TLS Mastery

Notes on TLS

Patrick Bucher

Contents

Chapter 0: Introduction
TLSClient
Regulation e

Chapter 1: TLS Cryptography
Ciphers e
Security Model

Chapter 2: TLS Connections
Interactive TLS Sessions
Helpful Commandsand Flags
Constraining TLS Versions and Ciphers

Chapter 3: Certificates
Certificate Validation and Verification
Chainof Trust
Certificate Formats L L
DER: Distinguished EncodingRules
PEM: Privacy-Enhanced Mail 00000
PKCS#12: Public Key Cryptography Standard 12
Certificate Contents
Narrowing Down the OQutput
Multiple Hostnames
Fetching Certificates
Some CA Considerations

Chapter 4: Revocation and Invalidation
Certificate Revocation Lists (CRL) i
Online Certificate Status Protocol (OCSP)
OCSP Stapling e

RevocationIssues

Chapter 5: TLS Negotiation
Certificate Validation
Protocol Settings
Session Resumption
TLS 1.2 . .
TLS 1.3 o o
TLS Failures e

Chapter 6: Certificate Signing Requests and Commecrial CAs
Gathering Information L
RSAOrECDSA
OpenSSL Configuration
CSR Configuration File
Creatingthe CSR
ECDSA . . . e

Without Config File
Viewing a CSR o e
Storing the Certificate

Matching CSR, Private Key, and Certificate

Chapter 7: Automated Certificate Management Environment
ACME Registration o oo Lo oo
ACME Challenge Process it
ACME Challenges o i i
Some Practical Advice
ACME Clients o e
Dehydrated
Dehydrated HTTP-01 Challenge
Running Dehydrated oL oL
Deploying the Certificate
Cleanup
Debugging
Dehydrated DNS-01 Challenge
Dynamic Zone Setup e e e e e e e
CreatingaTest TXTRecord
Setting up DNS Aliases
DNS-01 Hook Script
Dehydrated Configuration per Domain
Certificate Renewal L

21
21
22
23
23
24
24

25
25
25
26
26
28
28
29
29
30
30
31
31

Chapter 8: HSTS and CAA 45

HTTP Strict Transport Security 45
Deploying HSTS oo 45
Certificate Authority Authorization, 46
Chapter 9: TLS Testing and Certificate Analysis 47
Testing Server Configuration 47
Testing Certificate Transparencyo v 48
Chapter 10: Becoming a CA 48
CAComponents 49
OpenSSL Root CA Configuration 49
Createthe Root CA 52
OpenSSL Intermediate CA Configuration 53
Create the Intermediate CA 55

OCSP Responder i 56
Running the OCSP Responder 57

Issuing Web Site Certificates 57
Issuing Client Certificates 59
Revoking Certificates L 60
Generatingthe CRL 61
Appendix A: Web Server Setup Using Apache 2 62
Appendix B: DNS Server Setup Using Bind9 63
Appendix C: Relevant RFCs 66

These notes are based on TLS Mastery by Michael W. Lucas. I highly recommend to buy that
book. The examples have been modified as needed. Appendices providing instructions on how
to setup a basic web and DNS server have been added.

Chapter 0: Introduction

OpenSSL commands have the following syntax:
$ openssl [subcommand] [flags]

The flags use single dashes with long names: -foo, not -f or --foo.

Common flags:

+ —in: define input (key file or the like)
« —out: define output
« —text: use textual rather than binary output

https://www.tiltedwindmillpress.com/product/tls/

TLS Client

The s_client subcommand provides a TLS-aware netcat. It can be used to fetch and output
a certificate from a remote website:

$ openssl s_client -showcerts -connect paedubucher.ch:443 </dev/null | \
openssl x509 -text -noout

There are two openssl commands:

1. Fetching the certificate using s_client:

+ -showcerts: show the TLS certificate

« —connect: specify ahost:port to connect to (paedubucher.ch on TLS port 443)

+ </dev/null: do not provide any input, which is usually required from openssl
commands

2. Parsing and displaying the certificate using x509 (deals with X.509 certificates):

« —text: output human-readable text instead of the binary representation
+ -noout: do not output the encoded certificate

Man pages are usually to be found with openssl-[subcommand]. Check apropos
openssl.

Regulation

The FIPS (Federal Information Processing Standards) regulates which TLS algorithms can be
used. For organizations operating under FIPS regulation, those guidelines are mandatory, even
though the FIPS lacks a bit behind (e.g. SHA-1 is still considered safe).

TLS is used for TCP, DTLS for UDP protocols; they work mostly the same.

Chapter 1: TLS Cryptography

RSA (Rivest, Shamir Adelman) and ECDSA (Elliptic Curve Digital Signature Algorithm) are the
most important algorithms for private/public key pairs.

TLS uses public key cryptography to negotiate a temporary, symmetric key that is actually
used to encrypt the data being transferred.

A public key infrastructure (PKI) encompasses the entire system providing cryptography
(e.g. TLS, PGP).

(HIMAC: (Hashed) Message Authentication Code is a symmetrically encrypted hash
(e.g. HMAC-256). A message is first hashed, then the hash is encrypted using the private key.
The encrypted hash then can be decrypted against the public key.

See keylength.com for recommendations concerning secure key lengths.

Ciphers

A cipher suite is a combination of asymmetric, symmetric, and checksum algorithms and pa-
rameters for end-to-end communication (but unrelated to the signature algorithm).

TLS 1.2 indicates cipher suites as follows: TLS_[Kx]_[Au] _WITH_[Enc]_[MAC]:

+ Kx: key exchange method (e.g. ECDHE, RSA)

« Au: authentication method (e.g. ECDSA, RSA)

« Enc: symmetric encryption and mode of operation (e.g. AES, CBC, CCM, GCM)
« MAC: message authentication code (e.g. SHA, SHA256, SHA384)

If Kx and Au are the same, the indication is only listed once.

TLS 1.3 indicates cipher suites using a shorter form: TLS_[Enc]_[MAC] (Kx, Au, and WITH
are omitted). No public key algorithm is indicated, because it is negotiated between client and
server.

Different implementations use different syntaxes, use ciphersuite.info to check.

Use the ciphers subcommand to list supported cipher suites:

$ openssl ciphers -v -stdname -s -tlsl1_3

» -v: list one cipher per line

« -V: display hex values (official “names”)
« —stdname: display standard names

« -s: only display supported ciphers

Example (cut off all but the first column):

$ openssl ciphers -stdname -s -v -tlsl_3 | cut -fl | sort
TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

Ciphers are grouped in cipher lists, see openss1-ciphers (1) for details (e.g. HIGH, MEDIUM,
RSA, ECDHE etc.). They can be listed using the ciphers subcommand:

https://www.keylength.com/
https://ciphersuite.info/

$ openssl ciphers HIGH

Applications can be configured to use specific cipher lists. Sticking to HIGH is a good idea in
general. Check ssl-config.mozilla.org for application specific configurations.

Security Model

There are two models of trust for publik key cryptography:

1. Web of Trust: the user decides whom to trust, used for PGP.
2. Certificate Authority: audited organizations are considered trustworthy, used for TLS.

Private keys, which are enough to pretend being its identity, should only be readable/writable
by the root user (chmod 0600). All certificates based on a private key have to be revoked
immediately if that private key has been leaked.

Protecting private key with passphrases is usually not viable, because the passphrase needs to
be entered as a service using TLS is started.

TLS resumption is a mechanism to speed up subsequent communication after TLS validation
has been performed with the first request. TLS 1.2 uses session tickets (client) and server caches
(server). TLS 1.3 uses pre-shared keys (PKS) and (restricted) session tickets. Resumption could
be a privacy threat, because browsers can be identified by pre-shared keys and session tickets.
Therefore, TLS resumption is deactivated where privacy is of high concern.

Secure renegotiation is the idea to use different levels of encryption within the same context
(e.g. a web application with higher encryption for the login process than for just browsing). It
was discarded, hence is missing in TLS 1.3, due to security flaws.

DHE and ECDHE (based on RSA and ECD, respectively) do not use the private key to negotiate
a symmetric key used for the actual data transfer (PFS: perfect forward secrecy). Therefore,
captured encrypted packets can’t be decrypted using a leaked private key.

Since multiple web sites can be hosted under the same IP address, the first request must indicate
a domain, so that the right TLS certificate can be picked for it (SNI: server name indication).
This is done in cleartext.

Chapter 2: TLS Connections

The openssl s_client subcommand is useful for debugging daemons that offer TLS-
encrypted connections. Different implementations of Netcat (nc (1)) can deal with TLS more
or less well, so better stick to openss.

s_client was made for debugging and, therefore, also accepts invalid certificates:

https://ssl-config.mozilla.org/

$ openssl s_client -connect expired.badssl.com:443 </dev/null >/dev/null
$ echo $?
0

Specify ~verify_return_error to fail if the certificate offered is invalid:

$ openssl s_client -verify_return_error -connect expired.badssl.com:443 \
</dev/null >/dev/null

$ echo $?

1

Interactive TLS Sessions

Some protocols, like HTTP, require CR+LF (carriage return and line feed: \r\n) to end com-
mands, while pressing [Enter] on Unix terminals only sends the new line character \n. Add
the —cr1f option to translate a line feed into CR+LF:

$ openssl s_client -connect paedubucher.ch:443 -crlf
GET / HTTP/1.1
Host: paedubucher.ch

Press [Enter] twice to terminate HTTP commands; the index.html page will be listed.
If server name indication (SNI) is used, specify the server name so using the -servername
flag.

