, i.e. Visual Studio is required for it to work properly.
Also, tensorflow  requires a specific CUDA version). For cuDNN, we can head to the NVIDIA cuDNN page
(we will have to create an NVIDIA developer account for this one).

3. Preparing our environment
Now that we have our environment ready, we can install all our packages using the requirements.txt  file we
just generated:

Code

And that's it; we have every package we need on our virtual environment and ready to be imported.

We can then import the required modules:

Code

cd exploratory-data-analysis


pip install -r requirements.txt


https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn


We can suppress unnecessary warnings and define plot parameters:

Code

# Data manipulation modules

import pandas as pd

import numpy as np

import xlsxwriter

import re


# Plotting modules

import matplotlib

import matplotlib.pyplot as plt

import seaborn as sn

from sklearn import tree

import visualkeras

from PIL import ImageFont


# Preprocessing modules

from sklearn.preprocessing import LabelEncoder, StandardScaler, FunctionTransformer

from sklearn.model_selection import train_test_split, KFold


# Evaluation & performance modules

from sklearn.metrics import confusion_matrix, classification_report


# Machine Learning models

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB, BernoulliNB

from sklearn.linear_model import SGDClassifier

from sklearn.ensemble import GradientBoostingClassifier

from xgboost import XGBClassifier

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation


# Utility modules

import warnings

import shutil




As we have multiple models, it will be best to build a dictionary with each name as Key  and each model as
Value . We will also define our model parameters inside each model so we don't have to define them as

additional variables in our workspace:

Code

# Supress verbose warnings

warnings.filterwarnings("ignore")


# Define plot parameters

# Before anything else, delete the Matplotlib

# font cache directory if it exists, to ensure

# custom font propper loading

try:

    shutil.rmtree(matplotlib.get_cachedir())

except FileNotFoundError:

    pass


# Define main color as hex

color_main = '#1a1a1a'


# Define title & label padding

text_padding = 18


# Define font sizes

title_font_size = 17

label_font_size = 14


# Define rc params

plt.rcParams['figure.figsize'] = [14.0, 7.0]

plt.rcParams['figure.dpi'] = 300

plt.rcParams['grid.color'] = 'k'

plt.rcParams['grid.linestyle'] = ':'

plt.rcParams['grid.linewidth'] = 0.5

plt.rcParams['font.family'] = 'sans-serif'

plt.rcParams['font.sans-serif'] = ['Lora']




We can then define a dictionary which will contain all the preprocessing functions that we will need:

Code

We can then import our data set and do some preprocessing:

Code

# Define model dictionary

model_dictionary = {

    'Multinomial Logistic Regressor': LogisticRegression(multi_class='multinomial',

	 	 	 	    solver='lbfgs',

	 	 	 	    random_state=42,

	 	 	 	    max_iter=100000,

	 	 	 	    penalty='l2',

	 	 	 	    C=24),

    'Logistic Regressor' : LogisticRegression(C=24),

    'Decision Tree Classifier': DecisionTreeClassifier(random_state=9),

    'Random Forest Classifier': RandomForestClassifier(n_estimators = 100),

    'Support Vector Classifier': SVC(C=0.12, gamma=0.02, kernel='linear'),

    'Support Vector Classifier Polynomial Kernel': SVC(C=1, gamma=0.6, kernel='poly', degree=8),

    'Support Vector Classifier Radial Kernel': SVC(C=1, gamma=0.6, kernel='rbf'),

	 'K-Nearest Neighbors Classifier' : KNeighborsClassifier(n_neighbors=5),

    'Gaussian Naive Bayes Classifier': GaussianNB(),

    'Bernoulli Naive Bayes Classifier': BernoulliNB(),

    'Stochastic Gradient Descent': SGDClassifier(loss='log',

                                                 max_iter=10000,

                                                 random_state=42,

                                                 penalty='l2'),

	 'Gradient Boosting Classifier': GradientBoostingClassifier(),

	 'Extreme Gradient Boosting Classifier' : XGBClassifier(),

    'Sequential Deep Neural Network' : Sequential()

}


preprocessing_dictionary = {'Right Skew Gaussian' : FunctionTransformer(func = np.square),

                            'Left Skew Gaussian' : FunctionTransformer(func = np.log1p),

                            'Standard Scaler' : StandardScaler()

}




We end up with a DataFrame with the following characteristics:

Output

If we recall from the last section, these are the potential risk factors that our client is looking to study. We had to
remove all the other symptomatic characteristics as our client is not interested in these.

We will now define a simple function that will help us split our data into train and test sets:

Code

# Read the data set

df = pd.read_csv('cancer patient data sets.csv')


# Remove index column

df.drop(columns = "index", inplace = True)


# Map Level to numeric values

illness_level_dict = {'Low' : 1,

                      'Medium' : 2,

                      'High': 3}


df['Level'] = df['Level'].map(illness_level_dict)


# Remove columns that we will not study

remove_cols = ['Patient Id',

               'Gender',

               'Age',

               'Chest Pain',

               'Coughing of Blood',

               'Fatigue',

               'Weight Loss',

               'Shortness of Breath',

               'Wheezing',

               'Swallowing Difficulty',

               'Clubbing of Finger Nails',

               'Frequent Cold',

               'Dry Cough',

               'Snoring']


df = df.drop(columns = remove_cols)


print(df.shape)

print(list(df.columns))


(1000, 26)


['Air Pollution', 'Alcohol use', 'Dust Allergy', 'OccuPational Hazards', 'Genetic Risk', 'chronic 
Lung Disease', 'Balanced Diet', 'Obesity', 'Smoking', 'Passive Smoker', 'Level']




We will now define three functions that will help us with the results generation:

Code

def sep(dataframe):

    '''

    Parameters

    ----------

    dataframe : DataFrame

        Contains our data as a DataFrame object.


    Returns

    -------

    x : DataFrame

        Contains our features.

    y : DataFrame

        Contains our labels.

    '''

    target = ["Level"]

    x = dataframe.drop(target , axis = 1)

    y = dataframe[target]

    

    return x, y


cm_plot  will plot a confusion matrix for each method. Confusion matrixes are a special kind of
contingency table with two dimensions (actual and predicted). The idea behind the confusion matrix is to
get a quick graphical grasp of how our model performed in predicting compared to the test data. It is a
widely used and straightforward method to implement and explain to a non-technical audience.

•

model_score  will calculate the model score as the  coefficient.• R2

classification_rep  will calculate , ,  and  for each label and return it as a
DataFrame object.

• precision recall f1-score support



# Define Confusion Matrix Function

def cm_plot(model_name, model, test_y, predicted_y):

    '''

    Parameters

    ----------

    model_name : Str

        Contains the used model name.

    model : sklearn or keras model object

        Contains a model object depending on the model used.

    test_y : DataFrame

        Contains the non-scaled test values for our data set.

    predicted_y : Array

        Contains the predicted values for a given method.


    Returns

    -------

    None.

    '''

    cm = confusion_matrix(test_y, predicted_y)

    plt.figure(f'{model_name}_confusion_matrix')

    sn.heatmap(cm, annot=True, linewidth=0.7, cmap="rocket")

    plt.title(f'{model_name} Confusion Matrix\n')

    plt.xlabel('y Predicted')

    plt.ylabel('y Test')

    plt.savefig('plots/' + f'{model_name}_confusion_matrix_tp.png', format = 'png', dpi = 300, 
transparent = True)

    plt.close()

    return None


# Define model score

def model_score(model, test_x, test_y):

    '''

    Parameters

    ----------

    model : sklearn or keras model object

        Contains a model object depending on the model used.

    test_x : Array

        Contains the transformed / scaled test values for the features.

    test_y : DataFrame

        Contains the un-scaled / un-transformed test values for the labels.


    Returns

    -------

    sc : Float

        Contains the score model.

    '''

    sc = model.score(test_x, test_y)


    return sc


# Define Classification Report Function

def classification_rep(test_y, predicted_y):

    '''

    Parameters

    ----------

    test_y : DataFrame




We will now transform our data in order to make it usable for each model:

Code

Now that we have our transformed sets, we can start talking about the selected models. For each case, we will
briefly describe what the model is about, its general mathematical intuition, and its assumptions.

        Contains the non-scaled test values for our data set.

    predicted_y : Array

        Contains the predicted values for a given method.


    Returns

    -------

    cr : DataFrame

        Contains a report showing the main classification metrics.

    '''

    cr = classification_report(test_y, predicted_y, output_dict=True)

    cr = pd.DataFrame(cr).transpose()

    

    return cr


# For Normal Distribution Methods, we can approximate our data set to

# a normal distribution

right_skew = []

left_skew = []

for i in df_x.columns:

    if df_x[i].skew() > 0:

        right_skew.append(i)

    else:

        left_skew.append(i)


right_skew_transformed = preprocessing_dictionary['Right Skew 
Gaussian'].fit_transform(df_x[right_skew])

left_skew_transformed = preprocessing_dictionary['Left Skew 
Gaussian'].fit_transform(df_x[left_skew])


df_gaussian = pd.concat([right_skew_transformed,

                         left_skew_transformed ,

                         df_y] ,

                         axis = 1,

                         join = "inner")


# We can divide into train & text, x & y

train_G, test_G = train_test_split(df_gaussian, test_size=0.2)

train_Gx, train_Gy = sep(train_G)

test_Gx, test_Gy = sep(test_G)


# For other methods, we can scale using Standard Scaler

train, test = train_test_split(df, test_size=0.2)

train_x, train_Sy = sep(train)

test_x, test_Sy = sep(test)


train_Sx = preprocessing_dictionary['Standard Scaler'].fit_transform(train_x)

test_Sx = preprocessing_dictionary['Standard Scaler'].transform(test_x)




The mathematical background provided in this segment is, by any means, a rigorous derivation. We could spend
an entire series talking about one model's mathematical background. Instead, we will review the main
mathematical formulae involved in each model.

4. A word on model assumptions
Assumptions denote the collection of explicitly stated (or implicit premised) conventions, choices and other
specifications on which any model is based.

Every model is built on top of assumptions. They provide the theoretical foundation for it to exist and be valid,
and machine learning models are no exception. That is not to say that every assumption must be rigorously met
for a given model to work as expected, but we cannot bypass every assumption and expect our model to work as
designed.

If we understand the underlying theory behind our model, we can be selective in the assumptions we can live
without; we can gain knowledge on the implications of bypassing a particular assumption and thus make a
supported decision on which model to use. It's a matter of balance and finding out what's suitable for our case.

5. Multinomial Logistic Regression
Multinomial Logistic Regression is a classification method that generalizes logistic regression to multiclass
problems, i.e. when we have more than two possible discrete outcomes.

