https://purl.org/ontodt/dmtypes
https://purl.org/ontodt
https://purl.org/ontodm/external
Ontology of Core Data Mining Entities
true
Saso Dzeroski
0.2
Pance Panov
English
2.0
Pance Panov
Ana Kostovska
Data Mining and Knowledge Discovery
OntoDM-core
OntoDM-core
English
Pance Panov
Larisa Soldatova
http://kt.ijs.si/panovp/OntoDM/OntoDM.owl
OWL-DL
http://kt.ijs.si/panovp/OntoDM#OntoDM_000002
constraints_set
http://kt.ijs.si/panovp/OntoDM#OntoDM_000005
pre_processing_algorithm_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000018
numeric_datatype
http://kt.ijs.si/panovp/OntoDM#OntoDM_000024
data_object
http://kt.ijs.si/panovp/OntoDM#OntoDM_000025
In the case of learning probabilistic models, we need to find a mapping of the form m::Td-->(Tc-->R0+). In the more general formulation of the problem, the training examples can have probability distributions over the c values insdead having the c values by itself.
http://kt.ijs.si/panovp/OntoDM#OntoDM_000025
probabilistic_predictive_modeling_task
http://kt.ijs.si/panovp/OntoDM#OntoDM_000032
prototype_calculation_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000035
search_function_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000040
distance_function_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000046
distance_calculation_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000056
evaluation_method_parameter
http://kt.ijs.si/panovp/OntoDM#OntoDM_000062
refinement_relation_generation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000064
primitive_feature_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000073
Probabilistic predictive model P for types Td and Tc is a function that takes an object of type Td and return a probabiliy distribution over type Tc, i.e. has the signature p::Tc-->(Td-->R0+)
http://kt.ijs.si/panovp/OntoDM#OntoDM_000073
probabilistic_predictive_model
http://kt.ijs.si/panovp/OntoDM#OntoDM_000079
refinement_operator_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000086
feature_generation_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000115
data_values
http://kt.ijs.si/panovp/OntoDM#OntoDM_000117
basic_data_mining_component_role
http://kt.ijs.si/panovp/OntoDM#OntoDM_000123
post_processing_task
http://kt.ijs.si/panovp/OntoDM#OntoDM_000129
generalization_role
http://kt.ijs.si/panovp/OntoDM#OntoDM_000138
base_learners_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000139
post_processing_algorithm_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000146
have to specify the output here!
http://kt.ijs.si/panovp/OntoDM#OntoDM_000146
kernel_calculation_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000148
information_content_entity_agregate
http://kt.ijs.si/panovp/OntoDM#OntoDM_000152
pre_processing_algorithm_implementation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000153
target_feature_set_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000157
kernel_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000164
post_processing_algorithm_implementation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000171
example_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000171
data_item_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000174
refinement_operator_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000176
assignment_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000180
fold_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000187
feature_generation_role
http://kt.ijs.si/panovp/OntoDM#OntoDM_000188
structured_feature_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000190
Describes set of parameters
http://kt.ijs.si/panovp/OntoDM#OntoDM_000190
parameters_set_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000194
datatype_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000203
dataset_role
http://kt.ijs.si/panovp/OntoDM#OntoDM_000208
parameter_role
http://kt.ijs.si/panovp/OntoDM#OntoDM_000218
bag_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000221
function_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000222
data_role
http://kt.ijs.si/panovp/OntoDM#OntoDM_000236
scenario_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000245
projection_objective
http://kt.ijs.si/panovp/OntoDM#OntoDM_000257
assesement specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000274
pre_processing_task
http://kt.ijs.si/panovp/OntoDM#OntoDM_000277
stuctured_datatype_construction
http://kt.ijs.si/panovp/OntoDM#OntoDM_000278
An interpreter takes as input the data part of a pattern and an example and returns the result of applying the function part of the pattern to the example.
http://kt.ijs.si/panovp/OntoDM#OntoDM_000278
interpretation_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000279
descriptive_feature_set_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000284
dataset_projection_process
http://kt.ijs.si/panovp/OntoDM#OntoDM_000289
data_use_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000295
query_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000296
prototype_function_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000301
kernel_function_specification
http://kt.ijs.si/panovp/OntoDM#OntoDM_000304
distance_representation
http://kt.ijs.si/panovp/OntoDM#OntoDM_000307
unlabeled_example
http://kt.ijs.si/panovp/OntoDM#OntoDM_000307
unlabeled_data_item
http://kt.ijs.si/panovp/OntoDM#OntoDM_000310
dataset_projection
http://kt.ijs.si/panovp/OntoDM#OntoDM_251805
OntoDM_251805
http://kt.ijs.si/panovp/OntoDM#OntoDM_251805
matematical function
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_269620
OntoDM_269620s
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_269620
OntoDM_269620
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_269620
precentage train-test split evaluation algorithm
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_349672
OntoDM_349672s
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_349672
OntoDM_349672
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_349672
separate test set evaluation algorithm
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_361694
OntoDM_361694s
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_361694
OntoDM_361694
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_361694
cross validation evaluation algorithm
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_562975
OntoDM_562975s
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_562975
OntoDM_562975
http://kt.ijs.si/panovp/OntoDM.owl#OntoDM_562975
train set evaluation algorithm
http://ontodm.com/OntoDT#OntoDT_018988
OntoDT_018988s
http://ontodm.com/OntoDT#OntoDT_018988
OntoDT_018988
http://ontodm.com/OntoDT#OntoDT_150012
OntoDT_150012s
http://ontodm.com/OntoDT#OntoDT_150012
OntoDT_150012
http://ontodm.com/OntoDT#OntoDT_245924
OntoDT_245924s
http://ontodm.com/OntoDT#OntoDT_245924
OntoDT_245924
http://ontodm.com/OntoDT#OntoDT_360708
OntoDT_360708s
http://ontodm.com/OntoDT#OntoDT_360708
OntoDT_360708
http://ontodm.com/OntoDT#OntoDT_377271
OntoDT_377271s
http://ontodm.com/OntoDT#OntoDT_377271
OntoDT_377271
http://ontodm.com/OntoDT#OntoDT_378476
OntoDT_378476s
http://ontodm.com/OntoDT#OntoDT_378476
OntoDT_378476
http://ontodm.com/OntoDT#OntoDT_379444
OntoDT_379444s
http://ontodm.com/OntoDT#OntoDT_379444
OntoDT_379444
http://ontodm.com/OntoDT#OntoDT_471356
OntoDT_471356s
http://ontodm.com/OntoDT#OntoDT_471356
OntoDT_471356
http://ontodm.com/OntoDT#OntoDT_487147
OntoDT_487147s
http://ontodm.com/OntoDT#OntoDT_487147
OntoDT_487147
http://ontodm.com/OntoDT#OntoDT_521859
OntoDT_521859s
http://ontodm.com/OntoDT#OntoDT_521859
OntoDT_521859
http://ontodm.com/OntoDT#OntoDT_591397
OntoDT_591397s
http://ontodm.com/OntoDT#OntoDT_591397
OntoDT_591397
http://ontodm.com/OntoDT#OntoDT_595741
OntoDT_595741s
http://ontodm.com/OntoDT#OntoDT_595741
OntoDT_595741
http://ontodm.com/OntoDT#OntoDT_596819
OntoDT_596819s
http://ontodm.com/OntoDT#OntoDT_596819
OntoDT_596819
http://ontodm.com/OntoDT#OntoDT_608148
OntoDT_608148s
http://ontodm.com/OntoDT#OntoDT_608148
OntoDT_608148
http://ontodm.com/OntoDT#OntoDT_645869
OntoDT_645869s
http://ontodm.com/OntoDT#OntoDT_645869
OntoDT_645869
http://ontodm.com/OntoDT#OntoDT_648082
OntoDT_648082s
http://ontodm.com/OntoDT#OntoDT_648082
OntoDT_648082
http://ontodm.com/OntoDT#OntoDT_699579
OntoDT_699579s
http://ontodm.com/OntoDT#OntoDT_699579
OntoDT_699579
http://ontodm.com/OntoDT#OntoDT_814373
OntoDT_814373s
http://ontodm.com/OntoDT#OntoDT_814373
OntoDT_814373
http://ontodm.com/OntoDT#OntoDT_878284
OntoDT_878284s
http://ontodm.com/OntoDT#OntoDT_878284
OntoDT_878284
http://ontodm.com/OntoDT#OntoDT_950419
OntoDT_950419s
http://ontodm.com/OntoDT#OntoDT_950419
OntoDT_950419
http://ontodm.com/OntoDT#OntoDT_974622
OntoDT_974622s
http://ontodm.com/OntoDT#OntoDT_974622
OntoDT_974622
http://ontodm.com/OntoDT#OntoDT_991825
OntoDT_991825
http://purl.obofoundry.org/obo/OBI_0000022
http://purl.obofoundry.org/obo/obi.owl
http://purl.obofoundry.org/obo/OBI_0000022
specified_input_role
http://purl.obofoundry.org/obo/OBI_0000023
http://purl.obofoundry.org/obo/obi.owl
http://purl.obofoundry.org/obo/OBI_0000023
specified_output_role
http://purl.obofoundry.org/obo/OBI_0000069
OBI_0000069s
http://purl.obofoundry.org/obo/OBI_0000069
OBI_0000069
http://purl.obofoundry.org/obo/OBI_0000069
http://purl.obofoundry.org/obo/obi.owl
http://purl.obofoundry.org/obo/OBI_0000260
OBI_0000260s
http://purl.obofoundry.org/obo/OBI_0000260
OBI_0000260
http://purl.obofoundry.org/obo/OBI_0000260
http://purl.obofoundry.org/obo/obi.owl
http://purl.obofoundry.org/obo/OBI_0000260
plan
http://purl.obofoundry.org/obo/OBI_0000283
Annotation property imported from OBI to denote terms that have been imported from other ontologies
http://purl.obofoundry.org/obo/OBI_0000283
imported_from
http://purl.obofoundry.org/obo/OBI_0000587
OBI_0000587s
http://purl.obofoundry.org/obo/OBI_0000587
OBI_0000587
http://purl.obofoundry.org/obo/OBI_0000587
http://purl.obofoundry.org/obo/obi.owl
http://purl.obofoundry.org/obo/OBI_0000587
protocol_paricipant_role
http://purl.obolibrary.org/obo/BFO_0000017
RealizableEntities
http://purl.obolibrary.org/obo/BFO_0000017
RealizableEntity
http://purl.obolibrary.org/obo/BFO_0000019
Qualities
http://purl.obolibrary.org/obo/BFO_0000019
Quality
http://purl.obolibrary.org/obo/BFO_0000023
Roles
http://purl.obolibrary.org/obo/BFO_0000023
Role
http://purl.obolibrary.org/obo/IAO_0000005
IAO_0000005s
http://purl.obolibrary.org/obo/IAO_0000005
IAO_0000005
http://purl.obolibrary.org/obo/IAO_0000005
http://purl.obofoundry.org/obo/iao.owl
http://purl.obolibrary.org/obo/IAO_0000009
IAO_0000009s
http://purl.obolibrary.org/obo/IAO_0000009
IAO_0000009
http://purl.obolibrary.org/obo/IAO_0000010
IAO_0000010s
http://purl.obolibrary.org/obo/IAO_0000010
IAO_0000010
http://purl.obolibrary.org/obo/IAO_0000025
IAO_0000025s
http://purl.obolibrary.org/obo/IAO_0000025
IAO_0000025
http://purl.obolibrary.org/obo/IAO_0000027
IAO_0000027s
http://purl.obolibrary.org/obo/IAO_0000027
IAO_0000027
http://purl.obolibrary.org/obo/IAO_0000028
IAO_0000028s
http://purl.obolibrary.org/obo/IAO_0000028
IAO_0000028
http://purl.obolibrary.org/obo/IAO_0000030
IAO_0000030s
http://purl.obolibrary.org/obo/IAO_0000030
IAO_0000030
http://purl.obolibrary.org/obo/IAO_0000030
http://purl.obofoundry.org/obo/iao.owl
http://purl.obolibrary.org/obo/IAO_0000033
IAO_0000033s
http://purl.obolibrary.org/obo/IAO_0000033
IAO_0000033
http://purl.obolibrary.org/obo/IAO_0000033
http://purl.obofoundry.org/obo/iao.owl
http://purl.obolibrary.org/obo/IAO_0000033
directive information entity
http://purl.obolibrary.org/obo/IAO_0000064
IAO_0000064s
http://purl.obolibrary.org/obo/IAO_0000064
IAO_0000064
http://purl.obolibrary.org/obo/IAO_0000065
IAO_0000065s
http://purl.obolibrary.org/obo/IAO_0000065
IAO_0000065
http://purl.obolibrary.org/obo/IAO_0000088
IAO_0000088s
http://purl.obolibrary.org/obo/IAO_0000088
IAO_0000088
http://purl.obolibrary.org/obo/IAO_0000096
IAO_0000096s
http://purl.obolibrary.org/obo/IAO_0000096
IAO_0000096
http://purl.obolibrary.org/obo/IAO_0000098
IAO_0000098s
http://purl.obolibrary.org/obo/IAO_0000098
IAO_0000098
http://purl.obolibrary.org/obo/IAO_0000100
IAO_0000100s
http://purl.obolibrary.org/obo/IAO_0000100
IAO_0000100
http://purl.obolibrary.org/obo/IAO_0000104
IAO_0000104s
http://purl.obolibrary.org/obo/IAO_0000104
IAO_0000104
http://purl.obolibrary.org/obo/IAO_0000124
IAO_0000124s
http://purl.obolibrary.org/obo/IAO_0000124
IAO_0000124
http://purl.obolibrary.org/obo/IAO_0000129
IAO_0000129s
http://purl.obolibrary.org/obo/IAO_0000129
IAO_0000129
http://purl.obolibrary.org/obo/IAO_0000136
IAO_0000136
http://purl.obolibrary.org/obo/IAO_0000136
IAO_0000136s
http://purl.obolibrary.org/obo/IAO_0000136
IAO_0000136ed
http://purl.obolibrary.org/obo/IAO_0000136
http://purl.obofoundry.org/obo/iao.owl
http://purl.obolibrary.org/obo/IAO_0000136
is_about
http://purl.obolibrary.org/obo/IAO_0000300
IAO_0000300s
http://purl.obolibrary.org/obo/IAO_0000300
IAO_0000300
http://purl.obolibrary.org/obo/IAO_0000302
IAO_0000302s
http://purl.obolibrary.org/obo/IAO_0000302
IAO_0000302
http://purl.obolibrary.org/obo/IAO_0000310
IAO_0000310s
http://purl.obolibrary.org/obo/IAO_0000310
IAO_0000310
http://purl.obolibrary.org/obo/IAO_0000310
document
http://purl.obolibrary.org/obo/IAO_0000311
IAO_0000311s
http://purl.obolibrary.org/obo/IAO_0000311
IAO_0000311
http://purl.obolibrary.org/obo/IAO_0000314
IAO_0000314s
http://purl.obolibrary.org/obo/IAO_0000314
IAO_0000314
http://purl.obolibrary.org/obo/IAO_0000314
document part
http://purl.obolibrary.org/obo/IAO_0000418
IAO_0000418
http://purl.obolibrary.org/obo/IAO_0000418
IAO_0000418s
http://purl.obolibrary.org/obo/IAO_0000418
IAO_0000418ed
http://purl.obolibrary.org/obo/IAO_0000442
OntoDM_247286s
http://purl.obolibrary.org/obo/IAO_0000442
OntoDM_247286
http://purl.obolibrary.org/obo/IAO_0000442
agent role
http://purl.obolibrary.org/obo/IAO_0000572
IAO_0000572s
http://purl.obolibrary.org/obo/IAO_0000572
IAO_0000572
http://purl.obolibrary.org/obo/IAO_0000572
a planned process of capturing information in an enduring form with the intent to communicate this information
http://purl.obolibrary.org/obo/IAO_0000572
documenting
http://purl.obolibrary.org/obo/OBI_0000011
OBI_0000011s
http://purl.obolibrary.org/obo/OBI_0000011
OBI_0000011
http://purl.obolibrary.org/obo/OBI_0000047
OBI_0000047s
http://purl.obolibrary.org/obo/OBI_0000047
OBI_0000047
http://purl.obolibrary.org/obo/OBI_0000047
Is a material entity that is created or changed during material processing.
http://purl.obolibrary.org/obo/OBI_0000047
OBI
http://purl.obolibrary.org/obo/OBI_0000047
OBI consortium
http://purl.obolibrary.org/obo/OBI_0000047
processed material
http://purl.obolibrary.org/obo/OBI_0000227
OBI_0000227s
http://purl.obolibrary.org/obo/OBI_0000227
OBI_0000227
http://purl.obolibrary.org/obo/OBI_0000245
OBI_0000245s
http://purl.obolibrary.org/obo/OBI_0000245
OBI_0000245
http://purl.obolibrary.org/obo/OBI_0000272
OBI_0000272s
http://purl.obolibrary.org/obo/OBI_0000272
OBI_0000272
http://purl.obolibrary.org/obo/OBI_0000272
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000272
protocol
http://purl.obolibrary.org/obo/OBI_0000293
OBI_0000293
http://purl.obolibrary.org/obo/OBI_0000293
OBI_0000293s
http://purl.obolibrary.org/obo/OBI_0000293
OBI_0000293ed
http://purl.obolibrary.org/obo/OBI_0000293
has_specified_input
http://purl.obolibrary.org/obo/OBI_0000294
OBI_0000294
http://purl.obolibrary.org/obo/OBI_0000294
OBI_0000294s
http://purl.obolibrary.org/obo/OBI_0000294
OBI_0000294ed
http://purl.obolibrary.org/obo/OBI_0000294
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000294
Is a relationship between a generically dependent continuant and a specifically dependent continuant. A generically dependent continuant may inhere in more than one entity. It does so by virtue of the fact that there is, for each entity that it inheres, a specifically dependent *concretization* of the generically dependent continuant that is specifically dependent. For instance, consider a story, which is an information artifact that inheres in some number of books. Each book bears some quality that carries the story. The relation between this quality and the generically dependent continuant is that the former is the concretization of the latter.
