
NeurIPS 2019 Reproducibility Challenge-
Kernel-Based Approaches for Sequence Modeling:

Connections to Neural Methods

Palak Goenka
Indian Institute of Technology, Roorkee
goenkapalak11@gmail.com

Ashutosh Bhushan Bharambe
Indian Institute of Technology, Roorkee
a.bharambe123@gmail.com

Kartikey Pandey
Indian Institute of Technology, Roorkee
pandeykartikey99@gmail.com

Subham Sahoo
Indian Institute of Technology, Roorkee
subhamsahoo4444@gmail.com

Abstract

Motivated by the importance of kernel-machines for the development of Deep
Learning models, we have represented an extensive study of the work done in the
paper Kernel-Based Approaches for Sequence Modeling:Connections to Neural
Methods [1] as a part of NeurIPS Reproducibility Challenge 2020. In this report,
we have tried to judge the reproducibility of the original paper by comparing our
results with the ones reported by the authors. Along with every minute explanation
required for the experimentation defined in the original paper [1], we have also tried
to provide insights for the incorporation of various training techniques mentioned
by the authors. Our complete codebase is available at GitHub.

1 Introduction

The property of Deep Learning (DL), which says that deep learning can be viewed as a feature
mapping from ψθ(x) to the weight ω, has opened up a new question of bridging the gap between deep
learning and kernel machines. Insights obtained about neural networks from the perspective of kernel
machines have proved to provide a better explanation of deep learning models [2].

Prior work in this domain has been predominantly in the field of image analysis. For instance, in [3],
authors have presented an analysis for Convolutional Neural Networks (CNN) as Hierarchical Kernel
Machines. Furthermore, there is significant work on the use of recurrent kernel machines (RKMs) for
sequential data [4]. Inspired by the previous work, the authors have derived connections between
recurrent neural networks (RNNs) and recurrent kernel machines (RKMs).

The paper constructs RNN in terms of RKMs by using simple filters. These kernel machines have
memory cells that are updated while the sequential data comes in. The authors introduce a method
of adaptive-gating for the adaptivity of memory of the memory cells of Recurrent Kernel Machines.
And it is observed that the obtained RKM is closely related to the LSTM. Furthermore, Gated CNN
and RAN are obtained from this LSTM-like framework by turning off some elements.

In this reproducibility report, we study in detail, the model architecture proposed in the original
paper, run the experiments, provide insights and suggestions for replicating the result, and analyze
the results obtained in comparison with the ones reported by the original paper.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/palakg11/KASM-Pytorch


Figure 1: Model Detail.

2 Proposed Method

To establish a relation between RNNs and RKMs. The authors proposed that yt = Uht where ht is
given by

ht = f(W
(x)
t ) +W

(h)
t − 1 + b)

Here xt is the embedding vector for the t-th word (wt) in a sequence of words. Now further U is
factorized as U = AE. Thus writing yt = Ah

′

t where h
′

t = Eht.

The paper focuses on the kernel which is of the form

kθ(z̃, zt) = qθ(z
T zt) = h̃T1 ht

To evaluate the kernel, the authors used the recursive relationship. The overall model with added
feedback was then given by

h
′

t = qθ(ct), ct = c̃t + qθ(ct−1), c̃t = X̃xt + H̃ht−1

Here ct is the memory cell at time t and row i of X̃ corresponds to x̃Ti . The function qθ can take
many forms the simplest of which is a linear time invariant kernel which is modeled by

h
′

t = ct, ct = σ2
i c̃t + σ2

fct−1, c̃t = X̃xt + H̃ht−1

The authors then introduced dynamic forms of σ2
i and σ2

f and derive LSTM like model called RKM-
LSTM and for the linear kernel special cases of σ2

i and σ2
f yield CNN and Gated-CNN . The above

changes are summarized in Figure 1. Complete detail on the proposed method could be found in the
original paper