Logistic Regression, or Logit Model, contrary to what its name may suggest, is not a regression model but a
parametric classification one. In reality, this model is very similar to Linear Regression; the main difference
between the two is that in Logistic Regression, we don’t fit a straight line to our data. Instead, we fit an  shaped
curve, called Sigmoid, to our observations.

5.1 Mathematical intuition overview

Logistic Regression fits data to a  function:

It first calculates a weighted sum of inputs:

It then calculates the probability of the weighted feature belonging to a given group:

Weights are calculated using different optimization models, such as Gradient Descent or Maximum
Likelihood.

Multinomial Logistic Regression uses a linear predictor function  to predict the probability that
observation  has outcome , of the following form:

Where:

S

Sigmoid

sigmoid(x) =
1

1 + e−x

x = Θ ⋅ feature + b

P(x) =
1

1 + e−x

f(k, i)

i k

f(k, i) = β0,k + β1,kX1,i + β2,kX2,i + ⋯ + βM,kXM ,i

 is the set of regression coefficients.• βm,k

 is the outcome.• k

 is a row vector containing the set of explanatory variables associated with observation .• Xi i

https://www.ibm.com/topics/linear-regression


We can express our predictor function in a more compact form, since the regression coefficients and explanatory
variables are normally grouped into vectors of size :

When fitting a multinomial logistic regression model, we have several outcomes ( ), meaning we can think of
the problem as fitting  independent Binary Logit Models. From the Binary Logit Model equation, we can
express our predictor functions as follows:

We can then exponentiate both sides of our equation to get probabilities:

5.2 Assumptions

5.3 Implementation
We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

M + 1

f(k, i) = βk + Xi

K

K − 1

ln
Pr(Yi = 1)

Pr(Yi = K)
= β1 ⋅ Xi

ln
Pr(Yi = 2)

Pr(Yi = K)
= β2 ⋅ Xi

⋯

ln
Pr(Yi = K − 1)

Pr(Yi = K)
= βK−1 ⋅ Xi

Pr(Yi = 1) = Pr(Yi = K) ⋅ eβ1⋅Xi

Pr(Yi = 2) = Pr(Yi = K) ⋅ eβ2⋅Xi

⋯

Pr(Yi = K − 1) = Pr(Yi = K) ⋅ eβK−1⋅Xi

It requires the dependent variable to be binary, multinomial or ordinal.•

It has a linear decision surface, meaning it can’t solve non-linear problems.•

Requires very little to no multicollinearity, meaning our independent variables must not be correlated with
each other.

•

Usually works best with large data sets and requires sufficient training examples for all the categories to
make correct predictions.

•

# Train model

model_dictionary['Multinomial Logistic Regressor'].fit(train_Sx, train_Sy)


# Predict

y_predicted_MLogReg = model_dictionary['Multinomial Logistic Regressor'].predict(test_Sx)




Code

Output

Figure 1: Confusion Matrix For Multinomial Logistic Regression

As we discussed earlier, a confusion matrix tells us the number of predicted values for each severity level vs the
test values we're comparing results with. The matrix diagonal denotes the predicted & test value match.

Output

# Evaluate the model and collect the scores

cm_plot('Multinomial Logistic Regressor',

        model_dictionary['Multinomial Logistic Regressor'],

        test_Sy,

        y_predicted_MLogReg)


# Define model score

score_MLogReg = model_score(model_dictionary['Multinomial Logistic Regressor'],

                            test_Sx,

                            test_Sy)


# Define Classification Report Function

report_MLogReg = classification_rep(test_Sy,

                                    y_predicted_MLogReg)


print(score_MLogReg)




X precision recall f1-score support

1 0.890909 0.803279 0.844828 61

2 0.818182 0.9 0.857143 60

3 1 1 1 79

accuracy 0.91 0.91 0.91 0.91

macro avg 0.90303 0.901093 0.900657 200

weighted avg 0.912182 0.91 0.909815 200

Table 1. Classification Report For Multinomial Logistic Regression

A classification report has 7 different metrics:

The precision is the number of true positive results divided by the number of all positive results, including those
not identified correctly:

Where:

The recall is the number of true positive results divided by the number of all samples that should have been
identified as positive:

Where:

The f1-score is the harmonic mean of the precision and recall. The highest possible value of an F-score is 1.0,
indicating perfect precision and recall, and the lowest possible value is 0 if either precision or recall is zero:

The accuracy is the sum of true positives and true negatives divided by the total number of samples. This is
only accurate if the model is balanced. It will give inaccurate results if there is a class imbalance:

Where:

In our case, we have a balanced class. We can confirm this fact:

Precision =
tp

tp + fp

 are the true positives.• tp

 are the false positives.• fp

Recall =
tp

tp + fn

 are the true positives.• tp

 are the false positives.• fp

F1 = (
2

recall−1 + precision−1
) = 2 ⋅

precision ⋅ recall

precision + recall

Accuracy =
tp + tn

tp + tn + fp + fn

 are the true positives.• tp

 are the true negatives.• tn

 are the false positives.• fp

 are the false negatives.• fn
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We can see that we have roughly the same percentage of patients distributed along Lung Cancer severity levels,
so for our case, the accuracy metric will be the most helpful way to evaluate our models.

If we had an unbalanced label class, we would have to perform special treatments to implement our models, and
we would not be able to use accuracy as our model evaluator.

The macro-averaged f1-score is computed using the arithmetic or unweighted mean of all the per-class f1
scores.

The weighted average of precision, recall and f1-score takes the weights as the support values.

If we take a look at our results, we can see that it predicted with a 91.5% accuracy:

Output

Not to worry, we will explore the results in more detail in the Method Comparison section.

We can now use a Binomial Logistic Regression model and see what we get:

Code

df.groupby('Level')['Level'].count() / len(df) * 100


Level

1    30.3

2    33.2

3    36.5

Name: Level, dtype: float64


0.915




If we look at our results, we can see that it predicted with a 91.5% accuracy. Same as its multinomial cousin:

Output

Figure 2: Confusion Matrix For Binomial Logistic Regression

Output

# Train model

model_dictionary['Logistic Regressor'].fit(train_Sx, train_Sy)


# Predict

y_predicted_BLogReg = model_dictionary['Logistic Regressor'].predict(test_Sx)


# Evaluate the model and collect the scores

cm_plot('Logistic Regressor',

        model_dictionary['Logistic Regressor'],

        test_Sy,

        y_predicted_BLogReg)


# Define model score

score_BLogReg = model_score(model_dictionary['Logistic Regressor'],

                            test_Sx,

                            test_Sy)


# Define Classification Report Function

report_BLogReg = classification_rep(test_Sy,

                                    y_predicted_BLogReg)


print(score_BLogReg)




X precision recall f1-score support

1 0.890909 0.803279 0.844828 61

2 0.818182 0.9 0.857143 60

3 1 1 1 79

accuracy 0.91 0.91 0.91 0.91

macro avg 0.90303 0.901093 0.900657 200

weighted avg 0.912182 0.91 0.909815 200

Table 2. Model report for Binomial Logistic Regression

Output

6. Decision Tree
A Decision Tree is a technique that can be used for classification and regression problems. In our case, we'll be
using a Decision Tree Classifier.

A Decision Tree has two types of nodes:

A Decision Tree algorithm starts from the tree's root node containing the entire data set. It then divides the root
node into subsets containing possible values for the best attributes. It then compares values of the best attribute
using Attribute Selection Measures (ASM). It then generates a new node, which includes the best attribute.
Finally, it recursively makes new decision trees using the subsets of the dataset and continues until a stage is
reached where it cannot further classify the nodes. This is where the final node (leaf node) is created.

6.1 Mathematical intuition overview
Attribute Selection Measures (ASM) determine which attribute to select as a decision node and branch further.
There are two main ASMs:

6.1.1 Information Gain

Measures the change in entropy after the segmentation of a dataset based on an attribute occurs:

We can interpret entropy as impurity in a given attribute:

Where:

0.915


Decision Node: These are in charge of making decisions and branch in multiple nodes.•

Leaf Node: These are the outputs of the decision nodes and do not branch further.•

Gain(S, a) = Entropy(S) − ∑
v∈V (A)

|Sv|

|S|
⋅ Entropy(Sv)

Entropy(s) =
n

∑
i=1

−p(ci) ⋅ log2(p(ci))

 is the data set .• S S

 is the dataset .• Sv Sv



The more entropy removed, the greater the information gain. The higher the information gain, the better the
split.

6.1.2 Gini Index

Measures impurity; if all the elements belong to a single class, it can be called pure. The degree of the Gini
Index varies between 0 and 1. A Gini Index of 0 denotes that all elements belong to a certain class or only one
class exists (pure). A Gini Index of 1 denotes that the elements are randomly distributed across various classes
(impure).

Gini Index is expressed with the following equation:

Where:

6.2 Assumptions

6.3 Implementation
We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

 represents the proportion of the values in  to the number of values in dataset, .• |Sv|
|S| Sv S

 is the probability of class  in a node.• p(ci) ci

Gini = 1 −
n

∑
i=1

p2(ci)

 is the squared probability of class  in a node.• p2(ci) ci

In the beginning, the whole training set is considered the root.•

Feature values are preferred to be categorical.•

Records are distributed recursively based on attribute values.•

# Train model

model_dictionary['Decision Tree Classifier'].fit(train_Sx, train_Sy)


# Predict

y_predicted_DecTree = model_dictionary['Decision Tree Classifier'].predict(test_Sx)




If we take a look at our results, we can see that it predicted with a 100% accuracy:

Output

Figure 3: Confusion Matrix For Decision Tree Classifier

Output

# Evaluate the model and collect the scores

cm_plot('Decision Tree Classifier',

        model_dictionary['Decision Tree Classifier'],

        test_Sy,

        y_predicted_DecTree)


# Define model score

score_DecTree = model_score(model_dictionary['Decision Tree Classifier'],

                            test_Sx,

                            test_Sy)


# Define Classification Report Function

report_DecTree = classification_rep(test_Sy,

                                    y_predicted_DecTree)


print(score_DecTree)




X precision recall f1-score support

1 1 1 1 61

2 1 1 1 60

3 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 3. Model report for Decision Tree Classifier

Output

The interesting thing about Decision Trees is that we can visualize them using multiple methods.

