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Abstract

We present an analysis of the ability of a third party to use the Topics API to re-identify a user
across two different sites. Our analysis explores how some of the design choices affect this capability. We
present both worst-case and optimistic scenarios for user re-identification, and provide empirical evidence
that the topics revealed are closer to the optimistic scenario than the worst-case one.

1 Introduction

Several API proposals have been put forward as part of the Privacy Sandbox effort; these proposals are
intended to significantly reduce cross site tracking while preserving relevant advertising. In comparison to
third party cookies, these APIs represent a step forward towards improving user privacy by supporting several
key ads use cases without using persistent cross-site identifiers. However, any API that provides information
about a user’s interests based on past browsing behavior does reveal some cross-site information. In this
note, we seek to analyze and quantify the information leaked by the proposed Topics API and to show how
different design choices impact its privacy properties.

We present a formal model to analyze privacy leakage in the Topics API. The approach allows us to
precisely state the worst case risk of re-identification and to identify the key properties of the real world
data distribution that ameliorate some of the worst case bounds. We evaluate the risks both analytically
and using real world empirical data. We make several assumptions on the threat model and we discuss
limitations of those assumptions in Section 7.

2 Setup

As previous analyses have noted [3], establishing a threat model for the Topics API requires care, since the
API is designed to provide some cross-site interest information about user behavior to support advertising.
Our goal is to consider re-identifiability: roughly speaking, the ability of an attacker using the Topics API
to link the identity of a user across two different domains.

We now define this formally. Consider a universe U of n users that visit websites. We denote a user by
u, and websites by w ∈ W. The spaceW consists of the collection of all domains in the internet. Abstractly,
the Topics API can be modeled as a randomized function T : W × U → C where C is the set of possible
categories that can be returned by the API.

An attacker is able to observe the topics returned by the API on two websites1, w1 and w2. For a user u,
let i1(u) and i2(u) represent the identity of user u on w1 and w2 respectively. We assume i1(u), i2(u) are the
ids assigned to the user u by the two sites, and these ids are uncorrelated with each other. We assume the
ids of the users of a site are unique. The attacker sees all n users u ∈ U visit both sites, generating sets of

1This stylized model makes several simplifying assumptions to provide a more focused threat model and analysis. In practice,
the attacker will likely be able to observe topics on multiple websites, and the output of the topics API may be derived from
more than one site visit.
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tuples T1 = {(i1(u),T(w1, u))}u∈U and T2 = {(i2(u),T(w2, u))}u∈U . Nature picks a user U ∈ U uniformly at
random, and reveals to the attacker the corresponding pair (i2(U),T(w2, U)) on website w2. The attacker’s
goal is to select the identity of the random user on website w1, i.e. i1(U).

There are two threat models that we consider:

• Per-Instant: The attacker sees a single output from the topics API for each user.

• Longitudinal: The attacker has access to consistent first party identity, and thus sees a sequence of
topics corresponding to each user.

2.1 Examples

Third party cookies We can model third party cookies as T(w, u) = h(u) where h is a random hash
function with a large range. Observe that since h does not depend on w, the attacker’s job is trivial in both
the per-instant and longitudinal threat models.2

Topics API We model the proposed Topics API by parameterizing it in three ways: the total number
of topics, |C| = N , the number of topics being randomized amongst, k, and the probability of selecting a
random topic p.

For k > 0 and user u ∈ U let S := S(u, k) ⊂ C denote the top-k categories associated with a user’s
browsing history in a given epoch. In this document we make no assumption on the set S(u, k) other
than |S(u, k)| = k. The latter can always be ensured by padding the top-k categories with random topics
whenever the user has fewer than k categories. The Topics API tracks S(u, k) for each user u, and the
function T(w1, u) returns one of the elements of S(u, k) uniformly at random with probability (1− p) and a
uniformly at random topic from C with probability p. Notice that the topic T (w1, u) is fixed for every visit
of u to site w1 for a given epoch of the API.

Throughout the paper we assume that the sets S(u, k) are fixed yet unknown to the attacker. The only
access to these sets is through the Topics API.

3 Re-identification Metrics

An immediate measure of the success of the attacker is the probability (over the random choice of user) that
the attack is successful.

Formally, let U denote a uniform random variable over the set of users U and let T2 = T(w2, U) be the
random variable representing the output of the API on w2. Without any additional information, an attacker
can only guess the identity of U in w1 uniformly at random. That is, the prior of the user’s identity in w1

is given by:

P (i1(U) = i) =
1

n
.