3 Implementation Details

To meet the requirements of the replication task, we implemented the architecture in PyTorch1,
solemnly based on the description provided in the paper. Similar to the original paper, we aim to
determine the relation between kernel machines and recurrent model on three tasks, Document
Classification, Language Modelling, and Local Field Potential (LFP) classification. However,
due to the public unavailability of the LFP dataset, we were able to validate the results on only
the Document Classification and the Language Modelling task. Our complete codebase for the
reproducibility of the original paper along with installation guidelines could be found at github.
In the repository, we have also included the checkpoints for each task. All the experiments were
conducted on NVIDIA GeForce GTX 1080 Ti and Google Colab2.

To replicate the model structure defined in Figure 1, we implemented a general LSTM cell
(Figure 2). All the variations were thus obtained by changing the activation functions and gated
layers in this cell. As specified in the original paper, we took the values of σ2

i and σ2
f to be 0.5 for all

the four cases i.e. Linear Kernel w/ot, Linear Kernel, Gated CNN and CNN. A detailed experimental
setup for the two tasks can be found in the underneath section.

1https://pytorch.org/
2https://colab.research.google.com

2

https://arxiv.org/pdf/1910.04233.pdf
https://github.com/palakg11/KASM-Pytorch
https://pytorch.org/
https://colab.research.google.com


Figure 2: LSTM cell structure.

Figure 3: Complete model architecture for Document Classification. Here ht denotes the output
obtained from the recurrent model.

3.1 Document Classification

Figure 3 explains the architecture opted by the original paper for this task. The experimentation for
this task was performed on AGNews, Yahoo, DBpedia, and Yelp full dataset. As described in the
original paper, we chose GloVe as our word embedding initialization and dimension of hidden states
to be 300. The preprocessing procedure was the same as in [5]. Some of the information that was
missing in the original paper and our assumed values for them are listed below:

• The dimension of the hfc1hfc1hfc1 layer (refer Fig 3): We chose it to be 100 in the case of 1-gram
and 200 in the case of 3-gram.

• Non-Linearity function for the fully connected layers (refer Fig 3): We took it to be
sigmoid.

• Batch size, number of epoch, and learning rate: We assumed batch size to vary from 64
to 521 based on the type of dataset. For AGNews, we took it to 64, while for yahoo and
DBpedia, we took it to be 256, and 512 for yelp (these values were chosen by taking into
account the training time and rate). The number of epoch to be in the range of (20-40) and
learning rate to be 0.01 and 0.001.

• Loss Function and gradient descent optimization algorithm: We performed the experi-
ments using Pytorch’s implementation of cross-entropy loss and 3Adam as the optimizer.

Besides all these, authors have also mentioned incorporating Layer Normalization [6]. We believed
one possible reason for this step could be faster training of recurrent cell. But upon experimenting,
we found that another primary reason is to provide stable training. As we can see in Figure 1, tanh
activation function is not applied in the output layer of RKM-LSTM, RKM-CIFG, Linear Kernel
w/ot, and Gated CNN, which make these structures vulnerable to exploding gradient problem. To
tackle this problem, we tried various other techniques like changing the learning rate, batch size,
small initialization of hidden cell, applying gradient clipping, but nothing except layer normalization
worked.

3.1.1 Result and Discussion:

Considering Figure 4, we can conclude that our observed training accuracy is similar to that of
mentioned in the original paper. Although our values deviate from the original values, we feel that we
can neglect those deviations, because the reasoning for these deviations could be the variance in the

3https://pytorch.org/docs/stable/optim.html,

3



Figure 4: Document classification accuracy for original paper and our implementation on various
models. Total parameters of each model are shown, excluding word embedding and the classifier

choice of hyperparameters like learning rate and batch size. Along with this, Figure 4 also justifies
the following claims done in the original paper.

• RKM-LSTM and RKM-CIFG performs comparably to LSTM across all datasets.

• Classification accuracy decreases as the recurrent model become less sophisticated regarding
gating and memory cell. A subtle decrement is observed in the case of yelp, while for
AGNews and DBpedia, 1-gram CNN performs significantly well.

