
Sentiment Analysis With Python, Pt. 2

Made withMade with ObsidianObsidian

TypeType portfolio-projectportfolio-project

CategoryCategory data-sciencedata-science

TechnologiesTechnologies Python, PowerShellPython, PowerShell

WebsiteWebsite Post LinkPost Link

In the last segment of this 5-piece Portfolio Project, we discussed what sentiment analysis is and the types of
approaches for this technique. We also designed our application's architecture, created our environment and
included our project's dependencies, defined our project's directory structure and the interaction between
packages & modules, and implemented a fully-fledged GUI using customtkinter and tkinter .

In this second part, we will design the preprocessing module along with the heart of our application: the
sentiment analysis package.

For the preprocessing module, we will implement a main class and several functions to help us download/load
datasets, cast entries to their appropriate data types, and extract the columns of interest.

Finally, we will define our models for the sentiment analysis package and include an analysis execution module.

The complete project, including all the resources used, can be found in the Portfolio Project Repo.

Table of Contents

§

§

Preface•

Preprocessing•
downloadData•

readMode•
selectCols•

castTypes•

readData•

Sentiment analysis package•
VADER•

Sentiment analysis•
applyModel•

executeModel•

Conclusions•

References•

Copyright•

https://obsidian.md/
https://pabloagn.com/portfolio/
https://pabloagn.com/categories/data-science/
https://pabloagn.com/technologies/
https://pabloagn.com/portfolio/sentiment-analysis-with-python-pt-2/
https://pabloagn.com/portfolio/sentiment-analysis-with-python-pt-1/
https://github.com/pabloagn/portfolio/tree/master/data-science/sentiment-analysis-with-python

Preface
Recalling from the last segment, we are looking to build a sentiment analysis GUI where the user can download
or read one or more datasets, define different columns such as a target column, an index column, and a rating
column, select between two different rule-based sentiment analysis modules (VADER, TextBlob), and choose
which set of analyses to apply, based on a maximum of 4 possible aggregation columns.

In the last segment, we designed our concept GUI, defined our general project structure using structure charts,
and explained how our project would be organized regarding the folder and file structure. We also created all our
necessary packages and modules and included a main structure for each file.

In this segment, we'll work with the following packages and modules:

Where the _preprocess_data.py module will be responsible for downloading/reading the datasets and making
the necessary transformations, the vader.py module will contain the VADER model implementation, and the
_sentiment_analysis.py module will be responsible for running the sentiment analysis upon our main

application call.

Preprocessing
Before we implement our model, we'll need to preprocess our data. We will specify a module inside our utils

package called _preprocess_data.py .

This module will have the following responsibilities:

We will declare six methods inside our PreprocessData module:

§

utils•
_preprocess_data.py•

sentiment_analysis•
models•

vader.py•

_sentiment_analysis.py•

§

Download a dataset/set of datasets if the user specifies Download mode.•

Read a dataset/set of datasets regardless of chosen mode option.•

Validate if selected columns are in selected datasets.•

Cast required data types.•

Select user-defined columns.•

Return a preprocessed DataFrame object.•

downloadMode•
downloadData•

readMode•
selectCols•

castTypes•

readData•

https://github.com/pabloagn/portfolio-projects/tree/master/data-science/sentiment-analysis-with-python/src/utils
https://github.com/pabloagn/portfolio-projects/blob/master/data-science/sentiment-analysis-with-python/src/utils/_preprocess_data.py
https://github.com/pabloagn/portfolio-projects/tree/master/data-science/sentiment-analysis-with-python/src/sentiment_analysis
https://github.com/pabloagn/portfolio-projects/tree/master/data-science/sentiment-analysis-with-python/src/sentiment_analysis/models
https://github.com/pabloagn/portfolio-projects/blob/master/data-science/sentiment-analysis-with-python/src/sentiment_analysis/models/vader.py
https://github.com/pabloagn/portfolio-projects/blob/master/data-science/sentiment-analysis-with-python/src/sentiment_analysis/_sentiment_analysis.py

If we recall the general structure, the _preprocess_data.py module is directly connected with the
SentimentAnalysis package. Thus, it will only be called by the latter:

Figure 1: Data Preprocessing General Structure

If we zoom in to our _preprocess_data.py module, we have the following structure:

Figure 2: Data Preprocessing Structure Chart

There are some key points worth mentioning:

Why choose these specific file formats for dataset reading?•

Normally, when working with big data files, we encounter .csv , .tsv , .parquet , .avro , or compressed
file formats.

