# Part of Study 1: Semantic priming # Combination of plots: # 1. Interaction between vocabulary size and language-based similarity # 2. Interaction between vocabulary size and visual-strength difference library(dplyr) library(ggplot2) library(patchwork) # Data set below created in the script 'semanticpriming_data_preparation.R', # which is stored in the folder 'semanticpriming/data' semanticpriming = read.csv('semanticpriming/data/final_dataset/semanticpriming.csv') # Model below created in the script 'semanticpriming_lmerTest.R', # which is stored in the folder 'semanticpriming/frequentist_analysis' semanticpriming_lmerTest = readRDS('semanticpriming/frequentist_analysis/results/semanticpriming_lmerTest.rds') # Load custom function source('R_functions/deciles_interaction_plot.R') plot1 = deciles_interaction_plot( model = semanticpriming_lmerTest, x = 'z_cosine_similarity', fill = 'z_vocabulary_size', fill_nesting_factor = 'Participant', x_title = 'Language-based similarity (*z*)', y_title = 'Predicted RT (*z*)', fill_title = 'Vocabulary size
(*z*, deciles)' ) + theme(plot.tag.position = c(0, 1)) plot2 = deciles_interaction_plot( model = semanticpriming_lmerTest, x = 'z_visual_rating_diff', fill = 'z_vocabulary_size', fill_nesting_factor = 'Participant', x_title = 'Visual-strength difference (*z*)', y_title = 'Predicted RT (*z*)', fill_title = 'Vocabulary size
(*z*, deciles)' ) + theme(plot.tag.position = c(0, 1)) # Combine plots using {patchwork} and save the result to disk ( plot1 + plot2 + plot_annotation(tag_levels = list(c('(a)', '(b)'))) + plot_layout(ncol = 1, guides = 'collect') ) %>% ggsave(filename = 'semanticpriming/frequentist_analysis/plots/semanticpriming-interactions-with-vocabulary-size.pdf', device = cairo_pdf, width = 6.5, height = 7, dpi = 900)