We can display a simple text representation:

Code

Output

1.0


# Text Representation

DecTree_text_rep = tree.export_text(model_dictionary['Decision Tree Classifier'])


print(DecTree_text_rep)




|--- feature_7 <= 0.99

| |--- feature_2 <= -1.29

| | |--- feature_6 <= 0.50

| | | |--- class: 1

| | |--- feature_6 > 0.50

| | | |--- class: 3

| |--- feature_2 > -1.29

| | |--- feature_9 <= 1.03

| | | |--- feature_1 <= -0.00

| | | | |--- feature_7 <= -0.89

| | | | | |--- feature_1 <= -1.16

| | | | | | |--- feature_3 <= -0.63

| | | | | | | |--- class: 2

| | | | | | |--- feature_3 > -0.63

| | | | | | | |--- class: 1

| | | | | |--- feature_1 > -1.16

| | | | | | |--- class: 1

| | | | |--- feature_7 > -0.89

| | | | | |--- feature_6 <= -0.42

| | | | | | |--- feature_1 <= -0.77

| | | | | | | |--- feature_0 <= -0.14

| | | | | | | | |--- feature_1 <= -1.16

| | | | | | | | | |--- feature_7 <= -0.42

| | | | | | | | | | |--- class: 1

| | | | | | | | | |--- feature_7 > -0.42

| | | | | | | | | | |--- class: 2

| | | | | | | | |--- feature_1 > -1.16

| | | | | | | | | |--- class: 2

| | | | | | | |--- feature_0 > -0.14

| | | | | | | | |--- class: 1

| | | | | | |--- feature_1 > -0.77

| | | | | | | |--- feature_6 <= -0.89

| | | | | | | | |--- class: 1

| | | | | | | |--- feature_6 > -0.89

| | | | | | | | |--- class: 2

| | | | | |--- feature_6 > -0.42

| | | | | | |--- feature_7 <= 0.28

| | | | | | | |--- class: 1

| | | | | | |--- feature_7 > 0.28

| | | | | | | |--- class: 2

| | | |--- feature_1 > -0.00

| | | | |--- feature_5 <= 1.17

| | | | | |--- class: 2

| | | | |--- feature_5 > 1.17

| | | | | |--- class: 1

| | |--- feature_9 > 1.03

| | | |--- class: 3

|--- feature_7 > 0.99

| |--- feature_0 <= -0.63

| | |--- class: 2

| |--- feature_0 > -0.63

| | |--- class: 3




We can also plot the tree using plot_tree :

Code

Output

Figure 4. Graphical Representation Of Our Decision Tree Classifier

7. Random Forest
Random Forest is an ensemble learning method for classification, regression and other methods. It works by
constructing a multitude of decision trees at training time; the output of the random forest is the class selected
by most trees.

7.1 Mathematical intuition overview
The training algorithm for random forests applies a generalization of bagging.

Given a training set  with responses  bagging repeatedly (B times) selects a random
sample with replacement of the training set and fits trees to these samples.

# Tree plot using plot_tree

fig = plt.figure('Decision Tree plot_tree')

tree.plot_tree(model_dictionary['Decision Tree Classifier'],

                   feature_names=df_x.columns,

                   class_names=df_y['Level'].astype('str'),

                   filled=True)


plt.title('Decision Tree Plot')

plt.savefig('plots/' + 'Decision Tree Classifier_Decision Tree_tp.png', format = 'png', dpi = 
300, transparent = True)

plt.close()


X = x1, ⋯ ,xn Y = y1, ⋯ , yn



After training, predictions for unseen samples  can be made by averaging the predictions from all the
individual regression trees on  or by taking the majority vote from the set of trees.

We can also include a measure of the uncertainty of the prediction calculating the standard deviation of the
predictions from all the individual regression trees on .

7.2 Assumptions

7.3 Implementation
We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

If we take a look at our results, we can see that it predicted with a 100% accuracy:

x′

x′

x′

It inherits assumptions from the decision tree model.•

There should be some actual values in the feature variables of the dataset, which will give the classifier a
better chance to predict accurate results.

•

The predictions from each tree must have very low correlations.•

# Train model

model_dictionary['Random Forest Classifier'].fit(train_Sx, train_Sy)


# Predict

y_predicted_RandomFor = model_dictionary['Random Forest Classifier'].predict(test_Sx)


# Evaluate the model and collect the scores

cm_plot('Random Forest Classifier',

        model_dictionary['Random Forest Classifier'],

        test_Sy,

        y_predicted_RandomFor)


# Define model score

score_RandomFor = model_score(model_dictionary['Random Forest Classifier'],

                            test_Sx,

                            test_Sy)


# Define Classification Report Function

report_RandomFor = classification_rep(test_Sy,

                                    y_predicted_RandomFor)


print(score_RandomFor)
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Figure 5: Confusion Matrix For Random Forest Classifier

Output

X precision recall f1-score support

1 1 1 1 61

2 1 1 1 60

3 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 4. Model Report For Random Forest Classifier

Output

8. Nonlinear Support Vector Machine
Support Vector Machines (SVM) are a class of supervised models originally developed for linear applications,
although a nonlinear implementation using nonlinear Kernels was also developed; the resulting algorithm is
similar, except that every dot product is replaced by a nonlinear kernel function.

8.1 Mathematical intuition overview
The SVM model amounts to minimizing an expression of the following form:

1.0




Where:

With the different nonlinear Kernels being:

8.2 Assumptions
There are no particular assumptions for this model. If we scale our variables, we might increase its performance,
but it is not required.

8.3 Implementation
For this part, we'll be using three different approaches; we mentioned that Support Vector Machines are fit for
linear applications, although we can use nonlinear Kernels to fit nonlinear data.

There are two particular Kernels we will implement:

We can start by fitting our models to our data:

Code

We can then predict some values using our trained models:

Code

We can finally evaluate our models using the metrics we defined earlier:

[ 1

n

n

∑
i−1

max(0, 1 − yi ⋅ (W ⊤xi − b))] + λ||w||2

 is the loss function.• ∑n
i−1 max(0, 1 − yi ⋅ (W ⊤xi − b)

 is the regularization.• λ||w||2

Polynomial homogeneous (when , this becomes the linear kernel): • d = 1 k(Xi,Xj) = (Xi ⋅ Xj)d

Polynomial homogeneous: • k(Xi,Xj) = (Xi ⋅ Xj + r)d

Gaussian Radial Basis Function (RBF): , for 
•

k(Xi,Xj) = e
−||Xi−Xj||2

2σ2 λ > 0

Sigmoid function: , for some  and • k(Xi,Xj) = tanh(kXi ⋅ Xj + c) k > 0 c < 0

Polynomial Kernel: As its name suggests, this Kernel represents the similarity of vectors in a feature
space over polynomials of the original variables. We can select the order of the polynomial as a parameter.

•

Radial Basis Function Kernel: This Kernel is the most generalized form of kernelization and is one of the
most widely used in SVM due to its similarity to the Gaussian distribution.

•

# Train models

model_dictionary['Support Vector Classifier'].fit(train_Sx, train_Sy)

model_dictionary['Support Vector Classifier Polynomial Kernel'].fit(train_Sx, train_Sy)

model_dictionary['Support Vector Classifier Radial Kernel'].fit(train_Sx, train_Sy)


# Predict

y_predicted_SVM = model_dictionary['Support Vector Classifier'].predict(test_Sx)

y_predicted_SVMp = model_dictionary['Support Vector Classifier Polynomial 
Kernel'].predict(test_Sx)

y_predicted_SVMr = model_dictionary['Support Vector Classifier Radial Kernel'].predict(test_Sx)




Code

If we look at our results, we can see that we get the following accuracies:

Output

# Evaluate the model and collect the scores

cm_plot('Support Vector Classifier',

        model_dictionary['Support Vector Classifier'],

        test_Sy,

        y_predicted_SVM)

        

cm_plot('Support Vector Classifier Polynomial Kernel',

        model_dictionary['Support Vector Classifier Polynomial Kernel'],

        test_Sy,

        y_predicted_SVMp)


cm_plot('Support Vector Classifier Radial Kernel',

        model_dictionary['Support Vector Classifier Radial Kernel'],

        test_Sy,

        y_predicted_SVMr)


# Define model score

score_SVM = model_score(model_dictionary['Support Vector Classifier'],

                        test_Sx,

                        test_Sy)

                                

score_SVMp = model_score(model_dictionary['Support Vector Classifier Polynomial Kernel'], 
test_Sx, test_Sy)


score_SVMr = model_score(model_dictionary['Support Vector Classifier Radial Kernel'], test_Sx, 
test_Sy)


# Define Classification Report Function

report_SVM = classification_rep(test_Sy,

                                y_predicted_SVM)

                                

report_SVMp = classification_rep(test_Sy,

                                y_predicted_SVMp)


report_SVMr = classification_rep(test_Sy,

                                y_predicted_SVMr)


print(score_SVM)

print(score_SVMp)

print(score_SVMr)


Linear SVM: 88.5%•

Polynomial SVM, 8th degree: 100%•

Radial Kernel: 100%•



Figure 6: Confusion Matrix For Linear Support Vector Classifier

Figure 7: Confusion Matrix For Support Vector Classifier With Polynomial Kernel



Figure 8: Confusion Matrix For Support Vector Classifier With Radial Basis Function Kernel

Output

X precision recall f1-score support

1 0.780822 0.934426 0.850746 61

2 0.888889 0.666667 0.761905 60

3 0.95122 0.987342 0.968944 79

accuracy 0.875 0.875 0.875 0.875

macro avg 0.873643 0.862812 0.860532 200

weighted avg 0.880549 0.875 0.870782 200

Table 5. Model Report For Linear Support Vector Classifier

X precision recall f1-score support

1 1 1 1 61

2 1 1 1 60

3 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 6. Model Report For Support Vector Classifier With Polynomial Kernel



X precision recall f1-score support

1 1 1 1 61

2 1 1 1 60

3 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 7. Model Report For Support Vector Classifier With Radial Basis Function Kernel
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9. K-Nearest Neighbors
K-Nearest Neighbors (KNN) is a non-parametric, supervised learning classifier which uses proximity to
classify and group data points. A class label is assigned based on a majority vote i.e. the label that is most
frequently represented around a given data point is used. The KNN model chooses  nearest points by
calculating distances using different metrics and calculating an average to make a prediction.