http://purl.obolibrary.org/obo/OBI_0000294
is_concretization_of
http://purl.obolibrary.org/obo/OBI_0000295
OBI_0000295
http://purl.obolibrary.org/obo/OBI_0000295
OBI_0000295s
http://purl.obolibrary.org/obo/OBI_0000295
OBI_0000295ed
http://purl.obolibrary.org/obo/OBI_0000295
is_specified_input_of
http://purl.obolibrary.org/obo/OBI_0000297
OBI_0000297
http://purl.obolibrary.org/obo/OBI_0000297
OBI_0000297s
http://purl.obolibrary.org/obo/OBI_0000297
OBI_0000297ed
http://purl.obolibrary.org/obo/OBI_0000297
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000297
Is a relationship between a specifically dependent continuant and a generically dependent continuant. A generically dependent continuant may inhere in more than one entity. It does so by virtue of the fact that there is, for each entity that it inheres, a specifically dependent *concretization* of the generically dependent continuant that is specifically dependent. For instance, consider a story, which is an information artifact that inheres in some number of books. Each book bears some quality that carries the story. The relation between this quality and the generically dependent continuant is that the former is the concretization of the latter.
http://purl.obolibrary.org/obo/OBI_0000297
is_concretized_as
http://purl.obolibrary.org/obo/OBI_0000298
OBI_0000298
http://purl.obolibrary.org/obo/OBI_0000298
OBI_0000298s
http://purl.obolibrary.org/obo/OBI_0000298
OBI_0000298ed
http://purl.obolibrary.org/obo/OBI_0000298
has_quality
http://purl.obolibrary.org/obo/OBI_0000299
OBI_0000299
http://purl.obolibrary.org/obo/OBI_0000299
OBI_0000299s
http://purl.obolibrary.org/obo/OBI_0000299
OBI_0000299ed
http://purl.obolibrary.org/obo/OBI_0000299
has_specified_output
http://purl.obolibrary.org/obo/OBI_0000300
OBI_0000300
http://purl.obolibrary.org/obo/OBI_0000300
OBI_0000300s
http://purl.obolibrary.org/obo/OBI_0000300
OBI_0000300ed
http://purl.obolibrary.org/obo/OBI_0000300
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000300
Relation between a realizable and a process. Reciprocal relation of realizes [GOC:cjm]
http://purl.obolibrary.org/obo/OBI_0000300
is_realized_by
http://purl.obolibrary.org/obo/OBI_0000304
OBI_0000304
http://purl.obolibrary.org/obo/OBI_0000304
OBI_0000304s
http://purl.obolibrary.org/obo/OBI_0000304
OBI_0000304ed
http://purl.obolibrary.org/obo/OBI_0000304
is_manufactured_by
http://purl.obolibrary.org/obo/OBI_0000308
OBI_0000308
http://purl.obolibrary.org/obo/OBI_0000308
OBI_0000308s
http://purl.obolibrary.org/obo/OBI_0000308
OBI_0000308ed
http://purl.obolibrary.org/obo/OBI_0000308
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000308
Relation between a process and a function, where the unfolding of the
process requires the execution of the function. Class level: P realizes F iff:
given any p that instantiates P, there exists some f, t such that f instantiates
F at t and p *realizes* f. Here, *realizes* is the primitive
instance level relation [GOC:cjm]
http://purl.obolibrary.org/obo/OBI_0000308
realizes
http://purl.obolibrary.org/obo/OBI_0000312
OBI_0000312
http://purl.obolibrary.org/obo/OBI_0000312
OBI_0000312s
http://purl.obolibrary.org/obo/OBI_0000312
OBI_0000312ed
http://purl.obolibrary.org/obo/OBI_0000312
is_specified_output_of
http://purl.obolibrary.org/obo/OBI_0000316
OBI_0000316
http://purl.obolibrary.org/obo/OBI_0000316
OBI_0000316s
http://purl.obolibrary.org/obo/OBI_0000316
OBI_0000316ed
http://purl.obolibrary.org/obo/OBI_0000316
has_role
http://purl.obolibrary.org/obo/OBI_0000338
OBI_0000338s
http://purl.obolibrary.org/obo/OBI_0000338
OBI_0000338
http://purl.obolibrary.org/obo/OBI_0000338
the process of evaluating the data gathered in an investigation in the context of literature knowledge with the objective to generate more general conclusions or to identify what additional data is necessary to draw conclusions
http://purl.obolibrary.org/obo/OBI_0000338
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000338
interpreting data
http://purl.obolibrary.org/obo/OBI_0000339
OBI_0000339s
http://purl.obolibrary.org/obo/OBI_0000339
OBI_0000339
http://purl.obolibrary.org/obo/OBI_0000339
planning
http://purl.obolibrary.org/obo/OBI_0000417
OBI_0000417
http://purl.obolibrary.org/obo/OBI_0000417
OBI_0000417s
http://purl.obolibrary.org/obo/OBI_0000417
OBI_0000417ed
http://purl.obolibrary.org/obo/OBI_0000417
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0000417
http://purl.obolibrary.org/obo/OBI_0000417
achieves_planned_objective
http://purl.obolibrary.org/obo/OBI_0000658
OBI_0000658s
http://purl.obolibrary.org/obo/OBI_0000658
OBI_0000658
http://purl.obolibrary.org/obo/OBI_0000833
OBI_0000833
http://purl.obolibrary.org/obo/OBI_0000833
OBI_0000833s
http://purl.obolibrary.org/obo/OBI_0000833
OBI_0000833ed
http://purl.obolibrary.org/obo/OBI_0000833
objective_achieved_by
http://purl.obolibrary.org/obo/OBI_0000968
OBI_0000968s
http://purl.obolibrary.org/obo/OBI_0000968
OBI_0000968
http://purl.obolibrary.org/obo/OBI_0000968
A device is a processed material which is designed to perform some function or functions
http://purl.obolibrary.org/obo/OBI_0000968
OBI
http://purl.obolibrary.org/obo/OBI_0000968
OBI consortium
http://purl.obolibrary.org/obo/OBI_0000968
device
http://purl.obolibrary.org/obo/OBI_0302911
OBI_0302911s
http://purl.obolibrary.org/obo/OBI_0302911
OBI_0302911
http://purl.obolibrary.org/obo/OBI_0302911
http://purl.obofoundry.org/obo/obi.owl
http://purl.obolibrary.org/obo/OBI_0400107
OBI_0400107s
http://purl.obolibrary.org/obo/OBI_0400107
OBI_0400107
http://purl.obolibrary.org/obo/OBI_0400107
A computer is an instrument which manipulates (stores, retrieves, and processes) data according to a list of instructions.
http://purl.obolibrary.org/obo/OBI_0400107
OBI
http://purl.obolibrary.org/obo/OBI_0400107
OBI consortium
http://purl.obolibrary.org/obo/OBI_0400107
computer
http://purl.obolibrary.org/obo/OBI_0600008
OBI_0600008s
http://purl.obolibrary.org/obo/OBI_0600008
OBI_0600008
http://purl.obolibrary.org/obo/OBI_0600008
acquisition
http://purl.org/obo/owl/OBO_REL#bearer_of
bearer_of
http://purl.org/obo/owl/OBO_REL#bearer_of
bearer_ofs
http://purl.org/obo/owl/OBO_REL#bearer_of
bearer_ofed
http://purl.org/obo/owl/OBO_REL#bearer_of
http://purl.obofoundry.org/obo/obi.owl
http://purl.org/obo/owl/OBO_REL#bearer_of
bearer_of
http://purl.org/obo/owl/OBO_REL#inheres_in
inheres_in
http://purl.org/obo/owl/OBO_REL#inheres_in
inhereses_in
http://purl.org/obo/owl/OBO_REL#inheres_in
inheresed_in
http://purl.org/obo/owl/OBO_REL#inheres_in
http://purl.org/obo/owl/OBO_REL
http://purl.org/obo/owl/OBO_REL#inheres_in
OntoDM_462848
http://purl.org/obo/owl/OBO_REL#inheres_in
inheres_in
http://purl.org/obo/owl/OBO_REL#quality_of
quality_of
http://purl.org/obo/owl/OBO_REL#quality_of
quality_ofs
http://purl.org/obo/owl/OBO_REL#quality_of
quality_ofed
http://purl.org/obo/owl/OBO_REL#quality_of
quality_of
http://purl.org/obo/owl/OBO_REL#role_of
role_of
http://purl.org/obo/owl/OBO_REL#role_of
role_ofs
http://purl.org/obo/owl/OBO_REL#role_of
role_ofed
http://purl.org/obo/owl/OBO_REL#role_of
http://purl.org/obo/owl/OBO_REL
http://purl.org/obo/owl/OBO_REL#role_of
role_of
http://www.ebi.ac.uk/efo/swo/SWO_0000393
SWO_0000393s
http://www.ebi.ac.uk/efo/swo/SWO_0000393
SWO_0000393
http://www.ebi.ac.uk/efo/swo/SWO_0000393
http://www.ebi.ac.uk/efo/swo
http://www.ebi.ac.uk/efo/swo/SWO_0000393
Information processing is a process in which input information is analysed or transformed in order to produce information as output.
http://www.ebi.ac.uk/efo/swo/SWO_0000393
James Malone
http://www.ebi.ac.uk/efo/swo/SWO_0000393
information processing
http://www.hozo.jp/owl/EXPOApr19.xml/has_representation
has_representation
http://www.hozo.jp/owl/EXPOApr19.xml/has_representation
has_representations
http://www.hozo.jp/owl/EXPOApr19.xml/has_representation
has_representationed
http://www.hozo.jp/owl/EXPOApr19.xml/has_representation
has_representation
http://www.ifomis.org/bfo/1.1/span#ProcessualEntity
ProcessualEntities
http://www.ifomis.org/bfo/1.1/span#ProcessualEntity
ProcessualEntity
http://www.obofoundry.org/ro/ro.owl#agent_in
agent_in
http://www.obofoundry.org/ro/ro.owl#agent_in
agents_in
http://www.obofoundry.org/ro/ro.owl#agent_in
agented_in
http://www.obofoundry.org/ro/ro.owl#has_agent
has_agent
http://www.obofoundry.org/ro/ro.owl#has_agent
has_agents
http://www.obofoundry.org/ro/ro.owl#has_agent
has_agented
http://www.obofoundry.org/ro/ro.owl#has_part
has_part
http://www.obofoundry.org/ro/ro.owl#has_part
has_parts
http://www.obofoundry.org/ro/ro.owl#has_part
has_parted
http://www.obofoundry.org/ro/ro.owl#has_participant
has_participant
http://www.obofoundry.org/ro/ro.owl#has_participant
has_participants
http://www.obofoundry.org/ro/ro.owl#has_participant
has_participanted
http://www.obofoundry.org/ro/ro.owl#part_of
part_of
http://www.obofoundry.org/ro/ro.owl#part_of
part_ofs
http://www.obofoundry.org/ro/ro.owl#part_of
part_ofed
http://www.obofoundry.org/ro/ro.owl#participates_in
participates_in
http://www.obofoundry.org/ro/ro.owl#participates_in
participateses_in
http://www.obofoundry.org/ro/ro.owl#participates_in
participatesed_in
http://www.obofoundry.org/ro/ro.owl#preceded_by
preceded_by
http://www.obofoundry.org/ro/ro.owl#preceded_by
preceded_bies
http://www.obofoundry.org/ro/ro.owl#preceded_by
preceded_bied
http://www.obofoundry.org/ro/ro.owl#precedes
precedes
http://www.obofoundry.org/ro/ro.owl#precedes
precedeses
http://www.obofoundry.org/ro/ro.owl#precedes
precedesed
OntoDM_000000
OntoDM_000000s
OntoDM_000000
OntoDM_000000
OntoDM_000000
prediction_error
OntoDM_000001
OntoDM_000001s
OntoDM_000001
OntoDM_000001
OntoDM_000001
A predictive modelling ensemble is a realizable entity that is a concretization of a predictive model ensemble specification specification and it is a specified output of a predictive modeling algorithm execution.
OntoDM_000001
predictive models ensemble
OntoDM_000002
feature-based unlabeled data stream
OntoDM_000003
structure-based unlabeled data stream
OntoDM_000004
OntoDM_000004s
OntoDM_000004
OntoDM_000004
OntoDM_000004
A probability distribution ensemble is a realizable entity that is a concretization of a probability distribution ensemble specification and it is a specified output of a probability distribution estimation algorithm execution.
OntoDM_000004
probability distribution ensemble
OntoDM_0000045
OntoDM_0000045s
OntoDM_0000045
OntoDM_0000045
OntoDM_0000045
SubBag
OntoDM_000005
transactional data stream
OntoDM_000006
OntoDM_000006s
OntoDM_000006
OntoDM_000006
OntoDM_000008
OntoDM_000008s
OntoDM_000008
OntoDM_000008
OntoDM_000008
prototype
OntoDM_000009
OntoDM_000009s
OntoDM_000009
OntoDM_000009
OntoDM_000009
probability distribution representation
OntoDM_000011
OntoDM_000011s
OntoDM_000011
OntoDM_000011
OntoDM_000011
Set of distance functions is a collection of distance functions.
OntoDM_000011
distance functions set
OntoDM_000014
OntoDM_000014s
OntoDM_000014
OntoDM_000014
OntoDM_000014
Evaluation functions measure the validity of generalizations on a given set of data.
OntoDM_000014
evaluation function specification
OntoDM_000015
OntoDM_000015s
OntoDM_000015
OntoDM_000015
OntoDM_000015
An clustering ensemble is a realizable entity that is a concretization of a clusterings ensemble specification and it is a specified output of a clustering algorithm execution.
OntoDM_000015
clustering ensemble
OntoDM_000016
OntoDM_000016s
OntoDM_000016
OntoDM_000016
OntoDM_000017
OntoDM_000017s
OntoDM_000017
OntoDM_000017
OntoDM_000017
test set role
OntoDM_000020
OntoDM_000020s
OntoDM_000020
OntoDM_000020
OntoDM_000020
A pattern P on type T is a boolean function on objects of type T, i.e has the signature p::T-->boolean.
OntoDM_000021
OntoDM_000021s
OntoDM_000021
OntoDM_000021
OntoDM_000021
complex constraint
OntoDM_000022
OntoDM_000022s
OntoDM_000022
OntoDM_000022
OntoDM_000022
pattern quality
OntoDM_000027
OntoDM_000027s
OntoDM_000027
OntoDM_000027
OntoDM_000027
output datatype specification is a datatype specification that denotes the datatype of the data on the output part of the dataset. The output data is used for predictive modeling tasks.
OntoDM_000027
output data specification
OntoDM_000029
OntoDM_000029s
OntoDM_000029
OntoDM_000029
OntoDM_000029
predictive model evaluation function specification
OntoDM_000031
OntoDM_000031s
OntoDM_000031
OntoDM_000031
OntoDM_000031
a dataset specification is a data item specification about a dataset defined with a datatype specification of the data examples aggregated in the dataset.
OntoDM_000031
dataset specification
OntoDM_000033
OntoDM_000033s
OntoDM_000033
OntoDM_000033
OntoDM_000033
data mining algorithm execution
OntoDM_000034
OntoDM_000034s
OntoDM_000034
OntoDM_000034
OntoDM_000034
Generalization specification of a directive informational entity class that specifies the type of generalization. It includes information about the types of data used to produced the generalization and the language in which the generalization is expressed.
OntoDM_000034
represents class of generalizations as in Dzeroski paper
OntoDM_000034
generalization specification
OntoDM_000036
OntoDM_000036s
OntoDM_000036
OntoDM_000036
OntoDM_000036
A predictive model M for types Td and Tc is a function that takes an object of type Td and returns and object of type Tc, i.e. has the signature m::Td-->Tc.
OntoDM_000036
predictive model
OntoDM_000037
OntoDM_000037s
OntoDM_000037
OntoDM_000037
OntoDM_000037
A ensemble of generalizations specification is a generalization specification and denotes a type of generalization that is produced by a ensemble algorithm. This algorithm produces a set of generalizations at its output.
OntoDM_000037
ensemble specification
OntoDM_000038
OntoDM_000038s
OntoDM_000038
OntoDM_000038
OntoDM_000038
A data mining algorithm is an algorithm that solves a data mining task and as a results outputs a generalization. It is usually published in some document (journal publication or technical report).
OntoDM_000038
data mining algorithm
OntoDM_000039
OntoDM_000039
OntoDM_000039
OntoDM_000039s
OntoDM_000039
OntoDM_000039ed
OntoDM_000039
has_data_items_number
OntoDM_000041
OntoDM_000041s
OntoDM_000041
OntoDM_000041
OntoDM_000041
bootstrap sampling process
OntoDM_000042
OntoDM_000042s
OntoDM_000042
OntoDM_000042
OntoDM_000043
OntoDM_000043s
OntoDM_000043
OntoDM_000043
OntoDM_000043
subsumtion based laguage constraint
OntoDM_000044
OntoDM_000044s
OntoDM_000044
OntoDM_000044
OntoDM_000044
public available resource
OntoDM_000047
OntoDM_000047s
OntoDM_000047
OntoDM_000047
OntoDM_000048
OntoDM_000048s
OntoDM_000048
OntoDM_000048
OntoDM_000048
generalization interpreter specification
OntoDM_000049
OntoDM_000049s
OntoDM_000049
OntoDM_000049
OntoDM_000050
OntoDM_000050s
OntoDM_000050
OntoDM_000050
OntoDM_000050
An ensemble of generalizations is a realizable entity that is a concretization of an ensemble specification and it is a specified output of a data mining algorithm execution.
OntoDM_000050
ensemble of generalizations
OntoDM_000051
OntoDM_000051s
OntoDM_000051
OntoDM_000051
OntoDM_000051
predictive model quality
OntoDM_000052
OntoDM_000052s
OntoDM_000052
OntoDM_000052
OntoDM_000052
mathematical function specification
OntoDM_000053
OntoDM_000053s
OntoDM_000053
OntoDM_000053
OntoDM_000053
a fold is a dataset that is an output of a cross validation sampling process.
OntoDM_000053
fold
OntoDM_000055
OntoDM_000055
OntoDM_000055
OntoDM_000055s
OntoDM_000055
OntoDM_000055ed
OntoDM_000055
has_description
OntoDM_000059
OntoDM_000059s
OntoDM_000059
OntoDM_000059
OntoDM_000059
status
OntoDM_000063
OntoDM_000063s
OntoDM_000063
OntoDM_000063
OntoDM_000063
probability distribution quality
OntoDM_000068
OntoDM_000068
OntoDM_000068
OntoDM_000068s
OntoDM_000068
OntoDM_000068ed
OntoDM_000068
has_features_number
OntoDM_000069
OntoDM_000069s
OntoDM_000069
OntoDM_000069
OntoDM_000069
optimization evaluation constraint
OntoDM_000070
OntoDM_000070s
OntoDM_000070
OntoDM_000070
OntoDM_000070
An evaluation datum is a data item that is a specified output of generalization evaluation process.
