
Functional Programming in Python
Concepts and Examples

Patrick Bucher

Contents

1 Introduction 2
1.1 Functional Concepts . 3
1.2 Pros and Cons . 3

2 Functions as Objects 4
2.1 Sorting . 6
2.2 Lambdas . 6
2.3 Operator Functions . 7
2.4 Partial Function Application . 7

3 Mutability 8

4 Recursion 9
4.1 (No) Tail Call Optimization . 10
4.2 Memoization . 12
4.3 Flattening Lists . 13

5 Closures 14
5.1 Returning Inner Functions . 15
5.2 Map . 16
5.3 Composing Functions . 17
5.4 Closures vs. Classes . 22
5.5 Inspecting Closures . 24

6 Iterators 25
6.1 Iterables . 26
6.2 Loops use Iterators . 26
6.3 Lazy Evaluation . 27
6.4 Realizing Iterators . 27
6.5 Implementing an Iterator . 28

1

7 Transforming Iterables 29
7.1 Enumerating . 29
7.2 Zipping and Unzipping . 29
7.3 Sorting and Reversing . 31
7.4 Pipelines . 33
7.5 Multiple Map Parameters . 35

8 Reducing Iterables 36
8.1 Built-in Reducing Functions . 36
8.2 The reduce() Function . 38
8.3 The filter(), map(), reduce() Pattern . 39

9 Comprehensions 41
9.1 Conditions . 42
9.2 Nesting . 43
9.3 Dictionaries, Sets, Tuples . 44

10 Generators 44

11 Partial Application and Currying 45
11.1 Partial Application . 45
11.2 Currying . 47
11.3 Advanced Composition . 48

11.3.1 Composing Multiple Functions . 49

12 Functors and Monads 51
12.1 Functors . 52
12.2 Applicatives . 53
12.3 Monads . 54

13 Useful Libraries 55
13.1 The itertoolsModule . 55
13.2 Third-Party Libraries . 58

This overview is inspired by Functional Programming in Python by Martin McBride.

1 Introduction

Python supports three major programming paradigms:

• Procedural Programming: Code is structured in blocks (functions, loops, if statements);
simple, but hard to maintain big code bases.

2

https://leanpub.com/functionalprogramminginpython

• Object Oriented Programming (OOP): Code is structured in interacting objects; this en-
capsulation makes independent testing easier, the approach scales better to larger code
bases.

• Functional Programmnig (FP): Functions are used as the main building block; a declara-
tive rather than imperative programming style is used.

Those paradigms are usually mixed; however, FP is often neglected.

1.1 Functional Concepts

In FP, functions are first class objects: They can be stored in variables, passed to other functions
as parameters, or be returned from functions.

Functions that operate on functions are called higher order functions.

A pure function calculates a result without any side effects. Its result only depends on the input
parameters, not on global state. Neither is global state changed. A pure function calledmultiple
times with the same arguments always returns the same result.

FP fits well together with immutable objects such as strings and tuples. Iterators, which do not
allow for modification, but for lazy evaluation, are often preferred over lists.

Higher order functions (filter, map, apply) and recursion are preferred over structural con-
structs (if/else branching, loops).

New functions are created dynamically by combining existing functions.

1.2 Pros and Cons

FP has a lot of advantages:

• Conciseness: more can be expressed in less lines of code thanks to more abstract con-
structs

• Clarity: the programmer’s intention is put across better by using higher-order functions
like map than loop constructs that have to be deciphered line by line

• Provability: without side effects, reasoning about programs is easier; mathematical cor-
rectness proofs become possible

• Concurrency: without side effects, functions can be executed independently and in par-
allel and won’t cause race conditions

However, this comes with some disadvantages:

• Purity is often not possible, because the purpose of many programs is to change global
state. A line between pure and impure code has to be drawn.

• A lot of learning effort is required to understand functional concepts such as lambda
expressions, closures, partial functions, currying etc.

3

• Functional code can be less efficient than structured code due to constructs that are less
efficient (recursion instead of loops) or more expensive (re-building data structures in-
stead of modifying them).

2 Functions as Objects

Functions can be stored in variables like, say, a string:

name = 'Dilbert'

employee = name

def say_hi(name):
return f'Hello, {name}'

greet = say_hi

print(name)
print(employee)
print(say_hi)
print(greet)

There are two variables (aliases) pointing to the same object in memory:

Dilbert
Dilbert
<function say_hi at 0x7f955db5b040>
<function say_hi at 0x7f955db5b040>

It’s also possible (but hardly advisable) to overwrite a function reference:

def greet(name):
return f'Hello, {name}'

def say_hi(name):
return greet(name)

print(say_hi('Dilbert'))

def greet(name):
return f'Greetings, {name}'

print(say_hi('Wally'))

4

After overwriting the greet function, the second implementation is called:

Hello, Dilbert
Greetings, Wally

The implementation of say_hi function has been modified indirectly, which could introduce
subtle bugs.

Consider the following conversion functions:

def miles_to_kilometers(miles):
return miles / 1.60934

def usd_to_chf(usd):
return usd / 0.92

print('500 miles =', miles_to_kilometers(500), 'km')
print('100 usd =', usd_to_chf(100), 'chf')

Which perform their conversion independently:

500 miles = 310.68636832490336 km
100 usd = 108.69565217391303 chf

However, both functions implement the same conversion mechanism, which can be general-
ized:

def convert(f, x):
return f(x)

print('500 miles =', convert(miles_to_kilometers, 500), 'km')
print('100 usd =', convert(usd_to_chf, 100), 'chf')

Both a function and a number are passed to convert, which then applies the function to the
number. Any conversion can be made, also between different types:

def format_currency(x):
return f'{x:.2f}'

convert(format_currency, 10/3) # '3.33 chf'

5

2.1 Sorting

The built-in sorted function accepts an optional key function that allows for customized sort-
ing:

dilbert = ('Dilbert', 42)
alice = ('Alice', 37)
dogbert = ('Dogbert', 7)
ashok = ('Ashok', 21)

employees = [dilbert, alice, dogbert, ashok]

def get_name(employee):
return employee[0]

def get_age(employee):
return employee[1]

by_name = sorted(employees, key=get_name)
by_age = sorted(employees, key=get_age)

print(by_name)
print(by_age)

The list of employees is sorted twice: once by name, and once by age:

[('Alice', 37), ('Ashok', 21), ('Dilbert', 42), ('Dogbert', 7)]
[('Dogbert', 7), ('Ashok', 21), ('Alice', 37), ('Dilbert', 42)]

2.2 Lambdas

The code can be shortened by using unnamed lambda functions:

by_name = sorted(employees, key=lambda e: e[0])
by_age = sorted(employees, key=lambda e: e[1])

Lambdas consist of a single expression and, thus, should only be used for very simple compu-
tations that can be clearly understood without a function name or additional comments. Use a
regular function if an expression is used more than once.

Lambdas are function objects that can also be called directly:

>>> (lambda x: x ** 2)(5)
24

6

More practically, they can be returned from functions:

def create_increment_function(step=1):
return lambda x: x + step

add_one = create_increment_function()
add_two = create_increment_function(step=2)

add_one(5) # 5
add_two(5) # 7

Operators are not functions, but can be wrapped in lambda expressions for use with higher-
order functions:

def calculate(op, a, b):
return op(a, b)

calculate(lambda a, b: a + b, 3, 1) # 4
calculate(lambda a, b: a * b, 3, 2) # 6

2.3 Operator Functions

The operator module contains pre-defined functions for common operators, so no lambdas
have to be implemented:

import operator

def calculate(op, a, b):
return op(a, b)

calculate(operator.add, 3, 1) # 4
calculate(operator.mul, 3, 2) # 6

See the documentation of the operator module for a full list of operators and their function
equivalents.

2.4 Partial Function Application

Functions can be partially applied, i.e. called with fewer arguments than expected, which re-
turns a function only expecting the missing arguments:

7

https://docs.python.org/3/library/operator.html#mapping-operators-to-functions

from functools import partial

def f(a, b, c, x):
return a * x**2 + b * x + c

f(2, 4, 6, 1) # x=1: 2x² + 4x + 6 = 12

g = partial(f, 2, 4, 6)
g(1) # x=1: 2x² + 4x + 6 = 12
g(2) # x=2: 2x² + 4x + 6 = 22

3 Mutability

Lists, dictionaries, and sets are mutable; numbers, strings, and tuples are immutable. A frozen
set is an immutable version of a set. References to any of those objects are always mutable:
by re-assigning a variable, the object pointed to is not changed, but another object is pointed to
instead.

Notice that mutability is shallow. A tuple itself cannot be modified, but the elements of a tuple
containing of lists can be modified.