As described before, the attacker also has access to the set T1 = {(i1(u),T(w1, u)) : u ∈ U}, i.e., all topics
observed on site w1, and the random variable T2. Notice that T1 is a random set as the Topics API samples
an element from the top set of a user’s topics. We will denote realization of this random set by t1.

Remark 1. Throughout the document the probability measure we are considering is induced only by the
random selection of a user U and the randomness of the function T itself. The actual set of topics for each
user, S(u, k) is fixed, yet unknown to the attacker.

2Recall that the goal of the Topics proposal is to provide relevant advertising while significantly reducing cross-site tracking
compared with third-party cookies. This formulation demonstrates that third-party cookies have arbitrary leakage of cross-site
information, and that by comparison, the Topics API has a bounded rate of leakage. The aim of our analysis is to understand
how meaningful this bound is in practice.
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Given a realization of T2 and T1, the attacker can obtain a better posterior on the identity of U . In
particular, they may adjust their belief as

P (i1(U) = i|T1 = t1, T2 = t2) (1)

Observe that if this distribution is highly concentrated on a single identity value, then the re-identification
attack can be successful.

To precisely measure the information learned about the user by revealing a topic on w2 we look at the
KL-divergence between this distribution and the uniform prior:

KL
(
P (i1(U) = ·|T1 = t1, T2 = t2) || P (i(U) = ·)

)
.

This is precisely the information gain on i1(U) due to learning that T2 = t2 and T1 = t1.
When taking the expectation of the above quantity with respect to both the choice of t2 and t1 we recover

a well studied concept in information theory: the mutual information [1] between a user’s identity i1(U) and
the topics revealed by the Topics API:

I(i1(U);T1, T2) = Et2,t1 KL
(
P (i1(U) = ·|T1 = t1, T2 = t2) || P (i(U) = ·)

)
.

The above term represents the average number of bits of information that T2 and T1 provide about user’s
identity on w1.

Before analyzing this quantity for the Topics API, we first simplify this expression.

Theorem 1. Let T1 = T(w1, U). The above mutual information can be simplified as:

I(i1(U);T1, T2) = I(T1;T2),

where I(T1;T2) denotes the mutual information between the random variables T1 and T2.

Intuitively, if observing T2 allows an attacker to predict the topic of the user on w1 then an attacker can
reduce their search on w1 to those users whose topic matches the prediction.

4 Per Instance Analysis

We begin with a worst case analysis for the number of bits leaked by the Topics API in a single time
step. It is not hard to see that the mutual information depends on the collection of top topics S =
{S(u1, k), . . . , S(un, k)}. We call a collection of top k sets an assignment of topics to users. Thus we
want to understand how much leakage can happen across all possible assignments. Each assignment S in-
duces a probability measure P through the random variable S(U, k). We denote by P the finite set of all
such probability measures.

Theorem 2. Let N = |C| be the number of topics in a taxonomy, and let P be defined as above, then

max
P∈P

I(T1;T2) ≤ log
N

k
.

Proof. Using the definition of mutual information we have:

I(T1;T2) = H(T2)−H(T2|T1),

where H(·) and H(·|·) denote the entropy and conditional entropy operators. The first term is clearly upper
bounded by logN . We now lower bound the second term. Let S = S(U, k), using the fact that conditioning
always decreases entropy we have:

H(T2|T1) ≥ H(T2|T1, S) = H(T2|S),

where the last equality holds since the distribution of T2 does not depend on the first topic once S is known.
Finally since T2 is chosen uniformly from S and |S| = k we must have H(T2|S) = log k.
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Figure 1: Mutual information in the optimistic and worst case scenario.

In other words, the Topics API leaks at most log N/k bits with every topic release. For N = 349 – the
size of the published taxonomy [2] – and k = 5, this is 6.12 bits. It is worth noticing that even in the worst
case scenario this is still less cross-site information leakage than expected. Indeed, at first glance, the Topics
API seems to provide logN ∼ 8.44 bits of cross-site tracking information. The above theorem shows that
we can reduce this information by 26% even in the worst case scenario.

The following example shows that the above bound can be achieved.