Servers that offer opportunistic TLS (STARTTLS) allow the client to connect without TLS first
and then allow the client to switch to a TLS-encrypted connection, if it wants so. The -
starttls [protocol] can be defined to indicate that the switch to TLS is desired for the
given protocol:

$ openssl s_client -connect mail.company.com:25 -starttls smtp

Helpful Commands and Flags

Various commands can be used within an interactive TLS-encrypted session:

+ Q: quit (cleanly close the connection)

« k: update the key

+ K: update the key and request a new key

« R:re-negotiate the terms of the connection

Use the flag —ign_eof to keep the connection alife after EOF was sent. This also deactivates
the commands above.

To only display a summary of the negotiated TLS characteristics, use the -brief flag:

$ openssl s_client -connect paedubucher.ch:443 -brief </dev/null
CONNECTION ESTABLISHED

Protocol version: TLSv1.2

Ciphersuite: ECDHE-RSA-AES256-GCM-SHA384

Peer certificate: CN = paedubucher.ch

Hash used: SHA256

Signature type: RSA-PSS

Verification: OK

Supported Elliptic Curve Point Formats: uncompressed:ansiX962_compressed_...

Server Temp Key: X25519, 253 bits
DONE

To only display a summary of the certificate chain, use the ~quiet flag:

$ openssl s_client -connect paedubucher.ch:443 -quiet </dev/null
depth=2 0 = Digital Signature Trust Co., CN = DST Root CA X3
verify return:l

depth=1 C = US, O = Let's Encrypt, CN = R3

verify return:l

depth=0 CN = paedubucher.ch

verify return:1l

Constraining TLS Versions and Ciphers

By default, s_client uses the highest version of TLS offered. The protocol version can be
specified using the flags -t1s1_3, -t1s1_2, and the indications for the obsolete versions -
tlsl_1, -tls1, -ss13. It is also possible to forbid certain protocol versions using the flags of
the form —no_[version], such as -no_t1ls1_1, -no_ss13, etc. Don’t mix those two kinds
of flags. For example, this command can be used to check if a server still offers obsolete TLS
versions (< TLS 1.2):

$ openssl s_client -brief -no_tlsl_3 -no_tlsl1_2 \
-connect paedubucher.ch:443 -crlf </dev/null

CONNECTION ESTABLISHED

Protocol version: TLSv1.1

Ciphersuite: ECDHE-RSA-AES256-SHA

Peer certificate: CN = paedubucher.ch

Hash used: MD5-SHA1l
Signature type: RSA
Verification: OK

Supported Elliptic Curve Point Formats: uncompressed:ansiX962_compressed_...

Server Temp Key: X25519, 253 bits
DONE

In the case above, TLS 1.1 is still offered.

TLS 1.2 ciphers and TLS 1.3 cipher suites can be defined using the -cipher and -
ciphersuites, respectively:

$ openssl s_client -brief -cipher TLS_RSA_WITH_AES_128_CBC_SHA256 \
-connect paedubucher.ch:443 -crlf </dev/null

Error with command: "-cipher TLS_RSA_WITH_AES_128_CBC_SHA256"

140339066332544:error:1410DOB9:SSL routines:SSL_CTX_set_cipher_1list:...

$ openssl s_client -brief -cipher ECDHE-RSA-AES256-GCM-SHA384 \
-connect paedubucher.ch:443 -crlf </dev/null

CONNECTION ESTABLISHED

Protocol version: TLSv1.2

Ciphersuite: ECDHE-RSA-AES256-GCM-SHA384

Peer certificate: CN = paedubucher.ch

Hash used: SHA256

Signature type: RSA-PSS

Verification: OK

Supported E1l1liptic Curve Point Formats: uncompressed:ansiX962_compressed_...

Server Temp Key: X25519, 253 bits
DONE

$ openssl s_client -brief -tlsl_3 -ciphersuites TLS_AES_128_GCM_SHA256 \
-connect mozilla.org:443 -crlf </dev/null

CONNECTION ESTABLISHED

Protocol version: TLSv1.3

Ciphersuite: TLS_AES_128_GCM_SHA256

Peer certificate: CN = mozilla.org

Hash used: SHA256

Signature type: RSA-PSS

Verification: OK

Server Temp Key: X25519, 253 bits

DONE

Use openssl ciphers or ciphersuite.info to find proper ciphersuite indications.

https://ciphersuite.info/

Chapter 3: Certificates

TLS uses X.509 certificates, which is an ITU standard for digital certificates built on ASN.1

(Abstract Syntax Notation One), a cross-platform tree-like data structure with object identifiers
(OID).

The X.500 directory standard is used to specify informations about the certificate holder (orga-
nization unit OU=, organization 0=, common name CN=, etc.) The common name used to be the
host name, but can be any identification (uid, email, first and last name).

A trust anchor or root certificate is an ultimately trusted certificate, often self-signed by some
big organization that runs its own Certificate Authority (CA). Those certificates are included
in operating systems (usually Mozilla’s bundle in Unix-like systems, or Microsoft’s bundle in
Windows). Those bundles can be curated manually, which causes a lot of work and trouble.

On Unix-like systems, certificates are usually stored under /etc/ssl/certs. Use opensslto
figure out the real and optional additional paths:

$ openssl version -a

OpenSSL 1.1.1k 25 Mar 2021

[...]

OPENSSLDIR: "/etc/ssl"

ENGINESDIR: "/usr/lib/engines-1.1"
[...]

Certificate Validation and Verification

All certificates are validated against those in the trust bundles. Additional certificates can be
added (and removed) by operating system or distribution specific tools, such as certctl, add-
trusted-cert, update-ca-trust etc.

Use the -CAf1le flag to validate a certificate against a specific CA:

$ openssl s_client -verify_return_error -connect www.srf.ch:443 \

-CAfile /etc/ssl/certs/DigiCert_Global_Root_CA.pem </dev/null >/dev/null
Global_Root_CA.pem </dev/null >/dev/null
depth=2 C = US, O = DigiCert Inc, OU = www.digicert.com, CN = DigiCert ...
verify return:1
depth=1 C = US, O = DigiCert Inc, CN = DigiCert SHA2 Secure Server CA
verify return:1
depth=0 C CH, ST = Z\C3\BCrich, L = Z\C3\BCrich,

0 = Schweizer Radio & Fernsehen, CN = *x.srf.ch

verify return:1
DONE

10

$ echo $?

A certificate contains two main pieces:

1. information about the entity being certified
2. the digital signature of that information

The signed organization information is put together with a public key into a Certificate Signing
Request (CSR). The CSR, which is a certificate without a digital signature, is then submitted to
the Certificate Auhtority, which verifies the submitted information more or less thoroughly,
and then signs the certificate with its private key for a duration of usually 3 to 12 months.
(Modern browsers impose a limit of 398 days.)

Certificates can be constrained:

+ Some can be used to sign other certificates within the same domain name.

+ The cryptographic algorithms to be used can be constrained.

« The certificate is valid only for a certain domain (foobar . com) or, in case of a wildcard
certificate, all subdomains thereof (x. foobar.com).

Those constraints can be extended beyond the standard. There are critical and non-critical
extensions. Critical extensions must be processed and validated by all clients. Non-critical
extensions can be processed if the client wants to and is available to.

There are different levels of validation for a certificate:

1. Domain Validation (DV): The CA checked that the domain is under control of the request-
ing entity (usually done via DNS).

2. Organization Validation (OV): The CA verified that the requesting organization exists and
is located at the address indicated.

3. Extended Validation (EV): The CA verifies the business registration. This is expensive;
the CA will charge for the certificate accordingly.

Domain Validation is usually enough. Extended Validation is mostly used for regulatory com-
pliance, say, in the finance sector. The requesting entity has to prove its identity in all cases,
only the mechanisms differ.

Chain of Trust

The verification process of a certificate is based on a Chain of Trust, which nowadays is rather
a Tree of Trust. Root CAs protect their private keys very well and don’t want to use it for every
certificate to be signed. Instead, they sign certificates of intermediate CAs (with lower lifetimes
and limited rights), which in turn sign certificates using their private key.

11

The validation is performed bottom-up: domain owner, intermediate CA, root CA. This requires
the whole chain of certificates being available to the client, which only knows the public keys
of some well-known root CAs. Therefore, the certififaces and public keys of the intermedia CA
must also be delivered in a CA bundle.

Certificates can be cross signed, i.e. be signed using signatures of different CAs (both intermedi-
ate and root). Only one single path from the domain certificate up to the root certificate must
be found for a successful validation. This makes a certificate more robust in case an intermedi-
ary/root certificate is revoked (see RFC 5280 for details on certificate revocation).

Certificate Formats

Certificates are usually delivered in the X.509 format, but can be stored in a different formats.