•

Even if we don't have our datasets in the required file formats, the first two are extremely easy to convert to
and well-known in the industry.

•

The last two are serialized file formats, which we did not include for a specific reason: They can contain
unknown data schemas; schema handling in the preprocessing steps could easily result in errors.

•

Finally, the most common compression utility for interchanging single files is the gzip standard; contrary to
.zip , .gz can only compress single files, making it ideal for file exchange.

•

What about the .gz file format?•

As mentioned above, a .gz file is a compressed file using the GNU Zip (gzip) utility. As convenient as it
is for exchanging files, the .gz file format requires special handling.

•

A file handler in Python refers to an object containing a collection of methods for interacting with the file,
such as opening, reading, and writing.

•

https://www.gnu.org/software/gzip/

Once we know the structure, we'll head to our _preprocess_data.py file and import the following:

Code

We will also need to turn on the Polars global string cache:

Code

This will ensure that casts to Categorical types have the categories when string values are equal. Else, we'll get
an error when trying to cast.

Finally, we will define our PreprocessData class:

In order to interact with a .gz file, we need to use a file handler by including the gzip library.•

Once we create a file handler, we can open, read, and write from and to the file.•

Data type casting exception handling.•

There are times when we might have an ID column denoting each entry's index (e.g., Review ID: A1290)•

By default, this column is treated as Categorical (string) in our program, which makes sense since we
might have an identifier consisting of alphanumerical characters. Still, there are instances where we might
get a numeric column. If this happens, Polars will sometimes present problems casting to a Categorical
data type. Thus, we define an exception-handling method that takes care of that.

•

Why read to a Polars DataFrame?•

Polars reading methods are faster than Pandas ; Polars represents data in memory with Arrow arrays,
while Pandas represents data in memory in NumPy arrays. Apache Arrow is an emerging standard for in-
memory columnar analytics that can accelerate data load times, reduce memory usage and accelerate
calculations by employing parallel processing capabilities.

•

If we are to read multiple files and don't support serialized file formats in our program, it'll be faster by
using Polars vs. Pandas .

•

Third-party packages

import gzip

import polars as pl

Built-in packages

import os

import time

import urllib.request

import warnings

warnings.filterwarnings('ignore')

Internal packages

from ._string_formatting import StringFormatting

pl.toggle_string_cache(True)

Code

1. downloadData
If the user selects the Download mode and a URL file exists in the datasets folder, the datasets in the specified
URL will be downloaded to the said folder.

A typical URL file is assumed to be in the .txt file format and should look like such:

Each newline entry is considered a different URL and thus treated as such.

An error will be returned if there is no such URL file and the Download mode is selected.

For this, we'll need to implement a downloader function inside our PreprocessData class in our
_preprocess_data.py module:

Code

class PreprocessData(StringFormatting):

 '''

 - Download (if user specifies) and read datasets into a

 Polars DataFrame object.

 - Cast required data types.

 - Select user-required columns.

 - Return a processed Polars DataFrame.

 '''

https://example.com/dataset_01.csv

https://example.com/dataset_02.csv

https://example.com/dataset_03.csv

https://example.com/dataset_04.csv

def downloadMode(self):

 '''

 Enter download mode, where all URLs specified on source.txt.

 will be downloaded in the datasets folder.

 '''

 def downloadData():

 '''

 Download the dataset if it does not yet exist.