OntoDM_000070
evaluation datum
OntoDM_000071
OntoDM_000071s
OntoDM_000071
OntoDM_000071
OntoDM_000071
representation
OntoDM_000072
OntoDM_000072s
OntoDM_000072
OntoDM_000072
OntoDM_000072
Clustering algorithm is a data mining algorithm that solves a clustering task and as a result produces a clustering.
OntoDM_000072
clustering algorithm
OntoDM_000074
OntoDM_000074
OntoDM_000074
OntoDM_000074s
OntoDM_000074
OntoDM_000074ed
OntoDM_000074
has_name
OntoDM_000075
OntoDM_000075s
OntoDM_000075
OntoDM_000075
OntoDM_000076
OntoDM_000076s
OntoDM_000076
OntoDM_000076
OntoDM_000076
A single generalization is a realizable entity that is a concretization of a single generalization specification and it is a specified output of a data mining algorithm execution.
OntoDM_000076
single generalization
OntoDM_000078
OntoDM_000078s
OntoDM_000078
OntoDM_000078
OntoDM_000078
A patten specification is a single generalization specification and denotes a pattern P on type T which is a boolean funtion on objects of type T.
OntoDM_000078
pattern specification
OntoDM_000081
OntoDM_000081s
OntoDM_000081
OntoDM_000081
OntoDM_000081
mean_squared_error
OntoDM_000084
OntoDM_000084s
OntoDM_000084
OntoDM_000084
OntoDM_000084
generalization evaluation
OntoDM_000085
OntoDM_000085s
OntoDM_000085
OntoDM_000085
OntoDM_000085
predictive_modeling_algorithm_implementation
OntoDM_000087
OntoDM_000087s
OntoDM_000087
OntoDM_000087
OntoDM_000087
The task of estimating the joint probability distribution involves constructing a probability disctribution given a set of data of a certain datatype.
OntoDM_000087
batch probability distribution estimation task
OntoDM_000088
OntoDM_000088
OntoDM_000088
OntoDM_000088s
OntoDM_000088
OntoDM_000088ed
OntoDM_000088
has_number
OntoDM_000089
OntoDM_000089s
OntoDM_000089
OntoDM_000089
OntoDM_000089
language cost function constraint
OntoDM_000092
OntoDM_000092s
OntoDM_000092
OntoDM_000092
OntoDM_000092
The task of pattern discovery is to find all local patterns from a given pattern language that satisfy the required conditions.
OntoDM_000092
batch pattern discovery task
OntoDM_000095
OntoDM_000095s
OntoDM_000095
OntoDM_000095
OntoDM_000096
OntoDM_000096s
OntoDM_000096
OntoDM_000096
OntoDM_000098
OntoDM_000098s
OntoDM_000098
OntoDM_000098
OntoDM_000098
A data mining task is an objective specification that specifies the objective that a data mining algorithm needs to achieve when executed on a dataset to produce as output a generalization.
OntoDM_000098
data mining task
OntoDM_000099
OntoDM_000099s
OntoDM_000099
OntoDM_000099
OntoDM_000099
query specification
OntoDM_000100
OntoDM_000100s
OntoDM_000100
OntoDM_000100
OntoDM_000100
discreteness
OntoDM_000101
OntoDM_000101s
OntoDM_000101
OntoDM_000101
OntoDM_000101
soft language cost function constraint
OntoDM_000102
OntoDM_000102s
OntoDM_000102
OntoDM_000102
OntoDM_000102
probability distribution execution
OntoDM_000103
OntoDM_000103s
OntoDM_000103
OntoDM_000103
OntoDM_000103
hard language cost function constraint
OntoDM_000105
OntoDM_000105s
OntoDM_000105
OntoDM_000105
OntoDM_000105
distance
OntoDM_000106
OntoDM_000106s
OntoDM_000106
OntoDM_000106
OntoDM_000106
Scoring functions often combine evaluation functions and language cost functions.
OntoDM_000106
scoring function
OntoDM_000107
OntoDM_000107s
OntoDM_000107
OntoDM_000107
OntoDM_000107
penalty function
OntoDM_000109
OntoDM_000109s
OntoDM_000109
OntoDM_000109
OntoDM_000109
sampling_objective
OntoDM_000111
OntoDM_000111s
OntoDM_000111
OntoDM_000111
OntoDM_000112
OntoDM_000112s
OntoDM_000112
OntoDM_000112
OntoDM_000112
Clustering specification is a single generalization specification is a generalization specification and denotes a type of generalization that models the mapping of a set of objects S of type T from S to a set of natural numbers {1,...K}. This generalization is obtained by appliing a clustering algorithm on a set of data.
OntoDM_000112
clustering specification
OntoDM_000114
OntoDM_000114s
OntoDM_000114
OntoDM_000114
OntoDM_000118
OntoDM_000118s
OntoDM_000118
OntoDM_000118
OntoDM_000118
Defines properties of a generalization
OntoDM_000118
generalization quality
OntoDM_000121
OntoDM_000121s
OntoDM_000121
OntoDM_000121
OntoDM_000121
a bag is a dataset that is an output of a bootstrap sampling process
OntoDM_000121
bag
OntoDM_000122
OntoDM_000122s
OntoDM_000122
OntoDM_000122
OntoDM_000122
Function that is used to combine other functions
OntoDM_000122
combining function
OntoDM_000125
OntoDM_000125s
OntoDM_000125
OntoDM_000125
OntoDM_000125
integrated_average_squared_error
OntoDM_000127
OntoDM_000127s
OntoDM_000127
OntoDM_000127
OntoDM_000127
clustering algorithm execution
OntoDM_000128
OntoDM_000128s
OntoDM_000128
OntoDM_000128
OntoDM_000128
a feature set specification is a data item specification that specifies a set of features used in a specific data mining task.
OntoDM_000128
feature set specification
OntoDM_000130
OntoDM_000130s
OntoDM_000130
OntoDM_000130
OntoDM_000130
A parameter is a quality of an algorithm implementation,and it refers to one of the pieces of data provided as input to the algorithm implementation. The parameter influences the flow of the execution of algorithm realized by a data mining operator that has information about the specific parameter setting used in the execution process .
OntoDM_000130
parameter
OntoDM_000132
OntoDM_000132s
OntoDM_000132
OntoDM_000132
OntoDM_000132
A background knowledge is a data item that is input to data mining algorithm along with the data examples, and represents domain information that is essential to proper functioning of an algorithm.
OntoDM_000132
Background knowledge can be seen as a set of mappings that generate new features bi:T-->Ti.
OntoDM_000132
background knowledge
OntoDM_000134
OntoDM_000134s
OntoDM_000134
OntoDM_000134
OntoDM_000134
clustering_algorithm_implementation
OntoDM_000136
OntoDM_000136
OntoDM_000136
OntoDM_000136s
OntoDM_000136
OntoDM_000136ed
OntoDM_000136
has_identifyer
OntoDM_000137
OntoDM_000137s
OntoDM_000137
OntoDM_000137
OntoDM_000137
constraint specification
OntoDM_000138
feature-based data example
OntoDM_000139
feature-based DM-dataset
OntoDM_000140
OntoDM_000140s
OntoDM_000140
OntoDM_000140
OntoDM_000140
dataset representation
OntoDM_000142
OntoDM_000142s
OntoDM_000142
OntoDM_000142
OntoDM_000142
aggregate function
OntoDM_000143
OntoDM_000143s
OntoDM_000143
OntoDM_000143
OntoDM_000143
dataset sampling
OntoDM_000144
OntoDM_000144s
OntoDM_000144
OntoDM_000144
OntoDM_000144
Dataset is an aggregate of data examples.
OntoDM_000144
DM-dataset
OntoDM_000145
OntoDM_000145s
OntoDM_000145
OntoDM_000145
OntoDM_000145
A constant value of some property of a generalization. It is used to define constraints.
OntoDM_000145
constraint threshold
OntoDM_000149
OntoDM_000149s
OntoDM_000149
OntoDM_000149
OntoDM_000149
holdout sampling process
OntoDM_000155
OntoDM_000155s
OntoDM_000155
OntoDM_000155
OntoDM_000155
frequency
OntoDM_000160
OntoDM_000160s
OntoDM_000160
OntoDM_000160
OntoDM_000160
Predictive modeling algorithm is a data mining algorithm that solves a predictive modeling task and as a result produces a predictive model.
OntoDM_000160
predictive modeling algorithm
OntoDM_000162
OntoDM_000162
OntoDM_000162
OntoDM_000162s
OntoDM_000162
OntoDM_000162ed
OntoDM_000162
is-labeled
OntoDM_000167
OntoDM_000167s
OntoDM_000167
OntoDM_000167
OntoDM_000167
pattern set execution
OntoDM_000168
OntoDM_000168s
OntoDM_000168
OntoDM_000168
OntoDM_000168
A data specifcation is-a specifcation entity that specifies on which concrete part of the data the datatype applies to.
OntoDM_000168
data specification
OntoDM_000170
OntoDM_000170s
OntoDM_000170
OntoDM_000170
OntoDM_000170
optimization language cost function constraint
OntoDM_000172
OntoDM_000172s
OntoDM_000172
OntoDM_000172
OntoDM_000172
The output data type should be the same as the input datatype because IQ asc as filters
This should be put as a axiom or rule in PROLOG
OntoDM_000172
inductive query
OntoDM_000173
OntoDM_000173s
OntoDM_000173
OntoDM_000173
OntoDM_000173
The language cost functions are used in language constraints concern the data part of generalizations. Most often they are related to the size/complexity of generalizations.
OntoDM_000173
language cost function
OntoDM_000175
OntoDM_000175s
OntoDM_000175
OntoDM_000175
OntoDM_000175
predictive modelling algorithm execution
OntoDM_000178
OntoDM_000178s
OntoDM_000178
OntoDM_000178
OntoDM_000178
A distance function d for type T is a mapping from apirs of objects of type T to non negative reals. It has to satisfy 3 main properties
OntoDM_000178
distance function
OntoDM_000179
OntoDM_000179s
OntoDM_000179
OntoDM_000179
OntoDM_000179
An pattern set ensemble is a realizable entity that is a concretization of a pattern set ensemble specification and it is a specified output of a pattern discovery algorithm execution.
OntoDM_000179
pattern set ensemble
OntoDM_000182
OntoDM_000182s
OntoDM_000182
OntoDM_000182
OntoDM_000185
OntoDM_000185s
OntoDM_000185
OntoDM_000185
OntoDM_000185
separate test set evaluation process
OntoDM_000191
OntoDM_000191s
OntoDM_000191
OntoDM_000191
OntoDM_000191
database
OntoDM_000192
OntoDM_000192s
OntoDM_000192
OntoDM_000192
OntoDM_000192
Pattern discovery algorithm is a data mining algorithm that solves a pattern discovery task and as a result produces a set of patterns.
OntoDM_000192
pattern discovery algorithm
OntoDM_000195
OntoDM_000195s
OntoDM_000195
OntoDM_000195
OntoDM_000195
training set evaluation process
OntoDM_000196
OntoDM_000196s
OntoDM_000196
OntoDM_000196
OntoDM_000196
algorithm_component_specification
OntoDM_000197
OntoDM_000197s
OntoDM_000197
OntoDM_000197
OntoDM_000197
data creation query
OntoDM_000199
OntoDM_000199s
OntoDM_000199
OntoDM_000199
OntoDM_000199
cost function
OntoDM_000200
OntoDM_000200s
OntoDM_000200
OntoDM_000200
OntoDM_000200
prototype function
OntoDM_000201
OntoDM_000201s
OntoDM_000201
OntoDM_000201
OntoDM_000201
not_discrete
OntoDM_000207
OntoDM_000207s
OntoDM_000207
OntoDM_000207
OntoDM_000207
discrete
OntoDM_000209
OntoDM_000209s
OntoDM_000209
OntoDM_000209
OntoDM_000209
data transformation with generalization query
OntoDM_000212
OntoDM_000212s
OntoDM_000212
OntoDM_000212
OntoDM_000212
language constraint
OntoDM_000214
OntoDM_000214s
OntoDM_000214
OntoDM_000214
OntoDM_000214
draft
OntoDM_000219
OntoDM_000219s
OntoDM_000219
OntoDM_000219
OntoDM_000219
clustering evaluation function specification
OntoDM_000223
OntoDM_000223s
OntoDM_000223
OntoDM_000223
OntoDM_000223
clustering representation
OntoDM_000224
OntoDM_000224s
OntoDM_000224
OntoDM_000224
OntoDM_000224
generalization selection query
OntoDM_000228
OntoDM_000228s
OntoDM_000228
OntoDM_000228
OntoDM_000228
predictive model specification is a single generalization specification and denotes a type of generalization that represents a mapping taking objects of type Td and returns objects of type To.
OntoDM_000228
predictive model specification
OntoDM_000229
OntoDM_000229s
OntoDM_000229
OntoDM_000229
OntoDM_000229
data mining algorithm implementation
OntoDM_000232
OntoDM_000232s
OntoDM_000232
OntoDM_000232
OntoDM_000233
OntoDM_000233s
OntoDM_000233
OntoDM_000233
OntoDM_000233
full fledged query
OntoDM_000234
OntoDM_000234s
OntoDM_000234
OntoDM_000234
OntoDM_000234
clustering execution
OntoDM_000235
OntoDM_000235s
OntoDM_000235
OntoDM_000235
OntoDM_000235
In the task of predictive modeling, we are given a dataset that consists of examples of the form (d,o), where d is of type Td and each o is of type To. To learn a predictive model means to find a mapping from description to output m::Td--->To that fits data closly.
OntoDM_000235
predictive modelling task
OntoDM_000237
OntoDM_000237s
OntoDM_000237
OntoDM_000237
OntoDM_000237
soft evaluation constraint
OntoDM_000238
OntoDM_000238s
OntoDM_000238
OntoDM_000238
OntoDM_000239
OntoDM_000239s
OntoDM_000239
OntoDM_000239
OntoDM_000239
data selection query
OntoDM_000243
OntoDM_000243s
OntoDM_000243
OntoDM_000243
OntoDM_000243
example weight
OntoDM_000247
OntoDM_000247s
OntoDM_000247
OntoDM_000247
OntoDM_000247
Descriptive datatype specification is a data item specification that denotes the datatype of the data from the descriptive part of a dataset.
OntoDM_000247
descriptive data specification
OntoDM_000249
OntoDM_000249s
OntoDM_000249
OntoDM_000249
OntoDM_000249
evaluation constraint
OntoDM_000250
OntoDM_000250s
OntoDM_000250
OntoDM_000250
OntoDM_000250
pattern representation
OntoDM_000253
OntoDM_000253s
OntoDM_000253
OntoDM_000253
OntoDM_000253
Probability distribution estimation algorithm is a data mining algorithm that solves a probability distribution estimation task and as a result produces a probability distribution.
OntoDM_000253
probability distribution estimation algorithm
OntoDM_000255
OntoDM_000255s
OntoDM_000255
OntoDM_000255
OntoDM_000255
cross validation sampling process
OntoDM_000256
OntoDM_000256s
OntoDM_000256
OntoDM_000256
OntoDM_000256
generalization representation
OntoDM_000258
OntoDM_000258s
OntoDM_000258
OntoDM_000258
OntoDM_000258
background knowledge representation
OntoDM_000259
OntoDM_000259s
OntoDM_000259
OntoDM_000259
OntoDM_000259
pattern discovery evaluation function specification
OntoDM_000260
OntoDM_000260s
OntoDM_000260
OntoDM_000260
OntoDM_000260
N fold validation evaluation process
OntoDM_000261
OntoDM_000261s
OntoDM_000261
OntoDM_000261
OntoDM_000261
knowledge discovery scenario objective
OntoDM_000264
OntoDM_000264s
OntoDM_000264
OntoDM_000264
OntoDM_000264
The task of clustering in general is concerned with grouping objects into classes of similar objects. Given a set of examples (object descriptions), the task of clustering is to partition these examples into subsets, called clusters.
OntoDM_000264
batch clustering task
OntoDM_000265
OntoDM_000265s
OntoDM_000265
OntoDM_000265
OntoDM_000265
probability_distribution_estimation_algorithm_implementation
OntoDM_000266
OntoDM_000266s
OntoDM_000266
OntoDM_000266
OntoDM_000266
selection composition of generalizations query
OntoDM_000269
OntoDM_000269s
OntoDM_000269
OntoDM_000269
OntoDM_000269
train set role
OntoDM_000270
OntoDM_000270s
OntoDM_000270
OntoDM_000270
OntoDM_000270
primitive constraint
OntoDM_000271
OntoDM_000271s
OntoDM_000271
OntoDM_000271
OntoDM_000271
probability distribution evaluation function specification
OntoDM_000273
OntoDM_000273s
OntoDM_000273
OntoDM_000273
OntoDM_000273
generalizations and data from generalizations query
OntoDM_000276
OntoDM_000276s
OntoDM_000276
OntoDM_000276
OntoDM_000276
hard evaluation constraint
OntoDM_000280
OntoDM_000280s
OntoDM_000280
OntoDM_000280
OntoDM_000280
predictive model representation
OntoDM_000282
OntoDM_000282s
OntoDM_000282
OntoDM_000282
OntoDM_000282
predictive model evaluation
OntoDM_000285
OntoDM_000285s
OntoDM_000285
OntoDM_000285
OntoDM_000285
A probability distribution specification is a single generalization specification and denotes a type of generalization that is a mapping from objects of type T to non-negative reals. This generalization is an output of a probability distribution estimation algorithm.
OntoDM_000285
probability distribution specification
OntoDM_000287
OntoDM_000287s
OntoDM_000287
OntoDM_000287
OntoDM_000287
pattern discovery algorithm execution
OntoDM_000288
OntoDM_000288s
OntoDM_000288
OntoDM_000288
OntoDM_000288
pattern_discovery_algorithm_implementation
OntoDM_000290
OntoDM_000290s
OntoDM_000290
OntoDM_000290
OntoDM_000291
OntoDM_000291s
OntoDM_000291
OntoDM_000291
OntoDM_000291
refinement operator
OntoDM_000293
OntoDM_000293s
OntoDM_000293
OntoDM_000293
OntoDM_000293
intra_cluster_variance
OntoDM_000294
OntoDM_000294s
OntoDM_000294
OntoDM_000294
OntoDM_000294
probability_distribution_scoring_function
OntoDM_000297
OntoDM_000297s
OntoDM_000297
OntoDM_000297
OntoDM_000297
generalization execution
OntoDM_000298
OntoDM_000298s
OntoDM_000298
OntoDM_000298
OntoDM_000298
A feature specification is a data item specification that specifies a primitive data feature (belonging to a primitive datatype), used in propositional data mining where the descriptive datatype is usually a tuple of primitive features.