DER: Distinguished Encoding Rules

Distinguished Encoding Rules (DER) is an old binary format using a subset of ASN.1, each in-
formation being stored with a tag, a length, and the actual data. This format is very small and
usually stored in files with the ending .der in their name:

$ openssl x509 -in certificate.der -inform der -text -noout

PEM: Privacy-Enhanced Mail

Privacy-Enhanced Mail (PEM) is a standard for sending encrypted email, which is nowadays
less popular than PGP. It is still in common use to encode keys and certificates. PEM is basically
base64-encoded DER with human friendly headers and footers separating multiple certificates
or keys:

Usually, .pem is used for the file name ending, byt .crt or .key is also common, often for
backwards compatibility (i.e. when still relying on the old name, even though the transition to
a new format has been made). The PEM format is assumed by default, so no -inform option
needs to be passed in order to read PEM Files:

12

https://datatracker.ietf.org/doc/html/rfc5280

$ openssl x509 -in chain.pem -noout -text

Certificates can be re-encoded by combining the the -in, -out, -inform, and -outform op-
tions. Here, a DER-encoded certificate is converted to the PEM format:

$ openssl x509 -1in part.pem -inform pem -outform der -out part.der

PKCS#12: Public Key Cryptography Standard 12

Public Key Cryptography Standard 12 (PKCS#12) can store multiple related encryption files in
a single archive, which can be signed and/or encrypted (e.g. a certificate chain combined with
a private key). Each piece of information is stored in its own SafeBox, which are combined to
archives, usually stored with the ending .p12 or the older .pfx. The pkcs12 subcommand
is used to process such archives. A private key can be combined with a (PEM) certificate as
follows:

$ openssl pkcsl2 -export -out archive.pl2 -inkey private.key -in cert.pem

Additional certificates can be provided using the -~certfile option. A password is prompted
to encrypt the archive. A PKCS#12 file can be viewed as follows:

$ openssl pkcsl2 -info -in archive.pl2

Pass the -nodes option to omit encryption for the private key in cleartext, -nokeys to omit
any keys in the output, and -nocerts to omit the certificates. Those options can be combined
to split up a PKCS#12 archive into certificate and private key files:

$ openssl pkcsl2 -1in archive.pl2 -out all.crt -nodes
$ openssl pkcsl2 -in archive.pl2 -out certs.crt -nokeys
$ openssl pkcsl2 -in archive.pl2 -out private.key -nocerts -nodes

Notice that the output file private. key in the last example is exported in the PKCS#8 format,
i.e. without an algorithm mentioned in the header:

Pipe the output through openssl rsa or openssl ec in order to transform it to the PKCS#1
format with an algorithm indication:

13

$ openssl pkcsl2 -in archive.pl2 -nocerts -nodes | openssl rsa -out key.pem

Notice that the common endings .pem, .der, and .crt do not necessarily imply the format
used; better rely on the output of file(1) and the validation of openss1-x509(1ssl) in-
stead.

Certificate Contents

A certificate contains various fields, which can be viewed as follows (output of public keys and
signatures shortened):

$ openssl x509 -in cert.der -inform der -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
04:29:5c:4e:9c:51:cd:df:b3:ef:00:78:5b:97:b5:7f:79:39
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = Let's Encrypt, CN = R3
Validity
Not Before: Apr 26 08:25:39 2021 GMT
Not After : Jul 25 08:25:39 2021 GMT
Subject: CN = paedubucher.ch
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:
00:20:98:97:20:9d:41:4d:3a:27:2d:c3:86:12:ce:

Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:
44:9F:81:5F:58:39:34:C1:0C:E1:AQ:E1:3E:BO:BF:E2:61:12:...
X509v3 Authority Key Identifier:
keyid:14:2E:B3:17:B7:58:56:CB:AE:50:09:40:E6:1F:AF:9D:...

14

Authority Information Access:
OCSP - URI:http://r3.o.lencr.org
CA Issuers - URI:http://r3.i.lencr.org/

X509v3 Subject Alternative Name:
DNS:paedubucher.ch, DNS:www.paedubucher.ch
X509v3 Certificate Policies:
Policy: 2.23.140.1.2.1
Policy: 1.3.6.1.4.1.44947.1.1.1
CPS: http://cps.letsencrypt.org

CT Precertificate SCTs:
Signed Certificate Timestamp:
Version : vl (0x0)
Log ID : 94:20:BC:1E:8E:D5:8D:6C:88:73:1F:82:8B:...

D1:DA:4D:5E:6C:4F:94:3D:61:DB:4E:2F:58:...

Timestamp : Apr 26 09:25:39.415 2021 GMT

Extensions: none

Signature : ecdsa-with-SHA256
30:44:02:20:0B:2F:D4:47:A0:86:F4:9E:F0:...

Signed Certificate Timestamp:
Version : vl (0x0)
Log ID : F6:5C:94:2F:D1:77:30:22:14:54:18:08:30:...

E3:4D:13:19:33:BF:DF:0C:2F:20:0B:CC:4E:...

Timestamp : Apr 26 09:25:39.392 2021 GMT

Extensions: none

Signature : ecdsa-with-SHA256
30:45:02:20:4D:7C:04:F4:F7:02:BC:3F:2B:...

Signature Algorithm: sha256WithRSAEncryption
60:1a:51:cc:77:4c:5d:f7:31:9a:f3:93:31:5¢c:74:19:3e:70:

Version (usually 3) is the X.509, not the TLS version.

Serial Number is a unique number, which is useful for certificate revocation.
Signature Algorithm describes how the CA signed the certificate.

Issuer identifies the CA that issued the certificate.

Validity defines a time span in which a certificate can be used.

Subject contains information about the entity being certified.

— For Domain Validation (DV), only the common name (CN) is listed.
— For Organization or Extended Validation (OV and EV), information about the orga-
nization, city, country are listed.

15

« Subject Public Key is the public part of the key that has been used to create the
Certificate Signing Request (CSR).

+ X509v3 extensions lists critical and non-critical extensions (mandatory and optional
for certificate verification):

- X509v3 Key Usage (critical) describes how a key can be used.

— X509v3 Extended Key Usage (non-critical) describes additional purposes the
key can be used for.

— X509v3 Basic Constraints (critical) lists if the certificate’s key can be used to
sign other certificates (CA: TRUE) or not (CA: FALSE)

— X509v3 Subject Key Identifier and X509v3 Authority Key Identifier
is the identifier for the subject’s and the CA authority’s key.

— Authority Information Access shows how to get more information about the
CA.

— X509v3 Subject Alternative Name shows the hostnames covered by the cer-
tificate.

— X509v3 Certificate Policies describes the CA.

« CT Precertificate SCTs contains the Signed Certificate Timestamp (SCT) with the
signatures used, which is a cryptographic proof that the certificate was submitted to a
certificate log (Certificat Transparency).

« There’s a digital signature of the CA at the very end of the certificate with the indicated
Signature Algorithm.

Narrowing Down the Output

Additional information to X.509 extensions can be queried using the ~ext option with comma-
separated extensions to be listed (x509v3_config(3)):

$ openssl x509 -in cert.pem -noout -ext keyUsage,extendedKeyUsage
X509v3 Key Usage: critical

Digital Signature, Key Encipherment
X509v3 Extended Key Usage:

TLS Web Server Authentication, TLS Web Client Authentication

Extensions not understood by the openss1 client in use are displayed as raw binary data (con-
sider updating openss or look up the respective OID).

The output can be further shortened using the -certopt option, which accepts comma-
separated values (here: neither display public keys nor signature dumps):

$ openssl x509 -in first.pem -text -noout -certopt no_pubkey,no_sigdump
Certificate:

16

Data:
Version: 3 (0x2)
Serial Number:
04:29:5c:4e:9c:51:cd:df:b3:ef:00:78:5b:97:b5:7f:79:39
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = Let's Encrypt, CN = R3
Validity
Not Before: Apr 26 08:25:39 2021 GMT
Not After : Jul 25 08:25:39 2021 GMT
Subject: CN = paedubucher.ch
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:
44:9F:81:5F:58:39:34:C1:0C:E1:A0:E1:3E:BO:BF:E2:61:12:...
X509v3 Authority Key Identifier:
keyid:14:2E:B3:17:B7:58:56:CB:AE:50:09:40:E6:1F:AF:9D:...

Authority Information Access:
OCSP - URI:http://r3.o.lencr.org
CA Issuers - URI:http://r3.17.lencr.org/

X509v3 Subject Alternative Name:
DNS:paedubucher.ch, DNS:www.paedubucher.ch
X509v3 Certificate Policies:
Policy: 2.23.140.1.2.1
Policy: 1.3.6.1.4.1.44947.1.1.1
CPS: http://cps.letsencrypt.org

CT Precertificate SCTs:
Signed Certificate Timestamp:

Version vl (0x0)

Log ID : 94:20:BC:1E:8E:D5:8D:6C:88:73:1F:82:8B:...
D1:DA:4D:5E:6C:4F:94:3D:61:DB:4E:2F:58:...

Timestamp : Apr 26 09:25:39.415 2021 GMT

Extensions: none

Signature : ecdsa-with-SHA256
30:44:02:20:0B:2F:D4:47:A0:86:F4:9E:F0:...

Signed Certificate Timestamp:

17

Version : vl (0x0)

Log ID : F6:5C:94:2F:D1:77:30:22:14:54:18:08:30:...
E3:4D:13:19:33:BF:DF:0C:2F:20:0B:CC:4E:...

Timestamp : Apr 26 09:25:39.392 2021 GMT

Extensions: none

Signature : ecdsa-with-SHA256
30:45:02:20:4D:7C:04:F4:F7:02:BC:3F:2B:...

Multiple Hostnames
A site can be reachable under different names, such as paedubucher.ch and www. paedubucher.ch.