Example 1 (Worst case scenario). Let N = |C| denote the number of topics in C and assume that N is
divisible by k. Let {P1, . . . , PN/k} denote a partition of C. We refer to each element in the partition as a
topic profile. Let the top set S = S(U, k) follow a uniform distribution over the profile partition. We proceed
to calculate the mutual information between T1 and T2.

I(T1;T2) = H(T1)−H(T1|T2)

It is clear that T1 is distributed uniformly across all possible topics. We thus have H(T1) = logN . On the
other hand, because S is a topic profile, observing T2 fully determines the value of S. Therefore, conditioned
on T2, T1 can be only one of k possible values. It follows that H(T1|T2) = log k and

I(T1;T2) = log
N

k

Observe that this example requires a very precise and clustered distribution of top-k topics. On the other
hand, if all sets of top-k are equally likely, then the number of bits leaked is significantly smaller.

Example 2 (Optimistic scenario). Consider the Topics API with p = 0. Assume that the random variable
S = S(U, k) is distributed uniformly across all possible length k sequences of topics. We know that

P (T1 = t1, T2 = t2) = P (T1 = t1, T2 = t2|(t1, t2) ∈ S)P ((t1, t2) ∈ S) (2)

The first term is always equal to 1
k2 whereas, due the uniformity of S, the second is given by{

k
N t1 = t2

k(k−1)
N(N−1) t1 6= t2

Therefore

P (T1 = t1, T2 = t2) =

{
1

kN t1 = t2
(k−1)

kN(N−1) t1 6= t2

4



I(T1;T2) =
∑
t∈C

P (T1 = T2 = t) log
P (T1 = T2 = t)

P (T1 = t)P (T2 = t)
+
∑
t1 6=t2

P (T1 = t1, T2 = t2) log
P (T1 = t1, T2 = t2)

P (T1 = t1)P (T2 = t2)

=
∑
t∈C

1

kN
log

1
kN
1

N2

+
∑
t1 6=t2

k − 1

kN(N − 1)
log

(k − 1)N

(N − 1)k

=
1

k
log

N

k
+

k − 1

k
log

N(k − 1)

k(N − 1)

For k = 5 and N = 349 the above expression is approximately 0.97 bits which is considerably less than the
6.12 bits in the worst case. We report this bound and the worst-case bound for k = 5 and different values of
N in Figure 1.

Note that when k = N , that is a random topic is returned on each website, this measure is 0, as there is
no cross-site information leaked. As k decreases, this number grows. When k = 1 (i.e. always returning the
top topic), the cross-site information leakage is logN bits. These two examples give a sense of the trade-off
used in setting parameter k.

A natural question is what is the expected information leakage for the Topics API in the wild. In Section 6
we measure the information leakage for the topics based on real browsing behavior.

Random Topics In the previous section we mostly ignored the effects of p, the probability that a uniformly
random topic is returned by the API.

By setting a non-zero p, we ensure that each topic has some minimum support, of roughly p/N ∼ 0.014%
of the population for N = 349 and p = 0.05. This minimum support gives some protection via k-anonymity
of topics, and also helps to move away from the worst case information leakage examples.

5 Longitudinal Analysis

We have considered the amount of cross-site information an API can release on a single call. Due to the
persistence of first party ids, an attacker could associate a sequence of values returned by the API for a user
on different epochs, which we refer to as a longitudinal profile. This longitudinal profile provides a more
powerful way of discovering the identity of a user on another website. Formally, let R be the number of
rounds an attacker gets to observe the output of the Topics API for a user. Let T r

i denote the topic observed
on website i at round r, T i = (T 1

i , . . . , T
R
i ) and Sr := Sr(U, k) denote the top-k set of interests of a random

user at round r. As before, we can show that the cross-site information leakage of the API using a sequence
of topics is given by the following mutual information

I(T 1;T2). (3)

Notice that when there is no dependency between the top topics associated with a user across rounds we
can easily express (3) as:

I(T 1;T 2) =

R∑
r=1

I(T r
1 ;T r

2 ).

Nevertheless, we expect some correlation of top topics across time. The following theorem describes how
these correlations affect the mutual information. (We give the proof in Appendix 10.)

Theorem 3. Let T 1:r
1 be the sequence of random variables T 1:r

1 = T 1
1 , . . . , T

r
1 . We define similarly T 1:r

2 .
Using this notation we prove the following bound:

I(T1;T2) ≤
R∑

r=1

I(T r
1 ;T r

2 ) +

R∑
r=2

I
(

(T r
1 , T

r
2 ) ; (T 1:r−1

1 , T 1:r−1
2 )

)
.
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Let us review the implications of this statement. The theorem shows that the total mutual information
of the sequences observed after R rounds is bounded by the sum of two terms. The first is the sum of the
per-instance mutual information of observing the two topics, at a given time.