OntoDM_000298
feature specification
OntoDM_000299
OntoDM_000299s
OntoDM_000299
OntoDM_000299
OntoDM_000300
OntoDM_000300s
OntoDM_000300
OntoDM_000300
OntoDM_000300
generalizations and data from data query
OntoDM_000302
OntoDM_000302s
OntoDM_000302
OntoDM_000302
OntoDM_000302
optimization function
OntoDM_000306
OntoDM_000306s
OntoDM_000306
OntoDM_000306
OntoDM_000306
probability distribution estimation algorithm execution
OntoDM_000309
OntoDM_000309s
OntoDM_000309
OntoDM_000309
OntoDM_000309
predictive model execution
OntoDM_000311
OntoDM_000311
OntoDM_000311
OntoDM_000311s
OntoDM_000311
OntoDM_000311ed
OntoDM_000311
has_URL
OntoDM_000316
OntoDM_000316s
OntoDM_000316
OntoDM_000316
OntoDM_000316
A clustering C on a set of objects S of type T is a function from S to {1,...,k} where k is the number of clusters.
OntoDM_000316
clustering
OntoDM_000333
OntoDM_000333s
OntoDM_000333
OntoDM_000333
OntoDM_000333
itemized list
OntoDM_000343
OntoDM_000343s
OntoDM_000343
OntoDM_000343
OntoDM_000343
A generalization is a realizable entity that is a concretization of a generalization specification and it is a specified output of a data mining algorithm execution.
OntoDM_000343
generalization
OntoDM_001019
OntoDM_001019s
OntoDM_001019
OntoDM_001019
OntoDM_001019
tuple output specification
OntoDM_001020
OntoDM_001020s
OntoDM_001020
OntoDM_001020
OntoDM_001020
tuple of booleanORdiscrete output specification
OntoDM_001021
OntoDM_001021s
OntoDM_001021
OntoDM_001021
OntoDM_001021
set output specification output specification
OntoDM_001022
OntoDM_001022s
OntoDM_001022
OntoDM_001022
OntoDM_001022
booleanORdiscrete output data specification
OntoDM_001334
OntoDM_001334s
OntoDM_001334
OntoDM_001334
OntoDM_001334
Regression algorithm is a data mining algorithm that solves a regression task and as a result produces a regression model.
OntoDM_001334
regression algorithm
OntoDM_003932
OntoDM_003932s
OntoDM_003932
OntoDM_003932
OntoDM_003932
A predictive model for primitive output is a predictive model specification and denotes predictive models that are built on data having primitive datatype on the output part.
OntoDM_003932
predictive model for primitive output
OntoDM_004843
OntoDM_004843s
OntoDM_004843
OntoDM_004843
OntoDM_004843
dataset role
OntoDM_020420
OntoDM_020420s
OntoDM_020420
OntoDM_020420
OntoDM_020420
LCPN DAG-based hierarchical classification algorithm is a data mining algorithm that solves a DAG-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_020420
LCPN DAG based HC algorithm
OntoDM_036834
OntoDM_036834s
OntoDM_036834
OntoDM_036834
OntoDM_036834
LCPN tree-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_036834
LPCN tree based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_038162
OntoDM_038162s
OntoDM_038162
OntoDM_038162
OntoDM_038162
data mining operator
OntoDM_039503
OntoDM_039503s
OntoDM_039503
OntoDM_039503
OntoDM_039503
A binary classification model is a classification model and denotes predictive models that are built on data having a boolean datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_039503
binary classification model
OntoDM_056700
OntoDM_056700s
OntoDM_056700
OntoDM_056700
OntoDM_056700
DAG based hierarchical classification task with multiple label paths and full depth labeling is a DAG based hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have multiple paths of labels and all instances have full depth of labeling.
OntoDM_056700
DAG based hierarchical classification task with multiple label paths and full depth labeling
OntoDM_057491
OntoDM_057491s
OntoDM_057491
OntoDM_057491
OntoDM_057491
DAG based hierarchical classification task with single label paths is a DAG based hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have single paths of labels.
OntoDM_057491
DAG based hierarchical classification task with single label paths
OntoDM_063973
OntoDM_063973s
OntoDM_063973
OntoDM_063973
OntoDM_063973
DAG-based hierarchical classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a labeled DAG datatype with boolean edges and discrete nodes on the output part of the data.
OntoDM_063973
DAG-based hierarchical classification dataset
OntoDM_067028
OntoDM_067028s
OntoDM_067028
OntoDM_067028
OntoDM_067028
Multi-target binary classification model is a multi-target classification model and denotes predictive models that are built on data having a tuple of boolean (set of output features) on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_067028
multi-target binary classification model
OntoDM_071450
OntoDM_071450s
OntoDM_071450
OntoDM_071450
OntoDM_071450
LCL DAG-based hierarchical classification algorithm is a data mining algorithm that solves a DAG-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_071450
LCL DAG based HC algorithm
OntoDM_078701
OntoDM_078701s
OntoDM_078701
OntoDM_078701
OntoDM_078701
transactional dataset is a dataset specification of unlabeled dataset with a set of discrete datatype on the descriptive part of the data.
OntoDM_078701
transactional dataset
OntoDM_081165
OntoDM_081165s
OntoDM_081165
OntoDM_081165
OntoDM_081165
LCN tree-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_081165
LCN tree based HC algorithm for multiple path prediction
OntoDM_086891
OntoDM_086891s
OntoDM_086891
OntoDM_086891
OntoDM_086891
LCL DAG-based hierarchical classification algorithm for single path and mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_086891
LCL DAG based HC algorithm for single path and mandatory leaf node prediction
OntoDM_099826
OntoDM_099826s
OntoDM_099826
OntoDM_099826
OntoDM_099826
predictive models ensemble specification is a ensemble specification and denotes a type of generalization that is produced by a predictive model ensemble algorithm. This algorithm produces a collection of predictive models at its output.
OntoDM_099826
predictive models ensemble specification
OntoDM_10000000135
data stream
OntoDM_10000000136
data stream example
OntoDM_10000000137
data stream representation
OntoDM_10000000138
data stream quality
OntoDM_101020
OntoDM_101020s
OntoDM_101020
OntoDM_101020
OntoDM_101020
tag
OntoDM_104594
OntoDM_104594s
OntoDM_104594
OntoDM_104594
OntoDM_104594
LCN DAG-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_104594
LCN DAG based HC algorithm for single path prediction
OntoDM_107836
OntoDM_107836s
OntoDM_107836
OntoDM_107836
OntoDM_107836
Hierarchical classification model is afeature-based predictive model for structured output and denotes predictive models that are built on data having a labeled graph datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_107836
hierarchical classification model
OntoDM_108244
OntoDM_108244s
OntoDM_108244
OntoDM_108244
OntoDM_108244
Multi-class classification is a data mining algorithm that solves a multi-class classification task and as a result produces a multi-class classification model.
OntoDM_108244
multi-class classification algorithm
OntoDM_108452
OntoDM_108452s
OntoDM_108452
OntoDM_108452
OntoDM_108452
GC DAG based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_112569
OntoDM_112569s
OntoDM_112569
OntoDM_112569
OntoDM_112569
algorithm implementation
OntoDM_112772
OntoDM_112772s
OntoDM_112772
OntoDM_112772
OntoDM_112772
A classification model is a feature-based predictive model for primitive output and denotes predictive models that are built on data having boolean or discrete datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_112772
classification model
OntoDM_114697
OntoDM_114697s
OntoDM_114697
OntoDM_114697
OntoDM_114697
Multi-target prediction task is a feature-based structured output prediction task where the objective is to predict a set of features (represented with a output tuple of primitives datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_114697
supervised multi-target prediction task
OntoDM_135761
OntoDM_135761s
OntoDM_135761
OntoDM_135761
OntoDM_135761
GC DAG-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a global classifier (GC) approach.
OntoDM_135761
GC DAG based HC algorithm for single path prediction
OntoDM_136533
OntoDM_136533s
OntoDM_136533
OntoDM_136533
OntoDM_136533
Multi-target regression tree is a multi-target regression model and denotes predictive models that are built on data having a tuple of reals (set of output features) on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and is expressed in the language of decision trees.
OntoDM_136533
multi-target regression tree
OntoDM_139240
OntoDM_139240s
OntoDM_139240
OntoDM_139240
OntoDM_139240
scenario title
OntoDM_139258
OntoDM_139258s
OntoDM_139258
OntoDM_139258
OntoDM_139258
Multi-label decision tree is a multi-label classification model and denotes predictive models that are built on data having a set of discrete datatype on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and it is expressed in the language of decision trees.
OntoDM_139258
multi-label decision tree
OntoDM_145996
OntoDM_145996s
OntoDM_145996
OntoDM_145996
OntoDM_145996
output tuple of boolean specification is an output tuple of primitives specification that denotes a tuple of boolean datatype on the output part of the data.
OntoDM_145996
output:tuple of boolean
OntoDM_147247
OntoDM_147247s
OntoDM_147247
OntoDM_147247
OntoDM_147247
algorithm execution
OntoDM_150825
OntoDM_150825s
OntoDM_150825
OntoDM_150825
OntoDM_150825
output discrete specification is an output primitive datatype specification that denotes a discrete datatype on the output part of the data.
OntoDM_150825
output:discrete
OntoDM_153542
OntoDM_153542s
OntoDM_153542
OntoDM_153542
OntoDM_153542
output set of reals specification is an output set specification that denotes a set of reals datatype on the output part of the data.
OntoDM_153542
output:set of reals
OntoDM_155699
OntoDM_155699s
OntoDM_155699
OntoDM_155699
OntoDM_155699
Binary classification is a data mining algorithm that solves a binary classification task and as a result produces a binary classification model.
OntoDM_155699
binary classification algorithm
OntoDM_157687
OntoDM_157687s
OntoDM_157687
OntoDM_157687
OntoDM_157687
A structure-based predictive model for structured output is a predictive model specification and denotes predictive models that are built on data having structured datatype on the output part, and a structured datatype on the descriptive part.
OntoDM_157687
structure-based predictive model for structured output
OntoDM_165764
OntoDM_165764s
OntoDM_165764
OntoDM_165764
OntoDM_165764
A feature-based predictive model for structured output is a predictive model specification and denotes predictive models that are built on data having a structured datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_165764
feature-based predictive model for structured output
OntoDM_169891
OntoDM_169891s
OntoDM_169891
OntoDM_169891
OntoDM_169891
unlabeled structure-based dataset is a dataset specification of unlabeled dataset with a structured descriptive datatype specification.
OntoDM_169891
structure-based unlabeled dataset
OntoDM_171335
OntoDM_171335
OntoDM_171335
C
OntoDM_171503
OntoDM_171503s
OntoDM_171503
OntoDM_171503
OntoDM_171503
Flat classification algorithm is a data mining algorithm that solves a classification task and as a result produces a classification model.
OntoDM_171503
flat classification algorithm
OntoDM_174112
OntoDM_174112s
OntoDM_174112
OntoDM_174112
OntoDM_174112
LCPN tree-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_174112
LPCN tree based HC algorithm for multiple path prediction
OntoDM_180345
OntoDM_180345s
OntoDM_180345
OntoDM_180345
OntoDM_180345
LCN DAG-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_180345
LCN DAG based HC algorithm for multiple path prediction
OntoDM_182357
OntoDM_182357s
OntoDM_182357
OntoDM_182357
OntoDM_182357
data mining scenario
OntoDM_191108
OntoDM_191108s
OntoDM_191108
OntoDM_191108
OntoDM_191108
output real specification is an output primitive datatype specification that denotes a real datatype on the output part of the data.
OntoDM_191108
output:real
OntoDM_201436
OntoDM_201436s
OntoDM_201436
OntoDM_201436
OntoDM_201436
parameter specification is a specification entity that is about a parameter.
OntoDM_201436
parameter specification
OntoDM_205203
OntoDM_205203s
OntoDM_205203
OntoDM_205203
OntoDM_205203
Feature-based primitive output prediction task is a predicting primitive output task where the objective is to predict a primitive output (represented with a primitive datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_205203
supervised feature-based primitive output prediction task
OntoDM_206736
OntoDM_206736
OntoDM_206736
JAVA
OntoDM_206736
OntoDM_206736
OntoDM_207566
OntoDM_207566s
OntoDM_207566
OntoDM_207566
OntoDM_207566
A feature-based predictive model for primitive output is a predictive model specification and denotes predictive models that are built on data having primitive datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_207566
feature-based predictive model for primitive output
OntoDM_208012
OntoDM_208012s
OntoDM_208012
OntoDM_208012
OntoDM_208012
Time-series prediction task is a feature-based structured output prediction task where the objective is to predict a time series (represented with a output sequence of real datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_208012
supervised time-series prediction task
OntoDM_208659
OntoDM_208659s
OntoDM_208659
OntoDM_208659
OntoDM_208659
binary classification task is a flat classification task where the objective is to predict a boolean output (represented with a boolean datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_208659
supervised binary classification task
OntoDM_213136
OntoDM_213136s
OntoDM_213136
OntoDM_213136
OntoDM_213136
GC DAG-based hierarchical classification algorithm is a data mining algorithm that solves a DAG-based hierarchical classification task and as a result produces a hierarchical classification model using a global classifier (GC) approach.
OntoDM_213136
GC DAG based HC algorithm
OntoDM_221045
OntoDM_221045s
OntoDM_221045
OntoDM_221045
OntoDM_221045
LCN DAG-based hierarchical classification algorithm for single path and mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_221045
LCPN DAG based HC algorithm for single path and mandatory leaf node prediction
OntoDM_225681
OntoDM_225681s
OntoDM_225681
OntoDM_225681
OntoDM_225681
Multi-target prediction model is afeature-based predictive model for structured output and denotes predictive models that are built on data having a tuple of primitives (set of output features) on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_225681
multi-target prediction model
OntoDM_231548
OntoDM_231548s
OntoDM_231548
OntoDM_231548
OntoDM_231548
Multi-target binary classification task is a multi-target classification task where the objective is to predict a set of binary features (represented with a output tuple of booleans ) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_231548
supervised multi-target binary classification
OntoDM_232231
OntoDM_232231s
OntoDM_232231
OntoDM_232231
OntoDM_232231
LCPN DAG-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_232231
LCPN DAG based HC algorithm for multiple path prediction
OntoDM_242219
OntoDM_242219s
OntoDM_242219
OntoDM_242219
OntoDM_242219
predicting primitive output task is a predictive modeling task where the objective is to predict a primitive output (represented with a primitive datatype).
OntoDM_242219
supervised primitive output prediction task
OntoDM_246002
OntoDM_246002s
OntoDM_246002
OntoDM_246002
OntoDM_246002
descriptive structured data specification is a descriptive datatype specification that denotes a structured datatype on the descriptive part of the data.
OntoDM_246002
structure-based descriptive data specification
OntoDM_246907
OntoDM_246907s
OntoDM_246907
OntoDM_246907
OntoDM_246907
Tree based hierarchical classification task with single label paths and partial depth labeling is a tree based hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output tree with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have single paths of labels and at least one instance has a partial depth of labeling.
OntoDM_246907
tree-based hierarchical classification task with single label paths and partial depth labeling
OntoDM_247241
OntoDM_247241s
OntoDM_247241
OntoDM_247241
OntoDM_247241
Multi-label classification model is afeature-based predictive model for structured output and denotes predictive models that are built on data having a set of discrete datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_247241
multi-label classification model
OntoDM_247510
OntoDM_247510s
OntoDM_247510
OntoDM_247510
OntoDM_247510
output set specification is an output structured datatype specification that denotes a set datatype on the output part of the data.
OntoDM_247510
output:set of primitives
OntoDM_251508
OntoDM_251508s
OntoDM_251508
OntoDM_251508
OntoDM_251508
LCPN tree-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_251508
LPCN tree based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_257039
OntoDM_257039s
OntoDM_257039
OntoDM_257039
OntoDM_257039
flat classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a boolean or discrete datatype on the output part of the data (specified with the feature specification).
OntoDM_257039
flat classification dataset
OntoDM_257366
OntoDM_257366s
OntoDM_257366
OntoDM_257366
OntoDM_257366
LCN tree-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_257366
LCN tree based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_278835
OntoDM_278835s
OntoDM_278835
OntoDM_278835
OntoDM_278835
output sequence of discrete specification is an output sequence datatype specification that denotes a sequence of discrete datatype on the output part of the data.
OntoDM_278835
output:sequence of discrete
OntoDM_279492
OntoDM_279492s
OntoDM_279492
OntoDM_279492
OntoDM_279492
output DAG specification is an output labeled graph specification that denotes a DAG datatype on the output part of the data.
OntoDM_279492
output:DAG
OntoDM_279507
OntoDM_279507s
OntoDM_279507
OntoDM_279507
OntoDM_280661
OntoDM_280661s
OntoDM_280661
OntoDM_280661
OntoDM_280661
A regression tree is a regression model and denotes predictive models that are built on data having a real datatype on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and it is expressed in the language of decision trees.
OntoDM_280661
regression tree
OntoDM_281640
OntoDM_281640s
OntoDM_281640
OntoDM_281640
OntoDM_281640
DAG based hierarchical classification task with single label paths and partial depth labeling is a DAG based hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have single paths of labels and at least one instance has a partial depth of labeling.
OntoDM_281640
DAG based hierarchical classification task with single label paths and partial depth labeling
OntoDM_285570
OntoDM_285570s
OntoDM_285570
OntoDM_285570
OntoDM_285570
workflow execution
OntoDM_295724
OntoDM_295724s
OntoDM_295724
OntoDM_295724
OntoDM_295724
Structure-based predictive modeling algorithm for structured output is a data mining algorithm that solves a structure-based structured output prediction task and as a result produces a structure-based predictive model for structured output.
OntoDM_295724
structure-based predictive modeling algorithm for structured output
OntoDM_300937
OntoDM_300937s
OntoDM_300937
OntoDM_300937
OntoDM_300937
GC tree-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a global classifier (GC) approach.