Subject Alternative Names (SAN) identify all the hostnames a certificate is good for and can
be displayed as follows:

$ openssl x509 -1in first.pem -noout -ext subjectAltName
X509v3 Subject Alternative Name:
DNS:paedubucher.ch, DNS:www.paedubucher.ch

A wildcard certificate is good for any subdomain of a hostname (x.paedubucher.ch), which
can be dangerous, because a successful attacker can offer services with subdomains made up
for the purpose (such as www2 . paedubucher . ch).

Fetching Certificates

It’s also possible to fetch and display remote certificates using the s_client and x509 sub-
commands combined with a pipe (same output as further above):

$ openssl s_client -connect paedubucher.ch:443 </dev/null | \
openssl x509 -text -noout -certopt no_pubkey,no_sigdump

Use the -showcerts option to display the whole certificate chain:

$ openssl s_client -showcerts -connect paedubucher.ch:443 </dev/null

Some CA Considerations

When buying a certificate, consider the reputation a CA has, and in which jurisdication it is
located. A CA must support Certificate Revocation Lists (CRL), the Online Certificat Status
Protocol (OCSP), and, optionally, Certification Authority Authorization (CAA).

18

Chapter 4: Revocation and Invalidation

When private key gets stolen, the certificates based on it can no longer be trusted. However,
the certificate itself still looks trustworthy, and cannot be revoked by the owner of the private
key that has been used to sign the certificate. Since trust comes from above, only the signing
CA can revoke a certificate.

CAs offer web interfaces or automated tools and interfaces for this purpose. Usually, a replace-
ment certificate is ordered in this purpose, which of course needs to be requested with a new
private key. It’s a good idea to test this process, which gives you an idea how well the CA can
handle the certificate invalidation and replacement process.

TLS offers multiple mechanisms for certificate revocation:

Certificate Revocation Lists (CRL)

Certificate Revocation Lists (CRL) are lists of revoked (but not yet expired) certificates offered
by the CA. An endpoint to this list is linked as the CRL Endpoint (Distribution Point)in
the CA’s intermediary certificate. The client downloads this list and makes sure the respective
certificate is not on that list by comparing the certificate’s serial number to those on the list.

CRLs become big quite fast and don’t scale very well nowadays, even though they can be
cached. Caching, however, slows down the revocation process. Use the crl subcommand on
your CA’s root certificate to show the CRL:

$ curl http://crl.identrust.com/DSTROOTCAX3CRL.crl | \
openssl crl -text -inform der -noout

CRLs are usually served in DER format to keep the files small, but other formats can be used,
too.

Online Certificate Status Protocol (OCSP)

With the Online Certificate Status Protocol (OCSP), the client no longer needs to fetch a CA’s
complete list of rekoved certificates, but can query the status of a single certificate via an HTTP
endpoint. A result (good, revoked, unknown) and a cache time to live are returned. The CA
signs the response, so raw HTTP (without TLS) is used here. The endpoint for OCSP can be
extracted from the certificate chain:

$ openssl s_client -showcerts -connect paedubucher.ch:443 \
</dev/null 2>/dev/null | openssl x509 -noout -ocsp_uri
http://r3.o0.lencr.org

19

Given the certificate chain and the OCSP URL, the revocation status can be tested using the
ocsp subcommand (openssl-ocsp(lssl)):

$ openssl s_client -connect github.com:443 </dev/null | \
openssl x509 >cert.pem

$ openssl s_client -showcerts -connect github.com:443 \
</dev/null >chain.pem

$ openssl x509 -in chain.pem -noout -ocsp_uri

http://ocsp.digicert.com

$ openssl ocsp -issuer chain.pem -cert cert.pem -text \
-ur’l http://ocsp.digicert.com

OCSP Response Data:

OCSP Response Status: successful (0x0)

Response Type: Basic OCSP Response

Version: 1 (0x0)

Responder Id: 5061A6A0D235C4112A208D1FOFAC42FOCD29CF4B

Produced At: Jun 24 03:36:53 2021 GMT

Responses:

Certificate ID:
Hash Algorithm: shal
Issuer Name Hash: C6325AEE2FA3FD33D07789FD6B4CCEFOCA3FD0O29
Issuer Key Hash: 5061A6A0D235C4112A208D1FOFAC42FOCD29CF4B
Serial Number: QE8BF3770D92D196FOBB61F93C4166BE

Cert Status: good

This Update: Jun 24 03:21:02 2021 GMT

Next Update: Jul 1 02:36:02 2021 GMT

Check the Cert Status; “good” means that the certificate hasn’t been revoked.

This process consumes less bandwith than CRLs, but more processing power on the client side.
The CA also gets to know the clients accessing particular domains, which is a privay issue.

OCSP Stapling

The OCSP query response (see above) contains a field Next Update, which is the expiration
date of that query. A server can make this request on behalf of the client, and attach (“staple”)
the OCSP response to the TLS session with the client, and digitally sign it. Doing so, the server
can save the clients a lot of OCSP queries—and better protect their privacy—but also needs
to perform the OCSP lookups periodically (according to the Next Update indication). Most
modern web browsers and servers support OCSP nowadays.

20

Revocation Issues

Not all CAs offer all the revocation mechanisms described, or they implement them in a non-
standard or bad way (say, offering just empty CRLs for technical compatibility). Client software
failing to perform OCSP checks are often hidden from the user for the sake of convenience.
Some modern browsers rely on their own curated list of CRLs, which are shipped with their
software updates, instead of fetching CRLs in real-time.

How a client deals with revocation can be tested with sites like revoked-rsa-dv.ssl.com. Us-
ing short-lived certificates with heavy automation mitigates revocation issues. Unfortunately,
Chrome ignores the OCSP Must Staple server setting, which would be a way to emulate short-
lived certificates.

Chapter 5: TLS Negotiation

Clients and servers may have different software and configurations for TLS deployed, which
support different protocol versions, algorithms, and options. Therefore, the parameters to be
uses for a connection are not known in advance, but need to be negotiated between client and
server.

A TLS connection, which can be initiated using the s_client subcommand, consists of three
parts: certificate validation, protocol settings, and session resumption.

Certificate Validation

The TLS client attempts to find a way from the served certificate up to a trusted root certificate.
The process is finished as soon as one such valid path is discovered. The openss1 client then
then outputs this path to standard error:

$ openssl s_client -connect paedubucher.ch:443 </dev/null >/dev/null
depth=2 C = US, 0 = Internet Security Research Group, CN = ISRG Root X1
verify return:l
depth=1 C = US, O
verify return:l
depth=0 CN = paedubucher.ch
verify return:1

DONE

Let's Encrypt, CN = R3

The certificates are listed from top (root certificate) to bottom (domain certificate), with a depth
field indicating the distance from the domain certificate. The field verify return:1 signifies
successful validation of the certificate.

21

https://revoked-rsa-dv.ssl.com

The certificate chain is displayed in reverse order (from domain to root) in the standard out-
put, followed by the server certificate, details about the algorithms and keys being used (here:
SHA256, RSA-PSS, and X25519 with 253 bits), and, finally, the result of the SSL handshake
(Verification: OK):

$ openssl s_client -connect paedubucher.ch:443 </dev/null 2>/dev/null

Certificate chain
0 s:CN = paedubucher.ch

:C = US, 0 = Let's Encrypt, CN = R3
1 s:C =US, O = Let's Encrypt, CN = R3
i:C = US, O = Internet Security Research Group, CN = ISRG Root X1
2 s:C = US, O = Internet Security Research Group, CN = ISRG Root X1
i:0 = Digital Signature Trust Co., CN = DST Root CA X3

MIIFNjCCBB6gAWIBAgISBJa®Pa3QlgD/TEZHmML1ZtqQnMAGGCSqGSIb3DQEBCWUA
wnvurz8wdWtXilw61gAJJwivHeU+/FfF1Lt+wRN6mDZ /bQoU3dFubwln
subject=CN = paedubucher.ch

issuer=C = US, O = Let's Encrypt, CN = R3

No client certificate CA names sent

Peer signing digest: SHA256

Peer signature type: RSA-PSS

Server Temp Key: X25519, 253 bits

SSL handshake has read 4691 bytes and written 409 bytes
Verification: OK

Protocol Settings

Parameters such as key length, TLS version and cipher, and the like are negotiated between the
parties involved. Compression, being deactivated by default, can be activated using the ~comp
flag.

Application Layer Protocol Negotiation (ALPN) is a way to integrate TLS setup into the protocol
setup, which is mostly used in HTTP/2, and can be activated using the -alpn flag.

Application data can be bundled with a TLS connection using the -~early_data flag. All those
informations are displayed in the subsequent sections of the output:

22

$ openssl s_client -connect paedubucher.ch:443 </dev/null 2>/dev/null

New, TLSv1l.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

No ALPN negotiated

Session Resumption

The TLS session and resumption details vary strongly between TLS versions being used:

TLS 1.2

The session information starts with the protocol version (TLSv1.2) and the cipher being used.
Every session has its ID (Session-ID) and Context ID (Session-ID-ctx), which could refer
to some server-internal context such as an application (database server, web server) and is often
used for load balancing.

The Master Key is the result of the key agreement between client and server. Additional fields
(prefixes: PSK and SRP) are only set if pre-shared keys and the Secure Remote Password (SRP)
protocol are being used.

The actual session ticket follows, which is then used for a subsequent request within the same
TLS session (resumption).

The ticket is accompanied by TTL information indicating the timespan in which the ticket is
valid. Verify return code: 0 (ok) signifies success, all other codes point to a verification
error.