 '''

 # Define the input file for downloading files using URLs

 input_file = os.path.join(self.project_path, self.var_rdir.get(),
self.var_sourceurl.get()) # type: ignore

 counter = 1

 # Try to get the source file.

 try:

 file = open(input_file)

 file.close()

 # If it does not exist, return error and notify the user

 except Exception as ex:

 self.insertLog(f'ERROR: "{input_file}" DOES NOT EXIST\n\n')

 # We must manage this return value in the function calls.

 return ex

 with open(input_file, 'r') as url_file:

 len_urls = len(url_file.readlines())

 textvar_downloading = self.padStr('DOWNLOADING FROM:', self.var_sourceurl.get()) #
type: ignore

 textvar_linenum = self.padStr('TOTAL URLS:', len_urls)

 # Wait for user to see log

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 self.insertLog(f"{textvar_downloading}\n",

 f"{textvar_linenum}\n")

 with open(input_file, 'r') as url_file:

 progress_1_step = 1/len_urls

 progress_1_perc = 0

 self.progressbar_1.start() # type: ignore

 for url in url_file:

 # Split on the rightmost / and take everything on the right side of that

 name = url.split('/')[-1].strip('\n')

 filename = os.path.join(self.project_path, self.var_rdir.get(), name) # type:
ignore

 if os.path.isfile(filename):

 self.insertLog(f"ALREADY DOWNLOADED:\n{filename}\n\n")

 if not os.path.isfile(filename):

 self.insertLog(f"DOWNLOADING {counter}/{len_urls}:\n{filename}\n\n")

 urllib.request.urlretrieve(url, filename)

 self.insertLog(f"DOWNLOADED {counter}/{len_urls}:\n{filename}\n\n")

Once we have our downloadMode method, we can proceed with the reading.

2. readMode
As stated earlier, readMode will include everything we need to read our dataset to a Polars DataFrame object.
This includes reading the files, selecting the columns, casting the datatypes, and dropping null values.

We will wrap all of these methods inside a readMode function below our downloadData method:

Code

2.1 selectCols
We want to select the columns defined by our user and only use those as our new DataFrame. The selectCols

method will try to choose the columns; an error will be returned if they do not exist. It will also specify which
columns are meant to be Categorical and which are meant to be Numerical. This will help when we implement
our castTypes method:

Code

 progress_1_perc += progress_1_step

 self.progressbar_1.set(progress_1_perc) # type: ignore

 self.update_idletasks() # type: ignore

 counter += 1

 self.progressbar_1.stop() # type: ignore

 return None

 downloadData()

 return None

def readMode(self, dataset):

 '''

 Enter read mode where a dataset will be read

 if it exists on datasets directory.

 '''

2.2 castTypes
Once our columns are selected, we must cast them into appropriate data types.

For this to work, we should have the following schema:

Code

def selectCols():

 '''

 Get columns required by the user.

 '''

 # Build the column aggregation list.

 cols_agg_raw = [self.col_entry_1.get(), # type: ignore

 self.col_entry_2.get(), # type: ignore

 self.col_entry_3.get(), # type: ignore

 self.col_entry_4.get()] # type: ignore

 cols_agg = []

 # If the user did not specify a given column, do not append it.

 for col in cols_agg_raw:

 if col != '':

 cols_agg.append(col)

 # Extend the list with all other columns

 # We will use this to test if any of the columns do not exist in the dataframe

 cols_all = cols_agg.copy()

 cols_all.extend([self.col_rating.get(), # type: ignore

 self.col_target.get(), # type: ignore

 self.col_id.get()]) # type: ignore

 cols_text = cols_agg.copy()

 cols_text.extend([self.col_target.get(), self.col_id.get()]) # type: ignore

 return cols_all, cols_text, self.col_rating.get(), self.col_target.get() # type: ignore

Agg columns (max 4, min 1). Can be str , int or float type.•

ID column. Can be str or int type.•

Target column. Requires str type.•

Rating column. Can be int or float type.•

2.3 readData
We can now implement a reading method that will read a dataset depending on the file format, select the
appropriate columns, cast them to the suitable data types, drop any null value present, and return the file format
extension. This last step will be helpful when we're setting the dataset name as our identifier:

Code

def castTypes(df, cols_text, col_rating):

 '''

 Cast columns to appropriate data types for model execution.