The second term depends on the mutual information of two distributions: (1) the distribution of the
pair of topics observed at time r; and (2) the distribution of the pairs of topics observed up to time r − 1.
In the general case, the second term shows that, whenever the correlation with past history is bounded,
the additional leakage over time is small. As before, we now try to understand the worst case information
leakage across rounds.

Theorem 4 (Worst-case Analysis). Let R > 0 denote the number of topics released. Let P denote the space
of probability measures over collections of top-k sets (S1, . . . , SR) The mutual information between T1 and
T2 can be bounded as:

max
P∈P

I(T1;T2) ≤ R log
N

k

That is, the amount of information leakage grows linearly with the number of rounds and is at most the
per-round maximum information leakage. That is, after R rounds we could potentially leak approximately
6.12R bits.

Proof. By the chain rule of mutual information we have

I(T1;T2) =

R∑
r=1

I(T1;T r
2 |T 1

2 , . . . , T
r−1
2 )

We now proceed to bound each element in the above summation. By definition of conditional mutual
information we have:

I(T1;T r
2 |T 1

2 , . . . , T
r−1
2 ) = H(T r

2 |T 1
2 , . . . , T

r−1
2 )−H(T r

2 |T 1
2 , . . . , T

r−1
2 , T 1). (4)

The first term in the above equation is bounded by logN since T r
2 can take at most N values. We proceed

to lower bound the second term. Using the fact that entropy decreases through conditioning we have

H(T r
2 |T 1

2 , . . . , T
r−1
2 , T 1) ≥ H(T r

2 |T 1
2 , . . . , T

r−1
2 , T 1, Sr) = H(T r

2 |Sr),

where we used the fact that the distribution of T r
2 is independent of any other topic observation given the

top set Sr. Finally, since T r
2 is a uniform draw from Sr and |Sr| = k we have H(T r

2 |Sr) = log k. Putting it
all together yields the desired result.

Given the previous results we have established that, under the parameters of the model evaluated, the
leakage is between 0.97R in the optimistic and no correlation scenario and 6.12R bits in the worst case.

6 Empirical evaluation of Topics Mutual Information

The examples described in previous sections show that there is a very big range between the best and worst
case scenarios for mutual information leakage. It is natural to ask where in that range we expect the real
world distribution to occur. To measure this we evaluated the Topics API empirically.

Dataset. The dataset used for this simulation is derived from synced Chrome browsing history. All users
represented in the study have opted in to syncing their Chrome history and using Chrome history for cross-
product personalization (supplemental Web & App activity). On top of following Google’s highest data
security and privacy standards, all unique user identifiers were removed before any processing. We simulated
the Topics API on these browsing traces and removed users who did not have at least 1 topic associated to
them on each of the two week study period and only aggregated results were used for further analysis.
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Number of weeks observed (R) Information leakage
No correlation case Worst case Observed in Chrome data

1 0.97 bits 6.12 bits 1.01 bits
2 1.94 bits 12.24 bits 2.12 bits

Table 1: Comparison of cross-site information leakage for 1 and 2 weeks of history for observed topics on
two different sites.

Taxonomy. We classified websites into topics using a server side version of Chrome’s site classifier and
used the taxonomy published by Chrome [2].

Time. We simulated the Topics API for R = 1 and R = 2 weeks.

Simulation. For each user we extracted the sets S1, S2 of top 5 topics for each week (sorted by frequency,
breaking ties arbitrarily). If a user did not have 5 topics associated with them we padded the set S with
random topics from the taxonomy. For each user, we used the top sets to generate a sample of random
variables T j

i for i = 1, 2 and j = 1, 2. We used this data to generate the joint empirical probabilities of topics
across two websites and across two weeks. In this simulation we set the random topic probability, p to zero
to match the setup of the previous sections.

Results. We first calculated the per instance mutual information of topics across two sites and found it
to be 1.01 bits. This value is remarkably close to the uniform scenario discussed in Example 2. However,
it is worth noting that the distribution of topics is not uniform since the entropy of the random variable
T1 is 7.09 bits as opposed to 8.44 bits of a uniform random variable. That is, there exists some correlation
between the top topics associated with a user, yet it is significantly less than the worst case scenario.