$ openssl s_client -tls1_2 -connect paedubucher.ch:443 </dev/null 2>/dev/null

SSL-Session:
Protocol : TLSvl1.2
Cipher : ECDHE-RSA-AES256-GCM-SHA384
Session-ID: 3EQ9DF7A7C7C90B577C12254ED7ACAT4CCCB5BDBESB5B2AF44B. . .
Session-ID-ctx:
Master-Key: BB1EA0160136226FEB81B5849161EA9C87BAEOGEAFAF649722A. ..
PSK didentity: None
PSK didentity hint: None
SRP username: None
TLS session ticket lifetime hint: 300 (seconds)

23

TLS session ticket:
0000 - 5d 43 c4 64 d9 18 bl bd-c7 42 cc e9 49 44 2a fd]c.d...

00b0 - 77 9f 38 b6 a2 cf bd 03-e6 7f 31 el f7 5f 58 b0 w.8...

Start Time: 1624727116
Timeout : 7200 (sec)
Verify return code: 0 (ok)
Extended master secret: yes

TLS 1.3

TLS 1.3 supports many fields of TLS 1.2 just for the sake of backward compatibility, which
is important for network devices and tools that perform deep packet inspection on network
traffic.

In TLS 1.3, sessions are only established after the main handshake has been completed. There-
fore, no SSL-Session section can be found when dealing with TLS 1.3.

TLS Failures

A TLS connection usually fails for two reasons:

1. The client won’t accept a certificate.
2. Client and server cannot agree on TLS options, algorithms, and protocols.

If the client uses a current software version and certificate bundle together with a default con-
figuration, then usually the server is to blame for a failed TLS connection.

One common error is a server only serving its own domain certificate instead of providing
the whole certificate chain. This usually results in an error message like “unable to get local
issuer certificate”. Searching for an OpenSSL error message usually yields quick and accurate
results.

The website badssl.com provides many subdomains with different TLS and SSL (mis)configurations.
Try them out with the s_client subcommand, and make sure to pass the -verify_return_error,
so that you’ll learn which TLS issues cause which OpenSSL error messages.

$ openssl s_client -connect untrusted-root.badssl.com:443 \
-verify_return_error </dev/null 2>/dev/null | grep 'Verification error'
Verification error: self signed certificate in certificate chain

$ openssl s_client -connect superfish.badssl.com:443 \

-verify_return_error </dev/null 2>/dev/null | grep 'Verification error'
Verification error: unable to get local qdissuer certificate

24

https://badssl.com

Chapter 6: Certificate Signing Requests and Commecrial CAs

Certificate Signing Requests (CSR) are specified in RFC 2986. They contain all the information
that is verified by the CA, and then signed. A CSR can be seen as an unsigned certificate. It is
a good idea to automate the process of creating CSRs, so that you get it right without re-trying
multiple times, especially if you urgently need to replace a certificate based on a private key
that just has been leaked. It’s a good idea to create a new private key with each request, because
older private keys are more likely to have been leaked unknowingly, and they also tend to base
on older best practices and cryptographic algorithms.

Gathering Information

Free CAs (like ACME) are a good choice for DV (domain validation) certificates. Internal policy,
the need for a OV (organization validation) or EV (extended validation), or if you want to run
your own CA are reasons to use a commercial CA instead. DV certificates usually only require
a domain name. More information is needed for an OV or EV certificate. Make sure to gather
this information in advance:

« Country Name (C): two-letter country code (ISO 3166), e.g. CH for Switzerland

« State/Provice (ST): spelled out name of state or provice, e.g. Lucerne

« Locality (L): the city name, in which a company is officially located, e.g. Lucerne

« Organization (0): the company’s legal name, e.g. Foo Brewery AG (not just Foo Brew-
ery!)

+ Organization Unit (OU): the department that handles the certificates (usually IT), optional
field

Storing the hostname under Common Name (CN) is an obsolete practice, which is still used a
lot for the sake of backward compatibility. Notice that the CN field is limited to 63 characters,
and no name constraints are checked for this field by the CA.

RSA or ECDSA

There are two possible choices for a public key algorithm:

1. RSA is the time-proofen option that is supported by most CAs and most software.
2. ECDSA is a newer standard that provides the same security with shorter key lengths.

Consider ECDSA to save processing power for cryptography if the certificates are mostly used
on devices with little computing power or that run on battery. It is possible that the CA’s root
certificate uses a different algorithm than the CSR, but then the client has to deal with both
RSA and ECDSA. Better pick a CA that supports your choice of algorithm. It is also possible
to deploy one certificate by algorithm, depending on the software you’re using.

25

https://datatracker.ietf.org/doc/html/rfc2986

OpenSSL Configuration

The information needed for a CSR can be entered in different ways:

1. Using an interactive prompt.
2. Using command-line flags.
3. Using configuration files.

Using the interactive prompt is very error-prone and limits automation. Better use one of the
other two options.

In order to provide your CSR details with a configuration file, you can get to know the default
configuration of your local OpenSSL installation:

$ openssl version -a | grep -i openssldir
OPENSSLDIR: "/etc/ssl"

The configuration is located in that directory under openssl.cnf, so in this example in
/etc/ssl/openssl.cnf. The file is organized in different section. For example, configura-
tion relevant for the req subcommand is stored under the [req] section. The settings are
stored as key-value pairs. Comments start with # and go to the end of a line. Better do not
modify this file, but provide local files for specific needs.

CSR Configuration File

When creating a CSR, make sure to name the files used for this purpose properly, i.e. contain-
ing the domain name, for example paedubucher.ch-private.key for a private key, pae-
dubucher.ch.csr for the CSR, and paedubucher.ch.crt for the certificate you get back
from the CA.

The CSR is created using openssl’s req subcommand. Let’s gather the required information in
a config file (paedubucher.ch.conf):

[req]

prompt = no

default_keyfile paedubucher.ch-private.key
distinguished_name req_distinguished_name

req_extensions = v3_req
encrypt_key = yes
output_password = topsecret

[req_distinguished_name]
C =CH

26

ST = Lucerne
L = Lucerne
0 = Patrick Bucher Kompooter AG
OU = Department of IT Operations

CN

[v3_req

paedubucher.ch

]

subjectAltName = DNS:paedubucher.ch,DNS:www.paedubucher.ch

There are three sections with the following options:

. req:

e req_

parameters to create the CSR

prompt: whether (yes) or not (no) to prompt information interactively from the
command line

default_keyfile: path to the file the new private key is stored in
distinguished_name: pointing to the section the information to be validated is
stored

req_extensions: pointing to extensions used (here: SAN stored in X.509v3 ex-
tension)

encrypt_key: whether (yes) or not (no) the private key should be encrypted with
a password (the command line option -nodes for “no DES” deactivates encryption,
even though DES is no longer used for that purpose)

output_password: the password in plain text to encrypt the private key with,
omit if encrypt_key = no

distinguished_name: a section containing the information to be validated by the

CA (see the meaning of those fields further above)

e V3_r

eq: information for X.509v3 extensions.

subjectAltName: list all the (sub)domains for which this certificate should be
valid as comma-separated values with DNS: prefix (see RFC 5280)

When using an encrypted private key, the password needs to be provided when the service
using the certificate is restarted. Protect the config file containing the password as good as the

private key

!

If a lot of subject alt names are to be defined (say, more than would fit on a single line), you

can use an array instead:

[v3_req

]

subjectAltName = @Ealt_names

[alt_names]
DNS.1 = paedubucher.ch

27

https://datatracker.ietf.org/doc/html/rfc5280

DNS.2 = www.paedubucher.ch
DNS.3 *.cdn.paedubucher.ch

The entries have to be listed with increasing numbers (i in DNS. i), gaps are allowed.

Creating the CSR

The CSR, which should be stored in a file named [domain] . csr, can be created using openssl’s
req subcommand. Notice that there are some differences depending on the public key algo-
rithm to be used.

ECDSA

When using ECDSA, a parameters file to configure the elliptic curve is needed.

First, pick one among the available curves, which can be listed using the ecparam subcom-
mand:

$ openssl ecparam -list_curves

P-256 (prime256vl) is a good default choice.

Second, create the parameters file to configure the curve using the genpkey subcommand:

$ openssl genpkey -genparam -out ec-p256-params.pem -algorithm ec \
-pkeyopt ec_paramgen_curve:prime256v1

Finally, the CSR can be created:

$ openssl req -newkey ec:ec-p256-params.pem -config paedubucher.ch.conf \
-out paedubucher.csr

Which should create two files: the private key paedubucher.ch-private.key and the actual
CSR paedubucher.csr.

28

RSA

When using RSA, the configuration file needs to be modified by including the default_bits
(usually 2048 or 4096) and the hashing algorithm (e.g. sha256):

[req]

prompt = no
default_bits = 2048
default_md = sha256

same as above...

Since the crypto parameters are already provided in the configuration file, the CSR can be
created without further ado:

$ openssl req —-newkey rsa -config paedubucher.ch.conf -out paedubucher.csr

Again, the private key paedubucher.ch-private.key and the actual CSR pae-
dubucher.csr should have been generated.

Client Certificates

The information needed for client certificates mostly depends on the application requesting
such a certificate. Here’s a config file (application.conf) for a client certificate supposed to
verify a subject by email using RSA encryption:

[req]

prompt = no
default_bits = 2048
default_md = sha256

default_keyfile
distinguished_name
encrypt_key
output_password

application-private.key
req_distinguished_name
yes

topsecret

[req_distinguished_name]
CN = Patrick Bucher
emailAddress = patrick.bucher@mailbox.org

[v3_req]
subjectAltName = email:patrick.bucher@mailbox.org

29

The CSR is created as follows:
$ openssl req -newkey rsa -config application.conf -out application.csr

Which creates two files: application-private.key and application.csr.