The sortmethod of a list modifies the underlying list, whereas the sorted function returns a
sorted copy of the given list.

A list can be copied by passing it to the list function:

def tail(l):
del l[0]
return l

numbers = [1, 2, 3]
print(tail(numbers)) # [2, 3]
print(numbers) # [2, 3], too (modified)

numbers = [1, 2, 3]
print(tail(list(numbers))) # [2, 3]
print(numbers) # [1, 2, 3], still (unmodified)

This, however, is very inefficient. Instead, the tail function could work with slicing to guar-
antee immutability:

def tail(l):
return l[1:]

numbers = [1, 2, 3]

8

print(tail(numbers)) # [2, 3]
print(numbers) # [1, 2, 3], still (unmodified)

Under the hood, slicing is copying, so this solution is not very efficient, too.

Modifications that affect every single item of a list can be expressed using list comprehensions:

numbers = [1, 2, 3]
twice = [x * 2 for x in numbers]
print(twice) # [2, 4, 6]

4 Recursion

Functions that call themselves are a common technique in functional programming. A problem
is thereby reduced to its base case, which is defined statically. In the general case, a problem is
simplified towards the base case:

def factorial(n):
if n == 0:

return 1
elif n > 0:

return n * factorial(n - 1)

print(factorial(2)) # 2
print(factorial(3)) # 6
print(factorial(4)) # 24

The bigger the argument n is chosen, the more functions are running at the same time:

factorial(6)
6 * factorial(5)
6 * 5 * factorial(4)
6 * 5 * 4 * factorial(3)
6 * 5 * 4 * 3 * factorial(2)
6 * 5 * 4 * 3 * 2 * factorial(1)
6 * 5 * 4 * 3 * 2 * 1 factorial(0)
6 * 5 * 4 * 3 * 2 * 1 * 1
6 * 5 * 4 * 3 * 2 * 1
6 * 5 * 4 * 3 * 2
6 * 5 * 4 * 6
6 * 5 * 24
6 * 120
720

9

This doesn’t scale well. An alternative approach to recursive functions are tail-recursive func-
tions, which carry intermediate results as an extra accumulator parameter (acc):

def factorial(n, acc=1):
if n == 0:

return acc
elif n > 0:

return factorial(n-1, n * acc)

Which leads to an easier to understand call stack:

factorial(6, 1)
factorial(5, 6)
factorial(4, 30)
factorial(3, 120)
factorial(2, 360)
factorial(1, 720)
factorial(0, 720)
720

4.1 (No) Tail Call Optimization

Some compilers are able to optimize tail-recursive functions by re-using stack frames for multi-
ple function calls. Unfortunately, Python doesn’t support this optimization, so other solutions
needs to be considered, such as loops.

Recursion becomes evenmore inefficient asmultiple additional functions are called in each step,
as a recursive implementation of a function to compute the Fibonacci numbers requires:

def fib(n):
print(f'fib({n})')
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-2) + fib(n-1)

The print call makes the amount of (redundant) functions being called apparent:

>>> fib(6)
fib(6)
fib(4)
fib(2)

10

fib(0)
fib(1)
fib(3)
fib(1)
fib(2)
fib(0)
fib(1)
fib(5)
fib(3)
fib(1)
fib(2)
fib(0)
fib(1)
fib(4)
fib(2)
fib(0)
fib(1)
fib(3)
fib(1)
fib(2)
fib(0)
fib(1)
8

The fib function is called with the argument 1 alone eight times. The inefficiency becomes
even more striking when using a bigger n and counting the function calls (fibonacci.py):

calls = 0

def fib(n):
global calls
calls += 1
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n-2) + fib(n-1)

print(f'fib(35)={fib(35)} after {calls} calls')

Almost 30 million function calls in a bit less than five seconds are required to compute the 35th
Fibonacci number:

11

$ time python3 fibonacci.py
fib(35)=9227465 after 29860703 calls

real 0m4.948s
user 0m4.946s
sys 0m0.000s

4.2 Memoization

When many intermediate results are computed multiple times, re-using those results helps
saving function calls. For this purpose, the function arguments are (keys) are put together
with the results (values) into a dictionary. This technique is called memoization:

calls = 0
cache = {}

def fib(n):
global calls
calls += 1
if n in cache:

return cache[n]
else:

if n == 0:
result = 0

elif n == 1:
result = 1

else:
result = fib(n-2) + fib(n-1)

cache[n] = result
return result

print(f'fib(35)={fib(35)} after {calls} calls')

Which reduces function calls by a factor ofmore than 4*10^5, and runtime by a factor of roughly
167 (memoization comes with a slight overhead).

fib(35)=9227465 after 69 calls

real 0m0.030s
user 0m0.030s
sys 0m0.000s

12

Memoization is a cross cutting concern that has little to do with the function itself. Python’s
functools has a decorator lru_cache (least recently used cache) which provides memoiza-
tion out-of-the-box:

from functools import lru_cache

calls = 0

@lru_cache
def fib(n):

global calls
calls += 1
if n == 0:

result = 0
elif n == 1:

result = 1
else:

result = fib(n-2) + fib(n-1)
return result

print(f'fib(35)={fib(35)} after {calls} calls')

Even less functions are invoked, because the caching mechanism is around the function:

fib(35)=9227465 after 36 calls

real 0m0.029s
user 0m0.025s
sys 0m0.004s

4.3 Flattening Lists

Lists in Python can be nested:

[1, [2, [3, 4, [5, 6], 7], 8], 9]

Such a list contains numbers and lists, which again contain numbers and lists, and so on. It is
often useful to flatten such a list:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

For this purpose, a recursive implementation processes the nested list one by one. The first
element (head) of the remaining list is considered in each function call, and the remaining
elements (tail) are delegated to another recursive call. Then, the solution is combined:

13

def flatten(x):
if not isinstance(x, list):

x is a number: first base case
return [x]

if x == []:
x is an empty list: second base case
return x

else:
x is a non-empty list: general case
return flatten(x[0]) + flatten(x[1:])

Memoization won’t help here, because x is different for every function call. A more feasible
approach would be to fall back to loops:

def flatten(x):
if not isinstance(x, list):

x is a number: first base case
return [x]

if x == []:
x is an empty list: second base case
return x

else:
x is a non-empty list: general case
r = []
for e in x:

if isinstance(e, list):
r += flatten(e)

else:
r.append(e)

return r

A recursive function call here only takes place for each additional depth level, not for every
additional element.

5 Closures

Functions can contain other functions. The inner function cannnot be seen from the outside
of the outer function, unless the outer function returns the inner function. In this example, an
inner function grade is used from the outer function grade_exams.

def grade_exams(candidate_scores, max_score):

def grade(score):

14

Swiss grades: 1..6
return score / max_score * 5 + 1

candidate_grades = {}
for candidate, score in candidate_scores.items():

candidate_grades[candidate] = grade(score)

return candidate_grades

exam_max_score = 50
exam_scores = {

'Alice': 42,
'Bob': 35,
'Mallory': 49,

}
exam_grades = grade_exams(exam_scores, exam_max_score)
print(exam_grades) # {'Alice': 5.2, 'Bob': 4.5, 'Mallory': 5.9}

5.1 Returning Inner Functions

Notice how each score is passed to grade, but max_score is taken from the outer scope. The
inner function even has access to the outer function’s scope if it is returned from the outer
function and used elsewhere. The outer function encloses the inner function; this construct
therefore is called a closure:

def get_compute_salary_func(year):

bonus_rates = {
2018: 0.05,
2019: 0.10,
2020: 0.07,

}
bonus_rate = bonus_rates.get(year, 0.0)

def compute_yearly_salary(monthly):
base_salary = monthly * 12
bonus = base_salary * bonus_rate
return base_salary + bonus

return compute_yearly_salary

compute_2016_salaries = get_compute_salary_func(2016)
compute_2018_salaries = get_compute_salary_func(2018)

15

compute_2020_salaries = get_compute_salary_func(2020)

print(compute_2016_salaries(80000)) # 960000.0
print(compute_2018_salaries(80000)) # 1008000.0
print(compute_2020_salaries(80000)) # 1027200.0

In the example above, the outer function get_compute_salary_func encloses the inner func-
tion compute_yearly_salary; the latter using the variable bonus_rate established in the
former’s scope. Even though the same function is used multiple times, it computes different
results, because the enclosing scope is different.