9.1 Mathematical intuition overview
Several distance metrics can be used:

9.1.1 Euclidean distance

This is the most one, and it is limited to real-valued vectors. It measures a straight line between two points: We
can then predict some values using our trained models:

9.1.2 Manhattan distance

It is also referred to as taxicab distance or city block distance as it is commonly visualized using a grid:

9.1.3 Minkowski distance

This metric is the generalized form of Euclidean and Manhattan distance metrics. Euclidean distance takes 
, while Manhattan distance takes 

0.885

1.0

1.0


k

d(x, y) =
n

∑
i=1

(yi − xi)2

⎷d(x, y) =
m

∑
i=1

|Xi − Yi|

p = 2

p = 1



9.1.4 Hamming distance

This technique is typically used with Boolean or string vectors. Interestingly, it's also used in information
theory as a way to measure the distance between two strings of equal length:

9.2 Assumptions

9.3 Implementation
We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

d(x, y) = (
m

∑
i=1

|Xi − Yi|)

1
p

DH =
k

∑
i=1

|Xi − Yi|

If , ,• x = y D = 0

If , • x ≠ y D ≠ 1

Items close together in the data set are typically similar•

# Train model

model_dictionary['K-Nearest Neighbors Classifier'].fit(train_Sx, train_Sy)


# Predict

y_predicted_KNN = model_dictionary['K-Nearest Neighbors Classifier'].predict(test_Sx)




If we take a look at our results, we can see that it predicted with an 100% accuracy:
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Figure 9: Confusion Matrix For K-Nearest Neighbors Classifier
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# Evaluate the model and collect the scores

cm_plot('K-Nearest Neighbors Classifier',

        model_dictionary['K-Nearest Neighbors Classifier'],

        test_Sy,

        y_predicted_KNN)


# Define model score

score_KNN = model_score(model_dictionary['K-Nearest Neighbors Classifier'],

                        test_Sx,

                        test_Sy)


# Define Classification Report Function

report_KNN = classification_rep(test_Sy,

                                y_predicted_KNN)


print(score_KNN)




X precision recall f1-score support

1 1 1 1 61

2 1 1 1 60

3 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 8. Model Report For K-Nearest Neighbors Classifier
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11. Gaussian Naïve Bayes
Gaussian Naïve Bayes (GNB) is a probabilistic machine learning algorithm based on the Bayes' Theorem. It is
the extension of the Naïve Bayes algorithm, and as its name suggests, it approximates class-conditional
distributions as a Gaussian distribution, with a mean  and a standard deviation .

11.1 Mathematical intuition overview
We can start with the Bayes' Theorem:

Where:

We can then translate the formula above to the Gaussian Naïve Bayes equation:

We can see that the form of this equation is almost identical to the Gaussian distribution density function. The
main difference is that in the first one, we're defining our function as a probability function, while in the latter,
we're defining it as a density function:

11.2 Assumptions

1.0


μ σ

P(A|B) =
P(A ∩ B)

P(B)
=

P(A) ⋅ P(B|A)

P(B)

 is the probability of  occurring.• P(A) A

 is the probability of  occurring.• P(B) B

 is the probability of  given .• P(A|B) A B

 is the probability of  given .• P(B|A) B A

 is the probability of  and  occurring.• P(A ∩ B) A B

P(Xi|y) =
1

√2πσ2
y

e(−
(xi − μy)

2

2σ2
y

)

f(X|μ,σ2) =
1

√2πσ2
y

e(−
(x − μ)2

2σ2
y

)

https://en.wikipedia.org/wiki/Bayes%27_theorem


11.3 Implementation
Since we are using the Gaussian variant of the model, we will use the normally-approximated values we
generated earlier. We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

If we take a look at our results, we can see that it predicted with a 60.5% accuracy. This is the lowest score
we've gotten so far:
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Features are independent (hence Naïve).•

Class-conditional densities are normally distributed.•

# Train model

model_dictionary['Gaussian Naive Bayes Classifier'].fit(train_Gx, train_Gy)


# Predict

y_predicted_GNB = model_dictionary['Gaussian Naive Bayes Classifier'].predict(test_Gx)


# Evaluate the model and collect the scores

cm_plot('Gaussian Naive Bayes Classifier',

        model_dictionary['Gaussian Naive Bayes Classifier'],

        test_Gy,

        y_predicted_GNB)


# Define model score

score_GNB = model_score(model_dictionary['Gaussian Naive Bayes Classifier'],

                        test_Gx,

                        test_Gy)


# Define Classification Report Function

report_GNB = classification_rep(test_Gy,

                                y_predicted_GNB)


print(score_GNB)




Figure 10: Confusion Matrix For Gaussian Naïve Bayes Classifier
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X precision recall f1-score support

1 0.62069 0.870968 0.724832 62

2 0.470588 0.246154 0.323232 65

3 0.759494 0.821918 0.789474 73

accuracy 0.65 0.65 0.65 0.65

macro avg 0.616924 0.646346 0.612513 200

weighted avg 0.62257 0.65 0.617906 200

Table 9. Model Report For Gaussian Naïve Bayes Classifier
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12. Bernoulli Naïve Bayes
Bernoulli Naïve Bayes (BNB) is similar to Gaussian Naïve Bayes in that it also uses Bayes' Theorem as its
foundation. The difference is that Bernoulli Naïve Bayes approximates class-conditional distributions as a
Bernoulli distribution. This fact makes this variation more appropriate for discrete random variables instead of
continuous ones.

12.1 Mathematical intuition overview
Since we already went over Bayes' Theorem, we can start by defining the Bernoulli distribution function:

0.605




From the above, we can then define the Bernoulli Naïve Bayes Classifier:

12.2 Assumptions

12.3 Implementation
We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

If we take a look at our results, we can see that it predicted with a 77.5% accuracy:

p(x) = P [X = x] = {p if x = 1,
q = 1 − p if x = 0.

P(xi|y) = P(i|y)xi + (1 − P(i|y))(1 − xi)

The attributes are independent of each other and do not affect each other's performance (hence Naïve).•

All of the features are given equal importance.•

# Train model

model_dictionary['Bernoulli Naive Bayes Classifier'].fit(train_Sx, train_Sy)


# Predict

y_predicted_BNB = model_dictionary['Bernoulli Naive Bayes Classifier'].predict(test_Sx)


# Evaluate the model and collect the scores

cm_plot('Bernoulli Naive Bayes Classifier',
        model_dictionary['Bernoulli Naive Bayes Classifier'],

        test_Sy,

        y_predicted_BNB)


# Define model score

score_BNB = model_score(model_dictionary['Bernoulli Naive Bayes Classifier'],

                        test_Sx,

                        test_Sy)


# Define Classification Report Function

report_BNB = classification_rep(test_Sy,

                                y_predicted_BNB)


print(score_BNB)
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Figure 11: Confusion Matrix For Bernoulli Naïve Bayes Classifier

Output

X precision recall f1-score support

1 0.678571 0.934426 0.786207 61

2 0.807692 0.35 0.488372 60

3 0.855556 0.974684 0.911243 79

accuracy 0.775 0.775 0.775 0.775

macro avg 0.780606 0.753037 0.728607 200

weighted avg 0.787216 0.775 0.746246 200

Table 10. Model Report For Bernoulli Naïve Bayes Classifier
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13. Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is an optimization method. It can be used in conjunction with other
Machine Learning algorithms.

In general, gradient descent is used to minimize a cost function. There are three main types:

0.775


Batch gradient descent•

Mini-batch gradient descent•

Stochastic gradient descent•



Stochastic Gradient Descent computes the gradient by calculating the derivative of the loss of a single random
data point rather than all of the data points (hence the name, stochastic). It then finds a minimum by taking
steps. What makes it different from other optimization methods is its efficiency, i.e. it only uses one single
random point to calculate the derivative.

The Stochastic Gradient Descent Classifier is a linear classification method with SGD training.

13.1 Mathematical intuition overview
The SGD gradient function can be expressed as follows:

Where:

As the algorithm sweeps through the training set, it performs the above update for each training sample. Several
passes can be made over the training set until the algorithm converges.

13.2 Assumptions

13.3 Implementation
For this example, we'll use a Logistic Regressor with SGD training. We can start by fitting our model to our
data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

θ(t+1) = θ − η ⋅ ∇θJ(θ;x(i); y(i))

 is a given training example.• x(i)

 is a given label.• y(i)

 is the true gradient of • ∇θJ(θ) J(θ)

 is the approximation of the true gradient  at time  by a gradient at a single sample.• θ(t+1) ∇θJ(θ) t + 1

 is the position of the previous step.• θ

The errors at each point in the parameter space are additive•

The expected value of the observation picked randomly is a subgradient of the function at point .• θ

# Train model

model_dictionary['Stochastic Gradient Descent'].fit(train_Sx, train_Sy)


# Predict

y_predicted_SGD = model_dictionary['Stochastic Gradient Descent'].predict(test_Sx)




If we take a look at our results, we can see that it predicted with an 80.5% accuracy:
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Figure 12: Confusion Matrix For Stochastic Gradient Descent
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# Evaluate the model and collect the scores

cm_plot('Stochastic Gradient Descent',

        model_dictionary['Stochastic Gradient Descent'],

        test_Sy,

        y_predicted_SGD)


# Define model score

score_SGD = model_score(model_dictionary['Stochastic Gradient Descent'],

                        test_Sx,

                        test_Sy)


# Define Classification Report Function

report_SGD = classification_rep(test_Sy,

                                y_predicted_SGD)


print(score_SGD)




X precision recall f1-score support

1 0.761194 0.836066 0.796875 61

2 0.8 0.666667 0.727273 60

3 0.951807 1 0.975309 79

accuracy 0.85 0.85 0.85 0.85

macro avg 0.837667 0.834244 0.833152 200

weighted avg 0.848128 0.85 0.846476 200

Table 11. Model Report For Stochastic Gradient Descent
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14. Gradient Boosting
Gradient Boosting (GBM) is a machine learning technique used in regression and classification tasks to create
a stronger model using an ensemble of weaker models. The objective of Gradient Boosting classifiers is to
minimize the loss or the difference between the actual class value of the training example and the predicted class
value. As with other classifiers, GBM depends on a loss function, which can be customized to improve
performance.

Gradient Boosting Classifiers consist of three main parts:

The main problem with Gradient Boosting is the potential of overfitting the model. We know that perfect
training scores will lead to this phenomenon. This can be overcome by setting different regularization methods
such as tree constraints, shrinkage and penalized learning.

14.1 Mathematical intuition overview
We can generalize a Gradient-Boosted Decision Tree model.

We can initialize our model with a constant loss function:

We can then compute the residuals:

We can then train our Decision Tree with features  against  and create terminal node regressions .