For applications like VPN connections, a passphrase is commonly used, since the key lies on a
client device. Other applications do without a passphrase.

Notice that when leaving a way a distinguished name (DN) for an OV or EV certificate, the
prompt setting cannot be set to no via configuration file. Use the -subj flag with the value /
to suppress the prompt nonetheless.

Without Config File

If you need to create your CSR without an intermediary config file, you can provide all the
information needed using the -subj and -addext command line flags:

$ openssl req -newkey rsa:2048 \
-keyout paedubucher.ch-private.key \
-out paedubucher.ch.csr \
-subj '/C=CH/ST=Lucerne/L=Lucerne/0=My Company/OU=IT/CN=paedubucher.ch' \
-addext 'subjectAltName=DNS:paedubucher.ch,DNS:www.paedubucher.ch'

Use -nodes for an unprotected private key file. Make sure to provide the C, ST, L, and 0O field
for OV and EV certificates. DV certificates only require the CN field.

Viewing a CSR

Before sending the CSR to your CA, double check it:

$ openssl req -in paedubucher.ch.csr -noout -text
Certificate Request:
Data:
Version: 1 (0x0)
Subject: C = CH, ST = Lucerne, L = Lucerne, O = My Company, OU = ...
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:
00:c4:c8:a3:c7:c4:87:67:8b:80:04:b7:c7:b9:01:

30

Exponent: 65537 (0x10001)
Attributes:
Requested Extensions:
X509v3 Subject Alternative Name:
DNS:paedubucher.ch, DNS:www.paedubucher.ch
Signature Algorithm: sha256WithRSAEncryption
81:32:09:8a:c3:2e:9e:da:a9:5f:7f:f1:60:c2:97:18:1d:92:

Are all the parameters correct? Is there anything misspelled? Store as much information in
configuration files and/or scripts as possible, so that re-creating the CSR is only a matter of
seconds.

If everything is fine, submit your CSR to your CA.

Storing the Certificate

When you get your certificate back from the CA, make sure to store it properly on your
server:

« Make sure to store the private key with the certificate. A sub-folder for private keys
(e.g. /etc/certs/keys) is often used with certificates being stored one level above
(e.g. /etc/certs).

« Those folders should be readable only by root. The files therein should be owned by
root and by a group to which application users belong (e.g. nginx).

« Prefix the files stored with the (sub)domain name. Consider adding date information as
a prefix, too (e.g. 2021-07-03-paedubucher.ch-private.key).

+ Keep backups of those files.

+ Consider storing passphrases in a password manager, which is backed up, too.

Matching CSR, Private Key, and Certificate

If you don’t know which files (CSR, private key, and certificate) belong together, you can figure
this out using the modulus, which is a cryptographic information that is commonly stored in
all the files mentioned.

Use the respective subcommand per file (x509 for the certificate, rsa or ecdsa for the private
key, and req for the CSR) to figure out the modulus using the -modulus flag. Pipe the output
through the md5 subcommand for easier comparison:

$ openssl x509 -noout -modulus -in paedubucher.ch.crt | openssl md5
(stdin)= 00ae93cOba®b571cfbe5e6e0233a6fbl
$ openssl rsa -noout -modulus -in paedubucher.ch-private.key | openssl md5

31

(stdin)= 00ae93cOba®b571cfbe5e6e0233a6fbhl
$ openssl req -noout -modulus -in paedubucher.ch.csr | openssl md5
(stdin)= 00ae93cOba®b571cfbe5e6e0233a6fbhl

Here, certificate, private key, and CSR belong to one another!

It’s a good idea to write a script (accepting the domain name paedubucher . ch as a parameter)
to automate the process.

Chapter 7: Automated Certificate Management Environment

The Automated Certificate Management Environment (ACME) is a protocol for clients interact-
ing with CAs, defined in RFC 8555 by the Internet Security Research Group (ISRG), which runs
its own CA called Let’s Encrypt. The API of ACME can be used for the entire process: creating
an account, negotiating the challenges, submitting the CSRs, and deploying the certificates.

ACME Registration

The ACME client creates a key pair to identify the client. The client contact’s the CA’s server,
accepts its terms and conditions. The server then registers an account identified by the client’s
public key. This key is then used to sign further interaction between client and server.

Commercial CAs can make use of this key as well, which is linked to a user account. Additional
services (EV, OV) are provided against payment by those CAs.

ACME Challenge Process

Once registered, the client can request certificates for the domains (or hosts) under his control.
The server responds with a list of challenge methods (one per domain) the client can use to
prove his ownership of the respective domain. The client picks one challenge per domain and
reports his choice to the server. Depending on the of challenge, the server provides additional
information the client needs to pass the verification. If the challenge succeeded, the client can
submit CSRs to the server, which will respond with signed certificates ready for deployment.

ACME Challenges

An ACME challenge requires the client to place some key authorization under a specific token.
The token is a specific location, and the key authorization combines the token with a digest of
the client account’s key. If the server can find the specified key authorization by accessing the
given token, the client has proven his ownership of the domain successfully.

ACME supports the following challenge methods:

32

https://datatracker.ietf.org/doc/html/rfc8555

1. HTTP-01: The server verifies if the client controls a web server handling the domain
certificates are about to be requested for. For the domain paedubucher.ch, the
key authorization must be made available under http://paedubucher.ch/.well-
known/acme-challenge/[token], with the token indicated by the server. The server
verifies if the token with the correct content (key authorization) is served from this
location (URL). This challenge runs under port 80, but can be redirected to port 443.
HTTP-01 is the simplest challenge, but cannot be used for wildcard certificates.

2. DNS-01: The server verifies if the client controls the DNS server managing the domain
certificates are about to be requested for. For the domain paedubucher. ch,a TXT record
under the token _acme_challenge.paedubucher.ch must be provided containing the
key authorization as its value. DNS-01 is especially useful for web servers not facing the
Internet, and if wildcard certificates are being requested. It also makes it possible to
request certificates from an other server than they are used on.

3. TLS-ALPN-01: Much like HTTP-01, the server verifies that the client controls a server
facing the Internet. Unlike HTTP-01, the server need not be a web server, but a
TLS-aware server running on port 443 supporting Application Layer Protocol Negotiation
(ALPN), which allows to run different services under a single port. For this challenge,
the client doesn’t need any token/key authorization information from the server, but
can setup everything before picking the challenge method. It’s possible to take the
productive web server down and start up a special ALPN server running on the same
port during the verification process, which causes some downtime. Web servers support
ALPN using modules (Apache’s mod_md) or by a special proxy configuration (nginx).
TLS-ALPN-01 is the right choice for deployments using proxies and/or load balancers,
but requires the server(s) to be publicly reachable by the Internet. Wildcard certificates
are not supported by this challenge method.

Use DNS-01 if you need a wildcard certificate or a certificate for a server not facing the Internet.
Use HTTP-01 if it works for your environment, and pick TLS-ALPN-01 otherwise.

Some Practical Advice

When first testing and deploying ACME, make sure to not hit your CA’s imposed by-account
resource limit. If your CA offers a testing or staging environment (which don’t provide trusted
certificates), try to get your setup right first by using one of these. If everything works, use the
productive environment.

After the initial successful deployment, it’s a good idea to test the renewal process after two
thirds into the certificate’s lifetime, i.e. after 60 days for a certificate valid for 90 days. (Some
CAs do not renew certificates that are younger. Thirty days is plenty of time left to fix your
environment if something doesn’t work.)

33

ACME Clients

There are plenty of ACME clients to choose from, some of them are:

« OpenBSD’s acme-client (1), which, unfortunately, isn’t available neatly packed for
other operating systems.

« Apache’s mod_md, which manages ACME right from the web server.

« Docker’s Let’s Encrypt container, which does everything for you.

« The EFF’s certbot, which was the first ACME implementation, comes with heavy
Python dependencies, but doesn’t support the TLS-ALPN-01 challenge yet.

+ Dehydrated, which is a simple client based on shell scripts and basic system utilities, and
therefore should work on any Unix-like environment.

Dehydrated

Dehydrated can be downloaded and installed using a package manager or manually from dehy-
drated.io. Make sure /etc/dehydrated exists, into which folder the example configuration
shipped with dehydrated should be copied (/etc/dehydrated/config).

The main script dehydrated relies on hook scripts that provide the functionality specific
to each challenge. For HTTP-01, hook.sh is provided as an example. The Dehydrated
web site provides additional hook scripts for other challenges and specific software pack-
ages (e.g. DNS servers, load balancers, etc.). Put hook.sh into your configuration path
(/etc/dehydrated/hook.sh). (Alternatively, modify your configuration so that it points to
this hook script.)

Certificates created by Dehydrated should only be accessible by root—and the user that runs
the dehydrated scripts. Create an unprivileged user called acme with a home in /var/acme.
This is where certificates are going to be stored. Do not allow the user to login by setting a
bogus shell (e.g. /usr/bin/nologin). Also set a lengthy password. (Remember: this setup
takes place on a Internet-facing server, which is prone to attacks from the outside.) On Arch
Linux:

useradd -d /var/acme -m -s /usr/bin/nologin -U acme
chown -R acme:acme /var/acme
passwd acme

Modify the configuration (/etc/dehydrated/config) so that BASEDIR points to
/var /acme—the home directory just set for the acme user. Also set the DEHYDRATED_USER
and DEHYDRATED_GROUP to acme. Provide a proper CONTACT_EMAIL address.