 '''

 # Cast string types

 for text_col in cols_text:

 try:

 df = df.with_column(pl.col(text_col).cast(pl.Categorical))

 except:

 try:

 df = df.with_column(pl.col(text_col).cast(pl.Float64))

 except:

 self.insertLog(f'ERROR: COULD NOT CAST {text_col}.\nPLEASE REVIEW DATA
ENTRIES\n\n')

 # Cast numerical types

 try:

 df = df.with_column(pl.col(col_rating).cast(pl.Float64))

 except:

 self.insertLog(f'ERROR: COULD NOT CAST {col_rating}.\nPLEASE REVIEW DATA ENTRIES\n\n')

 return df

def readData(dataset):

 '''

 This function will read one file per iteration

 and return a dataframe.

 It will perform the following tasks:

 - Read the file if it exists, and is of correct file format.

 - Select the user-defined columns if they exist.

 - Cast the user-defined columns to correct data type.

 - Return a processed Polars DataFrame object.

 A data set can be in the form of:

 - A .csv file.

 - A .tsv file.

 - A compressed .gz file containing:

 - A .csv file.

 - A .tsv file.

 For column selection:

 - Agg columns (max 4, min 1). Can be str, int or float type.

 - ID column. Can be str or int type.

 - Target column. Requires str type.

 - Rating column. Can be int or float type.

 '''

 # Define target path for a given iteration

 read_target = os.path.join(self.project_path, self.var_rdir.get(), dataset) # type: ignore

 # If a .csv file exists, read the .csv file

 if read_target.endswith('.csv'):

 self.insertLog(f"READING:\n{read_target}\n\n")

 termination = '.csv'

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Read file into df

 df = pl.read_csv(read_target, sep = ',', ignore_errors=True)

 self.insertLog(f"CONCLUDED READING:\n{read_target}\n\n")

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # If a .tsv file exists, read the .tsv file

 elif read_target.endswith('.tsv'):

 self.insertLog(f"READING:\n{read_target}\n\n")

 termination = '.tsv'

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Read file into df

 df = pl.read_csv(read_target, sep = '\t', ignore_errors=True)

 self.insertLog(f"CONCLUDED READING:\n{read_target}\n\n")

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

Finally, we will include the following statement at the end of our module:

 # If a .gz file exists, read the .gz file without explicitly decompressing

 elif read_target.endswith('.tsv.gz'):

 self.insertLog(f"READING:\n{read_target}\n\n")

 termination = '.tsv.gz'

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Read file into df

 with gzip.open(read_target) as compressed_file:

 df = pl.read_csv(compressed_file.read(), sep = '\t', ignore_errors=True)

 self.insertLog(f"CONCLUDED READING:\n{read_target}\n\n")

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 else:

 self.insertLog(f"ERROR:\n{read_target} IS NOT A VALID FILE\n\n")

 # Return None

 return None

 textvar_colnum = self.padStr('COLUMN NUMBER:', len(df.columns))

 self.insertLog(f"{textvar_colnum}\n\n",

 f"CHECKING COLUMNS\n\n")

 # Wait for user to see params

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Extract column list

 cols_all, cols_text, col_rating, col_target = selectCols()

 # Check if user-defined columns exist

 for col in cols_all:

 try:

 df.select(col)

 # If it does not exist, return error and notify user

 except Exception as ex:

 self.insertLog(f'ERROR: "{col}" DOES NOT EXIST\n\n')

 # We will need to manage this return value in the function calls.

 return ex

 df = df.select(cols_all)

 df = castTypes(df, cols_text, col_rating)

 df = df.drop_nulls()

 return df, termination

df, termination = readData(dataset) # type: ignore

return df, termination

Code

This will ensure that our module is not executed on import and is instead executed upon explicitly calling it.

Sentiment analysis package
Once we have our preprocessing module, we'll implement our models and a sentiment analysis execution
module. We'll be working inside our sentiment_analysis package.