We also analyzed the mutual information of observing two topics (one for each week) and observed a
mutual information of 2.12 bits. While this does not match the optimistic scenario of having topics completely
independent across time — which would yield 2(1.01) = 2.02 bits — the result shows that there is limited
dependency of topics across two rounds.

7 Limitations

Both our analytical and empirical analysis shed light on the exact privacy leakage of the Topics API; however
there are limitations to the conclusions we can draw.

From an analytical standpoint, we made some simplifying assumptions in the behavior of the API. For
instance, we did not take into account the ‘filtering’ of topics that happens when the top topic has not
been seen by an ad-tech. Second, we considered the information leaked to each caller separately. If multiple
callers were to collude, this increases the overall privacy leakage. For instance, combining the two, if the
API is called by m attackers and they all share the value observed, the output of the Topics API is not only
a topic t but a binary string that encodes whether each attacker had previously called the API on a page of
topic t. This binary string may provide more information about a user’s identity than a single topic. Full
characterization of the information leakage due to this type of attack as well as the different collusion models
that could take advantage of the API are part of our ongoing research.

Empirically, our dataset does not represent a uniform sample of browsing behavior eligible for the Topics
API. This is due to both a non-uniform sample of users, as well as the lack of visibility into the potential
callers of the API. In addition, we would like to understand the information leakage for R > 2. Here we
run into issues of scalability and data sparsity. Notice that the state space needed to evaluate the mutual
information exactly grows exponentially with R, thus it is harder to estimate the value of each element of
the space (sparsity), as well as harder to compute the full mutual information (scalability). Here too, better
estimation remains an open area of research.
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Finally, there are details of how the API will be used in practice. For instance, our analysis considers
a single topic revealed by the Topics API, whereas the API reveals the past three historical topics. Thus
the initial information revelation can be analyzed using R = 3, but the steady-state rate is at one topic per
week, as analyzed.

8 Conclusion

In this note we formalize an attack model on the Topics API. We also introduced the mutual information
as a natural measure of re-identification risk. This measure allowed us to understand how the distribution
of topics across users, as well as the parameters of the API affect the information leakage. Our analysis
presents both worst case and optimistic scenarios, and we provide empirical evidence that on average, real
world usage is closer to the optimistic scenario than the worst-case one. In this work we focused on the
information theoretic aspects of the topics API. That is, even if after accumulating topics across R rounds,
an attacker can, in theory, re-identify users across two sites, there may not be a computationally tractable
attack to do so. Our future work will study the effect of potential abuses and misuses of the API, which
re-identification attacks are viable in practice, as well as, preventative measures for those attacks.
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9 Proof of Theorem 1

Proof. A simple application of Bayes rule shows that (1) is given by:

P (i1(U) = i|T1 = t1, T2 = t2) =
P (T2 = t2, i1(U) = i|T1 = t1)

P (T2 = t2|T1 = t1)

=
P (T2 = t2|i1(U) = i,T1 = t1)P (i1(U) = i|T1 = t1)

P (T2 = t2|T1 = t1)

Notice that both U and T2 are independent of T1. Therefore the above expression is reduced to:

P (T2 = t2|i1(U) = i,T1 = t1)P (i1(U) = i)

P (T2 = t2)

It is not hard to see that T2 depends on i1(U) and T1 only through T1 = T(w1, U) and t1i = T(w1, ui) where
ui is the unique user such that i1(ui) = i.

P (T2 = t2|T1 = t1i)P (i1(U) = i)

P (T2 = t2)

We thus have that the KL-divergence between the two distributions we consider is given by:∑
i

P (T2 = t2|T1 = t1i)P (i1(U) = i)

P (T2 = t2)
log

(
P (T2 = t2|T1 = t1i)

P (T2 = t2)

)
= −

∑
i

P (T2 = t2|T1 = t1i)P (i1(U) = i)

P (T2 = t2)
logP (T2 = t2)

+
∑
i

P (T2 = t2|T1 = t1i)P (i1(U) = i)

P (T2 = t2)
log (P (T2 = t2|T1 = t1i))

= I1 + I2.