5.2 Map

A dictionary is a Python data structure that describes the relationship between a key and a
value in a static way. The map function can be seen as the dynamic counterpart of a dict. It is
a higher-order function that processes a collection of items using a given function, and returns
a collection consisting of the function’s return value for each item:

max_score = 50
exam_scores = [42, 35, 49]

def grade(score):
Swiss grades: 1..6
return score / max_score * 5 + 1

exam_grades = map(grade, exam_scores)
print(list(exam_grades)) # [5.2, 4.5, 5.9]

No explicit looping over the individual scores is needed, the map function handles those details.
The code can be further simplified by using a lambda instead of a named function:

max_score = 50
exam_scores = [42, 35, 49]
exam_grades = map(lambda score: score / max_score * 5 + 1, exam_scores)
print(list(exam_grades))

This works with any kind of functions, i.e. also with a closure primed with a value, like in the
salary example from before:

def get_compute_salary_func(year):

bonus_rates = {
2018: 0.05,
2019: 0.10,
2020: 0.07,

16

}
bonus_rate = bonus_rates.get(year, 0.0)

def compute_yearly_salary(monthly):
base_salary = monthly * 12
bonus = base_salary * bonus_rate
return base_salary + bonus

return compute_yearly_salary

compute_2020_salaries = get_compute_salary_func(2020)
base_salaries = [80000, 90000, 100000]
total_salaries = map(compute_2020_salaries, base_salaries)
print(list(total_salaries))

5.3 Composing Functions

Consider the value x that has to be processed by two functions f and g:

1. y is computed as y=g(x) (intermediate result)
2. z is computed as z=f(y) (final result)

This, of course, can be simplified by composing the two functions f and g as f(g(x)).

Consider this example, where exam scores are first mapped to exam grades, which then are
rounded in a second step:

def get_grade_for_func(max_score):

def grade(score):
return score / max_score * 5 + 1

return grade

def get_round_to_func(granularity):

def round_to(value):
scaled_up = value * (1 / granularity)
rounded = round(scaled_up)
scaled_down = rounded * granularity
return scaled_down

return round_to

17

max_score = 72
scores = [46, 70, 53, 38, 67]

grade_for = get_grade_for_func(max_score)
round_to = get_round_to_func(0.1)

exact_grades = map(grade_for, scores)
rounded_grades = map(round_to, exact_grades)

print(list(rounded_grades)) # [4.2, 5.9, 4.7, 3.6, 5.7]

This approach requires two calls to map, with each call iterating over all the elements. If the
grader and rounding function are composed to a single function, the list only needs to be
processed once:

def get_grade_for_func(max_score):

def grade(score):
return score / max_score * 5 + 1

return grade

def get_round_to_func(granularity):

def round_to(value):
scaled_up = value * (1 / granularity)
rounded = round(scaled_up)
scaled_down = rounded * granularity
return scaled_down

return round_to

max_score = 72
scores = [46, 70, 53, 38, 67]

grade_for = get_grade_for_func(max_score)
round_to = get_round_to_func(0.1)

def compose(f, g):

def func(x):
return f(g(x))

return func

18

score_to_rounded_grade = compose(round_to, grade_for)

rounded_grades = map(score_to_rounded_grade, scores)

print(list(rounded_grades)) # [4.2, 5.9, 4.7, 3.6, 5.7]

This approach scales much better: Not only in terms of runtime efficiency, which becomes
noticable as the number of elements grows, but only if additional computations need to be
done for every item.

In this example, an additional point bonus is added to each score, so that the maximum grade
can be reached without a perfect score:

def get_bonus_of_func(bonus):

def add(score):
return score + bonus

return add

def get_grade_for_func(max_score):

def grade(score):
return score / max_score * 5 + 1

return grade

def get_round_to_func(granularity):

def round_to(value):
scaled_up = value * (1 / granularity)
rounded = round(scaled_up)
scaled_down = rounded * granularity
return scaled_down

return round_to

max_score = 100
scores = [70, 80, 90, 40, 100]

bonus_of = get_bonus_of_func(max_score / 10)
grade_for = get_grade_for_func(max_score)
round_to = get_round_to_func(0.1)

19

def compose(f, g):

def func(x):
return f(g(x))

return func

score_to_exact_grade = compose(grade_for, bonus_of)
score_to_rounded_grade = compose(round_to, score_to_exact_grade)

rounded_grades = map(score_to_rounded_grade, scores)

print(list(rounded_grades)) # [5.0, 5.5, 6.0, 3.5, 6.5]

Unfortunately, this brings up another issues: Grades higher than the maximum grade of 6.0 are
computed. However, this issues can be solved by composing even further:

def get_bonus_of_func(bonus):

def add(score):
return score + bonus

return add

def get_grade_for_func(max_score):

def grade(score):
return score / max_score * 5 + 1

return grade

def get_limit_of_func(max_grade):

def limit(grade):
return min(grade, max_grade)

return limit

def get_round_to_func(granularity):

def round_to(value):
scaled_up = value * (1 / granularity)
rounded = round(scaled_up)

20

scaled_down = rounded * granularity
return scaled_down

return round_to

max_score = 100
scores = [70, 80, 90, 40, 100]

bonus_of = get_bonus_of_func(max_score / 10)
grade_for = get_grade_for_func(max_score)
limit_of = get_limit_of_func(6.0)
round_to = get_round_to_func(0.1)

def compose(f, g):

def func(x):
return f(g(x))

return func

score_to_exact_grade = compose(grade_for, bonus_of)
score_to_bounded_grade = compose(limit_of, score_to_exact_grade)
score_to_rounded_grade = compose(round_to, score_to_bounded_grade)

rounded_grades = map(score_to_rounded_grade, scores)

print(list(rounded_grades)) # [5.0, 5.5, 6.0, 3.5, 6.0]

Compare this to a procedural approach, which is much shorter in terms of lines:

max_score = 100
scores = [70, 80, 90, 40, 100]
bonus = max_score / 10
max_grade = 6.0
granularity = 0.1

grades = []
for score in scores:

score = score + bonus
grade = score / max_score * 5 + 1
if grade > max_grade:

grade = max_grade
grade = round(grade * 1 / granularity) * granularity
grades.append(grade)

21

print(grades) # [5.0, 5.5, 6.0, 3.5, 6.0]

However, this code is harder to reason about (“Where did the error happen?”), especially if the
computations are getting more involved. The functional approach allows you to reason about
and write tests for each function in isolation. If the functions work correctly, are composed
in the right way and used with well-tested higher-order functions like map , the result will be
correct, too.

5.4 Closures vs. Classes

Like objects, closures can hold state. In OOP, the state can be initialized using a constructor.
A method of the same class then can perform computations based on both internal state and
parameters:

class Rounder:

def __init__(self, granularity):
self._granularity = granularity

def round(self, value):
scaled_up = value * (1 / self._granularity)
rounded = round(scaled_up)
scaled_down = rounded * self._granularity
return scaled_down

grades = [5.234, 4.738, 3.269]
rounder = Rounder(0.05)
rounded = map(rounder.round, grades)
print(list(rounded)) # [5.25, 4.75, 3.25]

Python has a special method __call__, which allows objects to be used like functions. The
above implementation can be turnedmore pythonesque by, first, renaming round to __call__,
and, second, by using rounder as a function (instead of its method rounder.round). Calls to
rounder() will be delegated to the __call__ method:

class Rounder:

def __init__(self, granularity):
self._granularity = granularity

def __call__(self, value):
scaled_up = value * (1 / self._granularity)
rounded = round(scaled_up)

22

scaled_down = rounded * self._granularity
return scaled_down

grades = [5.234, 4.738, 3.269]
rounder = Rounder(0.05)
rounded = map(rounder, grades)
print(list(rounded)) # [5.25, 4.75, 3.25]

This approach is useful when objects first need to be configured in a complicated but inconsis-
tent manner. Think of the Builder pattern, that allows to initialize objects only using a subset
of available parameters:

class Salary:

_bonus = 0
_taxes = 0
_penalty = 0

def __init__(self, amount):
self._salary = amount

def with_bonus(self, rate):
self._bonus = rate
return self

def with_taxes(self, rate):
self._taxes = rate
return self

def with_penalty(self, penalty):
self._penalty = penalty
return self

def __call__(self):
pre_bonus = (self._salary - self._penalty)
pre_taxes = pre_bonus + pre_bonus * self._bonus
return pre_taxes - pre_taxes * self._taxes

salary_1 = Salary(100000).with_bonus(0.1).with_penalty(5000)
salary_2 = Salary(100000).with_bonus(0.1).with_taxes(0.2)
print(salary_1()) # 104500.0
print(salary_2()) # 88000.0

A function returning a closure requires optional parameters for the same purpose:

23

def get_salary_func(bonus=0, taxes=0, penalty=0):

def compute(salary):
pre_bonus = (salary - penalty)
pre_taxes = pre_bonus + pre_bonus * bonus
return pre_taxes - pre_taxes * taxes

return compute

salary_1 = get_salary_func(bonus=0.1, penalty=5000)
salary_2 = get_salary_func(bonus=0.1, taxes=0.2)
print(salary_1(100000)) # 104500.0
print(salary_2(100000)) # 88000.0

5.5 Inspecting Closures

Python provides the special attributes __closure__ and __code__ to inspect closures (see
the Data Model for details).