The structure will be defined as follows:

We are not defining a specific module for the TextBlob model since its implementation is straightforward and
can be done inside the _sentiment_analysis.py module.

We will start by defining the VADER module.

1. VADER
We will be working on the vader.py module. The VADER model can be accessed through the nltk library.
We can first import the required libraries:

Code

We'll next define a function that will:

Code

if __name__ == '__main__':

 PreprocessData()

§

sentiment_analysis•
models•

vader.py•

_sentiment_analysis.py•

import nltk

from nltk.sentiment import SentimentIntensityAnalyzer

Download the required VADER lexicon (required for sentiment analysis)•

Define a VADER model object.•

Return a VADER model instance.•

If we recall the previous segment, we did not specify any model import in our __init__.py script. This is
because we'll call the VADER model from within the sentiment_analysis package.

A typical VADER model import from within the said folder, will consist of the following:

Code

This will automatically import our function if, indeed, we are importing from within the same folder.

2. Sentiment analysis
We must implement a module that performs the sentiment analysis on our preprocessed data using the
predefined model above. We must also include a TextBlob implementation directly into the
_sentiment_analysis.py module.

If we recall the general structure, we had the following:

def vaderModel():

 '''

 Download the VADER lexicon first.

 Define Sentiment Analyzer object.

 Return model object.

 '''

 nltk.download('vader_lexicon')

 model = SentimentIntensityAnalyzer()

 return model

if __name__ == '__main__':

 vaderModel()

from sentiment_analysis.models import vader

https://github.com/pabloagn/portfolio-projects/blob/master/data-science/sentiment-analysis-with-python/src/sentiment_analysis/_sentiment_analysis.py

Figure 3: Sentiment Analysis Execution Process Flow

If we zoom in on our Sentiment Analysis package, we have the following structure:

Figure 4: Detailed Sentiment Analysis Execution Structure Chart

We will also need to include progress bar updates for the model execution function since we want to reflect the
progress percentage using each analyzed target entry (row) as the step size.

As we saw in our previous segment, we will need to import some modules beforehand:

Code

Third-party packages

import numpy as np

import pandas as pd

import polars as pl

import pyarrow

from textblob import TextBlob

Built-in packages

import os

import time

import warnings

warnings.filterwarnings('ignore')

Internal packages

from utils import PreprocessData

from sentiment_analysis.models import vader

from ._results_analysis import ResultsAnalysis

from ._results_writer import ResultsWriter

NumPy , Pandas , Polars , and PyArrow will be used to manipulate our data structures.•

TextBlob will be used to implement the TextBlob model.•

os will be required for system interaction.•

time will be required for time pauses between steps.•

The two target functions will be implemented as methods of our previously defined SentimentAnalysis class:

Code

2.1 applyModel
The applyModel function will have the following responsibilities:

We can define our applyModel function as follows:

Code

PreprocessData will be used to include our preprocess datasets.•

vader will be used to introduce the VADER model to our system.•

ResultsAnalysis and ResultsWriter are not yet implemented but will be used to analyze our results and,
eventually, write them to the outputs folder.

•

Define SentimentAnalysis class

class SentimentAnalysis(PreprocessData,

 ResultsAnalysis,

 ResultsWriter):

Select the target column.•

Define a results dictionary.•

Apply model based on user selection, for all datasets found in datasets folder for all target entries (rows).•

Append each result to the results dictionary .•

Update progress bar upon each entry analysis completion.•

Consolidate results from dictionary into a Polars DataFrame object•

Drop unused columns.•

Rename used columns accordingly.•

Join results with the original preprocessed DataFrame object.•

Return a Polars DataFrame containing preprocessed object and sentiment results.•

def applyModel(self, df, dataset):

 '''

 Apply sentiment analysis model depending on the user's choice.