We proceed to simplify I1

−
∑
i

P (T2 = t2|T1 = t1i)P (i1(U) = i)

P (T2 = t2)
logP (T2 = t2)

= −
∑
t1∈V

∑
i : t1i=t1

1

n

P (T2 = t2|T1 = t1)

P (T2 = t2)
logP (T2 = t2)

= −
∑
t1∈V

nt1

n

P (T2 = t2|T1 = t1)

P (T2 = t2)
logP (T2 = t2),

where nt1 denotes the number of users in w1 such that T(w1, u) = t1. Taking expectation of the above
expression over the randomness in w1 yields

−
∑
t1∈V

E
[nt1

n

] P (T2 = t2|T1 = t1)

P (T2 = t2)
logP (T2 = t2)

= −
∑
t1∈V

P (T2 = t2|T1 = t1)P (T1 = t1)

P (T2 = t2)
logP (T2 = t2) =

= − logP (T2 = t2),

where we used the law of total probability to simplify the above sum. Finally, taking expectation over t2 we
have that

Et2,t1 [I1] = −
∑
t2∈V

P (T2 = t2) logP (T2 = t2) := H(T2), (5)
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where H(T2) denotes the entropy of T2. Let us now simplify I2. A simple application of Bayes rule shows
that I2 is given by∑

i

1

n

P (T1 = t1i, T2 = t2)

P (T2 = t2)P (T1 = t1i)
log

(
P (T1 = t1i, T2 = t2)

P (T1 = t1i)

)
=

∑
t1∈V

∑
i : t1i=t1

1

n

P (T1 = t1i, T2 = t2)

P (T2 = t2)P (T1 = t1i)
log

(
P (T1 = t1, T2 = t2)

P (T1 = t1i)

)
=

∑
t1∈V

nt1

n

P (T1 = t1, T2 = t2)

P (T2 = t2)P (T1 = t1)
log

(
P (T1 = t1i, T2 = t2)

P (T1 = t1)

)
As before, taking expectation with respect to t1 and t2 yields∑

t1∈V

∑
t2∈V

P (T1 = t1, T2 = t2) log

(
P (T1 = t1, T2 = t2)

P (T1 = t1)

)
Putting the expression for the expectation of I1 and I2 together we see that

I(U, T2|T1) = H(T2) +
∑
t1∈V

∑
t2∈V

P (T1 = t1, T2 = t2) log

(
P (T1 = t1, T2 = t2)

P (T1 = t1)

)
= H(T2)−H(T2|T1) = I(T1;T2).

10 Proof of Theorem 3

Proof. By definition

I(T1;T2) =
∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
Pr(T1 = t1, T2 = t2)

Pr(T1 = t1) Pr(T2 = t2)

)
.

We focus on Pr(T1=t1,T1=t2)

Pr(T1=t1) Pr(T2=t2)
.

Pr(T1 = t1, T1 = t2)

Pr(T1 = t1) Pr(T2 = t2)
=

∏R
r=1 Pr(T r

1 = tr1, T
r
2 = tr2|t1:r−11 , t1:r−12 )∏R

r=1 Pr(T r
1 = tr1|t

1:r−1
1 )

∏R
r=1 Pr(T r

2 = tr2|t
1:r−1
2 )

,

where we use t1:ri to indicated the subsequence t1i , . . . , t
r
i of the realization ti of the variables T 1:r

i , and where
T 1:0
i indicates the empty sequence.

By some algebraic manipulation3, we can show that

Pr(T1 = t1, T1 = t2)

Pr(T1 = t1) Pr(T2 = t2)
=

=

R∏
r=1

Pr(T r
1 = tr1, T

r
2 = tr2)

Pr(T r
1 = tr1) Pr(T r

2 = tr2)
·

R∏
r=1

Pr(T r
1 = tr1, T

r
2 = tr2|t1:r−11 , t1:r−12 )

Pr(T r
1 = tr1, T

r
2 = tr2)

·

R∏
r=1

Pr(T r
1 = tr1)

Pr(T r
1 = tr1|t

1:r−1
1 )

·
R∏

r=1

Pr(T r
2 = tr2)

Pr(T r
2 = tr2|t

1:r−1
2 )

3Here, for simplicity, we make the assumption that for any conditioning and any value of the distributions involved, the
probability is non-zero, so the fractions are always well-defined. Notice that this is true in the Topics system due to the uniform
randomization with probability p.
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By plugging in the previous expression we have,

I(T1;T2) =
∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
1 = tr1, T

r
2 = tr2)

Pr(T r
1 = tr1) Pr(T r

2 = tr2)

)
(6)

+
∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
1 = tr1, T

r
2 = tr2|t1:r−11 , t1:r−12 )

Pr(T r
1 = tr1, T

r
2 = tr2)

)
(7)

−
∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
1 = tr1|t1:r−11 )

Pr(T r
1 = tr1)

)
(8)

−
∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
2 = tr2|t1:r−12 )

Pr(T r
2 = tr2)

)
(9)

We address each of the four summands at a time.
We now focus on the first summand (6) and show that it can be written as

∑R
r=1 I(T r

1 ;T r
2 ).

∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
1 = tr1, T

r
2 = tr2)

Pr(T r
1 = tr1) Pr(T r

2 = tr2)

)
=

=
∑
t1,t2

Pr(T1 = t1, T2 = t2)

R∑
r=1

log

(
Pr(T r

1 = tr1, T
r
2 = tr2)

Pr(T r
1 = tr1) Pr(T r

2 = tr2)

)

=

R∑
r=1

∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
Pr(T r

1 = tr1, T
r
2 = tr2)

Pr(T r
1 = tr1) Pr(T r

2 = tr2)

)

=

R∑
r=1

∑
tr1,t

r
2

Pr(T r
1 = tr1, T

r
2 = tr2) log

(
Pr(T r

1 = tr1, T
r
2 = tr2)

Pr(T r
1 = tr1) Pr(T r

2 = tr2)

)

=

R∑
r=1

I(T r
1 ;T r

2 )
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We now focus on (7)

∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
1 = tr1, T

r
2 = tr2|t1:r−11 , t1:r−12 )

Pr(T r
1 = tr1, T

r
2 = tr2)

)

=

R∑
r=2

∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
Pr(T r

1 = tr1, T
r
2 = tr2|t1:r−11 , t1:r−12 )

Pr(T r
1 = tr1, T

r
2 = tr2)

)

=

R∑
r=2

∑
t1:r1 ,t1:r2

Pr(T 1:r
1 = t1:r1 , T 1:r

2 = t1:r2 ) log

(
Pr(T r

1 = tr1, T
r
2 = tr2|t1:r−11 , t1:r−12 )

Pr(T r
1 = tr1, T

r
2 = tr2)

)

=

R∑
r=2

∑
t1:r−1
1 ,t1:r−1

2

Pr(T 1:r−1
1 = t1:r−11 , T 1:r−1

2 = t1:r−12 )·

∑
tr1,t

r
2

Pr(T r
1 = tr1, T

r
2 = tr2|T 1:r−1

1 = t1:r−11 , T 1:r−1
2 = t1:r−12 )) log

(
Pr(T r

1 = tr1, T
r
2 = tr2|t1:r−11 , t1:r−12 )

Pr(T r
1 = tr1, T

r
2 = tr2)

)

=

R∑
r=2

ET 1:r−1
1 ,T 1:r−1

2
KL(T r

1 , T
r
2 |T 1:r−1

1 , T 1:r−1
2 || T r

1 , T
r
2 )

= I((T r
1 , T

r
2 ) ; (T 1:r−1

1 , T 1:r−1
2 ))

We now focus on the negation of (8); the case of (9) follows by symmetry.

∑
t1,t2

Pr(T1 = t1, T2 = t2) log

(
R∏

r=1

Pr(T r
1 = tr1|t1:r−11 )

Pr(T r
1 = tr1)

)

=
∑
t1

Pr(T1 = t1) log

(
R∏

r=1

Pr(T r
1 = tr1|t1:r−11 )

Pr(T r
1 = tr1)

)

=

R∑
r=2

∑
t1

Pr(T1 = t1) log

(
Pr(T r

1 = tr1|t1:r−11 )

Pr(T r
1 = tr1)

)

=

R∑
r=2

∑
t1:r−1
1

Pr(T 1:r−1
1 = t1:r−11 )·

∑
tr1

Pr(T r
1 = tr1|T 1:r−1

1 = t1:r−11 )) log

(
Pr(T r

1 = tr1|t1:r−11 )

Pr(T r
1 = tr1)

)

=

R∑
r=2

ET 1:r−1
1

KL(T r
1 |T 1:r−1

1 || T r
1 )

=

R∑
r=2

I(T r
1 ;T 1:r−1

1 )

Now, since the mutual information of any pair of probably distributions is non-negative, we have that
both (8) and (9) are non-positive.

This completes the proof of the theorem.
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