The variables a function has access to by enclosing an outer scope—so-called free variables—
can be retrieved as a tuple using the co_freewars attribute of the __code__ attribute. To get
the values of those free variables, inspect the cell_contents attribute of each element of the
__closure__ attribute:

def get_salary_func(bonus=0, taxes=0, penalty=0):

def compute(salary):
pre_bonus = (salary - penalty)
pre_taxes = pre_bonus + pre_bonus * bonus
return pre_taxes - pre_taxes * taxes

return compute

salary = get_salary_func(bonus=0.1, penalty=5000)
print(salary.__code__.co_freevars) # ('bonus', 'penalty', 'taxes')
print(salary.__closure__[0].cell_contents) # 0.1
print(salary.__closure__[1].cell_contents) # 5000
print(salary.__closure__[2].cell_contents) # 0

This process can be simplified using an utility function:

def get_salary_func(bonus=0, taxes=0, penalty=0):

def compute(salary):

24

https://docs.python.org/3/reference/datamodel.html

pre_bonus = (salary - penalty)
pre_taxes = pre_bonus + pre_bonus * bonus
return pre_taxes - pre_taxes * taxes

return compute

salary = get_salary_func(bonus=0.1, penalty=5000)

def inspect_closure(func):
for i, name in enumerate(func.__code__.co_freevars):

print(f'{name} = {func.__closure__[i].cell_contents}')

inspect_closure(salary)

Which outputs all the free variables of a closure:

bonus = 0.1
penalty = 5000
taxes = 0

Notice that those are read-only values, don’t attempt tomanipulate those closures: better create
a new one.

6 Iterators

An iterator can be used to process the elements of a sequence one by one. When passed to
the next() function, the next element of the iterator’s underlying sequence is returned—or
StopIteration thrown, in case the iterator is exhausted, i.e. all of its elements have been
processed.

Higher-order functions like filter or map return iterators:

numbers = [1, 2, 3, 4, 5]
even = filter(lambda x: x % 2 == 0, numbers)
odd = map(lambda x: x + 1, even)
print(next(odd)) # 3
print(next(odd)) # 5
print(next(odd)) # StopIteration

An iterator can onle be processed once in forward direction. However, multiple iterators can
be used to process the same underlying sequence.

25

6.1 Iterables

An iterable is something (usually a sequence like list, tuple, string) that can be turned into an
iterator by passing it to the iter() function, which returns a new iterator:

numbers = [1, 2, 3]
i = iter(numbers)
print(next(i)) # 1
print(next(i)) # 2
print(next(i)) # 3

An iterator itself is also an iterable, so calls to iter() passing an iterator return the same
iterator with its current state:

numbers = [1, 2, 3]
i = iter(numbers)
print(next(i)) # 1
j = iter(i)
print(next(j)) # 2
print(next(i)) # 3

6.2 Loops use Iterators

Internally, Python relies heavily on iterators. A for/in loop works on any iterable. First,
iter() is called on the loop’s iterable to get an iterator. Then, for every iteration, next() is
called on the iterator to get to the next elements. Finally, the loop ends when StopIteration
is raised.

Consider this for/in loop:

numbers = [1, 2, 3]

for x in numbers:
print(x)

Which could be re-written using explicit iter() and next() calls and a while loop:

numbers = [1, 2, 3]

i = iter(numbers)
while True:

try:
x = next(i)
print(x)

26

except StopIteration:
break

6.3 Lazy Evaluation

Iterators only must produce their values when requested using the next() function, which
means that they can use lazy evaluation. If an iteration is stopped before the iterator has
been exhausted, no remaining items have been computed in vain. This can save computing
power and memory, but potentially increases the processing time needed for a single iteration.
(Picking between lazy and eager evaluation is a trade-off.) Iterators implemented using lazy
evaluation can be of infinite length.

The built-in range() function produces lazy sequences. However, the sequence’s length can
be figured out using the built-in len() function considering the limit arguments given to
range(): len(range(1, 5)) is 5 - 1 = 4.

6.4 Realizing Iterators

An iterator must be realized before all of its items can be dealt with at once, i.e. by printing out
the whole sequence of items. For this purpose, the according functions can be called:

numbers = range(1, 4)

print(list(iter(numbers))) # [1, 2, 3]
print(set(iter(numbers))) # {1, 2, 3}
print(tuple(iter(numbers))) # (1, 2, 3)

Alternatively, the expansion operator * can be used with according literals:

numbers = range(1, 4)

print([*iter(numbers)]) # [1, 2, 3]
print({*iter(numbers)}) # {1, 2, 3}
print((*iter(numbers),)) # (1, 2, 3)

Notice the trailing comma required for tuple expansion in the last example.

When working with strings, strwill call the iterator’s implementation of the __str__() dun-
der method, which describes the iterator itself rather than its items. Use the join() method
on an empty string to realize a list of characters:

27

offsets = range(0, 26)
capital_a = 65
alphabet = map(lambda c: chr(c + capital_a), offsets)

print(str(alphabet)) # <map object at 0x7fa5d875b4f0>
print(''.join(alphabet)) # ABCDEFGHIJKLMNOPQRSTUVWXYZ

6.5 Implementing an Iterator

An iterator can be implemented by providing two dunder methods: __next__() and
__iter__(). Calls of the built-in functions next() and iter() will be forwarded to the
argument’s respective dunder methods.

The class Factorials implements an iterator that provides the successive factorial numbers
up to a limit passed to the constructor. The implementation uses lazy evaluation:

class Factorials():

def __init__(self, n):
if n < 0:

raise ValueError('n! is only defined for n >= 0')
self.n = n
self.i = 0
self.x = 1

def __iter__(self):
return self

def __next__(self):
if self.i < self.n:

self.i += 1
self.x *= self.i
return self.x

else:
raise StopIteration

print(list(Factorials(3))) # [1, 2, 6]
print(list(Factorials(5))) # [1, 2, 6, 24, 120]
print(list(Factorials(8))) # [1, 2, 6, 24, 120, 720, 5040, 40320]

In practice, generators are often a better fit for such tasks.

28

7 Transforming Iterables

Python provides functions to transform iterables, which are less prone to side effects, and there-
fore the better fit than lists from a functional perspective.

7.1 Enumerating

The built-in enumerate() function transforms a sequence into an iterator of tuples, each con-
taining an index value and an item from the original sequence:

names = ['Alice', 'Bob', 'Mallory']
for item in enumerate(names):

print(item)

(0, 'Alice')
(1, 'Bob')
(2, 'Mallory')

An optional start index can be provided, and the tuple can be unpacked using two variables for
the loop:

names = ['Alice', 'Bob', 'Mallory']
for index, name in enumerate(names, 1):

print(index, name)

1 Alice
2 Bob
3 Mallory

7.2 Zipping and Unzipping

Multiple sequences can be processed together using the built-in zip() function:

names = ['Dilbert', 'Dogbert', 'Ashok']
jobs = ['Engineer', 'Consultant', 'Intern']
salaries = [120000, 250000, 18000]

for employee in zip(names, jobs, salaries):
print(employee)

29

('Dilbert', 'Engineer', 120000)
('Dogbert', 'Consultant', 250000)
('Ashok', 'Intern', 18000)

Again, the tuple can be unpacked by using multiple variables for the loop:

names = ['Dilbert', 'Dogbert', 'Ashok']
jobs = ['Engineer', 'Consultant', 'Intern']
salaries = [120000, 250000, 18000]

for name, job, salary in zip(names, jobs, salaries):
print(name, job, salary)

Dilbert Engineer 120000
Dogbert Consultant 250000
Ashok Intern 18000

Notice that zip() stops when the shortest sequence is exhausted:

names = ['Dilbert', 'Dogbert', 'Ashok']
jobs = ['Engineer']
salaries = [120000, 250000]

for employee in zip(names, jobs, salaries):
print(employee)

('Dilbert', 'Engineer', 120000)

If the original sequences (names, jobs, salaries) are considered columns of an employee
database, the results of the zip() operation can be seen as its rows. This transformation can
be reversed using zip()—by first unpacking the resulting sequence, and then zipping it:

names = ['Dilbert', 'Dogbert', 'Ashok']
jobs = ['Engineer', 'Consultant', 'Intern']
salaries = [120000, 250000, 18000]

employees = zip(names, jobs, salaries)
for col in zip(*employees):

print(col)