• N-gram (where n>1) archives performs well as compared to 1-gram.

3.1.2 Reproducibility Cost:

The datasets AGNews and DBpedia required lesser time in comparison to the Yahoo! and Yelp-Full
datasets. Even though the size of Yahoo! dataset was twice as big as the Yelp dataset, the latter took
maximum training time per epoch due to the complexity in its structure. The required time not only
varies with model-structure choice but also due to the change in the number of parameters. Refer
Figure 5 for the exact values of the average epoch time on NVIDIA GeForce GTX 1080 Ti and
Google Colab.

4



Figure 5: Average Epoch Time for document classification.

3.2 Language Modeling

Similar to the author’s approach, We also adopted the AWD-LSTM [7] as our base model4 and
replaced the standard LSTM layer with the models defined in Figure 1. To perform experiments for
Language Modeling, we wrote a wrapper around the modified cell (RKM-LSTM, RKM-CIFG, LSTM,
Linear Kernel w/ot). The wrapper provided an interface similar to the LSTM layer implementation in
Pytorch. The authors had mentioned using the default parameters of the base model, and the default
value of the number of epoch was 8000. On experimentation, we found that the average training
time per epoch for this model was around 45 seconds, which made this experiment computationally
expensive. As a consequence of this, we were unable to perform all the variations defined for this
task. Our result for this part only includes training of the RKM-CIFG model on the Penn Tree Bank
dataset. For this case, we got 173.63 test PPL and 195.98 valid PPL, which didn’t match with the
values given in the original paper.

4 Conclusion & Future Work

Due to the lack of time, computing resources, and unavailability of a dataset, we reproduce results
from some of the selected experiments from the original paper. Based on the empirical results
obtained from the document classification task, we affirm the author’s claim of modifying recurrent
kernel machines to a model that is closely related to the LSTM model. Moreover, we would also
like to add that in spite, we obtained a major deviation for the result in the language modeling task,
we can’t draw a conclusion from that. Because we believe that it can be improved by increasing the
number of epochs and tuning the hyperparameters with discussion with the authors.

As the author said, the decrease in classification accuracy of the model with a decrease in the
sophistication of gated and memory cells is because of the complex structure of the Yelp dataset.
So in future we would like to observe the model’s performance on other more complex tasks like
machine translation, question answering. The authors have incorporated only mercer’s kernel. So, we
would also like to investigate the effect of other different kernels like Polynomial, Gaussian [8] on
bridging the gap between kernel machines and recurrent models.

References
[1] Kevin Liang, Guoyin Wang, Yitong Li, Ricardo Henao, and Lawrence Carin. Kernel-based

approaches for sequence modeling: Connections to neural methods. In Advances in Neural
Information Processing Systems, pages 3387–3398, 2019.

[2] Alberto Bietti and Julien Mairal. Invariance and stability of deep convolutional representations.
In Advances in neural information processing systems, pages 6210–6220, 2017.

[3] Fabio Anselmi, Lorenzo Rosasco, Cheston Tan, and Tomaso Poggio. Deep convolutional
networks are hierarchical kernel machines. arXiv preprint arXiv:1508.01084, 2015.

[4] Michiel Hermans and Benjamin Schrauwen. Recurrent kernel machines: Computing with infinite
echo state networks. Neural Computation, 24(1):104–133, 2012.

4https://github.com/salesforce/awd-lstm-lm

5



[5] Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan Zhang,
Ricardo Henao, and Lawrence Carin. Joint embedding of words and labels for text classification.
arXiv preprint arXiv:1805.04174, 2018.

[6] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[7] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm
language models. arXiv preprint arXiv:1708.02182, 2017.

[8] Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.

6


	Introduction
	Proposed Method
	Implementation Details
	Document Classification
	Result and Discussion:
	Reproducibility Cost:

	Language Modeling

	Conclusion & Future Work