OntoDM_300937
GC tree based HC algorithm for single path prediction
OntoDM_308048
OntoDM_308048s
OntoDM_308048
OntoDM_308048
OntoDM_308048
hierarchical classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a labeled tree with boolean edges and discrete nodes datatype on the output part of the data.
OntoDM_308048
tree-based hierarchical classification dataset
OntoDM_311225
OntoDM_311225s
OntoDM_311225
OntoDM_311225
OntoDM_311225
DAG-based hierarchical classification algorithm is a data mining algorithm that solves a DAG-based hierarchical classification task and as a result produces a hierarchical classification model.
OntoDM_311225
DAG based HC algorithm
OntoDM_316568
OntoDM_316568s
OntoDM_316568
OntoDM_316568
OntoDM_316568
A binary decision tree is a binary classification model and denotes predictive models that are built on data having a boolean datatype on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and it is expressed in the language of decision trees.
OntoDM_316568
binary decision tree
OntoDM_318626
OntoDM_318626s
OntoDM_318626
OntoDM_318626
OntoDM_318626
Pattern set ensemble specification is a ensemble specification and denotes a type of generalization that is produced by a pattern set ensemble algorithm. This algorithm produces a collection of pattern sets at its output.
OntoDM_318626
pattern set ensemble specification
OntoDM_319168
OntoDM_319168s
OntoDM_319168
OntoDM_319168
OntoDM_319168
LCL DAG-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_319168
LCL DAG based HC algorithm for multiple path prediction
OntoDM_328701
OntoDM_328701s
OntoDM_328701
OntoDM_328701
OntoDM_328701
LCN DAG-based hierarchical classification algorithm is a data mining algorithm that solves a DAG-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_328701
LCN DAG based HC algorithm
OntoDM_330210
OntoDM_330210s
OntoDM_330210
OntoDM_330210
OntoDM_330210
specification entity
OntoDM_341564
OntoDM_341564s
OntoDM_341564
OntoDM_341564
OntoDM_341564
output tuple of primitives specification is an output structured datatype specification that denotes a tuple of primitives datatype on the output part of the data.
OntoDM_341564
output:tuple of primitives
OntoDM_352467
OntoDM_352467s
OntoDM_352467
OntoDM_352467
OntoDM_352467
output tuple of discrete specification is an output tuple of primitives specification that denotes a tuple of discrete datatype on the output part of the data.
OntoDM_352467
output:tuple of discrete
OntoDM_353154
OntoDM_353154s
OntoDM_353154
OntoDM_353154
OntoDM_353154
LCN tree-based hierarchical classification algorithm for single path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_353154
LCN tree based HC algorithm for single path and mandatory leaf node prediction
OntoDM_354620
OntoDM_354620s
OntoDM_354620
OntoDM_354620
OntoDM_354620
Feature-based structured output prediction task is a predicting structured output task where the objective is to predict a structured output (represented with a output structured datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_354620
supervised feature-based structured output prediction task
OntoDM_357792
OntoDM_357792s
OntoDM_357792
OntoDM_357792
OntoDM_357792
Random Subspaces
OntoDM_361570
OntoDM_361570s
OntoDM_361570
OntoDM_361570
OntoDM_361570
data processing algorithm
OntoDM_368254
OntoDM_368254s
OntoDM_368254
OntoDM_368254
OntoDM_368254
Time-series prediction model is afeature-based predictive model for structured output and denotes predictive models that are built on data having a sequence of reals on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_368254
time series prediction model
OntoDM_368779
OntoDM_368779s
OntoDM_368779
OntoDM_368779
OntoDM_368779
Predictive modeling ensemble algorithm is a data mining algorithm that solves a predictive modeling task and as a result produces a ensemble of predictive models.
OntoDM_368779
predictive modelling ensemble algorithm
OntoDM_369100
OntoDM_369100s
OntoDM_369100
OntoDM_369100
OntoDM_369100
A multi-class decision tree is a multi-class classification model and denotes predictive models that are built on data having a discrete datatype on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and it is expressed in the language of decision trees.
OntoDM_369100
multi-class decision tree
OntoDM_372340
OntoDM_372340s
OntoDM_372340
OntoDM_372340
OntoDM_372340
DAG based hierarchical classification task with multiple label paths is a DAG based hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have multiple paths of labels.
OntoDM_372340
DAG based hierarchical classification task with multiple label paths
OntoDM_372936
OntoDM_372936s
OntoDM_372936
OntoDM_372936
OntoDM_372936
labeled dataset is a dataset specification for datasets that have both a descriptive and output specification of the data examples contained in the dataset.
OntoDM_372936
labeled dataset
OntoDM_373964
OntoDM_373964s
OntoDM_373964
OntoDM_373964
OntoDM_373964
Tree based hierarchical classification task with multiple label paths and full depth labeling is a tree based hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output treewith boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have multiple paths of labels and all instances have full depth of labeling.
OntoDM_373964
tree-based hierarchical classification task with multiple label paths and full depth labeling
OntoDM_374511
OntoDM_374511s
OntoDM_374511
OntoDM_374511
OntoDM_374511
Time-series prediction decision tree is a time-series prediction model and denotes predictive models that are built on data having a sequence of reals on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and is expressed in the language of decision trees.
OntoDM_374511
time-series prediction decision tree
OntoDM_376810
OntoDM_376810s
OntoDM_376810
OntoDM_376810
OntoDM_376810
LCN tree-based hierarchical classification algorithm for single path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_376810
LPCN tree based HC algorithm for single path and mandatory leaf node prediction
OntoDM_379153
OntoDM_379153s
OntoDM_379153
OntoDM_379153
OntoDM_379153
descriptive tuple of primitives specification is a descriptive datatype specification that denotes a tuple of primitives datatype on the descriptive part of the data.
OntoDM_379153
feature-based descriptive data specification
OntoDM_382943
OntoDM_382943s
OntoDM_382943
OntoDM_382943
OntoDM_382943
Predictive modeling algorithm for primitive output is a data mining algorithm that solves a predicting primitive output task and as a result produces a predictive model for primitive output.
OntoDM_382943
predictive modeling algorithm for primitive output
OntoDM_387728
OntoDM_387728s
OntoDM_387728
OntoDM_387728
OntoDM_387728
flat classification task is a feature-based primitive output task where the objective is to predict a boolean or discrete output (represented with a boolean or discrete datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_387728
supervised flat classification task
OntoDM_388961
OntoDM_388961s
OntoDM_388961
OntoDM_388961
OntoDM_388961
LCL tree-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_388961
LCL tree based HC algorithm for multiple path prediction
OntoDM_397256
OntoDM_397256
OntoDM_397256
boolean datatype
OntoDM_398436
OntoDM_398436s
OntoDM_398436
OntoDM_398436
OntoDM_398436
GC tree-based hierarchical classification algorithm is a data mining algorithm that solves a tree-based hierarchical classification task and as a result produces a hierarchical classification model using a global classifier (GC) approach.
OntoDM_398436
GC tree-based HC algorithm
OntoDM_400000
data specification
OntoDM_400001
batch data mining task
OntoDM_400002
online data mining task
OntoDM_400003
online clustering task
OntoDM_400004
online pattern discovery task
OntoDM_400005
online probability distribution estimation task
OntoDM_408772
OntoDM_408772s
OntoDM_408772
OntoDM_408772
OntoDM_408772
LCN DAG-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_408772
LCN DAG based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_419418
OntoDM_419418s
OntoDM_419418
OntoDM_419418
OntoDM_419418
Tree-based hierarchical classification algorithm is a data mining algorithm that solves a tree-based hierarchical classification task and as a result produces a hierarchical classification model.
OntoDM_419418
tree-based HC algorithm
OntoDM_419460
OntoDM_419460s
OntoDM_419460
OntoDM_419460
OntoDM_419460
A single generalization specification is a generalization specification and denotes a type of generalization that is produced by a single generalization data mining algorithm. This algorithm produces only one generalization at its output.
OntoDM_419460
single generalization specification
OntoDM_419544
OntoDM_419544s
OntoDM_419544
OntoDM_419544
OntoDM_419544
information content entity quality
OntoDM_429658
OntoDM_429658s
OntoDM_429658
OntoDM_429658
OntoDM_429658
Clustering ensemble algorithm is a data mining algorithm that solves a clustering task and as a result produces an ensemble of clusterings.
OntoDM_429658
clustering ensemble algorithm
OntoDM_433774
OntoDM_433774s
OntoDM_433774
OntoDM_433774
OntoDM_433774
language of markov chains
OntoDM_452759
OntoDM_452759s
OntoDM_452759
OntoDM_452759
OntoDM_452759
Bagging
OntoDM_458780
OntoDM_458780
OntoDM_458780
C++
OntoDM_458784
OntoDM_458784s
OntoDM_458784
OntoDM_458784
OntoDM_458784
output tree specification is an output labeled graph specification that denotes a tree datatype on the output part of the data.
OntoDM_458784
output:tree
OntoDM_462575
OntoDM_462575s
OntoDM_462575
OntoDM_462575
OntoDM_462575
Time-series predictive modeling algorithm is a data mining algorithm that solves a time-series classification task and as a result produces a time series predictive model.
OntoDM_462575
time-series predictive modelling algorithm
OntoDM_464319
OntoDM_464319s
OntoDM_464319
OntoDM_464319
OntoDM_464319
LCN tree-based hierarchical classification algorithm is a data mining algorithm that solves a tree-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_464319
LCN tree based HC algorithm
OntoDM_464484
OntoDM_464484s
OntoDM_464484
OntoDM_464484
OntoDM_464484
Probability distribution estimation ensemble algorithm is a data mining algorithm that solves a probablility distribution estimation task and as a result produces a ensemble of probability distributions.
OntoDM_464484
probability distribution estimation ensemble algorithm
OntoDM_467074
OntoDM_467074s
OntoDM_467074
OntoDM_467074
OntoDM_467074
LCPN DAG-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_467074
LCPN DAG based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_470460
OntoDM_470460s
OntoDM_470460
OntoDM_470460
OntoDM_470460
LCPN tree-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_470460
LPCN tree based HC algorithm for single path prediction
OntoDM_474912
OntoDM_474912s
OntoDM_474912
OntoDM_474912
OntoDM_474912
LCL tree-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_474912
LCL tree based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_478450
OntoDM_478450s
OntoDM_478450
OntoDM_478450
OntoDM_478450
workflow
OntoDM_481568
OntoDM_481568s
OntoDM_481568
OntoDM_481568
OntoDM_481568
Multi-target multi-class classification model is a multi-target classification model and denotes predictive models that are built on data having a tuple of discrete (set of output features) on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_481568
multi-target multi-class classification model
OntoDM_485256
OntoDM_485256s
OntoDM_485256
OntoDM_485256
OntoDM_485256
GC DAG-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a global classifier (GC) approach.
OntoDM_485256
GC DAG based HC algorithm for multiple path prediction
OntoDM_490530
OntoDM_490530s
OntoDM_490530
OntoDM_490530
OntoDM_490530
clusterings ensemble specification is a ensemble specification and denotes a type of generalization that is produced by a clustering ensemble algorithm. This algorithm produces a set of clusterings at its output.
OntoDM_490530
clusterings ensemble specification
OntoDM_491182
OntoDM_491182s
OntoDM_491182
OntoDM_491182
OntoDM_491182
DAG based hierarchical classification task is a hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_491182
supervised DAG based hierarchical classification task
OntoDM_495960
OntoDM_495960s
OntoDM_495960
OntoDM_495960
OntoDM_495960
Multi-target classification model is a multi-target prediction model and denotes predictive models that are built on data having a tuple of boolean or discrete (set of output features) on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_495960
multi-target classification model
OntoDM_506961
OntoDM_506961s
OntoDM_506961
OntoDM_506961
OntoDM_506961
Multi-target regression task is a multi-target prediction task where the objective is to predict a set of real features (represented with a output tuple of reals) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_506961
supervised multi-target regression task
OntoDM_507935
OntoDM_507935s
OntoDM_507935
OntoDM_507935
OntoDM_507935
Hierarchical classification algorithm is a data mining algorithm that solves a hierarchical classification task and as a result produces a hierarchical classification model.
OntoDM_507935
hierarchical classification algorithm
OntoDM_510504
OntoDM_510504s
OntoDM_510504
OntoDM_510504
OntoDM_510504
Multi-label classification task is a feature-based structured output prediction task where the objective is to predict a set of discrete output labels (represented with a output set of discrete datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_510504
supervised multi-label classification task
OntoDM_510989
OntoDM_510989s
OntoDM_510989
OntoDM_510989
OntoDM_510989
a parameter setting is a data item that is a quality specification of some algorithm parameter and denotes its configuration when an algorithm implementation is used as a data mining operator in the process of algorithm execution.
OntoDM_510989
parameter setting
OntoDM_512674
OntoDM_512674s
OntoDM_512674
OntoDM_512674
OntoDM_512674
LCN tree-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_512674
LCN tree based HC algorithm for single path prediction
OntoDM_516954
OntoDM_516954s
OntoDM_516954
OntoDM_516954
OntoDM_516954
output sequence specification is an output structured datatype specification that denotes a sequence datatype on the output part of the data.
OntoDM_516954
output:sequence
OntoDM_519526
OntoDM_519526s
OntoDM_519526
OntoDM_519526
OntoDM_519526
GC tree based HC algorithm for single path and mandatory leaf node prediction
OntoDM_528443
OntoDM_528443s
OntoDM_528443
OntoDM_528443
OntoDM_528443
LCL tree-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_528443
LCL tree based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_530819
OntoDM_530819s
OntoDM_530819
OntoDM_530819
OntoDM_530819
A ensemble algorithm is a data mining algorithm that solves a data mining task and as a result produces an ensemble of generalizations.
OntoDM_530819
ensemble algorithm
OntoDM_532190
OntoDM_532190s
OntoDM_532190
OntoDM_532190
OntoDM_532190
language of neural nets
OntoDM_535716
OntoDM_535716s
OntoDM_535716
OntoDM_535716
OntoDM_535716
Probability distributions specification is a ensemble specification and denotes a type of generalization that is produced by a probability distribution estimation ensemble algorithm. This algorithm produces a set of probability distributions at its output.
OntoDM_535716
probability distributions ensemble specification
OntoDM_537602
OntoDM_537602s
OntoDM_537602
OntoDM_537602
OntoDM_537602
labeled feature-based dataset with primitive output is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a primitive datatype on the output part of the data (specified with the output feature specification).
OntoDM_537602
feature-based completely labeled dataset with primitive output
OntoDM_540049
OntoDM_540049s
OntoDM_540049
OntoDM_540049
OntoDM_540049
LC tree-based hierarchical classification algorithm is a data mining algorithm that solves a tree-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier (LC) approach.
OntoDM_540049
LC tree based HC algorithm
OntoDM_541005
OntoDM_541005s
OntoDM_541005
OntoDM_541005
OntoDM_541005
multi-label classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a set of discrete datatype on the output part of the data.
OntoDM_541005
multi-label classification dataset
OntoDM_542264
OntoDM_542264s
OntoDM_542264
OntoDM_542264
OntoDM_542264
Tree based hierarchical classification task is a hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output tree with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_542264
supervised tree-based hierarchical classification task
OntoDM_544234
OntoDM_544234s
OntoDM_544234
OntoDM_544234
OntoDM_544234
data mining software toolkit
OntoDM_548678
OntoDM_548678s
OntoDM_548678
OntoDM_548678
OntoDM_548678
A data mining task description is-a specifcation entity that denotes a specific data mining task applied on a specific dataset, having in mind the specific type of generalization produced by the task (generalization specifcation)
OntoDM_548678
data mining task description
OntoDM_548720
OntoDM_548720s
OntoDM_548720
OntoDM_548720
OntoDM_548720
data mining source code module
OntoDM_549140
OntoDM_549140s
OntoDM_549140
OntoDM_549140
OntoDM_549140
LCPN tree-based hierarchical classification algorithm is a data mining algorithm that solves a tree-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_549140
LCPN tree based HC algorithm
OntoDM_555011
OntoDM_555011s
OntoDM_555011
OntoDM_555011
OntoDM_555011
LCN DAG-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_555011
LCN DAG based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_559103
OntoDM_559103s
OntoDM_559103
OntoDM_559103
OntoDM_559103
Tree based hierarchical classification task with single label paths is a tree based hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output tree with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have a single paths of labels.
OntoDM_559103
tree-based hierarchical classification task with single label paths
OntoDM_565974
OntoDM_565974s
OntoDM_565974
OntoDM_565974
OntoDM_565974
multi-target regression dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a tuple of reals (specified with the feature set specification) on the output part of the data.
OntoDM_565974
multi-target regression dataset
OntoDM_570767
OntoDM_570767s
OntoDM_570767
OntoDM_570767
OntoDM_570767
Multi-label classification algorithm is a data mining algorithm that solves a multi-label classification task and as a result produces a multi-label classification model.
OntoDM_570767
multi-label classification algorithm
OntoDM_572839
OntoDM_572839s
OntoDM_572839
OntoDM_572839
OntoDM_572839
LCL tree-based hierarchical classification algorithm for single path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_572839
LCL tree based HC algorithm for single path and mandatory leaf node prediction
OntoDM_577929
OntoDM_577929s
OntoDM_577929
OntoDM_577929
OntoDM_577929
A predictive model for structured output is a predictive model specification and denotes predictive models that are built on data having a structured datatype on the output part.
OntoDM_577929
predictive model for structured output
OntoDM_583334
OntoDM_583334s
OntoDM_583334
OntoDM_583334
OntoDM_583334
Multi-target regression model is a multi-target prediction model and denotes predictive models that are built on data having a tuple of reals (set of output features) on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_583334
multi-target regression model
OntoDM_585235
OntoDM_585235s
OntoDM_585235
OntoDM_585235
OntoDM_585235
LCL DAG-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_585235
LCL DAG based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_592921
OntoDM_592921
OntoDM_592921
HMC-ENS-Bagging algorithm
OntoDM_600958
OntoDM_600958s
OntoDM_600958
OntoDM_600958
OntoDM_600958
predicting structured output task is a predictive modeling task where the objective is to predict a structured output (represented with a structured datatype).
OntoDM_600958
supervised structured output prediction task
OntoDM_603253
OntoDM_603253s
OntoDM_603253
OntoDM_603253
OntoDM_603253
scenario
OntoDM_608558
OntoDM_608558s
OntoDM_608558
OntoDM_608558
OntoDM_608558
unlabeled feature-based dataset is a dataset specification of unlabeled dataset with tuple of primitives as a descriptive datatype specification and descriptive feature set specification.