('Dilbert', 'Dogbert', 'Ashok')
('Engineer', 'Consultant', 'Intern')
(120000, 250000, 18000)

30

7.3 Sorting and Reversing

Unlike the list’s sort() method that sorts a list in-place, the built-in sorted() function re-
turns a sorted new list. Either operation allows for an optional key argument, which defines
the sorting criterion in terms of a function applied to every item:

names = ['Dilbert', 'Dogbert', 'Ashok']
jobs = ['Engineer', 'Consultant', 'Intern']
salaries = [120000, 250000, 18000]
employees = zip(names, jobs, salaries)

for employee in sorted(employees, key=lambda e: e[2]):
print(employee)

('Ashok', 'Intern', 18000)
('Dilbert', 'Engineer', 120000)
('Dogbert', 'Consultant', 250000)

The lambda accessing the tuple element at index 2 can also be taken from the operatormodule,
which provides an itemgetter function that produces a closure to access the right element:

from operator import itemgetter

names = ['Dilbert', 'Dogbert', 'Ashok']
jobs = ['Engineer', 'Consultant', 'Intern']
salaries = [120000, 250000, 18000]
employees = zip(names, jobs, salaries)

for employee in sorted(employees, key=itemgetter(2)):
print(employee)

('Ashok', 'Intern', 18000)
('Dilbert', 'Engineer', 120000)
('Dogbert', 'Consultant', 250000)

When dealing with classes instead of tuple, use the attrgetter function to access attributes
by name. The methodcaller function allows to call any method on each item by its name:

from operator import methodcaller

names = ['POINTY HAIRED BOSS', 'Dilbert', 'dogbert', 'alice']
for name in sorted(names, key=methodcaller('lower')):

print(name)

31

Here, the lower() method is called on every name in order to sort the names in a case-
insensitive manner.

The sort order can be reversed either by setting the optional reverse argument of the
sorted() function to True, or by calling the reversed() built-in function:

names = ['Dilbert', 'Alice', 'Pointy Haired Boss', 'Dogbert', 'Ted']

names_desc = sorted(names, reverse=True)
print(names_desc)

names_desc = reversed(sorted(names))
print(list(names_desc))

['Ted', 'Pointy Haired Boss', 'Dogbert', 'Dilbert', 'Alice']
['Ted', 'Pointy Haired Boss', 'Dogbert', 'Dilbert', 'Alice']

Notice that the return value of reversed() needs to be realized first.

Function accepts returns

sorted() iterable list
reversed() sequence iterator

The sorting operations are stable, so sorting multiple times will always return the same order
of items that share the same sorting criterion, but differ otherwise:

Swiss-German date format
dates = [

'24.06.1987',
'13.05.1987',
'31.12.1988',
'31.07.1987',
'17.09.1988',
'05.02.1987',
'01.03.1988',

]

by_year_1 = sorted(dates, key=lambda d: d[6:])
by_year_2 = sorted(by_year_1, key=lambda d: d[6:])
by_year_3 = sorted(by_year_2, key=lambda d: d[6:])
for date_1, date_2, date_3 in zip(by_year_1, by_year_2, by_year_3):

print(date_1, '==', date_2, '==', date_3)

32

24.06.1987 == 24.06.1987 == 24.06.1987
13.05.1987 == 13.05.1987 == 13.05.1987
31.07.1987 == 31.07.1987 == 31.07.1987
05.02.1987 == 05.02.1987 == 05.02.1987
31.12.1988 == 31.12.1988 == 31.12.1988
17.09.1988 == 17.09.1988 == 17.09.1988
01.03.1988 == 01.03.1988 == 01.03.1988

When counting backwards, the reverse() function can be used to create more readable
code:

range_reverse = range(9, -1, -1) # hard to read
reversed_range = reversed(range(10)) # easy to read

for a, b in zip(range_reverse, reversed_range):
print(a, b)

9 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

7.4 Pipelines

Adding print() calls to functions used with filter() and map() shows in which order those
functions are executed:

def is_taxable(salary):
print(f'is_taxable({salary})')
return salary > 100000

def calc_tax(salary):
print(f'calc_tax({salary})')
return salary * 0.05

salaries = [120000, 84000, 52000, 190000]
taxable = filter(is_taxable, salaries)

33

taxes = map(calc_tax, taxable)

for tax in taxes:
print(tax)

is_taxable(120000)
calc_tax(120000)
6000.0
is_taxable(84000)
is_taxable(52000)
is_taxable(190000)
calc_tax(190000)
9500.0

Notice that those items are processed in a pipeline one by one. Even though the call to map()
comes after the call to filter(), the is_taxable() operation used by filter() has only
been processed for the first element yet!

Removing the taxable intermediary variable and calling map() directly on the result of fil-
ter() therefore won’t have any impact on the order of processing:

def is_taxable(salary):
print(f'is_taxable({salary})')
return salary > 100000

def calc_tax(salary):
print(f'calc_tax({salary})')
return salary * 0.05

salaries = [120000, 84000, 52000, 190000]
taxes = map(calc_tax, filter(is_taxable, salaries))

for tax in taxes:
print(tax)

is_taxable(120000)
calc_tax(120000)
6000.0
is_taxable(84000)
is_taxable(52000)
is_taxable(190000)
calc_tax(190000)
9500.0

34

But leave the loop at the bottom away, and no items will be processed at all:

def is_taxable(salary):
print(f'is_taxable({salary})')
return salary > 100000

def calc_tax(salary):
print(f'calc_tax({salary})')
return salary * 0.05

salaries = [120000, 84000, 52000, 190000]
taxes = map(calc_tax, filter(is_taxable, salaries))
print(taxes)

<map object at 0x7fd3bbf03fd0>

This demonstrates that filter(), map() an the like use lazy evaluation.

7.5 Multiple Map Parameters

The map() function can be used on multiple sequences in one go—if used with a function that
expects the same number of arguments as sequences are used:

numbers = [7, 4, 3, 2]
factors = [1.0, 1.5, 0.5, 2.0]

results = map(lambda n, f: n * f, numbers, factors)
print(list(results)) # [7.0, 6.0, 1.5, 4.0]

Again, instead of defining a lambda, an operator can be used:

from operator import mul

numbers = [7, 4, 3, 2]
factors = [1.0, 1.5, 0.5, 2.0]

results = map(mul, numbers, factors)
print(list(results)) # [7.0, 6.0, 1.5, 4.0]

Any number of sequences can be passed to map(), as long as the operation performed on them
accepts the same number of parameters:

35

def f(a, b, x):
y = a * x + b
return y

slopes = [1, 2, 3, 4]
coefficients = [1, 0, 2, 0]
xs = [1.5, 3.0, 2.5, 0.0]

results = map(f, slopes, coefficients, xs)
print(list(results)) # [2.5, 6.0, 9.5, 0.0]

8 Reducing Iterables

A reducing function combines all the values of an iterable and produces a single value out of
them as a result.

8.1 Built-in Reducing Functions

the len() function is one of the most common reducing functions. It returns the number of
elements contained in an sequence:

print(len([7, 3, 5, 2])) # 4
print(len([])) # 0

The sum() function adds up the items of an iterable and returns their sum:

print(sum([7, 3, 5, 2])) # 17
print(sum([])) # 0

An optional start value can be provided for the second argument if the summation should start
from a different value than 0 (default):

print(sum([7, 3, 5, 2], -10)) # 7
print(sum([], 0)) # 0

Even though the sum() function applies the + operator to the elements of the given iterable, it
cannot be used to concatenate strings. Use the string’s join() method instead:

letters = ['abc', 'de', 'f', 'ghi']
print(sum(letters, '')) # wrong: TypeError
print(''.join(letters)) # right: abcdefghi

The min() and max() function return the smallest or biggest element of an iterable, respec-
tively:

36

numbers = [7, 3, 1, 9, 5]
print(min(numbers)) # 1
print(max(numbers)) # 9

If the elements are list themselves, those sub-lists are compared element-wise:

numbers = [[3, 1, 2], [9, 1, 3], [1, 9, 8]]
print(min(numbers)) # [1, 9, 8]
print(max(numbers)) # [9, 1, 3]

Calling min() or max() on an empty iterable causes a ValueError, which can be prevented
by setting a default argument, which is used as a fallback, and ignored for non-empty iter-
ables:

numbers = [9, 1, 5]
nothing = []

print(min(numbers)) # 1
print(min(numbers, default=0)) # 1
print(min(nothing)) # ValueError
print(min(nothing, default=0)) # 0

print(max(numbers)) # 9
print(max(numbers, default=0)) # 9
print(max(nothing)) # ValueError
print(max(nothing, default=0)) # 0