 '''

 self.insertLog(f'APPLYING MODEL TO {dataset.name}\n\n')

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Run Sentiment Analysis

 target_data = df.select([self.col_id.get(), # type: ignore

 self.col_target.get()]) # type: ignore

 # Select model

 if self.var_model.get() == 'VADER': # type: ignore

 model = vader.vaderModel()

 # Define a dictionary to store the resutls

 res_dict = {}

 counter = 0

 # Start progress bar

 total_items = len(df)

 progress_2_step = 1/total_items

 progress_2_perc = 0

 self.progressbar_2.start() # type: ignore

 for col_id, target in target_data.iterrows():

 results = model.polarity_scores(target)

 # Add results to the dictionary

 res_dict[col_id] = results

 # Increment counter

 counter += 1

 self.insertLog(f'ENTRY {counter} OF {total_items}\n')

 # Update progress bar

 progress_2_perc += progress_2_step

 self.progressbar_2.set(progress_2_perc) # type: ignore

 self.update_idletasks() # type: ignore

 # Stop progress bar

 self.progressbar_2.stop() # type: ignore

 df_res = (pl.from_pandas((pd.DataFrame(res_dict).T).

 reset_index().

 rename(columns={'index':self.col_id.get(), # type: ignore
 'neg':'NEG',

 'neu':'NEU',

 'pos':'POS',

 'compound':'CMP'}

)

)

)

 # Cast new dataframe types

 df_res = df_res.with_column(pl.col(self.col_id.get()).cast(pl.Categorical)) # type:
ignore

 # We won't be using Positive, Neutral, and Negative Scores, only Compound

 df_res = df_res.drop(columns = ['POS', 'NEU', 'NEG'])

 # Join with original DataFrame

 df_main = df.join(df_res, on = self.col_id.get(), how="inner") # type: ignore

 elif self.var_model.get() == 'TextBlob': # type: ignore

 # Define a dictionary to store results

 res_dict = {}

 counter = 0

 # Start progress bar

 total_items = len(df)

 progress_2_step = 1/total_items

 progress_2_perc = 0

 self.progressbar_2.start() # type: ignore

 for col_id, target in target_data.iterrows():

 results = TextBlob(str(target))

 polarity_score = results.sentiment.polarity # type: ignore

 # Add results to the dictionary

 res_dict[col_id] = {'compound':round(polarity_score, 4)}

 # Increment counter

 counter += 1

 self.insertLog(f'ENTRY {counter} OF {total_items}\n')

 # Update progress bar

 progress_2_perc += progress_2_step

 self.progressbar_2.set(progress_2_perc) # type: ignore

 self.update_idletasks() # type: ignore

 # Stop progress bar

 self.progressbar_2.stop() # type: ignore

 df_res = (pl.from_pandas((pd.DataFrame(res_dict).T).

 reset_index().

 rename(columns={'index':self.col_id.get(), # type: ignore
 'compound':'CMP'}

)

)

)

 # Cast new dataframe types

 df_res = df_res.with_column(pl.col(self.col_id.get()).cast(pl.Categorical)) # type:
ignore

 # Join with original DataFrame

 df_main = df.join(df_res, on = self.col_id.get(), how="inner") # type: ignore

2.2 executeModel
The executeModel function will be the second method inside our SentimentAnalysis class. It'll be in charge of
selecting the operation mode (Download / Read), depending on the user's input; the Download mode will only
be selected if the user explicitly states so, while the Reading mode will be selected regardless of the user's
option.

It will then call the applyModel method defined above, the performAnalysis , and the writeResults , both of
which we have yet to define.

Code

 return df_main # type: ignore

We use the self.var.get() method in order to get our variables defined in our main application.•

We use a dictionary, res_dict , to store our results per dataset.•

We initialize our progress bar and set the step size to be 1/total_items , meaning once the script goes over
all target entries, the progress bar will reach 100%.

•

As mentioned earlier, both models output different results, so we'll have to rename the compound score and
the polarity score to a common name for our analyses to work:

•

VADER:•
Negative probability•

Neutral probability•

Positive probability•

Compound: Renamed to CMP•

TextBlob:•
Polarity: Renamed to CMP•

We join the results DataFrame with the preprocessed DataFrame and return it as output.•

def executeModel(self):

 '''

 Downloads the datasets if the user has requested Download operations.