OntoDM_608558
feature-based unlabeled dataset
OntoDM_609184
OntoDM_609184s
OntoDM_609184
OntoDM_609184
OntoDM_609184
binary classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a boolean datatype on the output part of the data (specified with the feature specification).
OntoDM_609184
binary classification dataset
OntoDM_611937
OntoDM_611937s
OntoDM_611937
OntoDM_611937
OntoDM_611937
GC tree based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_613600
OntoDM_613600s
OntoDM_613600
OntoDM_613600
OntoDM_613600
clustering evaluation
OntoDM_613675
OntoDM_613675s
OntoDM_613675
OntoDM_613675
OntoDM_613675
LCPN DAG-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_613675
LCPN DAG based HC algorithm for single path prediction
OntoDM_613950
OntoDM_613950s
OntoDM_613950
OntoDM_613950
OntoDM_613950
language of graphical models
OntoDM_616457
OntoDM_616457s
OntoDM_616457
OntoDM_616457
OntoDM_616457
language of decision rules
OntoDM_616614
OntoDM_616614s
OntoDM_616614
OntoDM_616614
OntoDM_616614
software toolkit
OntoDM_620805
OntoDM_620805s
OntoDM_620805
OntoDM_620805
OntoDM_620805
DAG based hierarchical classification task with single label paths and full depth labeling is a DAG based hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have single paths of labels and all instances have full depth of labeling.
OntoDM_620805
DAG based hierarchical classification task with single label paths and full depth labeling
OntoDM_622093
OntoDM_622093s
OntoDM_622093
OntoDM_622093
OntoDM_622093
LCL tree-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_622093
LCL tree based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_622428
OntoDM_622428s
OntoDM_622428
OntoDM_622428
OntoDM_622428
Tree based hierarchical classification task with single label paths and full depth labeling is a tree based hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output tree with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have single paths of labels and all instances have full depth of labeling.
OntoDM_622428
tree-based hierarchical classification task with single label paths and full depth labeling
OntoDM_625176
OntoDM_625176s
OntoDM_625176
OntoDM_625176
OntoDM_625176
evaluation algorithm implementation
OntoDM_627978
OntoDM_627978s
OntoDM_627978
OntoDM_627978
OntoDM_627978
Multi-target binary decision tree is a multi-target binary classification model and denotes predictive models that are built on data having a tuple of boolean (set of output features) on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and is expressed in the language of decision trees.
OntoDM_627978
multi-target binary decision tree
OntoDM_629944
OntoDM_629944s
OntoDM_629944
OntoDM_629944
OntoDM_629944
labeled dataset with structured output is a dataset specification of a labeled dataset with structured output datatype specification.
OntoDM_629944
completely labeled dataset with structured output
OntoDM_636213
OntoDM_636213s
OntoDM_636213
OntoDM_636213
OntoDM_636213
multi-target multi-class classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a tuple of discrete (specified with the feature set specification) on the output part of the data.
OntoDM_636213
multi-target multi-class classification dataset
OntoDM_636747
OntoDM_636747s
OntoDM_636747
OntoDM_636747
OntoDM_636747
multi-class classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part, and a discrete datatype on the output part of the data (specified with the feature specification).
OntoDM_636747
multi-class classification dataset
OntoDM_640624
OntoDM_640624s
OntoDM_640624
OntoDM_640624
OntoDM_640624
Hierarchical classification decision tree is a hierarchical classification model and denotes predictive models that are built on data having a labeled graph datatype on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and it is expressed in the language of decision trees.
OntoDM_640624
hierarchical classification decision tree
OntoDM_642324
OntoDM_642324s
OntoDM_642324
OntoDM_642324
OntoDM_642324
language of decision trees
OntoDM_651414
OntoDM_651414s
OntoDM_651414
OntoDM_651414
OntoDM_651414
a predicted dataset is a dataset that is an output of a predictive model execution process.
OntoDM_651414
predicted dataset
OntoDM_661861
OntoDM_661861s
OntoDM_661861
OntoDM_661861
OntoDM_661861
structure based structured output prediction task is a predicting structured output task where the objective is to predict a structured output (represented with a outputstructured datatype) from a structure (represented by a descriptive structured datatype).
OntoDM_661861
supervised structure based structured output prediction task
OntoDM_666475
OntoDM_666475s
OntoDM_666475
OntoDM_666475
OntoDM_666475
labeled feature-based dataset with structured output is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a structured datatype on the output part of the data.
OntoDM_666475
feature-based completely labeled dataset with structured output
OntoDM_669483
OntoDM_669483s
OntoDM_669483
OntoDM_669483
OntoDM_669483
LCL tree-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_669483
LCL tree based HC algorithm for single path prediction
OntoDM_674255
OntoDM_674255s
OntoDM_674255
OntoDM_674255
OntoDM_674255
Multi-target regression algorithm is a data mining algorithm that solves a multi-target regression task and as a result produces a multi-target regression model.
OntoDM_674255
multi-target regression algorithm
OntoDM_675141
OntoDM_675141s
OntoDM_675141
OntoDM_675141
OntoDM_675141
descriptive set of discrete is a descriptive structured datatype specification that denotes a set of discrete datatype on the descriptive part of the data.
OntoDM_675141
descriptive:set of discrete
OntoDM_686944
OntoDM_686944s
OntoDM_686944
OntoDM_686944
OntoDM_686944
regression dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a real datatype on the output part of the data (specified with the output specification).
OntoDM_686944
regression dataset
OntoDM_688833
OntoDM_688833s
OntoDM_688833
OntoDM_688833
OntoDM_688833
A regression model is a feature-based predictive model for primitive output and denotes predictive models that are built on data having a real datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_688833
regression model
OntoDM_689658
OntoDM_689658s
OntoDM_689658
OntoDM_689658
OntoDM_689658
Multi-target multi-class decision tree is a multi-target multi-class classification model and denotes predictive models that are built on data having a tuple of discrete (set of output features) on the output part, set of features (represented by a descriptive tuple of primitives) on the descriptive part, and are expressed in the language of decision trees.
OntoDM_689658
multi-target multi-class decison tree
OntoDM_692551
OntoDM_692551s
OntoDM_692551
OntoDM_692551
OntoDM_692551
LCL DAG-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_692551
LCL DAG based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_692808
OntoDM_692808s
OntoDM_692808
OntoDM_692808
OntoDM_692808
labeled dataset with structured output is a dataset specification of a labeled dataset with structured datatype on the descriptive part and a structured datatype on the output part of the data.
OntoDM_692808
structure-based completely labeled dataset with structured output
OntoDM_693227
OntoDM_693227s
OntoDM_693227
OntoDM_693227
OntoDM_693227
description
OntoDM_694510
OntoDM_694510s
OntoDM_694510
OntoDM_694510
OntoDM_694510
GC tree-based hierarchical classification algorithm for multiple path prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and as a result produces a hierarchical classification model using a global classifier (GC) approach.
OntoDM_694510
GC tree-based HC algorithm for multiple path prediction
OntoDM_708865
OntoDM_708865s
OntoDM_708865
OntoDM_708865
OntoDM_708865
representational medium specification
OntoDM_716122
OntoDM_716122s
OntoDM_716122
OntoDM_716122
OntoDM_716122
output boolean specification is an output primitive datatype specification that denotes a boolean datatype on the output part of the data.
OntoDM_716122
output:boolean
OntoDM_718392
OntoDM_718392s
OntoDM_718392
OntoDM_718392
OntoDM_718392
DAG based hierarchical classification task with multiple label paths and partial depth labeling is a DAG based hierarchical classification task where the objective is to predict a set of labels organized in a DAG (represented with a output DAG with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have multiple paths of labels and at least one instance has a partial depth of labeling.
OntoDM_718392
DAG based hierarchical classification task with multiple label paths and partial depth labeling
OntoDM_718446
OntoDM_718446s
OntoDM_718446
OntoDM_718446
OntoDM_718446
Structure-based predictive modeling algorithm for primitive output is a data mining algorithm that solves a structure-based primitive output prediction task and as a result produces a structure-based predictive model for primitive output.
OntoDM_718446
structure-based prectictive modeling algorithm for primitive output
OntoDM_721008
OntoDM_721008s
OntoDM_721008
OntoDM_721008
OntoDM_721008
Random Forest
OntoDM_722523
OntoDM_722523s
OntoDM_722523
OntoDM_722523
OntoDM_722523
Multi-target classification algorithm is a data mining algorithm that solves a multi-target classification task and as a result produces a multi-target classification model.
OntoDM_722523
multi-target classification algorithm
OntoDM_726490
OntoDM_726490s
OntoDM_726490
OntoDM_726490
OntoDM_726490
Mapping specification is a information content entity that denotes a part of a data example on which a concrete datatype applies to.
OntoDM_726490
mapping specification
OntoDM_727807
OntoDM_727807s
OntoDM_727807
OntoDM_727807
OntoDM_727807
multi-target binary classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a tuple of booleans (specified with the feature set specification) on the output part of the data.
OntoDM_727807
multi-target binary classification dataset
OntoDM_728533
OntoDM_728533s
OntoDM_728533
OntoDM_728533
OntoDM_728533
Multi-target binary classification algorithm is a data mining algorithm that solves a multi-target binary classification task and as a result produces a multi-target binarty classification model.
OntoDM_728533
multi-target binary classification algorithm
OntoDM_730046
OntoDM_730046s
OntoDM_730046
OntoDM_730046
OntoDM_730046
LCN tree-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_730046
LCN tree based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_730934
OntoDM_730934s
OntoDM_730934
OntoDM_730934
OntoDM_730934
evaluation algorithm
OntoDM_731692
OntoDM_731692s
OntoDM_731692
OntoDM_731692
OntoDM_731692
A single generalization algorithm is a data mining algorithm that solves a data mining task and as a result produces a single generalization.
OntoDM_731692
single generalization algorithm
OntoDM_733255
OntoDM_733255s
OntoDM_733255
OntoDM_733255
OntoDM_733255
Multi-target classification task is a multi-target prediction task where the objective is to predict a set of binary/discrete features (represented with a output tuple of booleans or discrete) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_733255
supervised multi-target classification task
OntoDM_741560
OntoDM_741560
OntoDM_741560
OntoDM_741560s
OntoDM_741560
OntoDM_741560ed
OntoDM_741560
is_representation_of
OntoDM_741571
OntoDM_741571s
OntoDM_741571
OntoDM_741571
OntoDM_741571
output primitive is an output datatype specification that denotes a primitive datatype on the output part of the data.
OntoDM_741571
primitive-based output data specification
OntoDM_746568
OntoDM_746568s
OntoDM_746568
OntoDM_746568
OntoDM_746568
multi-target prediction dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a tuple of primitives (specified with the feature set specification) on the output part of the data.
OntoDM_746568
multi-target prediction dataset
OntoDM_748173
OntoDM_748173s
OntoDM_748173
OntoDM_748173
OntoDM_748173
operator
OntoDM_754841
OntoDM_754841s
OntoDM_754841
OntoDM_754841
OntoDM_754841
GC tree based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_757135
OntoDM_757135s
OntoDM_757135
OntoDM_757135
OntoDM_757135
information processing objective is objective specification of the end point that an information processing process needs to achieve at its end.
OntoDM_757135
information processing objective
OntoDM_757640
OntoDM_757640s
OntoDM_757640
OntoDM_757640
OntoDM_757640
Multi-target multi-class classification algorithm is a data mining algorithm that solves a multi-target multi-class classification task and as a result produces a multi-target multi-class classification model.
OntoDM_757640
multi-target multi-class classification algorithm
OntoDM_771971
OntoDM_771971s
OntoDM_771971
OntoDM_771971
OntoDM_771971
GC tree based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_776589
OntoDM_776589s
OntoDM_776589
OntoDM_776589
OntoDM_776589
OntoDM_776589
OntoDM_776589
pattern discovery evaluation
OntoDM_782155
OntoDM_782155s
OntoDM_782155
OntoDM_782155
OntoDM_782155
LCN DAG-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_782155
LCN DAG based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_783954
OntoDM_783954s
OntoDM_783954
OntoDM_783954
OntoDM_783954
multi-target classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a tuple of booleans or discrete (specified with the feature set specification) on the output part of the data.
OntoDM_783954
multi-target classification dataset
OntoDM_785336
OntoDM_785336s
OntoDM_785336
OntoDM_785336
OntoDM_785336
Structure-based primitive output prediction task is a predicting primitive output task where the objective is to predict a primitive output (represented with a primitive datatype) from a structure (represented by a descriptive structured datatype).
OntoDM_785336
supervised structure based primitive output prediction task
OntoDM_793930
OntoDM_793930s
OntoDM_793930
OntoDM_793930
OntoDM_793930
LCL tree-based hierarchical classification algorithm is a data mining algorithm that solves a tree-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_793930
LCL tree based HC algorithm
OntoDM_794067
OntoDM_794067s
OntoDM_794067
OntoDM_794067
OntoDM_794067
feature-based time series predicton dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a sequence of reals datatype on the output part of the data.
OntoDM_794067
feature-based time-series prediction dataset
OntoDM_800750
OntoDM_800750
OntoDM_800750
output specification
OntoDM_804811
OntoDM_804811
OntoDM_804811
integer datatype
OntoDM_813772
OntoDM_813772s
OntoDM_813772
OntoDM_813772
OntoDM_813772
language of bayesian nets
OntoDM_815320
OntoDM_815320s
OntoDM_815320
OntoDM_815320
OntoDM_815320
Multi-target multi-class classification task is a multi-target classification task where the objective is to predict a set of discrete features (represented with a output tuple of discrete ) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_815320
supervised multi-target multi-class classification task
OntoDM_817028
OntoDM_817028s
OntoDM_817028
OntoDM_817028
OntoDM_817028
Multi-target predictive modeling algorithm is a data mining algorithm that solves a multi-target prediction task and as a result produces a multi-target predictive model.
OntoDM_817028
multi-target predictive modelling algorithm
OntoDM_817888
OntoDM_817888s
OntoDM_817888
OntoDM_817888
OntoDM_817888
data mining workflow
OntoDM_818411
OntoDM_818411s
OntoDM_818411
OntoDM_818411
OntoDM_818411
GC DAG based HC algorithm for single path and mandatory leaf node prediction
OntoDM_826903
OntoDM_826903s
OntoDM_826903
OntoDM_826903
OntoDM_826903
Tree based hierarchical classification task with multiple label paths is a tree based hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output tree with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have multiple paths of labels.
OntoDM_826903
tree-based hierarchical classification task with multiple label paths
OntoDM_829270
OntoDM_829270s
OntoDM_829270
OntoDM_829270
OntoDM_829270
LCPN DAG-based hierarchical classification algorithm for multiple path and non-mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and partial depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_829270
LCPN DAG based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_831808
OntoDM_831808s
OntoDM_831808
OntoDM_831808
OntoDM_831808
Feature-based predictive modeling algorithm for structured output is a data mining algorithm that solves a feature-based primitive structured prediction task and as a result produces a feature-based predictive model for structured output.
OntoDM_831808
feature-based predictive modeling algorithm for structured output
OntoDM_835948
OntoDM_835948s
OntoDM_835948
OntoDM_835948
OntoDM_835948
output structured specification is an output datatype specification that denotes a structured datatype on the output part of the data.
OntoDM_835948
structure-based output data specification
OntoDM_837886
OntoDM_837886s
OntoDM_837886
OntoDM_837886
OntoDM_837886
regression classification task is a feature-based primitive output task where the objective is to predict a real output (represented with a real datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_837886
supervised regression task
OntoDM_838789
OntoDM_838789s
OntoDM_838789
OntoDM_838789
OntoDM_838789
LCL DAG-based hierarchical classification algorithm for single path prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_838789
LCL DAG based HC algorithm for single path prediction
OntoDM_843203
OntoDM_843203s
OntoDM_843203
OntoDM_843203
OntoDM_843203
labeled structure-based dataset with primitive output is a dataset specification of a labeled dataset with a structure datatype on the descriptive part and a primitive datatype on the output part of the data (specified with the output feature specification).
OntoDM_843203
structure-based completely labeled dataset with primitive output
OntoDM_843647
OntoDM_843647s
OntoDM_843647
OntoDM_843647
OntoDM_843647
output sequence of real specification is an output sequence datatype specification that denotes a sequence of reals datatype on the output part of the data.
OntoDM_843647
output:sequence of reals
OntoDM_849533
OntoDM_849533s
OntoDM_849533
OntoDM_849533
OntoDM_849533
labeled dataset with primitive output is a dataset specification of labeled dataset with primitive output datatype specification.
OntoDM_849533
completely labeled dataset with primitive output
OntoDM_849657
OntoDM_849657s
OntoDM_849657
OntoDM_849657
OntoDM_849657
GC DAG based HC algorithm for single path and non-mandatory leaf node prediction
OntoDM_860244
OntoDM_860244s
OntoDM_860244
OntoDM_860244
OntoDM_860244
OntoDM_860244
dataset quality
OntoDM_860584
OntoDM_860584s
OntoDM_860584
OntoDM_860584
OntoDM_860584
Pattern discovery ensemble algorithm is a data mining algorithm that solves a pattern discovery task and as a result produces a ensemble of set of patterns.
OntoDM_860584
pattern discovery ensemble algorithm
OntoDM_865023
OntoDM_865023s
OntoDM_865023
OntoDM_865023
OntoDM_865023
A multi-class classification model is a classification model and denotes predictive models that are built on data having a discrete datatype on the output part, and set of features (represented by a descriptive tuple of primitives) on the descriptive part.
OntoDM_865023
multi-class classification model
OntoDM_871327
OntoDM_871327s
OntoDM_871327
OntoDM_871327
OntoDM_871327
Predictive modeling algorithm for structured output is a data mining algorithm that solves a predicting structured output task and as a result produces a predictive model for structured output.
OntoDM_871327
predictive modeling algorithm for structured output
OntoDM_874928
OntoDM_874928s
OntoDM_874928
OntoDM_874928
OntoDM_874928
LCN DAG-based hierarchical classification algorithm for single path and mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with single label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_874928
LCN DAG based HC algorithm for single path and mandatory leaf node prediction
OntoDM_879928
OntoDM_879928s
OntoDM_879928
OntoDM_879928
OntoDM_879928
unlabeled dataset is a dataset specification for datasets that have only descriptive datatype specification of the data examples contained in the dataset.