The optional key argument can be used to speficy the criterion being used for comparison—like
for the sorted() function or sort() method:

employees = [
('Dilbert', 42, 120000),
('Alice', 39, 110000),
('Wally', 53, 130000),
('Ashok', 23, 36000),

]

youngest = min(employees, key=lambda e: e[1])
oldest = max(employees, key=lambda e: e[1])

lowest_salary = min(employees, key=lambda e: e[2])
highest_salary = max(employees, key=lambda e: e[2])

print(f'age: {youngest} (youngest), {oldest} (oldest)')
print(f'earns: {lowest_salary} (least), {highest_salary} (most)')

37

age: ('Ashok', 23, 36000) (youngest), ('Wally', 53, 130000) (oldest)
earns: ('Ashok', 23, 36000) (least), ('Wally', 53, 130000) (most)

The any() function returns True if at least one element of the given iterable evaluates to
True:

print(any([False, False, False])) # False
print(any([False, False, True])) # True
print(any([0, 0, 0, 0, 0])) # False
print(any([0, 0, 0, 1, 0])) # True
print(any(['', '', '', ''])) # False
print(any(['', 'x', '', 'y'])) # True
print(any([False, '', 0, []])) # False
print(any([])) # False

For an empty iterable (last example), any() returns False—unlike the all() function, which
returns True if all elements evaluate to True, and False, if an element evaluates to False:

print(all([True, False, True])) # False
print(all([True, True, True])) # True
print(all([2, 8, 0, 3, 8])) # False
print(all([2, 8, 4, 3, 8])) # True
print(all(['a', 'b', '', 'd'])) # False
print(all(['u', 'v', 'x', 'y'])) # True
print(all([True, 'a', 1, []])) # False
print(all([])) # True

8.2 The reduce() Function

The functoolsmodule provides a reduce() function, which allows for custom definitions of
reducing operations. Its first argument is a function accepting two parameters (the elements
n-1 and n to be combined), and its second argument is the iterable to be reduced. This exam-
ple implements factorials using the operator module’s mul() and the functool module’s
reduce() function:

from functools import reduce
from operator import mul

def factorial(x):
numbers = range(1, x+1)
return reduce(mul, numbers)

print(factorial(4)) # 24

38

print(factorial(5)) # 120
print(factorial(6)) # 720

As an optional third argument, an initializer can be provided:

from functools import reduce
from operator import mul

numbers = range(1, 6)
half_the_fac = reduce(mul, numbers, 0.5)
print(half_the_fac) # 60.0

This is especially useful when dealing with empty iterables, which result in a TypeErrorwhen
reduced without an initializer, which serves as a fallback value:

from functools import reduce
from operator import mul

print(reduce(mul, [])) # TypeError
print(reduce(mul, [], 0.5)) # 0.5

8.3 The filter(), map(), reduce() Pattern

Even though they work completely different, the functions filter(), map(), and reduce()
have some pair-wise commonalities:

• Both filter() and map() process the elements of an iterable one by one.
• Both map() and reduce() transform values.
• Both filter() and reduce() decrease the number of elements.

Those three functions are often used together to process iterables, resulting in a single value.
Consider the following list containing employees, their hourly rates, and the amount of hours
worked by each for a project:

efforts = [
(name, rate, hours)
('Dilbert', 220, 13.5),
('Alice', 180, 16.0),
('Wally', 150, 0.0),
('Ashok', 80, 42.5),
('Dogbert', 250, 3.5),
('Pointy Haired Boss', 500, 0.0),

]

39

In order to produce the total labor costs of the project, this list of tuples can be processed in
three steps:

1. filter : Only entries with actual working hours (> 0.0) are retained.
2. map: Compute the cost for each employee (rate multiplied by hours).
3. reduce: Sum up all the individual costs of each employee.

from functools import reduce
from operator import add

efforts = [
(name, rate, hours)
('Dilbert', 220, 13.5),
...

]

involved = filter(lambda e: e[2] > 0.0, efforts)
cost_per_employee = map(lambda e: e[1] * e[2], involved)
total_costs = reduce(add, cost_per_employee)
print(f'total costs: {total_costs}') # 10125.0

In this particular example, the filter step is redundant, because employees with zero hours
would not affect the total cost at all. The reduce step could also be simplified using the sum()
function:

efforts = [
(name, rate, hours)
('Dilbert', 220, 13.5),
...

]

cost_per_employee = map(lambda e: e[1] * e[2], efforts)
total_costs = sum(cost_per_employee)
print(f'total costs: {total_costs}') # 10125.0

Consider another example: a list of exam submissions consisting of the name, the submission
date, and the score achieved:

submissions = [
name, submission date, score
('Alice', '2021-07-03', 73),
('Bob', '2021-07-18', 81),
('Charles', '2021-07-12', 57),
('Deborah', '2021-07-10', 96),
('Ernest', '2021-07-19', 89),

40

('Fanny', '2021-07-06', 61),
]

The average grade of submissions within deadline should be computed as follows:

1. filter : Submissions after the deadline (2021-07-10) are ignored.
2. map: A grade from 1 (worst) to 6 (best) is computed based on a maximum score of 100.
3. reduce: The grade average of all submissions is calculated.

from datetime import datetime

submissions = [
name, submission date, score
('Alice', '2021-07-03', 73),
...

]

max_score = 100

def is_within_deadline(submission):
deadline = datetime.fromisoformat('2021-07-10')
submitted = datetime.fromisoformat(submission[1])
return submitted < deadline

def swiss_grade(score, max_score):
return score / max_score * 5 + 1

within_deadline = filter(is_within_deadline, submissions)
grades = map(lambda s: swiss_grade(s[2], max_score), within_deadline)
grades = list(grades)
average = sum(grades) / len(grades)
print(f'average: {average}') # 4.35

9 Comprehensions

Creating an iterable based on another iterable, say, building the squares of a list of numbers,
can be done in various ways.

The structured approach uses a for loop:

numbers = range(1, 10)

squares = []
for number in numbers:

41

squares.append(number ** 2)

print(squares) # [1, 4, 9, 16, 25, 36, 49, 64, 81]

This approach is perfectly valid, but requires operational reasoning to understand.

A more declarative approach uses the higher-order map function, which requires less code to
be written:

numbers = range(1, 10)

squares = list(map(lambda x: x ** 2, numbers))

print(squares) # [1, 4, 9, 16, 25, 36, 49, 64, 81]

However, the best tool for this purpose—building a list based on an iterable—is a list compre-
hension:

numbers = range(1, 10)

squares = [x ** 2 for x in numbers]

print(squares) # [1, 4, 9, 16, 25, 36, 49, 64, 81]

No lambda expression is required, the expression can be stated directly.

The comprehension has the following structure:

[{expression} for {item} in {iterable}]

The above example can be read in English as:

make a list of x ** 2 for all values of x in numbers

9.1 Conditions

The higher-order functinos filter and map are often used toghether: first, the items to be
processed are fitered, second, the remaining items are mapped.

Consider this example turning a list of empty and non-empty strings into title-cased strings,
ignoring the empty ones:

strings = ['', '', 'john', '', 'alice', '', 'bob']
non_empty = filter(len, strings)
names = list(map(lambda s: s.title(), non_empty))
print(names) # ['John', 'Alice', 'Bob']

42

A comprehension has an optional if statements; only items passing this test end up in the
resulting sequence:

strings = ['', '', 'john', '', 'alice', '', 'bob']
names = [s.title() for s in strings if s]
print(names) # ['John', 'Alice', 'Bob']

This code is shorter and clearer. Consider a comprehension as an alternative of combining
filter and map.

9.2 Nesting

Comprehensions can be nested, which can be used to create multi-dimensional lists:

def field_2d(rows, cols):
return [[(x, y) for x in range(cols)] for y in range(rows)]

field = field_2d(6, 7)
for row in field:

print(row)

[(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0)]
[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)]
[(0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2)]
[(0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3)]
[(0, 4), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4)]
[(0, 5), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5)]

Again, this is much shorter than using the structured approach:

def field_2d(rows, cols):
field = []
for y in range(rows):

row = []
for x in range(cols):

row.append((x, y))
field.append(row)

return field

Notice that comprehensions can be nested without creating multi-dimensional sequences as a
result:

coords = [x + y for x in range(0, 40, 10) for y in range(4)]
print(coords)

43

[0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 23, 30, 31, 32, 33]

This translates to structured code as follows:

coords = []
for x in range(0, 40, 10):

for y in range(4):
coords.append(x + y)

In the comprehension expression, the inner loop is on the right, the outer loop on the left.