Next, we can compute a  which minimizes our loss function on each terminal node:

0.85


The weak model, usually a Decision Tree•

The additive component•

A loss function that is to be optimized•

F0(x) = arg min
n

∑
i=1

L(yi, γ)

rim = −[ δL(yi,F(xi))

δF(xi)
]
F(x)=Fm−1(x)

, for i = 1, ⋯ ,n

x r Rjm

γjm



Finally, we can recompute the model with our new :

Where:

14.2 Assumptions

14.3 Implementation
For this example, we'll use a Gradient Boosting Classifier. We will leave parameters as default (100 estimators),
although these can be fine-tuned. We can start by fitting our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

γjm = arg min
n

∑
xi∈Rjm

L(yi,Fm−1(xi) + γ), for j = 1, ⋯ Jm

γjm

Fm(x) = Fm−1(x) + v

Jm

∑
j=1

γjm1(x ∈ Rjm)

 is the residual or gradient of our loss function.• rim

 is our first iteration.• Fo

 is the updated prediction.• Fm

 is the previous prediction.• Fm−1(x)

 is the learning rate between 0 and 1.• v

 is the value which minimizes the loss function on each terminal node.• γjm1

 is the terminal node.• Rjm

The sum of its residuals is 0, i.e. the residuals should be spread randomly around zero.•

# Train model

model_dictionary['Gradient Boosting Classifier'].fit(train_Sx, train_Sy)


# Predict

y_predicted_GBC = model_dictionary['Gradient Boosting Classifier'].predict(test_Sx)




If we take a look at our results, we can see that it predicted with a 100% accuracy:

Output

Figure 13: Confusion Matrix For Gradient Boosting Classifier

Output

# Evaluate the model and collect the scores

cm_plot('Gradient Boosting Classifier',

        model_dictionary['Gradient Boosting Classifier'],

        test_Sy,

        y_predicted_GBC)


# Define model score

score_GBC = model_score(model_dictionary['Gradient Boosting Classifier'],

                        test_Sx,

                        test_Sy)


# Define Classification Report Function

report_GBC = classification_rep(test_Sy,

                                y_predicted_GBC)


print(score_GBC)




X precision recall f1-score support

1 1 1 1 61

2 1 1 1 60

3 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 12. Model Report For Gradient Boosting Classifier

Output

15. Extreme Gradient Boosting
Extreme Gradient Boosting (XGBoost) is a more regularized form of the previous Gradient Boosting
technique. This means that it controls overfitting better, resulting in better performance; as opposed to GBM,
XGBoost uses advanced regularization (L1 & L2), which improves model generalization capabilities. It also has
faster training capabilities and can be parallelized across clusters, reducing training times.

Some other differences between XGBoost over GBM are:

We will skip the mathematical intuition for XGBoost since it's extensive and similar to its GBM cousin.

15.1 Assumptions

15.2 Implementation
We'll use a different library called XGBoost  for this implementation. Apart from the advantages of the
mathematical treatment, XGBoost  is written in C++, making it comparatively faster than other Gradient
Boosting libraries. Also, XGBoost  was specifically designed to support parallelization onto GPUs and computer
networks. These make this library extremely powerful when handling extensive data sets.

Before we can start, we will need to re-encode our labels since XGBoost  requires our values to start from 0 and
not 1:

Code

1.0


The use of sparse matrices with sparsity-aware algorithms.•

Improved data structures for better processor cache utilization which makes it faster.•

Encoded integer values for each input variable have an ordinal relationship.•

The data may not be complete (can handle sparsity)•

# Re-encode labels

train_Sy_XGBC = LabelEncoder().fit_transform(train_Sy)

test_Sy_XGBC = LabelEncoder().fit_transform(test_Sy)




We will then fit our model to our data:

Code

We can then predict some values using our trained model:

Code

We can finally evaluate our model using the metrics we defined earlier:

Code

If we take a look at our results, we can see that it predicted with a 100% accuracy:

Output

# Train model

model_dictionary['Extreme Gradient Boosting Classifier'].fit(train_Sx, train_Sy_XGBC)


# Predict

y_predicted_XGBC = model_dictionary['Extreme Gradient Boosting Classifier'].predict(test_Sx)


# Evaluate the model and collect the scores

cm_plot('Extreme Gradient Boosting Classifier',

        model_dictionary['Extreme Gradient Boosting Classifier'],

        test_Sy_XGBC,

        y_predicted_XGBC)


# Define model score

score_XGBC = model_score(model_dictionary['Extreme Gradient Boosting Classifier'],

                        test_Sx,

                        test_Sy_XGBC)


# Define Classification Report Function

report_XGBC = classification_rep(test_Sy_XGBC,

                                y_predicted_XGBC)


print(score_XGBC)




Figure 14: Confusion Matrix For Extreme Gradient Boosting Classifier

Output

X precision recall f1-score support

0 1 1 1 61

1 1 1 1 60

2 1 1 1 79

accuracy 1 1 1 1

macro avg 1 1 1 200

weighted avg 1 1 1 200

Table 13. Model report for Extreme Gradient Boosting Classifier

Output

16. Deep Neural Networks
Deep Neural Networks are simply Neural Networks containing at least two interconnected layers of neurons.
Its functioning and the theory behind them are somewhat different from what we've seen so far. Also, they
belong to another branch of Artificial Intelligence called Deep Learning, which is itself a subgroup of Neural
Networks. The model that would assimilate more (in a sense ) is Decision Trees, although even they process
data differently.

Neural Networks were created based on how actual neurons work (in a very general way); they are comprised
of node layers containing an input layer, one or more hidden layers, and an output layer. Each node connects to
another and has an associated weight and threshold. These parameters define the signal intensity from one

1.0


https://www.mathworks.com/discovery/deep-learning.html
https://www.ibm.com/topics/neural-networks


neuron to another; if the output of a given individual node is above the specified threshold value, that node is
activated, sending a signal to the next layer of the network; else, the signal doesn't pass through.

Although Deep Neural Networks can achieve complex classification tasks, there are some significant
disadvantages:

A simpler alternative, such as the Decision Tree Classifier, often gives better accuracy without all the
disadvantages above.

Apart from all the points mentioned, there are also significant advantages:

16.1 Mathematical intuition overview
As we have mentioned, a Neural Network works by propagating signals depending on the weight and threshold
of each neuron.

The most basic Neural Network is called perceptron and consists of  number of inputs, one neuron, and one
output.

A perceptron's forward propagation starts by weighting each input and adding all the multiplied values. Weights
decide how much influence the given input will have on the neuron’s output:

Where:

Then, a bias is added to the summation calculated before:

Where:

Finally, we pass  to a non-linear activation function. Perceptrons have binary step functions as their activation
functions. This is the most simple type of function; it produces a binary output:

It takes time and domain knowledge to fine-tune a Neural Network.•

They're sensitive to data inputs.•

They are computationally expensive, making them challenging to deploy in a production environment.•

Their hidden layers work as black boxes, making them hard to understand or debug.•

Most of the time, they require more data to return accurate results.•

They rely more on training data, potentially leading to overfitting.•

They can perform unsupervised learning.•

They have good fault tolerance, meaning the output is not affected by the corruption of one or more than
one cell.

•

They have distributed memory capabilities.•

n

∑ = (x1w1) + (x2w2) + (x3w3) + ⋯ + (xnwn) = x ⋅ w

 is a vector of inputs.• x

 is a vector of weights.• w

 is the dot product between  and .• x ⋅ w x w

z = x ⋅ w + b

 is the bias• b

z

f(x) = {0 if x < 0,
1 if x ≥ 0.



A perceptron is the simplest case, and of course, the more layers we have, the more complex the mathematical
derivation gets. Also, more complex and appropriate activation functions are available since the binary
activation functions present important disadvantages.

The theory behind Deep Neural Networks is extensive and complex, so we will not explain each step in detail;
instead, we will stick with a general description of what is being done. A rigorous & exhaustive explanation of
these models can be found in Philipp Christian Petersen's Neural Network Theory.

16.2 Assumptions

16.3 Implementation
Deep Neural Networks require a different treatment than we've already seen. For this case, a simpler 5-layer
Sequential model will suffice. The first thing we'll need to do is define which model we will use.

A Sequential Neural Network passes on the data and flows in sequential order from top to bottom until the data
reaches the end of the model.

We can start by making defining our model:

Code

Then, we can add the first two dense layers, both using  (Rectified Linear Unit) activation functions:

Code

Next, we will add a  regularization layer. A dropout layer randomly sets input units to 0 with a
frequency rate between 0 and 1 at each step during training time. This helps prevent overfitting:

Code

We will conclude with our model by adding one last dense  activation layer and one dense 
(normalized exponential function) activation layer, which will serve as the activation function for our output

Artificial Neurons are arranged in layers, which are sequentially arranged.•

Neurons within the same layer do not interact or communicate with each other.•

All inputs enter the network through the input layer and pass through the output layer.•

All hidden layers at the same level should have the same activation function.•

Artificial neurons at consecutive layers are densely connected.•

Every inter-connected neural network has its weight and bias associated with it.•

# Define model

DNN = model_dictionary['Sequential Deep Neural Network']


ReLU

# Add first two layers using ReLU activation function

DNN.add(Dense(8, activation = "relu", input_dim = train_Sx.shape[1]))

DNN.add(Dense(16, activation = "relu"))


Dropout

# Add Dropout regularization layer

DNN.add(Dropout(0.1))


ReLU softmax

http://pc-petersen.eu/Neural_Network_Theory.pdf


layer. The  activation function converts an input vector of real values to an output vector that can be
interpreted as categorical probabilities. It is specially used for categorical variables:

Code

We will finally compile our model using  as our loss function and  (adaptive
moment estimation) as our optimization function. The  loss, also called , is a

 activation plus a . It is used for categorical multi-class classification and accepts
labels as one-hot encoded. The  optimizer is an extension to stochastic gradient descent:

Code

Below is a summary of our Deep Neural Network architecture:

Before training our model, we will need to re-encode & dummify our labels:

Code

softmax

# Add third layer using ReLU, and output layer using softmax

DNN.add(Dense(8, activation = "relu"))

DNN.add(Dense(3, activation = "softmax"))


categorical crossentropy adam

categorical crossentropy Softmax Loss

Softmax Cross-Entropy loss

adam

# Compile our model

DNN.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])


Layer 1:•
Dense with 8 nodes.•

Serves as our input layer as well as our first hidden layer.•

Its shape is given by the feature DataFrame dimensions.•

Uses  activation function.• ReLU

Layer 2:•
Dense with 16 nodes.•

Serves as our second hidden layer.•

Uses  activation function.• ReLU

Layer 3:•
Dropout with , meaning 1 in 10 inputs will be randomly excluded from each update cycle.• rate = 10%

Serves as our third hidden layer.•

Layer 4:•
Dense with 8 nodes.•

Serves as our fourth hidden layer.•

Uses  activation function.• ReLU

Layer 5:•
Dense with 3 nodes, meaning 3 categorical outputs to be predicted.•

Uses  activation function• softmax

Compiled model:•
Is Sequential.•

Uses the  optimizer.• adam

Uses a  loss function.• categorical crossentropy



We will then fit our model:

Code

Output

# Re-encode & dummify labels

df_y_D = LabelEncoder().fit_transform(df_y)

df_y_D = pd.get_dummies(df_y_D)


# Fit our compiled model

DNN_Fit = DNN.fit(df_x, df_y_D, epochs = 150, validation_split = 0.3)




Epoch 1/150

22/22 [==============================] - 0s 6ms/step - loss: 1.1964 - accuracy: 0.3643 - 
val_loss: 0.9955 - val_accuracy: 0.3967

Epoch 2/150

22/22 [==============================] - 0s 2ms/step - loss: 1.0430 - accuracy: 0.3871 - 
val_loss: 0.9412 - val_accuracy: 0.4600

Epoch 3/150

22/22 [==============================] - 0s 2ms/step - loss: 0.9726 - accuracy: 0.4986 - 
val_loss: 0.9127 - val_accuracy: 0.5367

Epoch 4/150

22/22 [==============================] - 0s 2ms/step - loss: 0.9428 - accuracy: 0.5214 - 
val_loss: 0.8785 - val_accuracy: 0.5733

Epoch 5/150

22/22 [==============================] - 0s 2ms/step - loss: 0.8994 - accuracy: 0.5729 - 
val_loss: 0.8400 - val_accuracy: 0.5833

Epoch 6/150

22/22 [==============================] - 0s 2ms/step - loss: 0.8901 - accuracy: 0.5843 - 
val_loss: 0.8042 - val_accuracy: 0.6400

Epoch 7/150

22/22 [==============================] - 0s 2ms/step - loss: 0.8438 - accuracy: 0.6057 - 
val_loss: 0.7630 - val_accuracy: 0.6500

Epoch 8/150

22/22 [==============================] - 0s 2ms/step - loss: 0.8136 - accuracy: 0.6471 - 
val_loss: 0.7340 - val_accuracy: 0.6800

Epoch 9/150

22/22 [==============================] - 0s 2ms/step - loss: 0.7942 - accuracy: 0.6271 - 
val_loss: 0.7032 - val_accuracy: 0.7200

Epoch 10/150

22/22 [==============================] - 0s 2ms/step - loss: 0.7768 - accuracy: 0.6457 - 
val_loss: 0.6817 - val_accuracy: 0.7067

Epoch 11/150

22/22 [==============================] - 0s 2ms/step - loss: 0.7246 - accuracy: 0.6871 - 
val_loss: 0.6524 - val_accuracy: 0.7600

Epoch 12/150

22/22 [==============================] - 0s 2ms/step - loss: 0.7206 - accuracy: 0.7086 - 
val_loss: 0.6272 - val_accuracy: 0.7367

Epoch 13/150

22/22 [==============================] - 0s 2ms/step - loss: 0.6841 - accuracy: 0.7086 - 
val_loss: 0.6084 - val_accuracy: 0.7700

Epoch 14/150

22/22 [==============================] - 0s 2ms/step - loss: 0.6706 - accuracy: 0.7171 - 
val_loss: 0.5760 - val_accuracy: 0.7967

Epoch 15/150

22/22 [==============================] - 0s 2ms/step - loss: 0.6454 - accuracy: 0.7371 - 
val_loss: 0.5556 - val_accuracy: 0.8200

Epoch 16/150

22/22 [==============================] - 0s 2ms/step - loss: 0.6189 - accuracy: 0.7371 - 
val_loss: 0.5415 - val_accuracy: 0.7967

Epoch 17/150

22/22 [==============================] - 0s 2ms/step - loss: 0.6040 - accuracy: 0.7500 - 
val_loss: 0.5121 - val_accuracy: 0.7567

Epoch 18/150




22/22 [==============================] - 0s 2ms/step - loss: 0.5769 - accuracy: 0.7586 - 
val_loss: 0.4923 - val_accuracy: 0.8133

Epoch 19/150

22/22 [==============================] - 0s 2ms/step - loss: 0.5599 - accuracy: 0.7643 - 
val_loss: 0.4731 - val_accuracy: 0.7833

Epoch 20/150

22/22 [==============================] - 0s 2ms/step - loss: 0.5339 - accuracy: 0.7757 - 
val_loss: 0.4536 - val_accuracy: 0.8133

Epoch 21/150

22/22 [==============================] - 0s 2ms/step - loss: 0.5142 - accuracy: 0.7814 - 
val_loss: 0.4372 - val_accuracy: 0.8300

Epoch 22/150

22/22 [==============================] - 0s 2ms/step - loss: 0.5214 - accuracy: 0.7929 - 
val_loss: 0.4202 - val_accuracy: 0.8767

Epoch 23/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4892 - accuracy: 0.7957 - 
val_loss: 0.4068 - val_accuracy: 0.7800

Epoch 24/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4669 - accuracy: 0.8071 - 
val_loss: 0.3943 - val_accuracy: 0.8533

Epoch 25/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4572 - accuracy: 0.8243 - 
val_loss: 0.3826 - val_accuracy: 0.8400

Epoch 26/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4411 - accuracy: 0.8171 - 
val_loss: 0.3701 - val_accuracy: 0.7900

Epoch 27/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4304 - accuracy: 0.8314 - 
val_loss: 0.3587 - val_accuracy: 0.8400

Epoch 28/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4302 - accuracy: 0.8343 - 
val_loss: 0.3470 - val_accuracy: 0.9033

Epoch 29/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4032 - accuracy: 0.8643 - 
val_loss: 0.3367 - val_accuracy: 0.9033

Epoch 30/150

22/22 [==============================] - 0s 2ms/step - loss: 0.4106 - accuracy: 0.8471 - 
val_loss: 0.3283 - val_accuracy: 0.8533

Epoch 31/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3970 - accuracy: 0.8543 - 
val_loss: 0.3197 - val_accuracy: 0.8933

Epoch 32/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3964 - accuracy: 0.8414 - 
val_loss: 0.3114 - val_accuracy: 0.8933

Epoch 33/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3795 - accuracy: 0.8614 - 
val_loss: 0.2986 - val_accuracy: 0.9300

Epoch 34/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3663 - accuracy: 0.8800 - 
val_loss: 0.2885 - val_accuracy: 0.9300

Epoch 35/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3590 - accuracy: 0.8786 - 
val_loss: 0.2829 - val_accuracy: 0.8933




Epoch 36/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3729 - accuracy: 0.8671 - 
val_loss: 0.2737 - val_accuracy: 0.9300

Epoch 37/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3536 - accuracy: 0.8614 - 
val_loss: 0.2659 - val_accuracy: 0.9300

Epoch 38/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3436 - accuracy: 0.8700 - 
val_loss: 0.2655 - val_accuracy: 0.9033

Epoch 39/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3260 - accuracy: 0.8829 - 
val_loss: 0.2550 - val_accuracy: 0.9300

Epoch 40/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3210 - accuracy: 0.9000 - 
val_loss: 0.2519 - val_accuracy: 0.9300

Epoch 41/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3401 - accuracy: 0.8714 - 
val_loss: 0.2525 - val_accuracy: 0.8633

Epoch 42/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2945 - accuracy: 0.8957 - 
val_loss: 0.2467 - val_accuracy: 0.8633

Epoch 43/150

22/22 [==============================] - 0s 2ms/step - loss: 0.3014 - accuracy: 0.8900 - 
val_loss: 0.2291 - val_accuracy: 0.9400

Epoch 44/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2970 - accuracy: 0.8914 - 
val_loss: 0.2270 - val_accuracy: 0.9600

Epoch 45/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2764 - accuracy: 0.9029 - 
val_loss: 0.2181 - val_accuracy: 0.9600

Epoch 46/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2774 - accuracy: 0.9171 - 
val_loss: 0.2132 - val_accuracy: 0.9600

Epoch 47/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2787 - accuracy: 0.9071 - 
val_loss: 0.2091 - val_accuracy: 0.9600

Epoch 48/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2893 - accuracy: 0.8971 - 
val_loss: 0.2058 - val_accuracy: 0.9600

Epoch 49/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2826 - accuracy: 0.8986 - 
val_loss: 0.2049 - val_accuracy: 0.9600

Epoch 50/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2684 - accuracy: 0.9043 - 
val_loss: 0.1988 - val_accuracy: 0.9600

Epoch 51/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2594 - accuracy: 0.9186 - 
val_loss: 0.1996 - val_accuracy: 0.9600

Epoch 52/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2597 - accuracy: 0.9157 - 
val_loss: 0.1939 - val_accuracy: 0.9600

Epoch 53/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2674 - accuracy: 0.9086 - 



val_loss: 0.1891 - val_accuracy: 0.9600

Epoch 54/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2608 - accuracy: 0.9129 - 
val_loss: 0.1852 - val_accuracy: 0.9600

Epoch 55/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2460 - accuracy: 0.9143 - 
val_loss: 0.1840 - val_accuracy: 0.9600

Epoch 56/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2544 - accuracy: 0.9186 - 
val_loss: 0.1809 - val_accuracy: 0.9600

Epoch 57/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2419 - accuracy: 0.9200 - 
val_loss: 0.1799 - val_accuracy: 0.9600

Epoch 58/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2395 - accuracy: 0.9086 - 
val_loss: 0.1761 - val_accuracy: 0.9600

Epoch 59/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2383 - accuracy: 0.9114 - 
val_loss: 0.1728 - val_accuracy: 0.9600

Epoch 60/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2389 - accuracy: 0.9114 - 
val_loss: 0.1691 - val_accuracy: 0.9600

Epoch 61/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2411 - accuracy: 0.9171 - 
val_loss: 0.1680 - val_accuracy: 0.9600

Epoch 62/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2472 - accuracy: 0.9071 - 
val_loss: 0.1678 - val_accuracy: 0.9600

Epoch 63/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2140 - accuracy: 0.9229 - 
val_loss: 0.1699 - val_accuracy: 0.9600

Epoch 64/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2362 - accuracy: 0.9129 - 
val_loss: 0.1635 - val_accuracy: 0.9600

Epoch 65/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2199 - accuracy: 0.9314 - 
val_loss: 0.1638 - val_accuracy: 0.9700

Epoch 66/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2270 - accuracy: 0.9200 - 
val_loss: 0.1539 - val_accuracy: 0.9700

Epoch 67/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2263 - accuracy: 0.9243 - 
val_loss: 0.1531 - val_accuracy: 0.9600

Epoch 68/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2363 - accuracy: 0.9071 - 
val_loss: 0.1525 - val_accuracy: 0.9600

Epoch 69/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2056 - accuracy: 0.9329 - 
val_loss: 0.1476 - val_accuracy: 0.9700