OntoDM_879928
unlabeled dataset
OntoDM_882801
OntoDM_882801s
OntoDM_882801
OntoDM_882801
OntoDM_882801
LCPN DAG-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_882801
LCPN DAG based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_892395
OntoDM_892395s
OntoDM_892395
OntoDM_892395
OntoDM_892395
A data example is a data item that represents one unit of data and it is a part of a dataset. It is a synonim with a case or example or observation in statistics.
OntoDM_892395
data example
OntoDM_895197
OntoDM_895197s
OntoDM_895197
OntoDM_895197
OntoDM_895197
output set of discrete specification is an output set specification that denotes a set of discrete datatype on the output part of the data.
OntoDM_895197
output:set of discrete
OntoDM_900172
OntoDM_900172s
OntoDM_900172
OntoDM_900172
OntoDM_900172
GC DAG based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_901970
OntoDM_901970s
OntoDM_901970
OntoDM_901970
OntoDM_901970
LCN tree-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per node (LCN) approach.
OntoDM_901970
LCN tree based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_908131
OntoDM_908131s
OntoDM_908131
OntoDM_908131
OntoDM_908131
output labeled graph specification is an output structured datatype specification that denotes a labeled graph datatype on the output part of the data.
OntoDM_908131
labeled graph output specification
OntoDM_910828
OntoDM_910828s
OntoDM_910828
OntoDM_910828
OntoDM_910828
Boosting
OntoDM_913132
OntoDM_913132s
OntoDM_913132
OntoDM_913132
OntoDM_913132
multi class classification task is a flat classification task where the objective is to predict a discrete output (represented with a boolean or discrete datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_913132
supervised multi-class classification task
OntoDM_917475
OntoDM_917475s
OntoDM_917475
OntoDM_917475
OntoDM_917475
evaluation algorithm execution
OntoDM_918795
OntoDM_918795s
OntoDM_918795
OntoDM_918795
OntoDM_918795
probability distribution evaliuation
OntoDM_919659
OntoDM_919659s
OntoDM_919659
OntoDM_919659
OntoDM_919659
LCPN tree-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a tree-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per parent node (LCPN) approach.
OntoDM_919659
LPCN tree based HC algorithm for multiple path and non-mandatory leaf node prediction
OntoDM_930862
OntoDM_930862s
OntoDM_930862
OntoDM_930862
OntoDM_930862
Tree based hierarchical classification task with multiple label paths and partial depth labeling is a tree based hierarchical classification task where the objective is to predict a set of labels organized in a tree (represented with a output tree with boolean edges and discrete nodes) from a set of features (represented by a descriptive tuple of primitives datatype), where the data instances are allowed to have multiple paths of labels and at least one instance has a partial depth of labeling.
OntoDM_930862
tree-based hierarchical classification task with multiple label paths and partial depth labeling
OntoDM_931732
OntoDM_931732s
OntoDM_931732
OntoDM_931732
OntoDM_931732
Hierarchical classification task is a feature-based structured output prediction task where the objective is to predict a hierarchical output (represented with a output labeled graph datatype) from a set of features (represented by a descriptive tuple of primitives datatype).
OntoDM_931732
supervised hierarchical classification task
OntoDM_936293
OntoDM_936293s
OntoDM_936293
OntoDM_936293
OntoDM_936293
output tuple of real specification is an output tuple of primitives specification that denotes a tuple of reals datatype on the output part of the data.
OntoDM_936293
output:tuple of real
OntoDM_938471
OntoDM_938471s
OntoDM_938471
OntoDM_938471
OntoDM_938471
a data example specification is a data item specification entity that is about a data example.
OntoDM_938471
data example specification
OntoDM_941659
OntoDM_941659s
OntoDM_941659
OntoDM_941659
OntoDM_941659
constraint based data mining task
OntoDM_941793
OntoDM_941793s
OntoDM_941793
OntoDM_941793
OntoDM_941793
Feature-based predictive modeling algorithm for primitive output is a data mining algorithm that solves a feature-based primitive output prediction task and as a result produces a feature-based predictive model for primitive output.
OntoDM_941793
feature-based predictive modeling algorithm for primitive output
OntoDM_942569
OntoDM_942569s
OntoDM_942569
OntoDM_942569
OntoDM_942569
A structure-based predictive model for primitive output is a predictive model specification and denotes predictive models that are built on data having primitive datatype on the output part, and a structured datatype on the descriptive part.
OntoDM_942569
structure-based predictive model for primitive output
OntoDM_942737
OntoDM_942737s
OntoDM_942737
OntoDM_942737
OntoDM_942737
LC DAG-based hierarchical classification algorithm is a data mining algorithm that solves a DAG-based hierarchical classification task and as a result produces a hierarchical classification model using a local classifier (LC) approach.
OntoDM_942737
LC DAG based HC algorithm
OntoDM_944653
OntoDM_944653s
OntoDM_944653
OntoDM_944653
OntoDM_944653
data mining software
OntoDM_947353
OntoDM_947353
OntoDM_947353
descriptive specification
OntoDM_960431
OntoDM_960431s
OntoDM_960431
OntoDM_960431
OntoDM_960431
hierarchical classification dataset is a dataset specification of a labeled dataset with tuple of primitives datatype (specified with the feature set specification) on the descriptive part and a labeled graph datatype on the output part of the data.
OntoDM_960431
hierarchical classification dataset
OntoDM_970232
OntoDM_970232s
OntoDM_970232
OntoDM_970232
OntoDM_970232
Stacking
OntoDM_975727
OntoDM_975727s
OntoDM_975727
OntoDM_975727
OntoDM_975727
LCL DAG-based hierarchical classification algorithm for multiple path and mandatory leaf node prediction is a data mining algorithm that solves a DAG-based hierarchical classification task with multiple label paths and full depth labeling and as a result produces a hierarchical classification model using a local classifier per level (LCL) approach.
OntoDM_975727
LCL DAG based HC algorithm for multiple path and mandatory leaf node prediction
OntoDM_982352
OntoDM_982352s
OntoDM_982352
OntoDM_982352
OntoDM_982352
data mining workflow execution
OntoDM_997152
OntoDM_997152s
OntoDM_997152
OntoDM_997152
OntoDM_997152
generalization processing algorithm
OntoDM_U1_059913
OntoDM_U1_059913s
OntoDM_U1_059913
OntoDM_U1_059913
OntoDM_U1_059913
evaluation workflow execution
OntoDM_U1_858511
OntoDM_U1_858511s
OntoDM_U1_858511
OntoDM_U1_858511
OntoDM_U1_858511
evaluation workflow
OntoDT_10000000000
completely labeled dataset
OntoDT_10000000001
semi-labeled dataset
OntoDT_10000000002
partially labeled dataset
OntoDT_10000000003
supervised predictive modelling task
OntoDT_10000000004
semi-supervised predictive modelling task
OntoDT_10000000005
semi-supervised structured output prediction task
OntoDT_10000000006
semi-supervised feature-based structured output prediction task
OntoDT_10000000007
semi-supervised hierarchical classification task
OntoDT_10000000008
semi-supervised DAG based hierarchical classification task
OntoDT_10000000009
semi-supervised tree-based hierarchical classification task
OntoDT_10000000010
semi-supervised multi-label classification task
OntoDT_10000000011
semi-supervised multi-target prediction task
OntoDT_10000000012
semi-supervised multi-target classification task
OntoDT_10000000013
semi-supervised multi-target binary classification task
OntoDT_10000000014
semi-supervised multi-target multi-class classification task
OntoDT_10000000015
semi-supervised multi-target regression task
OntoDT_10000000016
semi-supervised time-series prediction task
OntoDT_10000000017
semi-supervised structure-based structured output prediction task
OntoDT_10000000018
semi-supervised primitive output prediction task
OntoDT_10000000019
semi-supervised feature-based primitive output prediction task
OntoDT_10000000020
semi-supervised flat classification task
OntoDT_10000000021
semi-supervised binary classification task
OntoDT_10000000022
semi-supervised multi-class classification task
OntoDT_10000000023
semi-supervised regression task
OntoDT_10000000024
semi-supervised structure-based primitive output prediction task
OntoDT_10000000025
online predictive modeling task
OntoDT_10000000026
batch predictive modeling task
OntoDT_10000000027
online supervised predictive modeling task
OntoDT_10000000028
online semi-supervised predictive modeling task
OntoDT_10000000029
online semi-supervised structured output prediction task
OntoDT_10000000030
online semi-supervised feature-based structured output prediction task
OntoDT_10000000031
online semi-supervised hierarchical classification task
OntoDT_10000000032
online semi-supervised DAG based hierarchical classification task
OntoDT_10000000033
online semi-supervised tree based hierarchical classification task
OntoDT_10000000034
online semi-supervised multi-label classification task
OntoDT_10000000035
online semi-supervised multi-target prediction task
OntoDT_10000000036
online semi-supervised multi-target classification task
OntoDT_10000000037
online semi-supervised multi-target binary classification task
OntoDT_10000000038
online semi-supervised multi-target multi-class classification task
OntoDT_10000000039
online semi-supervised multi-target regression task
OntoDT_10000000040
online semi-supervised time-series prediction task
OntoDT_10000000041
online semi-supervised structure-based structured output prediction task
OntoDT_10000000042
online semi-supervised primitive output prediction task
OntoDT_10000000043
online semi-supervised feature-based primitive output prediction task
OntoDT_10000000044
online semi-supervised flat classification task
OntoDT_10000000045
online semi-supervised binary classification task
OntoDT_10000000046
online semi-supervised multi-class classification task
OntoDT_10000000047
online semi-supervised regression task
OntoDT_10000000048
online semi-supervised structure-based primitive output prediction task
OntoDT_10000000049
online supervised structured output prediction task
OntoDT_10000000050
online supervised feature-based structured output prediction task
OntoDT_10000000051
online supervised hierarchical classification task
OntoDT_10000000052
online supervised DAG based hierarchical classification task
OntoDT_10000000053
online supervised tree-based hierarchical classification task
OntoDT_10000000054
online supervised multi-label classification task
OntoDT_10000000055
online supervised multi-target prediction task
OntoDT_10000000056
online supervised multi-target classification task
OntoDT_10000000057
online supervised multi-target binary classification task
OntoDT_10000000058
online supervised multi-target multi-class classification task
OntoDT_10000000059
online supervised multi-target regression task
OntoDT_10000000060
online supervised time-series prediction task
OntoDT_10000000061
online supervised structure-based structured output prediction task
OntoDT_10000000062
online supervised primitive output prediction task
OntoDT_10000000063
online supervised feature-based primitive output prediction task
OntoDT_10000000064
online supervised flat classification task
OntoDT_10000000065
online supervised binary classification task
OntoDT_10000000066
online supervised multi-class classification task
OntoDT_10000000067
online supervised regression task
OntoDT_10000000068
online supervised structure-based primitive output prediction task
OntoDT_10000000069
data stream specification
OntoDT_10000000070
labeled data stream
OntoDT_10000000071
completely labeled data stream
OntoDT_10000000072
semi-labeled data stream
OntoDT_10000000073
partially labeled data stream
OntoDT_10000000074
unlabeled data stream
OntoDT_10000000075
semi-labeled dataset with structured output
OntoDT_10000000076
feature-based semi-labeled dataset with structured output
OntoDT_10000000077
feature-based time-series semi-labeled prediction dataset
OntoDT_10000000078
hierarchical semi-labeled classification dataset
OntoDT_10000000079
DAG-based hierarchical semi-labeled classification dataset
OntoDT_10000000080
tree-based hierarchical semi-labeled classification dataset
OntoDT_10000000081
multi-label semi-labeled classification dataset
OntoDT_10000000082
multi-target semi-labeled prediction dataset
OntoDT_10000000083
multi-target semi-labeled binary classification dataset
OntoDT_10000000084
multi-target semi-labeled multi-class classification dataset
OntoDT_10000000085
multi-target semi-labeled regression dataset
OntoDT_10000000086
structure-based semi-labeled dataset with structured output
OntoDT_10000000087
semi-labeled dataset with primitive output
OntoDT_10000000088
feature-based semi-labeled dataset with primitive output
OntoDT_10000000089
flat semi-labeled classification dataset
OntoDT_10000000090
binary semi-labeled classification dataset
OntoDT_10000000091
multi-class semi-labeled classification dataset
OntoDT_10000000092
semi-labeled regression dataset
OntoDT_10000000093
structure-based semi-labeled dataset with primitive output
OntoDT_10000000094
semi-labeled data stream with structured output
OntoDT_10000000095
feature-based semi-labeled data stream with structured output
OntoDT_10000000096
feature-based time-series semi-labeled prediction data stream
OntoDT_10000000097
hierarchical semi-labeled classification data stream
OntoDT_10000000098
DAG-based hierarchical semi-labeled classification data stream
OntoDT_10000000099
tree-based hierarchical semi-labeled classification data stream
OntoDT_10000000100
multi-label semi-labeled classification data stream
OntoDT_10000000101
multi-target semi-labeled prediction data stream
OntoDT_10000000102
multi-target semi-labeled binary classification data stream
OntoDT_10000000103
multi-target semi-labeled multi-class classification data stream
OntoDT_10000000104
multi-target semi-labeled regression data stream
OntoDT_10000000105
structure-based semi-labeled data stream with structured output
OntoDT_10000000106
semi-labeled data stream with primitive output
OntoDT_10000000107
feature-based semi-labeled data stream with primitive output
OntoDT_10000000108
flat semi-labeled classification data stream
OntoDT_10000000109
binary semi-labeled classification data stream
OntoDT_10000000110
multi-class semi-labeled classification data stream
OntoDT_10000000111
semi-labeled regression data stream
OntoDT_10000000112
structure-based semi-labeled data stream with primitive output
OntoDT_10000000113
multi-target semi-labeled classification data stream
OntoDT_10000000114
multi-target semi-labeled classification dataset
OntoDT_10000000115
completely labeled data stream with structured output
OntoDT_10000000116
feature-based completely labeled data stream with structured output
OntoDT_10000000117
feature-based time-series prediction data stream
OntoDT_10000000118
hierarchical classification data stream
OntoDT_10000000119
DAG-based hierarchical classification data stream
OntoDT_10000000120
tree-based hierarchical classification data stream
OntoDT_10000000121
multi-label classification data stream
OntoDT_10000000122
multi-target prediction data stream
OntoDT_10000000123
multi-target classification data stream
OntoDT_10000000124
multi-target binary classification data stream
OntoDT_10000000125
multi-target multi-class classification data stream
OntoDT_10000000126
multi-target regression data stream
OntoDT_10000000127