9.3 Dictionaries, Sets, Tuples

Comprehensions can be used for the other sequence types—dictionaries, sets, and tuples—
too:

squares = {x: x ** 2 for x in range(1, 6)}
print(squares) # {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

additions = [(3, 4), (4, 3), (5, 2), (3, 1), (4, 2)]
sums = {x + y for (x, y) in additions}
print(sums) # {4, 6, 7}

strings = ['', '', 'john', '', 'alice', '', 'bob']
names = tuple(s.title() for s in strings if s)
print(names) # ('John', 'Alice', 'Bob')

Notice that the last example creates a generator object, which must explicitly be converted to a
tuple.

10 Generators

Unlike comprehensions, generators use lazy evaluation. Unlike iterators, generators do not re-
quire implementing a class implementing the next() and iter()method (less boilerplate).

Generators are implemented using functions that yield a different result every time they are
called:

def squares(n):
for i in range(n):

yield i ** 2

print(list(squares(6))) # [0, 1, 4, 9, 16, 25]

44

After a value is returned using the yield keyword, the generator function stops its execution,
but its state is remembered. The execution is continued for the next iteration. This makes it
possible for generator functions to hold a state (without using an explicit closure):

def factorials(n):
current = 1
for i in range(n):

if i != 0:
current *= i

yield current

print(list(factorials(6))) # [1, 1, 2, 6, 24, 120]

As seen in the last example of the previous chapter, a generator can be created as a comprehen-
sion using parentheses:

square_gen = (x ** 2 for x in range(2, 6))
print(next(square_gen)) # 4
print(next(square_gen)) # 9
print(next(square_gen)) # 16
print(next(square_gen)) # 25
print(next(square_gen)) # StopIteration

Generators combine the advantages of comprehensions with lazy evaluation. If a sequence
is hard to express in terms of filter and map, and if the task is memory-critical, consider a
generator.

11 Partial Application and Currying

Partial application of functions and currying are both ways to create new functions based on
existing functions. Those techniques are based on closures. (A closure is an inner function
returned from a surrounding function, with the inner function having references to the sur-
rounding function.)

11.1 Partial Application

With partial application, only a subset of a function’s parameters are set on the first function
call. The rest of the parameters are filled in a later call to the partially applied function.

Consider the function inc_x, which requires a parameter x, and returns a function that in-
creases its parameter by x:

45

def inc_x(x):
def inc(y):

return x + y
return inc

numbers = [1, 2, 3]

inc_1 = inc_x(1)
inc_3 = inc_x(3)

print(list(map(inc_1, numbers))) # [2, 3, 4]
print(list(map(inc_3, numbers))) # [4, 5, 6]

Partial application is especially helpful if a function has a lot of parameters, like a quadratic
function:

y = ax² + bx + c

Such a function is usually defined in terms of the parameters a, b, and c—and applied multiple
times using different values for x:

def quad(a, b, c, x):
return a*x**2 + b*x + c

def quad_abc(a, b, c):
def f(x):

return quad(a, b, c, x)
return f

xs = range(5)

f = quad_abc(1, 2, 3)
g = quad_abc(2, 0, 1)

print(list(map(f, xs))) # [3, 6, 11, 18, 27]
print(list(map(g, xs))) # [1, 3, 9, 19, 33]

The partial() functions from the functoolsmodule provides a more flexible approach that
doesn’t require defining closures for specific partial applications. The code above can be sim-
plified using partial():

from functools import partial

def quad(a, b, c, x):

46

return a*x**2 + b*x + c

xs = range(5)

f = partial(quad, 1, 2, 3)
g = partial(quad, 2, 0, 1)

print(list(map(f, xs))) # [3, 6, 11, 18, 27]
print(list(map(g, xs))) # [1, 3, 9, 19, 33]

It is possible to apply a function partially multiple times, until every parameter was filled in:

from functools import partial

def quad(a, b, c, x):
return a*x**2 + b*x + c

xs = range(5)

quad_a = partial(quad, 1)
quad_ab = partial(quad_a, 2)
quad_abc = partial(quad_ab, 3)

print(list(map(quad_abc, xs))) # [3, 6, 11, 18, 27]

However, using partial application, the parameters have to be filled in the order as they are
defined in the function. It’s not possible to just define the quad function’s parameter b and x,
and leave a and c undefined.

It is possible though to partially apply a function by setting keyword arguments:

from functools import partial

print_csv = partial(print, sep=',')
print_space = partial(print, sep=' ')

names = ['Dilbert', 'Alice', 'Wally']
print_csv(*names) # Dilbert,Alice,Wally
print_space(*names) # Dilbert Alice Wally

11.2 Currying

Python supports currying using third-party libraries such as PyMonad (version 2.4.0):

47

$ pip install --user PyMonad==2.4.0

The pymonad module includes the curry decorator, which can be used to define functions
that can be partially applied without explicit use of functools.partial. The number of
arguments to be curried needs to be passed to the curry decorator:

from pymonad.tools import curry

@curry(4)
def quad(a, b, c, x):

return a*x**2 + b*x + c

xs = range(5)

quad_abc = quad(1, 2, 3)
print(list(map(quad_abc, xs))) # [3, 6, 11, 18, 27]

quad_a = quad(1)
quad_ab = quad_a(2)
quad_abc = quad_ab(3)
print(list(map(quad_abc, xs))) # [3, 6, 11, 18, 27]

Notice that curried functions don’t come for free; a lot of functions with different argument
lists are defined automatically in the background. Calling a curried function is less explicit than
using partial application. Make sure the curried nature of a function is made clear to its users
by the means of naming, documentation, or convention (writing a module where functions are
curried in general).

11.3 Advanced Composition

Functions with a single argument can be composed using a closure:

def compose(f, g):
def fn(x):

return f(g(x))
return fn

def increment(x):
return x + 1

def twice(x):
return x * 2

48

f = compose(twice, increment)

print(f(1)) # 4
print(f(2)) # 6
print(f(3)) # 8

Functions with multiple arguments can only be composed as above if partially applied before
to turn them into functions accepting a single argument:

from functools import partial

def compose(f, g):
def fn(x):

return f(g(x))
return fn

def add(x, y):
return x + y

def mul(x, y):
return x * y

increment = partial(add, 1)
twice = partial(mul, 2)
f = compose(twice, increment)

print(f(1)) # 4
print(f(2)) # 6
print(f(3)) # 8

11.3.1 Composing Multiple Functions

Consider the following set of functions f(), g(), h(), and i(), which perform the following
computations:

• f(x): adds 1 to x
• g(x): multiplies x by 2
• h(x): computes x to the power of 3
• i(x): subtracts 1 from x

Thus, i(h(g(f(x)))) = (((x + 1) * 2) ^ 3) - 1. Composing those functions one by
one is cumbersome:

49

def compose(f, g):
def fn(x):

return f(g(x))
return fn

def f(x):
return x + 1

def g(x):
return x * 2

def h(x):
return x ** 3

def i(x):
return x - 1

fn = compose(i, h)
fn = compose(fn, g)
fn = compose(fn, f)

print(fn(1)) # (((1 + 1) * 2) ^ 3) - 1 = 63

The composition can be generalized as a reducing operation. The compose() function accepts
a list of functions to be reduced by composing them pair-wise:

from functools import reduce

def compose(*fns):
def compose_pair(f, g):

def fn(x):
return f(g(x))

return fn
return reduce(compose_pair, fns)

def f(x):
return x + 1

def g(x):
return x * 2

def h(x):
return x ** 3

50

def i(x):
return x - 1

fn = compose(i, h, g, f)

print(fn(1)) # (((1 + 1) * 2) ^ 3) - 1 = 63

Unfortunately, this implementation doesn’t work if no functions are passed as arguments. The
initializer argument of reduce() can be used to define a default value. A sensible default
value, however, depends on the operation to be performed. (For an addition or subtraction, the
neutral element is 0, for a multiplicationor a division, the neutral element is 1.) The identity
value provided by an identity function (lambda x: x) is the right choice for all cases:

from functools import reduce

def compose(*fns):
def compose_pair(f, g):

def fn(x):
return f(g(x))

return fn
return reduce(compose_pair, fns, lambda x: x)

fn = compose()
print(fn(37)) # 37

12 Functors and Monads

Functors wrap a value and control how functions are applied to that wrapped value. Such
wrappers are useful when dealing with values that might be missing, or add new capabilities
to existing functions, such as making a function that can only deal with scalar values capable
of handling lists of scalar values.