 Loads the datasets one by one and performs the analysis per dataset.

 '''

 # Enter download mode

 if self.var_operation.get() == 'Download Mode': # type: ignore

 self.insertLog("ENTERING DOWNLOAD MODE\n\n")

 # Wait

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Download files

 self.downloadMode()

 # Enter reading mode

 elif self.var_operation.get() == 'Read Mode': # type: ignore

 self.insertLog("ENTERING READ MODE\n\n")

 # Wait 2 seconds (for user to see params)

 time.sleep(float(self.var_wait_time.get())) # type: ignore

 # Count number of files

 file_count = 0

 with os.scandir(os.path.join(self.project_path, self.var_rdir.get())) as datasets: # type:
ignore

 for dataset in datasets:

 if dataset.name != self.var_sourceurl.get(): # type: ignore

 file_count =+ 1

 # Read all files in directory, regardless of mode

 with os.scandir(os.path.join(self.project_path, self.var_rdir.get())) as datasets: # type:
ignore

 if file_count == 0:

 self.insertLog("WARNING: FILE NOT FOUND\n\n")

 return None

 else:

 result_dict = {}

 for dataset in datasets:

 # Excluding URL source file
 if dataset.name != self.var_sourceurl.get(): # type: ignore

 # Read mode

 self.progressbar_1.set(0) # type: ignore

 df, termination = self.readMode(dataset)

 self.progressbar_1.set(1) # type: ignore

 self.update_idletasks() # type: ignore

 self.progressbar_1.stop() # type: ignore

 # Apply model

 df_main = self.applyModel(df, dataset)

 # Remove termination from file

 dataset_name = dataset.name.replace(termination, '')

If we look closely, the executeModel method will return None . This is because the results from this function are
automatically written in the outputs directory.

As with previous examples, we will include the following statement at the end of our module:

Code

Now, we have everything ready to start designing our analysis collection.

Conclusions
In this section, we implemented a preprocessing module in charge of selecting the appropriate operation mode,
downloading or reading from different file formats depending on the user's choice, selecting the required
columns, and casting them to proper data types.

Next, we implemented our sentiment_analysis package, consisting of a VADER module and a sentiment
analysis execution script responsible for selecting the correct model based on the user's input, applying the
model to the target data, and consolidating the results for exporting to an analysis module not yet implemented.

In the next segment, we will implement an analysis module responsible for performing various analyses
depending on the user's input and preparing these results for writing. We will also define a results writer module
to consolidate all the analysis results and write them to either Excel workbooks or plots, depending on the user's
choice.

 # Apply analysis on each iteration and save results\

 result_dict[dataset_name] = self.performAnalysis(df_main, dataset)

 # Perform writing

 self.writeResults(result_dict) # type: ignore

 return None

Select an operation mode:•
Download mode:•

Download.•

Read.•

Read mode•
If the datasets exist, read them.•

Else, return error.•

Get the preprocessed data set.•

Call applyModel using the preprocessed DataFrame and dataset name as inputs.•

Remove the dataset name's file extension to use as the results dictionary key.•

Append a new dictionary entry:•
Key: Stripped dataset name.•

Value: Analysis results (has not been implemented yet)•

if __name__ == '__main__':

 SentimentAnalysis()

§

References

Copyright
Pablo Aguirre, GNU General Public License v3.0, All Rights Reserved.

§

Towards Data Science, The Most Favorable Pre-trained Sentiment Classifiers in Python•

cjhutto, vaderSentiment Documentation•

TextBlob, Documentation•

pola-rs, polars•

Polars, User Book•

Python Documentation, gzip•

§

https://towardsdatascience.com/the-most-favorable-pre-trained-sentiment-classifiers-in-python-9107c06442c6
https://github.com/cjhutto/vaderSentiment
https://textblob.readthedocs.io/en/dev/quickstart.html
https://github.com/pola-rs/polars
https://pola-rs.github.io/polars-book/user-guide/
https://docs.python.org/3/library/gzip.html