structure-based completely labeled data stream with structured output
OntoDT_10000000128
completely labeled data stream with primitive output
OntoDT_10000000129
feature-based completely labeled data stream with primitive output
OntoDT_10000000130
flat classification data stream
OntoDT_10000000131
binary classification data stream
OntoDT_10000000132
multi-class classification data stream
OntoDT_10000000133
regression data stream
OntoDT_10000000134
structure-based completely labeled data stream with primitive output
http://www.ontodm.com/clus/OntoDM_001024
OntoDM_714659s
http://www.ontodm.com/clus/OntoDM_001024
OntoDM_714659
http://www.ontodm.com/clus/OntoDM_001024
generalization language specification
http://www.ontodm.com/clus/OntoDM_clus_00001
OntoDM_clus_00001
http://www.ontodm.com/clus/OntoDM_clus_00002
OntoDM_clus_00002
http://www.ontodm.com/clus/OntoDM_clus_00003
OntoDM_clus_00003
http://www.ontodm.com/clus/OntoDM_clus_00004
OntoDM_clus_00004
http://www.ontodm.com/clus/OntoDM_clus_00005
OntoDM_clus_00005
http://www.ontodm.com/clus/OntoDM_clus_00006
OntoDM_clus_00006
http://www.ontodm.com/clus/OntoDM_clus_00007
OntoDM_clus_00007
http://www.ontodm.com/clus/OntoDM_clus_00008
OntoDM_clus_00008
http://www.ontodm.com/clus/OntoDM_clus_00009
OntoDM_clus_00009
http://www.ontodm.com/clus/OntoDM_clus_00010
OntoDM_clus_00010
http://www.ontodm.com/clus/OntoDM_clus_00011
OntoDM_clus_00011
http://www.ontodm.com/clus/OntoDM_clus_00012
OntoDM_clus_00012
http://www.ontodm.com/clus/OntoDM_clus_00013
OntoDM_clus_00013
http://www.ontodm.com/clus/OntoDM_clus_00014
OntoDM_clus_00014
http://www.ontodm.com/clus/OntoDM_clus_00015
OntoDM_clus_00015
http://www.ontodm.com/clus/OntoDM_clus_00016
OntoDM_clus_00016
http://www.ontodm.com/clus/OntoDM_clus_00017
OntoDM_clus_00017
http://www.ontodm.com/clus/OntoDM_clus_00018
OntoDM_clus_00018
http://www.ontodm.com/clus/OntoDM_clus_00019
OntoDM_clus_00019
http://www.ontodm.com/clus/OntoDM_clus_00020
OntoDM_clus_00020
http://www.ontodm.com/clus/OntoDM_clus_00021
OntoDM_clus_00021
http://www.ontodm.com/clus/OntoDM_clus_00022
OntoDM_clus_00022
http://www.ontodm.com/clus/OntoDM_clus_00023
OntoDM_clus_00023
http://www.ontodm.com/clus/OntoDM_clus_00024
OntoDM_clus_00024
http://www.ontodm.com/clus/OntoDM_clus_00025
OntoDM_clus_00025
http://www.ontodm.com/clus/OntoDM_clus_00026
OntoDM_clus_00026
http://www.ontodm.com/clus/OntoDM_clus_00027
OntoDM_clus_00027
http://www.ontodm.com/clus/OntoDM_clus_00028
OntoDM_clus_00028
http://www.ontodm.com/clus/OntoDM_clus_00029
OntoDM_clus_00029
http://www.ontodm.com/clus/OntoDM_clus_00030
OntoDM_clus_00030
http://www.ontodm.com/clus/OntoDM_clus_00031
OntoDM_clus_00031
http://www.ontodm.com/clus/OntoDM_clus_00032
OntoDM_clus_00032
http://www.ontodm.com/clus/OntoDM_clus_00033
OntoDM_clus_00033
http://www.ontodm.com/clus/OntoDM_clus_00034
OntoDM_clus_00034
http://www.ontodm.com/clus/OntoDM_clus_00035
OntoDM_clus_00035
http://www.ontodm.com/clus/OntoDM_clus_00036
OntoDM_clus_00036
http://www.ontodm.com/clus/OntoDM_clus_00037
OntoDM_clus_00037
http://www.ontodm.com/clus/OntoDM_clus_00038
OntoDM_clus_00038
http://www.ontodm.com/clus/OntoDM_clus_00039
OntoDM_clus_00039
http://www.ontodm.com/clus/OntoDM_clus_00040
OntoDM_clus_00040
http://www.ontodm.com/clus/OntoDM_clus_00041
OntoDM_clus_00041
http://www.ontodm.com/clus/OntoDM_clus_00042
OntoDM_clus_00042
http://www.ontodm.com/clus/OntoDM_clus_00043
OntoDM_clus_00043
http://www.ontodm.com/clus/OntoDM_clus_00044
OntoDM_clus_00044
http://www.ontodm.com/clus/OntoDM_clus_00046
OntoDM_clus_00046
http://www.ontodm.com/clus/OntoDM_clus_00047
OntoDM_clus_00047
http://www.ontodm.com/clus/OntoDM_clus_00048
OntoDM_clus_00048
http://www.ontodm.com/clus/OntoDM_clus_00049
OntoDM_clus_00049
http://www.ontodm.com/clus/OntoDM_clus_00050
OntoDM_clus_00050
http://www.ontodm.com/clus/OntoDM_clus_00051
OntoDM_clus_00051
http://www.ontodm.com/clus/OntoDM_clus_00052
OntoDM_clus_00052
http://www.ontodm.com/clus/OntoDM_clus_00053
OntoDM_clus_00053
http://www.ontodm.com/clus/OntoDM_clus_00054
OntoDM_clus_00054
http://www.ontodm.com/clus/OntoDM_clus_00055
OntoDM_clus_00055
http://www.ontodm.com/clus/OntoDM_clus_00056
OntoDM_clus_00056
http://www.ontodm.com/clus/OntoDM_clus_00057
OntoDM_clus_00057
http://www.ontodm.com/clus/OntoDM_clus_00058
OntoDM_clus_00058
http://www.ontodm.com/clus/OntoDM_clus_00059
OntoDM_clus_00059
http://www.ontodm.com/clus/OntoDM_clus_00060
OntoDM_clus_00060
http://www.ontodm.com/clus/OntoDM_clus_00061
OntoDM_clus_00061
http://www.ontodm.com/clus/OntoDM_clus_00062
OntoDM_clus_00062
http://www.ontodm.com/clus/OntoDM_clus_00063
OntoDM_clus_00063
http://www.ontodm.com/clus/OntoDM_clus_00064
OntoDM_clus_00064
http://www.ontodm.com/clus/OntoDM_clus_00065
OntoDM_clus_00065
http://www.ontodm.com/clus/OntoDM_clus_00068
OntoDM_clus_00068
http://www.ontodm.com/clus/OntoDM_clus_00070
OntoDM_clus_00070
http://www.ontodm.com/clus/OntoDM_clus_00071
OntoDM_clus_00071
http://www.ontodm.com/clus/OntoDM_clus_00072
OntoDM_clus_00072
http://www.ontodm.com/clus/OntoDM_clus_00073
OntoDM_clus_00073
http://www.ontodm.com/clus/OntoDM_clus_00074
OntoDM_clus_00074
http://www.ontodm.com/clus/OntoDM_clus_00075
OntoDM_clus_00075
http://www.ontodm.com/clus/OntoDM_clus_00076
OntoDM_clus_00076
http://www.ontodm.com/clus/OntoDM_clus_00077
OntoDM_clus_00077
http://www.ontodm.com/clus/OntoDM_clus_00079
OntoDM_clus_00079
http://www.ontodm.com/clus/OntoDM_clus_00079
OntoDM_clus_00079s
http://www.ontodm.com/clus/OntoDM_clus_00079
OntoDM_clus_00079ed
http://www.ontodm.com/clus/OntoDM_clus_00080
OntoDM_clus_00080
http://www.ontodm.com/clus/OntoDM_clus_00082
OntoDM_clus_00082
http://www.ontodm.com/clus/OntoDM_clus_00083
OntoDM_clus_00083
http://www.ontodm.com/clus/OntoDM_clus_00084
OntoDM_clus_00084
http://www.ontodm.com/clus/OntoDM_clus_00085
OntoDM_clus_00085
http://www.ontodm.com/clus/OntoDM_clus_00086
OntoDM_clus_00086
http://www.ontodm.com/clus/OntoDM_clus_00087
OntoDM_clus_00087
http://www.ontodm.com/clus/OntoDM_clus_00088
OntoDM_clus_00088
http://www.ontodm.com/clus/OntoDM_clus_00089
OntoDM_clus_00089
http://www.ontodm.com/clus/OntoDM_clus_00090
OntoDM_clus_00090
http://www.ontodm.com/clus/OntoDM_clus_00091
OntoDM_clus_00091
http://www.ontodm.com/clus/OntoDM_clus_00092
OntoDM_clus_00092
http://www.ontodm.com/clus/OntoDM_clus_00093
OntoDM_clus_00093
http://www.ontodm.com/clus/OntoDM_clus_00094
OntoDM_clus_00094
http://www.ontodm.com/clus/OntoDM_clus_00095
OntoDM_clus_00095
http://www.ontodm.com/clus/OntoDM_clus_00096
OntoDM_clus_00096
http://www.ontodm.com/clus/OntoDM_clus_00097
OntoDM_clus_00097
http://www.ontodm.com/clus/OntoDM_clus_00098
OntoDM_clus_00098
http://www.ontodm.com/clus/OntoDM_clus_00099
OntoDM_clus_00099
http://www.ontodm.com/clus/OntoDM_clus_00100
OntoDM_clus_00100
http://www.ontodm.com/clus/OntoDM_clus_00101
OntoDM_clus_00101
http://www.ontodm.com/clus/OntoDM_clus_00102
OntoDM_clus_00102
http://www.ontodm.com/clus/OntoDM_clus_00103
OntoDM_clus_00103
http://www.ontodm.com/clus/OntoDM_clus_00104
OntoDM_clus_00104
http://www.ontodm.com/clus/OntoDM_clus_00105
OntoDM_clus_00105
http://www.ontodm.com/clus/OntoDM_clus_00106
OntoDM_clus_00106
http://www.ontodm.com/clus/OntoDM_clus_00107
OntoDM_clus_00107
http://www.ontodm.com/clus/OntoDM_clus_00108
OntoDM_clus_00108
http://www.ontodm.com/clus/OntoDM_clus_00109
OntoDM_clus_00109
http://www.ontodm.com/clus/OntoDM_clus_00110
OntoDM_clus_00110
http://www.ontodm.com/clus/OntoDM_clus_00111
OntoDM_clus_00111
http://www.ontodm.com/clus/OntoDM_clus_00112
OntoDM_clus_00112
http://www.ontodm.com/clus/OntoDM_clus_00113
OntoDM_clus_00113
http://www.ontodm.com/clus/OntoDM_clus_00114
OntoDM_clus_00114
http://www.ontodm.com/clus/OntoDM_clus_00115
OntoDM_clus_00115
http://www.ontodm.com/clus/OntoDM_clus_00116
OntoDM_clus_00116
http://www.ontodm.com/clus/OntoDM_clus_00117
OntoDM_clus_00117
http://www.ontodm.com/clus/OntoDM_clus_00118
OntoDM_clus_00118
http://www.ontodm.com/clus/OntoDM_clus_00119
OntoDM_clus_00119
http://www.ontodm.com/clus/OntoDM_clus_00120
OntoDM_clus_00120
http://www.ontodm.com/clus/OntoDM_clus_00121
OntoDM_clus_00121
http://www.ontodm.com/clus/OntoDM_clus_00122
OntoDM_clus_00122
http://www.ontodm.com/clus/OntoDM_clus_00123
OntoDM_clus_00123
http://www.ontodm.com/clus/OntoDM_clus_00129
OntoDM_clus_00129
http://www.ontodm.com/clus/OntoDM_clus_00130
OntoDM_clus_00130
http://www.ontodm.com/clus/OntoDM_clus_00131
OntoDM_clus_00131
http://www.ontodm.com/clus/OntoDM_clus_00132
OntoDM_clus_00132
http://www.ontodm.com/clus/OntoDM_clus_00133
OntoDM_clus_00133
http://www.ontodm.com/clus/OntoDM_clus_00134
OntoDM_clus_00134
http://www.ontodm.com/clus/OntoDM_clus_00135
OntoDM_clus_00135
http://www.ontodm.com/clus/OntoDM_clus_00136
OntoDM_clus_00136
http://www.ontodm.com/clus/OntoDM_clus_00137
OntoDM_clus_00137
http://www.ontodm.com/clus/OntoDM_clus_00138
OntoDM_clus_00138
http://www.ontodm.com/clus/OntoDM_clus_00139
OntoDM_clus_00139
http://www.ontodm.com/clus/OntoDM_clus_00140
OntoDM_clus_00140
http://www.ontodm.com/clus/OntoDM_clus_00141
OntoDM_clus_00141
http://www.ontodm.com/clus/OntoDM_clus_00142
OntoDM_clus_00142
http://www.ontodm.com/clus/OntoDM_clus_00143
OntoDM_clus_00143
http://www.ontodm.com/clus/OntoDM_clus_00144
OntoDM_clus_00144
http://www.ontodm.com/clus/OntoDM_clus_00145
OntoDM_clus_00145
http://www.ontodm.com/clus/OntoDM_clus_00146
OntoDM_clus_00146
http://www.ontodm.com/clus/OntoDM_clus_00147
OntoDM_clus_00147
http://www.ontodm.com/clus/OntoDM_clus_00148
OntoDM_clus_00148
http://www.ontodm.com/clus/OntoDM_clus_00149
OntoDM_clus_00149
http://www.ontodm.com/clus/OntoDM_clus_00150
OntoDM_clus_00150
http://www.ontodm.com/clus/OntoDM_clus_00151
OntoDM_clus_00151
http://www.ontodm.com/clus/OntoDM_clus_00152
OntoDM_clus_00152
http://www.ontodm.com/clus/OntoDM_clus_00153
OntoDM_clus_00153
http://www.ontodm.com/clus/OntoDM_clus_00154
OntoDM_clus_00154
http://www.ontodm.com/clus/OntoDM_clus_00155
OntoDM_clus_00155
http://www.ontodm.com/clus/OntoDM_clus_00156
OntoDM_clus_00156
http://www.ontodm.com/clus/OntoDM_clus_00157
OntoDM_clus_00157
http://www.ontodm.com/clus/OntoDM_clus_00158
OntoDM_clus_00158
http://www.ontodm.com/clus/OntoDM_clus_00159
OntoDM_clus_00159
http://www.ontodm.com/clus/OntoDM_clus_00160
OntoDM_clus_00160
http://www.ontodm.com/clus/OntoDM_clus_00161
OntoDM_clus_00161
http://www.ontodm.com/clus/OntoDM_clus_00162
OntoDM_clus_00162
http://www.ontodm.com/clus/OntoDM_clus_00163
OntoDM_clus_00163
http://www.ontodm.com/clus/OntoDM_clus_00164
OntoDM_clus_00164
http://www.ontodm.com/clus/OntoDM_clus_00165
OntoDM_clus_00165
http://www.ontodm.com/clus/OntoDM_clus_00166
OntoDM_clus_00166
http://www.ontodm.com/clus/OntoDM_clus_00167
OntoDM_clus_00167
http://www.ontodm.com/clus/OntoDM_clus_00168
OntoDM_clus_00168
http://www.ontodm.com/clus/OntoDM_clus_00169
OntoDM_clus_00169
http://www.ontodm.com/clus/OntoDM_clus_00170
OntoDM_clus_00170
http://www.ontodm.com/clus/OntoDM_clus_00171
OntoDM_clus_00171
http://www.ontodm.com/clus/OntoDM_clus_00172
OntoDM_clus_00172
http://www.ontodm.com/clus/OntoDM_clus_00173
OntoDM_clus_00173
http://www.ontodm.com/clus/OntoDM_clus_00174
OntoDM_clus_00174
http://www.ontodm.com/clus/OntoDM_clus_00175
OntoDM_clus_00175
http://www.ontodm.com/clus/OntoDM_clus_00176
OntoDM_clus_00176
http://www.ontodm.com/clus/OntoDM_clus_00177
OntoDM_clus_00177
http://www.ontodm.com/clus/OntoDM_clus_00178
OntoDM_clus_00178
http://www.ontodm.com/clus/OntoDM_clus_00179
OntoDM_clus_00179
http://www.ontodm.com/clus/OntoDM_clus_00180
OntoDM_clus_00180
http://www.ontodm.com/clus/OntoDM_clus_00181
OntoDM_clus_00181
http://www.ontodm.com/clus/OntoDM_clus_00182
OntoDM_clus_00182
http://www.ontodm.com/clus/OntoDM_clus_00183
OntoDM_clus_00183
http://www.ontodm.com/clus/OntoDM_clus_00184
OntoDM_clus_00184
http://www.ontodm.com/clus/OntoDM_clus_00185
OntoDM_clus_00185
http://www.ontodm.com/clus/OntoDM_clus_00186
OntoDM_clus_00186
http://www.ontodm.com/clus/OntoDM_clus_00187
OntoDM_clus_00187
http://www.ontodm.com/clus/OntoDM_clus_00188
OntoDM_clus_00188
http://www.ontodm.com/clus/OntoDM_clus_00189
OntoDM_clus_00189
http://www.ontodm.com/clus/OntoDM_clus_00190
OntoDM_clus_00190
http://www.ontodm.com/clus/OntoDM_clus_00191
OntoDM_clus_00191
http://www.ontodm.com/clus/OntoDM_clus_00192
OntoDM_clus_00192
http://www.ontodm.com/clus/OntoDM_clus_00193
OntoDM_clus_00193
http://www.ontodm.com/clus/OntoDM_clus_00194
OntoDM_clus_00194
http://www.ontodm.com/clus/OntoDM_clus_00195
OntoDM_clus_00195
http://www.ontodm.com/clus/OntoDM_clus_00196
OntoDM_clus_00196
http://www.ontodm.com/clus/OntoDM_clus_00197
OntoDM_clus_00197
http://www.ontodm.com/clus/OntoDM_clus_00198
OntoDM_clus_00198
http://www.ontodm.com/clus/OntoDM_clus_00200
OntoDM_clus_00200
http://www.ontodm.com/clus/OntoDM_clus_00201
OntoDM_clus_00201
http://www.ontodm.com/clus/OntoDM_clus_00202
OntoDM_clus_00202
http://www.ontodm.com/clus/OntoDM_clus_00203
OntoDM_clus_00203
http://www.ontodm.com/clus/OntoDM_clus_00204
OntoDM_clus_00204
http://www.ontodm.com/clus/OntoDM_clus_00205
OntoDM_clus_00205
http://www.ontodm.com/clus/OntoDM_clus_00206
OntoDM_clus_00206
http://www.ontodm.com/clus/OntoDM_clus_00207
OntoDM_clus_00207
http://www.ontodm.com/clus/OntoDM_clus_00208
OntoDM_clus_00208
http://www.ontodm.com/clus/OntoDM_clus_00209
OntoDM_clus_00209
http://www.ontodm.com/clus/OntoDM_clus_00210
OntoDM_clus_00210
http://www.ontodm.com/clus/OntoDM_clus_00211
OntoDM_clus_00211
http://www.ontodm.com/clus/OntoDM_clus_00212
OntoDM_clus_00212
http://www.ontodm.com/clus/OntoDM_clus_00213
OntoDM_clus_00213
http://www.ontodm.com/clus/OntoDM_clus_00214
OntoDM_clus_00214
http://www.ontodm.com/clus/OntoDM_clus_00215
OntoDM_clus_00215
http://www.ontodm.com/clus/OntoDM_clus_00216
OntoDM_clus_00216
http://www.ontodm.com/clus/OntoDM_clus_00217
OntoDM_clus_00217
http://www.ontodm.com/clus/OntoDM_clus_00218
OntoDM_clus_00218
http://www.ontodm.com/clus/OntoDM_clus_00219
OntoDM_clus_00219
http://www.ontodm.com/clus/OntoDM_clus_00220
OntoDM_clus_00220
http://www.ontodm.com/clus/OntoDM_clus_00221
OntoDM_clus_00221
http://www.ontodm.com/clus/OntoDM_clus_00222
OntoDM_clus_00222
http://www.ontodm.com/clus/OntoDM_clus_00223
OntoDM_clus_00223
http://www.ontodm.com/clus/OntoDM_clus_00224
OntoDM_clus_00224
http://www.ontodm.com/clus/OntoDM_clus_00225
OntoDM_clus_00225
http://www.ontodm.com/clus/OntoDM_clus_00226
OntoDM_clus_00226
http://www.ontodm.com/clus/OntoDM_clus_00227
OntoDM_clus_00227
http://www.ontodm.com/clus/OntoDM_clus_00228
OntoDM_clus_00228
http://www.ontodm.com/clus/OntoDM_clus_00229
OntoDM_clus_00229
http://www.ontodm.com/clus/OntoDM_clus_00230
OntoDM_clus_00230
http://www.ontodm.com/clus/OntoDM_clus_00231
OntoDM_clus_00231
http://www.ontodm.com/clus/OntoDM_clus_00232
OntoDM_clus_00232
http://www.ontodm.com/clus/OntoDM_clus_00233
OntoDM_clus_00233
http://www.ontodm.com/clus/OntoDM_clus_00234
OntoDM_clus_00234
http://www.ontodm.com/clus/OntoDM_clus_00235
OntoDM_clus_00235
http://www.ontodm.com/clus/OntoDM_clus_00236
OntoDM_clus_00236
http://www.ontodm.com/clus/OntoDM_clus_00237
OntoDM_clus_00237
http://www.ontodm.com/clus/OntoDM_clus_00238
OntoDM_clus_00238
http://www.ontodm.com/clus/OntoDM_clus_00240
OntoDM_clus_00240
http://www.ontodm/OntoDT#OntoDT_991825
OntoDT_991825
http://www.owl-ontologies.com/Ontology1184060740.owl#objectProperty_3
objectProperty_3
http://www.owl-ontologies.com/Ontology1184060740.owl#objectProperty_3
objectProperty_3s
http://www.owl-ontologies.com/Ontology1184060740.owl#objectProperty_3
objectProperty_3ed
http://www.owl-ontologies.com/Ontology1184060740.owl#objectProperty_3
has_information