The oslash library provides Haskell-style functors, applicatives, and monads:

$ pip install oslash==0.6.3

• A functor wraps a value and controls how function is applied to that wrapped value
using the map() method or the % operator.

• An applicative is a special kind of a functor that wraps a function, which can be called
by the apply() method.

• A monad is a special kind of an applicative that also wraps the value returned from a
function using its bind() method.

51

Those constructs are crucial in a pure functional programming language like Haskell, where
they are needed to deal with errors or side-effects. In Python, those constructs are optional—
hence available by third-party libraries such as oslash—and can be left away in favour of
procedural code.

12.1 Functors

The Just functor, which technically is also an applicative and a monad (of which more later),
is a wrapper around a value:

from oslash import Just

x = Just(3)
print(x) # Just 3

Functions cannot be called directly with an instance of Just as an argument. Instead, the
functor’s map() method or the % operator can be used:

from oslash import Just

def twice(x):
return x * 2

x = Just(3)

y = twice(x) # illegal

y = x.map(twice) # correct
print(y) # Just 6

y = twice % x # correct, but shorter
print(y) # Just 6

Notice that the function stands at the left of the % operator, and the functor to its right.

The Nothing functor does not wrap a value. It is the functional brother of Python’s Nonewith
well-defined behaviour—a function being applied to Nothing always returns Nothing instead
of throwing an exception:

from oslash import Nothing

def twice(x):
return x * 2

x = Nothing()

52

print(x) # Nothing

y = twice % x
print(y) # Nothing

The List functor wraps a list of values and makes it possible that a function that only deals
with scalar values can be applied to an entire list—a lot like the higher-order map() function
(notice that the twice() function has to be wrapped by a Just functor, of which more in the
next section):

from oslash import Just, List

def twice(x):
return x * 2

xs = List.from_iterable([1, 2, 4, 8]) # [1, 2, 4, 8]
print(xs)

f = Just(twice)

ys = f.apply(xs) # [2, 4, 8, 16]
print(ys)

12.2 Applicatives

The Just functor is, in fact, also an applicative functor that wraps a function as a value, or
short: an applicative, which provides an apply() method:

from oslash import Just

def twice(x):
return x * 2

x = Just(3)
f = Just(twice)

b = f.apply(x)
print(b) # Just 6

Notice that both the value 3 and the function twice() have been wrapped by a Just applica-
tive.

An applicative wrapping a function with more than one parameter returns a partially applied
function if the apply() method is called on it. The arguments can be filled in one by one:

53

from oslash import Just

def quad(a, b, c, x):
return (a * x ** 2) + b * x + c

f = Just(quad)
f_a = f.apply(Just(1))
f_ab = f_a.apply(Just(2))
f_abc = f_ab.apply(Just(3))

x = Just(4)

y = f_abc.apply(x)
print(y) # Just 27

y = Just(quad).apply(Just(1)).apply(Just(2)).apply(Just(3)).apply(x)
print(y) # Just 27

12.3 Monads

An applicative that also wraps the return value resulting from a call to its wrapped function is
called a monad. Its bind() method accepts a single parameter—a function returning another
monad:

from oslash import Just, Nothing

def safe_reciprocal(x):
if x == 0:

return Nothing()
return Just(1/x)

x = Just(4)
y = x.bind(safe_reciprocal)
print(y) # Just 0.25

x = Just(0)
y = x.bind(safe_reciprocal)
print(y) # Nothing

54

13 Useful Libraries

Python’s standard library offers a lot of capabilities that support a functional programming
style. The functools (treated above) and itertools (treated in the following section) mod-
ules are especially useful for that purpose.

13.1 The itertoolsModule

The itertools module provides useful functions to create iterators.

Infinite series of incrementing values can be created using the count() function, which re-
quires a start value and an optional step size:

from itertools import count

to_infinite = count(0) # 0, 1, 2, 3, ...
to_infinite = count(0, 10) # 0, 10, 20, 30, ...

Infinite or finite repetitions of values can be created using the repeat() function, which re-
quires a value x to be repeated and an optional limit n:

from itertools import repeat

infinite_ones = repeat(1) # 1, 1, 1, 1, ...
limited_ones = repeat(1, 3) # 1, 1, 1

Series of numbers can be repeated using the cycle() function that accepts an iterator to be
repeated:

from itertools import cycle

one_two_three_ad_nauseam = cycle([1, 2, 3]) # 1, 2, 3, 1, 2, 3

Like zip, the zip_longest function zips together two iterables. Unlike zip, it doesn’t stop
when the shorter iterable is exhausted, but fills in values until the longer iterable is exhausted,
too:

from itertools import zip_longest

names = ['Dilbert', 'Alice', 'Wally']
ranks = range(1, 6)
ranking = zip_longest(ranks, names, fillvalue='fired')
for rank in ranking:

print(rank)

55

(1, 'Dilbert')
(2, 'Alice')
(3, 'Wally')
(4, 'fired')
(5, 'fired')

If a function with n parameters is given to the higher-order map() function, it expects n it-
erables, too. The higher-order starmap() requires a single iterable consisting of n tuples
instead:

from itertools import starmap

inventory = [
(17, 0.99),
(32, 0.49),
(12, 5.49),
(97, 0.19),
(13, 2.95),

]

positions = starmap(lambda n, p: n * p, inventory)

for position in positions:
print(position)

16.83
15.68
65.88
18.43
38.35

The filterfalse() higher-order function works like filter(), except that it returns the
values for which the predicate function returns False:

from itertools import filterfalse

def is_even(x):
return x % 2 == 0

numbers = range(10)
even = filter(is_even, numbers)
odd = filterfalse(is_even, numbers)

56

print(list(even)) # [0, 2, 4, 6, 8]
print(list(odd)) # [1, 3, 5, 7, 9]

The accumulate() function works like sum(), but keeps a running total:

from itertools import accumulate

xs = range(5)
sums = accumulate(xs)

print(list(xs)) # [0, 1, 2, 3, 4]
print(list(sums)) # [0, 1, 3, 6, 10]

Two or more iterables can be joined together using the chain() function:

from itertools import chain

xs = range(3)
ys = range(3, 6)
zs = range(6, 9)

print(list(chain(xs, ys, zs))) # [0, 1, 2, 3, 4, 5, 6, 7, 8]

An iterable can be turned into n iterables with the same underlying values using the tee()
function:

from itertools import tee

xs = range(5)

a, b, c = tee(xs, 3)
print(list(a)) # [0, 1, 2, 3, 4]
print(list(b)) # [0, 1, 2, 3, 4]
print(list(c)) # [0, 1, 2, 3, 4]

The takewhile() function works like filter(), but stops after the first item fails the predi-
cate function. The dropwhile() function ignores values until the first item matches the pred-
icate function:

from itertools import takewhile, dropwhile

def is_even(x):
return x % 2 == 0

numbers = [0, 2, 4, 6, 7, 8, 10, 11]

57

left = takewhile(is_even, numbers)
right = dropwhile(is_even, numbers)

print(list(left)) # [0, 2, 4, 6]
print(list(right)) # [7, 8, 10, 11]

Notice that the value 11 is included in the right list, even though it wouldn’t match the
is_even() predicate function.

See the itertools and functools documentation pages for more details and additional use-
ful functions.

13.2 Third-Party Libraries

The following third-party libraries have been introduced in this text:

• PyMonad providing functional programming techniques the Python standard library
doesn’t.

• OSlash providing functors, applicatives, and monads.

58

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/functools.html
https://pypi.org/project/PyMonad/
https://pypi.org/project/OSlash/

	Introduction
	Functional Concepts
	Pros and Cons

	Functions as Objects
	Sorting
	Lambdas
	Operator Functions
	Partial Function Application

	Mutability
	Recursion
	(No) Tail Call Optimization
	Memoization
	Flattening Lists

	Closures
	Returning Inner Functions
	Map
	Composing Functions
	Closures vs. Classes
	Inspecting Closures

	Iterators
	Iterables
	Loops use Iterators
	Lazy Evaluation
	Realizing Iterators
	Implementing an Iterator

	Transforming Iterables
	Enumerating
	Zipping and Unzipping
	Sorting and Reversing
	Pipelines
	Multiple Map Parameters

	Reducing Iterables
	Built-in Reducing Functions
	The reduce() Function
	The filter(), map(), reduce() Pattern

	Comprehensions
	Conditions
	Nesting
	Dictionaries, Sets, Tuples

	Generators
	Partial Application and Currying
	Partial Application
	Currying
	Advanced Composition
	Composing Multiple Functions

	Functors and Monads
	Functors
	Applicatives
	Monads

	Useful Libraries
	The itertools Module
	Third-Party Libraries