List the domains to manage certificates for in /etc/dehydrated/domains.txt (more of
which later) and set DOMAINS_TXT accordingly.

34

https://dehydrated.io
https://dehydrated.io

For a challenge other than HTTP-01, set the challenge type using CHALLENGETYPE. Set the CA
to the certificate authority to be used: letsencrypt (default), Letsencrypt-test (for testing
your setup), buypass, buypass-test, zeross1 (others supported by default). For other CAs,
set CA to the API URL provided by the respective CA instead of its name.

Additional configuration settings can be put in an extra folder, say /etc/dehydrated/config.d
to be referred to by the option CONFIG_D.

BASEDIR="/var/acme"

DEHYDRATED_USER="acme"
DEHYDRATED_GROUP="acme"
CONTACT_EMAIL="patrick.bucher@mailbox.org"
DOMAINS_TXT="/etc/dehydrated/domains.txt"
CHALLENGETYPE="http-01"
CA="letsencrypt-test"
CONFIG_D="/etc/dehydrated/config.d"

The files in CONFIG_D ending in . sh will be processed in alphanumerical order, with later files
overriding settings of earlier files.

Put all the domains that will use the same certificate on a single line in your domain list
(/etc/dehydrated/domains.txt). Make sure to put the domain with the Common Name
(CN) first (max. 64 characters):

foo.bar www.foo.bar mail.foo.bar
qux.com www.qux.com mail.qux.com

The common name (above: foo.bar and qux.com) will be used as a directory name to store
the certificates inside. Define an optional alias name after > at the end of a line in order to tie
domains together:

buythisnow.com bestdealever.com youneedthisstuff.com > scamsites

If you're using wildcard certificates, always define an alias name for it, so that you don’t end
up with a * character in your folder name:

*x,foo.bar > wildcard.foo.bar

35

Dehydrated HTTP-01 Challenge

In order to test Dehydrated with the HTTP-01 challenge, a web server serving a web site must
be set up, say Apache 2 serving the site foobar.com (see Appendix A). Dehydrated will create
the file needed to pass challenge according to the information provided by the CA upon request,
and clean it up after the challenge succeeded.

For a web server serving its data from /var/www, create a directory /var/www/acme owned
by acme:acme:

mkdir /var/www/acme
chown -R acme:acme /var/www/acme

This directory must be made available for every site whose certificates are going to be man-
aged by Dehydrated under the path /.well-known/acme-challenge, both via HTTP and
HTTPS. For the Apache web server, a reusable configuration can be created as follows (e.g. un-
der /etc/apache2/acme.config):

Alias /.well-known/acme-challenge/ /var/www/acme/
<Directory "/var/www/acme/">

Options None
Require all granted
AllowOverride None
ForceType text/plain

</Directory>

For each virtual host supposed to serve TLS certificates managed by Dehydrated, add the fol-
lowing line to the configuration:

<VirtualHost *:443>
Include /etc/apache2/acme.config

</VirtualHost>

Running Dehydrated

Make sure that the hook.sh script for the HTTP-01 challenge is available under
/etc/dehydrated/hook.sh. When using another location, set the configuration op-
tion HOOK in /etc/dehydrated/config pointing to that script. Also set the WELLKNOWN
option to /var/www/acme, so that the challenge files end up in that directory, which was
setup before.

Dehydrated is now ready to run. Make sure you can run dehydrated either using su or sudo,
depending on your setup:

36

$ su -m acme -c 'dehydrated -v'
$ sudo -u acme dehydrated -v

If this command’s output includes version information about Dehydrated, everything is ready
to run the registration command (sudo is used for all dehydrated commands henceforth):

$ sudo -u acme dehydrated --register --accept-terms
INFO: Using main config file /etc/dehydrated/config

+
+
+
+

Generating account key...

Registering account key with ACME server...
Fetching account ID...

Done!

Dehydrated can now be run to request the certificates. Certificates that are missing, or that
will will expire within the next 30 days, are requested by providing the --cron option:

$ sudo -u acme dehydrated --cron
INFO: Using main config file /etc/dehydrated/config
Processing foobar.com

+

+ + + o+ + + o+ A+ o+ o+ o+ + o+ o+

Signing domains...

Generating private key...

Generating signing request...

Requesting new certificate order from CA...
Received 1 authorizations URLs from the CA
Handling authorization for foobar.com

1 pending challenge(s)

Deploying challenge tokens...

Responding to challenge for foobar.com authorization...
Challenge is valid!

Cleaning challenge tokens...

Requesting certificate...

Checking certificate...

Done!

Creating fullchain.pem...

Done!

This should output a list of domains for which certificates are going to be checked for expira-
tion periodically. Since no certificates existed yet, they have been requested right away. The
challenge files are cleaned up automatically.

37

Deploying the Certificate

The certificate files end up in a sub-directory of BASEDIR (e.g. /var/acme):

« accounts/ contains the account information resulting from the registration. There is
one sub-directory for each CA account.

« archive/ contains all the expired certificate, key, chain, and CSR files, which are kept
around for later inspection.

« chains/ containes cached certificate chain files, which are used to speed up the process
of building new certificate chains.

« cert/ contains the current certificate, key, chain, and CSR files. For each domain, a
sub-directory named after its common name is created.

Every sub-directory of cert/ contains the actual chain file to be deployed. The file
name contains the epochal timestamp of the certificate creation time. Symlinks from the
CSR (cert.csr -> cert-1627207259.csr), the certificate (cert.pem -> cert-
1627207259.pem), the chain (fullchain.pem -> fullchain-1627207259.pem),
and the private key (privkey.pem -> privkey-1627207259.pem) are created auto-
matically, so that the paths to be used from the web server configuration remain stable.
Use the paths to fullchain.pem and privkey.pem for your webserver configuration
(/etc/apache2/sites-enabled/foobar.com.conf):

SSLEngine on
SSLCertificateFile /var/acme/certs/foobar.com/fullchain.pem
SSLCertificateKeyFile /var/acme/certs/foobar.com/privkey.pem

Make sure to restart your web server or to reload its config after modifying those paths:

systemctl restart apache2.service

Cleanup

Since renewed certificates end up in the same folder, old certificate, CSR, chain, and private
key files should be archived once in a while:

$ sudo -u acme dehydrated --cleanup

The archived files, which end up in a sub-directory of /var/acme/archive (or generally
speaking: in ${BASEDIR}/archive), should be deleted once in a while using a cron job run-
ning a command as follows, which deletes archive files older than 300 days:

find /var/acme/archive -type f -mtime 300 -delete

38

Notice that most web servers load the certificate files on startup and won’t reload renewed
certificate chains automatically. Consider running your web server’s reload or restart com-
mand after certificate renewal using a cron job. Or as a better alternative, put this command
into the deploy_cert() function of your hook. sh script. Make sure that the user running
dehydrated has the according rights.

Debugging

For debugging, make sure that the challenge files are created in the first place:
watch -n 1 find -f /var/www/acme

This lists the contents of /var/www/acme every second, and a challenge token should appear
while dehydrated is running. If not, something with your Dehydrated config or access rights
to /var/www/acme must be wrong,.

Ifthe challenge file was created, but the challenge failed nonetheless, double check your Apache
configuration; probably the challenge files aren’t served.

Dehydrated DNS-01 Challenge

Whereas the HTTP-01 challenge verifies that a web server requesting certificates can create
arbitrary files in the directories served by it, the DNS-01 challenge verifies that a DNS server
requesting certificates can create arbitrary TXT records for the domains managed by it.

Therefore, the DNS-01 challenge requires access to a domain’s DNS configuration—and some fa-
miliarity with DNS on the side of the system’s administrator. (Appendix B describes the process
of setting up a basic authoritative-only DNS server which can be used to test the Dehydrated
setup.)

For each SAN a certificate is to be managed by ACME, a TXT entry under a specific subdomain,
say _acme-challenge, must be created; e.g. _acme-challenge. foobar.com for the domain
foobar.com, or _acme-challenge.www. foobar.com for its subdomain www. foobar.com.
According CNAME entries can be used to point to those TXT entries managed by the stub-DNS
resolver used for ACME. Dehydrated must be able to update a TXT record on its own. When
the dehydrated script runs, it creates one such TXT entry, which is used for all the challenges
domains are pointing to using their CNAME record. This TXT record is deleted after the challenge
succeeded (or failed).

39

Dynamic Zone Setup

Since the TXT record is going to be managed dynamically, a dynamic DNS key needs bo be
created using ddns-confgen(8):

ddns-confgen -k acme

Copy the following part of the output into /etc/bind/acme.key, and rename the key from
acme to acmekey. Ignore the rest of the output:

key "acmekey" {
algorithm hmac-sha256;
secret "S6u5iSJYaur7K...";

};
In /etc/bind/named.conf.local, make sure to include that key:
include "/etc/bind/acme.key";

Also adjust the zone definition for _acme-challenge. foobar.com as created in Appendix B,
so that it looks as follows:

zone "_acme-challenge.foobar.com" {
type master;
file "/var/cache/bind/db._acme-challenge.foobar.com";
allow-query { any; 1};
update-policy {
grant acmekey name _acme-challenge.foobar.com TXT;
b
}s

This update-policy allows for dynamic DNS updates of TXT records within the zone _acme-
challenge. foobar.com to the key acme.