Epoch 70/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2016 - accuracy: 0.9343 - 
val_loss: 0.1443 - val_accuracy: 0.9700

Epoch 71/150




22/22 [==============================] - 0s 2ms/step - loss: 0.2262 - accuracy: 0.9243 - 
val_loss: 0.1434 - val_accuracy: 0.9600

Epoch 72/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2043 - accuracy: 0.9371 - 
val_loss: 0.1485 - val_accuracy: 0.9600

Epoch 73/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2023 - accuracy: 0.9329 - 
val_loss: 0.1361 - val_accuracy: 0.9600

Epoch 74/150

22/22 [==============================] - 0s 2ms/step - loss: 0.2071 - accuracy: 0.9171 - 
val_loss: 0.1358 - val_accuracy: 0.9600

Epoch 75/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1905 - accuracy: 0.9286 - 
val_loss: 0.1285 - val_accuracy: 0.9700

Epoch 76/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1780 - accuracy: 0.9286 - 
val_loss: 0.1301 - val_accuracy: 0.9867

Epoch 77/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1859 - accuracy: 0.9443 - 
val_loss: 0.1224 - val_accuracy: 0.9867

Epoch 78/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1764 - accuracy: 0.9371 - 
val_loss: 0.1251 - val_accuracy: 0.9867

Epoch 79/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1901 - accuracy: 0.9357 - 
val_loss: 0.1146 - val_accuracy: 0.9867

Epoch 80/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1672 - accuracy: 0.9500 - 
val_loss: 0.1103 - val_accuracy: 0.9867

Epoch 81/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1693 - accuracy: 0.9414 - 
val_loss: 0.1093 - val_accuracy: 0.9867

Epoch 82/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1764 - accuracy: 0.9429 - 
val_loss: 0.1065 - val_accuracy: 0.9867

Epoch 83/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1694 - accuracy: 0.9486 - 
val_loss: 0.1038 - val_accuracy: 0.9867

Epoch 84/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1666 - accuracy: 0.9529 - 
val_loss: 0.1140 - val_accuracy: 0.9467

Epoch 85/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1829 - accuracy: 0.9400 - 
val_loss: 0.0973 - val_accuracy: 0.9867

Epoch 86/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1432 - accuracy: 0.9614 - 
val_loss: 0.0950 - val_accuracy: 0.9867

Epoch 87/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1502 - accuracy: 0.9614 - 
val_loss: 0.0924 - val_accuracy: 0.9867

Epoch 88/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1630 - accuracy: 0.9386 - 
val_loss: 0.0934 - val_accuracy: 0.9867




Epoch 89/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1558 - accuracy: 0.9471 - 
val_loss: 0.0943 - val_accuracy: 0.9633

Epoch 90/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1529 - accuracy: 0.9543 - 
val_loss: 0.0856 - val_accuracy: 0.9867

Epoch 91/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1563 - accuracy: 0.9514 - 
val_loss: 0.0852 - val_accuracy: 0.9867

Epoch 92/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1481 - accuracy: 0.9600 - 
val_loss: 0.0828 - val_accuracy: 0.9933

Epoch 93/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1333 - accuracy: 0.9643 - 
val_loss: 0.0829 - val_accuracy: 0.9867

Epoch 94/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1366 - accuracy: 0.9643 - 
val_loss: 0.0793 - val_accuracy: 0.9933

Epoch 95/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1353 - accuracy: 0.9629 - 
val_loss: 0.0823 - val_accuracy: 0.9767

Epoch 96/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1273 - accuracy: 0.9671 - 
val_loss: 0.0776 - val_accuracy: 0.9867

Epoch 97/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1388 - accuracy: 0.9500 - 
val_loss: 0.0755 - val_accuracy: 0.9933

Epoch 98/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1349 - accuracy: 0.9657 - 
val_loss: 0.0733 - val_accuracy: 0.9867

Epoch 99/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1198 - accuracy: 0.9600 - 
val_loss: 0.0702 - val_accuracy: 0.9933

Epoch 100/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1276 - accuracy: 0.9657 - 
val_loss: 0.0687 - val_accuracy: 0.9867

Epoch 101/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1298 - accuracy: 0.9629 - 
val_loss: 0.0701 - val_accuracy: 0.9867

Epoch 102/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1092 - accuracy: 0.9686 - 
val_loss: 0.0734 - val_accuracy: 0.9933

Epoch 103/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1232 - accuracy: 0.9614 - 
val_loss: 0.0729 - val_accuracy: 0.9867

Epoch 104/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1154 - accuracy: 0.9714 - 
val_loss: 0.0661 - val_accuracy: 0.9933

Epoch 105/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1138 - accuracy: 0.9700 - 
val_loss: 0.0609 - val_accuracy: 0.9933

Epoch 106/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1202 - accuracy: 0.9643 - 



val_loss: 0.0633 - val_accuracy: 0.9867

Epoch 107/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1128 - accuracy: 0.9657 - 
val_loss: 0.0599 - val_accuracy: 0.9933

Epoch 108/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1131 - accuracy: 0.9743 - 
val_loss: 0.0583 - val_accuracy: 0.9867

Epoch 109/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1015 - accuracy: 0.9686 - 
val_loss: 0.0574 - val_accuracy: 0.9933

Epoch 110/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1164 - accuracy: 0.9671 - 
val_loss: 0.0597 - val_accuracy: 0.9867

Epoch 111/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1072 - accuracy: 0.9671 - 
val_loss: 0.0575 - val_accuracy: 0.9933

Epoch 112/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1007 - accuracy: 0.9729 - 
val_loss: 0.0568 - val_accuracy: 0.9933

Epoch 113/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1103 - accuracy: 0.9729 - 
val_loss: 0.0520 - val_accuracy: 0.9933

Epoch 114/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1025 - accuracy: 0.9729 - 
val_loss: 0.0529 - val_accuracy: 0.9933

Epoch 115/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0866 - accuracy: 0.9729 - 
val_loss: 0.0530 - val_accuracy: 0.9933

Epoch 116/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0949 - accuracy: 0.9714 - 
val_loss: 0.0555 - val_accuracy: 0.9933

Epoch 117/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0967 - accuracy: 0.9686 - 
val_loss: 0.0474 - val_accuracy: 0.9933

Epoch 118/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1023 - accuracy: 0.9714 - 
val_loss: 0.0479 - val_accuracy: 0.9933

Epoch 119/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1047 - accuracy: 0.9729 - 
val_loss: 0.0473 - val_accuracy: 0.9933

Epoch 120/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1154 - accuracy: 0.9643 - 
val_loss: 0.0603 - val_accuracy: 0.9933

Epoch 121/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1046 - accuracy: 0.9657 - 
val_loss: 0.0505 - val_accuracy: 0.9867

Epoch 122/150

22/22 [==============================] - 0s 2ms/step - loss: 0.1065 - accuracy: 0.9643 - 
val_loss: 0.0467 - val_accuracy: 0.9933

Epoch 123/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0988 - accuracy: 0.9700 - 
val_loss: 0.0442 - val_accuracy: 0.9933

Epoch 124/150




22/22 [==============================] - 0s 2ms/step - loss: 0.0812 - accuracy: 0.9757 - 
val_loss: 0.0436 - val_accuracy: 0.9933

Epoch 125/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0962 - accuracy: 0.9743 - 
val_loss: 0.0469 - val_accuracy: 0.9933

Epoch 126/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0841 - accuracy: 0.9786 - 
val_loss: 0.0421 - val_accuracy: 0.9933

Epoch 127/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0951 - accuracy: 0.9757 - 
val_loss: 0.0420 - val_accuracy: 0.9933

Epoch 128/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0892 - accuracy: 0.9743 - 
val_loss: 0.0397 - val_accuracy: 0.9933

Epoch 129/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0760 - accuracy: 0.9771 - 
val_loss: 0.0381 - val_accuracy: 0.9933

Epoch 130/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0781 - accuracy: 0.9771 - 
val_loss: 0.0368 - val_accuracy: 0.9933

Epoch 131/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0854 - accuracy: 0.9714 - 
val_loss: 0.0428 - val_accuracy: 0.9933

Epoch 132/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0747 - accuracy: 0.9729 - 
val_loss: 0.0336 - val_accuracy: 0.9933

Epoch 133/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0740 - accuracy: 0.9771 - 
val_loss: 0.0336 - val_accuracy: 0.9933

Epoch 134/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0872 - accuracy: 0.9771 - 
val_loss: 0.0348 - val_accuracy: 0.9933

Epoch 135/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0750 - accuracy: 0.9814 - 
val_loss: 0.0321 - val_accuracy: 0.9933

Epoch 136/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0722 - accuracy: 0.9771 - 
val_loss: 0.0327 - val_accuracy: 0.9933

Epoch 137/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0807 - accuracy: 0.9757 - 
val_loss: 0.0353 - val_accuracy: 0.9933

Epoch 138/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0762 - accuracy: 0.9786 - 
val_loss: 0.0322 - val_accuracy: 0.9933

Epoch 139/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0699 - accuracy: 0.9771 - 
val_loss: 0.0303 - val_accuracy: 0.9933

Epoch 140/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0627 - accuracy: 0.9829 - 
val_loss: 0.0282 - val_accuracy: 0.9933

Epoch 141/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0784 - accuracy: 0.9757 - 
val_loss: 0.0272 - val_accuracy: 0.9933




This output displays each epoch, the training accuracy achieved, the validation accuracy achieved, and the loss
for each step. Here we can see that 150 epochs were barely enough for our model to achieve a training accuracy
of 100%. We can also see that in the beginning, our accuracy increases at a higher rate; this makes sense since
the gradient for the first epochs is bigger, as we'll confirm shortly using visualization methods.

We can get a model summary:

Code

Output

Epoch 142/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0748 - accuracy: 0.9800 - 
val_loss: 0.0289 - val_accuracy: 0.9933

Epoch 143/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0770 - accuracy: 0.9757 - 
val_loss: 0.0271 - val_accuracy: 0.9933

Epoch 144/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0629 - accuracy: 0.9800 - 
val_loss: 0.0276 - val_accuracy: 0.9933

Epoch 145/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0634 - accuracy: 0.9800 - 
val_loss: 0.0260 - val_accuracy: 0.9933

Epoch 146/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0799 - accuracy: 0.9743 - 
val_loss: 0.0279 - val_accuracy: 0.9933

Epoch 147/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0723 - accuracy: 0.9771 - 
val_loss: 0.0252 - val_accuracy: 0.9933

Epoch 148/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0556 - accuracy: 0.9800 - 
val_loss: 0.0235 - val_accuracy: 0.9933

Epoch 149/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0525 - accuracy: 0.9857 - 
val_loss: 0.0235 - val_accuracy: 0.9933

Epoch 150/150

22/22 [==============================] - 0s 2ms/step - loss: 0.0597 - accuracy: 0.9800 - 
val_loss: 0.0225 - val_accuracy: 0.9933


# Get model summary

DNN.summary()




We can visualize the 5 layers previously specified, their shape, the number of parameters (inputs) for each layer
and the total number of trainable parameters.

We will save this summary as a DataFrame object so we can export it later and add it to our client's report:

Code

We can plot our Deep neural Network architecture using the visualkeras  module:

Code

Output

Model: "sequential"

_________________________________________________________________

 Layer (type)                Output Shape              Param #   

=================================================================

 dense (Dense)               (None, 8)                 88                                           
 dense_1 (Dense)             (None, 16)                144                                          
 dropout (Dropout)           (None, 16)                0                                            
 dense_2 (Dense)             (None, 8)                 136                                          
 dense_3 (Dense)             (None, 3)                 27                                           
=================================================================

Total params: 395

Trainable params: 395

Non-trainable params: 0

_________________________________________________________________


# Convert model summary to DataFrame object

stringlist = []

DNN.summary(print_fn=lambda x: stringlist.append(x))

summ_string = "\n".join(stringlist)

print(summ_string)


table = stringlist[1:-4][1::2]


new_table = []

for entry in table:

    entry = re.split(r'\s{2,}', entry)[:-1]

    new_table.append(entry)


DNN_summary = pd.DataFrame(new_table[1:], columns=new_table[0])


visualkeras.layered_view(DNN,

                         legend=True,

                         to_file='plots/' + 'Deep Neural Network_Model.png',

                         scale_z=5,

                         spacing=30)




Figure 15: Deep Neural Network Layer Architecture, Sizes Relative To Number Of Nodes

We can also create two plots to help us visualize how our model performed. The first one will plot epochs on the
 axis and training accuracy & validation accuracy on the  axis. The second one will plot epochs on the  axis

and training & validation loss on the  axis:

Code

Output

x y x

y

# Plot epochs vs training accuracy & validation accuracy

plt.figure('Epochs vs Accuracy')

plt.xlabel("Number of Epochs")

plt.ylabel("Accuracy of Data")

plt.plot(DNN_Fit.history["accuracy"], label = "Training Accuracy", color = 'k', linewidth = 0.7, 
marker = 'o', markersize=2)

plt.plot(DNN_Fit.history["val_accuracy"],label = "Validation Accuracy", color = '#24c98d', 
linewidth = 0.7, marker = 'o', markersize=2)

plt.title("Training Vs. Validation Accuracy")

plt.legend()

plt.savefig('plots/' + 'Deep Neural Network_Epochs vs Accuracy_tp.png', format = 'png', dpi = 
300, transparent = True)

plt.close()


# Plot training vs validation loss

plt.figure('Training vs Validation Loss')

plt.xlabel("Number of Epochs")

plt.ylabel("Loss in Data")

plt.plot(DNN_Fit.history["loss"], label= "Training Loss", color = 'k', linewidth = 0.7, marker = 
'o', markersize=2)

plt.plot(DNN_Fit.history["val_loss"], label= "Validation Loss", color = '#24c98d', linewidth = 
0.7, marker = 'o', markersize=2)

plt.title("Training Vs. Validation loss")

plt.legend()

plt.savefig('plots/' + 'Deep Neural Network_Training vs Validation Loss_tp.png', format = 'png', 
dpi = 300, transparent = True)

plt.close()




Figure 16: Training Accuracy Vs. Validation Accuracy For Sequential Deep Neural Network

Figure 17: Training Accuracy Vs. Validation Loss For Sequential Deep Neural Network

Finally, we will perform a k-fold Cross-validation on our data. This methodology is used to estimate the model
accuracy on new data; it splits our data into  groups of samples, also called folds. The model is trained using 

 of the folds as training data, and the resulting model is validated on the remaining part of the data.

We can use the KFold  method from the sklearn.model_selection  library to implement a K-Folds validation.
We will start with  folds and our original Deep Neural Network model and see if the accuracy results are
satisfactory:

Code

k

k − 1

k = 10



Output

# Define 10-fold cross validation test harness

kfold = KFold(n_splits=10, shuffle=True)

DNN_accuracy_scores = []

DNN_loss = []

for train, test in kfold.split(df_x, df_y_D):

    # Create model

    DNN = Sequential()

    DNN.add(Dense(8, activation = "relu", input_dim = train_Sx.shape[1]))

    DNN.add(Dense(16, activation = "relu"))

    DNN.add(Dropout(0.1))

    DNN.add(Dense(8, activation = "relu"))

    DNN.add(Dense(3, activation = "softmax"))

    DNN.compile(optimizer = "adam", loss = "categorical_crossentropy", metrics = ["accuracy"])

    # Fit the model

    DNN.fit(df_x.iloc[train], df_y_D.iloc[train], epochs=150, verbose=0)

    # Evaluate the model

    scores = DNN.evaluate(df_x.iloc[test], df_y_D.iloc[test], verbose=0)

    print(f'{DNN.metrics_names[0]}: {round(scores[0]*100, 2)}%')

    print(f'{DNN.metrics_names[1]}: {round(scores[1]*100, 2)}%')

    print('')

    DNN_loss.append(scores[0])

    DNN_accuracy_scores.append(scores[1])


print(f'{round(np.mean(DNN_accuracy_scores),2)*100}%, +/-
{round(np.std(DNN_accuracy_scores),2)*100}%')


DNN_scores_df = pd.DataFrame(columns=['Accuracy', 'Loss'])

DNN_scores_df['Accuracy'] = DNN_accuracy_scores

DNN_scores_df['Loss'] = DNN_loss




The Cross-validation analysis gives us two different metrics for  number of folds:

Loss is a value that represents the summation of errors in our model. It measures how well our model is doing.
If the errors are high, the loss will be high. In contrast, the lower it is, the better our model works.

Accuracy measures how well our model predicts by comparing the model predictions with the true values in
terms of percentage.

17. Results consolidation
Now that we have all the results, we can consolidate them in an Excel sheet using the xlsxwriter  engine:

Code

loss: 0.71%

accuracy: 100.0%


loss: 1.5%

accuracy: 100.0%


loss: 0.25%

accuracy: 100.0%


loss: 0.28%

accuracy: 100.0%


loss: 3.91%

accuracy: 98.0%


loss: 0.85%

accuracy: 100.0%


loss: 1.32%

accuracy: 100.0%


loss: 0.19%

accuracy: 100.0%


loss: 1.08%

accuracy: 100.0%


loss: 0.15%

accuracy: 100.0%


100.0%, +/-1.0%


k = 10



18. Method comparison
If we look at our Model_Results.xlsx  consolidate, we can see that 8 out of the 14 models we tested predicted
the correct Lung Cancer severity level with 100% accuracy. 2 of them presented 91% accuracy, while the other
four presented 88%, 85%, 78% and 65% accuracy respectively:

# Create a DataFrame containing accuracy values

acc_list = [score_MLogReg,

            score_BLogReg,

            score_DecTree,

            score_RandomFor,

            score_SVM,

            score_SVMp,

            score_SVMr,

            score_KNN,

            score_GNB,

            score_BNB,

            score_SGD,

            score_GBC,

            score_XGBC,

            round(np.mean(DNN_accuracy_scores),2)

            ]


model_list = list(model_dictionary.keys())


acc_df = pd.DataFrame(columns=['Model', 'Accuracy'])

acc_df['Model'] = model_list

acc_df['Accuracy'] = acc_list


# Write to Excel document

writer = pd.ExcelWriter('outputs/Model_Results.xlsx', engine = 'xlsxwriter')

report_MLogReg.to_excel(writer, sheet_name = 'REP_MLOGREG')

report_BLogReg.to_excel(writer, sheet_name = 'REP_BLOGREG')

report_DecTree.to_excel(writer, sheet_name = 'REP_DECTREE')

report_RandomFor.to_excel(writer, sheet_name = 'REP_RANDOMFOR')

report_SVM.to_excel(writer, sheet_name = 'REP_SVMLIN')

report_SVMp.to_excel(writer, sheet_name = 'REP_SVMPOL')

report_SVMr.to_excel(writer, sheet_name = 'REP_SVMRAD')

report_KNN.to_excel(writer, sheet_name = 'REP_KNN')

report_GNB.to_excel(writer, sheet_name = 'REP_GNB')

report_BNB.to_excel(writer, sheet_name = 'REP_BNB')

report_SGD.to_excel(writer, sheet_name = 'REP_SGD')

report_GBC.to_excel(writer, sheet_name = 'REP_GBC')

report_XGBC.to_excel(writer, sheet_name = 'REP_XGBC')

DNN_summary.to_excel(writer, sheet_name = 'SUM_DNN')

DNN_scores_df.to_excel(writer, sheet_name = 'REP_DNN')

acc_df.to_excel(writer, sheet_name = 'ACC_ALL')

writer.close()




Model Accuracy

Multinomial Logistic Regressor 91%

Logistic Regressor 91%

Decision Tree Classifier 100%

Random Forest Classifier 100%

Support Vector Classifier 88%

Support Vector Classifier Polynomial Kernel 100%

Support Vector Classifier Radial Kernel 100%

K-Nearest Neighbors Classifier 100%

Gaussian Naïve Bayes Classifier 65%

Bernoulli Naïve Bayes Classifier 78%

Stochastic Gradient Descent 85%

Gradient Boosting Classifier 100%

Extreme Gradient Boosting Classifier 100%

Sequential Deep Neural Network 100%

Table 13. Prediction Accuracies For All Models

The models who presented the highest accuracy scores were:

While the models with the lowest prediction accuracy were:

In general, the linear models presented lower accuracies, which makes sense since our data has presumably non-
linear relationships. In general, most of the non-linear models predicted with 100% accuracy, further sustaining
our hypothesis.

Conclusions
In this segment, we reviewed 13 different Machine Learning classification models. First, we performed a
general overview of each model and explained the mathematical intuition behind each case. We then tested
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linear and non-linear implementations.

We also trained and tested a Deep Neural Network model using five layers. We performed a k-folds Cross-
validation on it and saw that the accuracies were close to or 100%, meaning our implementation could predict
different random subsets of data.

Finally, we compared the prediction accuracies for all of the models and concluded that for our specific data set,
there were eight models which scored 100% prediction accuracy.

On the third and final segment of this Guided Project series, we will use everything that we've gathered so far to
build a technical and business-oriented client deliverable using LaTeX and Texmaker.
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