Check your configuration, restart the bind9 service, and run a test:

named-checkconf

named-checkzone _acme-challenge.foobar.com \
/var/cache/bind/db._acme-challenge. foobar.com

systemctl restart bind9.service

$ dig -t txt +short test._acme-challenge.foobar.com @localhost

"this is a test"

40

Creating a Test TXT Record

Next, nsupdate (1) is used to create the TXT required by the DNS-01 challenge. The key
created before is loaded using the -k option. (The commands after the > prompt are to be
entered interactively; the show command is used to double-check the configuration change to
be performed.)

nsupdate -k /etc/bind/acme.key

> server localhost

> update add _acme-challenge.foobar.com 300 TXT HelloWorld
> show

Outgoing update query:

53 —>>HEADER<<- opcode: UPDATE, status: NOERROR, -id: 0
;; flags:; ZONE: 0, PREREQ: 0, UPDATE: 0, ADDITIONAL: 0

55 UPDATE SECTION:

_acme-challenge. foobar.com. 300 IN TXT "HelloWorld"
> send

> quit

Check if the TXT record is served correctly when queried (both locally and remotely):

$ dig -t txt +short _acme-challenge.foobar.com @localhost
"HelloWorld"

$ dig -t txt +short _acme-challenge.foobar.com @nsl.foobar.com
"HelloWorld"

Since this is only a configuration test, and the ACME client will create a TXT entry with the
challenge secret on its own, the record can be deleted again:

nsupdate -k /etc/bind/acme.key

server localhost

update delete _acme-challenge.foobar.com TXT
send

quit

vV V V V

Now the TXT record should be gone (no output should be shown):

$ dig -t txt +short _acme-challenge.foobar.com @localhost

41

Setting up DNS Aliases
In order to make use of the TXT entry being managed dynamically by Dehydrated, each do-

main needs an alias of their _acme-challenge subdomain to the challenge domain’s _acme-
challenge subdomain. For this purpose CNAME entries need to be created, e.g.:

_acme-challenge.my-website.com _acme-challenge.foobar.com
_acme-challenge.whatever.com _acme-challenge. foobar.com
_acme-challenge.www. foobar.com _acme-challenge.foobar.com

Use low TTLs (300 or 600 seconds), so that no old ACME challenges can interfere with newer
ones. No CNAME entry is needed for the actual challenge domain.

DNS-01 Hook Script

Download Dehydrated’s sample DNS-01 script, which uses nsupdate(1), and save it to
/etc/dehydrated/hook.sh. Some adjustments are needed:

First, change the content of the NSUPDATE variable, so that it points to the correct key file:
NSUPDATE="'nsupdate -k /etc/bind/acme.key'

Second, change the instructions under the "deploy_cert" branch, so that the apache config-
uration is updated:

"deploy_cert")
sudo systemctl reload apache2.service

Make sure acme can perform this step by adding the following line to the sudoers file using
visudo(8):

acme ALL=(root) NOPASSWD: /etc/init.d/apache2 reload
Test if acme can actually reload Apache using sudo:

$ sudo -u acme bash
$ sudo /etc/init.d/apache2 reload

The printf statement for the "deploy_challenge" and "clean_challenge" challenge
step cases (“hooks”) use the variables and arguments provided in and to the script and should
work as intended. The following arguments are provided to the script:

42

the challenge step (deploy_challenge, clean_challenge)
the domain name being challenged (e.g. www. foobar . com)
the filename (not used for DNS-01, only for HTTP-01)

the secret that must go into the TXT record

Ll e

Adjust your /etc/dehydrated/config for the right challenge type:
CHALLENGETYPE="dns-01"

Also consider requesting a wildcard certificate by adjusting /etc/dehydrated/domains. txt
as follows, which, after all, is the main reason for all the DNS hassle::

foobar.com x.foobar.com

Better first use the staging environment until certificate renewal is proofed to work. Finally,
dehydrated can be executed:

$ sudo -u acme dehydrated --cron

INFO: Using main config file /etc/dehydrated/config

Processing foobar.com with alternative names: x.foobar.com
+ Signing domains...

+ Generating private key...

+ Generating signing request...

+ Requesting new certificate order from CA...

+ Received 2 authorizations URLs from the CA

+ Handling authorization for foobar.com

+ Handling authorization for foobar.com

+ 2 pending challenge(s)

+ Deploying challenge tokens...

+ Responding to challenge for foobar.com authorization...
+ Challenge is valid!

+ Responding to challenge for foobar.com authorization...
+ Challenge 1is valid!

+ Cleaning challenge tokens...

+ Requesting certificate...

+ Checking certificate...

+ Done!

+ Creating fullchain.penm...

+ Done!

The certificates have been created, and Apache should have been reloaded.

43

Dehydrated Configuration per Domain
If most of your domains work with the HTTP-01 challenge, but some special domains need
DNS-01 because they need a wildcard certificate, the Dehydrated configuration can be created

by domain to some extent. Set the DOMAINS_D option to point to a directory where those
configurations are to be stored in /etc/dehydrated/config:

DOMAINS_D="/etc/dehydrated/domains.d"

Create one file per common name (the first entry per line in domains. txt), which contains the
settings to be overwritten for that specific domain, e.g. /etc/dehydrated/domains.d/quxbaz.com
for the domain quxbaz.com (here, the challenge type and the path to a special hook script are

set):

CHALLENGETYPE="dns-01"
HOOK="/etc/dehydrated/dns®1-hook.sh"

Notice that some options, e.g. CA, cannot be overwritten by a domain-specific configuration.
The output of dehydrated will show that a special config is used for such a domain.

Certificate Renewal

If the Dehydrated setup works, schedule a cron job so that renewals are attempted once a week.
Certificates expiring within the next 30 days can be renewed, so running one renewal attempt
once per week gives four attempts before the certificates are expired.

Make sure to create the cron job for the user acme:

$ sudo -u acme EDITOR=vi crontab -e

The following line configures a cron job that runs every sunday evening at 8 o’clock p.m. and
attaches the command’s output to /var/log/dehydrated/renewal. log:

0 20 * * 7 dehydrated --cron >/var/log/dehydrated/renewal.log 2>&1
Make sure to prepare the log folder as follows:

mkdir /var/log/dehydrated
chown -R acme:acme /var/log/dehydrated

44

As an alternative, use systemd’s built-in logger:
0 20 * * 7 systemd-cat dehydrated --cron
Whose output can be viewed using:

$ sudo -u acme journalctl -u cron

Chapter 8: HSTS and CAA

Even though TLS is omnipresent nowadays, websites and applications deploying proper TLS
certificates can still be subject to attacks. There are additions to TLS leveraging other protocols
to address those issues. Two of those are HTTP Strict Transport Security (HSTS) and Certification
Authority Authorization (CAA).

HTTP Strict Transport Security

An attacker performing a downgrade attack forces the client to use old and broken algorithms
and/or TLS versions—or even to fall back to unencrypted, bare HTTP communication. This can
be achieved using a man-in-the-middle attack, which redirects and captures the communication
between client and server using an attacker’s proxy. Even a server redirecting all HTTP traffic
to HTTPS won’t help, because the proxy still offers the client weak HTTPS or HTTP.

A website only serving HTTPS can use HSTS to inform the client that there won’t be served
anything under plain, unencrypted HTTP. A client receiving this information will switch to
HTTPS—and reject further weakly encrypted or entirely unencrypted communication.

Since the HSTS header is cached on the client side, no fallback to HTTP will be possible within
the indicated caching period. HSTS also applies for all sites on a host, so an unencrypted
subdomain is not possible, once a HSTS header for the same host is out.

Deploying HSTS

HSTS is activated by issuing the Strict-Transport-Security header. Its max-age sub-
value sets the header’s caching duration in seconds. When deploying a completely new website,
pick a high value from the start (e.g. max-age=31536000 for the duration of one year). For
an existing website, start low and increase the value progressively as confidence with testing
grows and no negative feedback is reported.

The includeSubDomains header tells the client that HSTS not only applies to the main domain,
but also to all of its sub-domains. Test this option together with a low mag-age duration for

45

existing deployments, so that you become aware of possible issues with sub-domains quickly,
and without long-lasting issues for clients.

HSTS is only activated after the first response of a server reaches the client. Therefore, the
domain is vulnerable to man-in-the-middle attacks for first-time visitors. The Chrome browser
maintains a list of domains serving HSTS, so that HSTS can be applied for the first request of
a client to a server, if that server is on the list. Other browser also use Chrome’s list.

HSTS domains can be submitted to a web form. A minimum max-age of one year is required.
Once registered, the preload sub-value of the Strict-Transport-Security header can be
added.

There’s also a removal form to get of the preload list. Notice that it can take a long time
until this removal information reaches all the clients by the means of software updates. Think
twice and test well before committing yourself to the HSTS preload list, which is a proprietary
mechanism, after all.

Certificate Authority Authorization

An attacker might get a valid certificate based on a leaked private key. By accident, you might
deploy a valid certificate not compliant to regulations, because you picked the wrong CA or
validation method.

A Certificate Authority Authorization DNS record (CAA) defines which CA is authorized to
issue a certificate for the respective domain. For the keyword field, use issue or issuewild
for specific or wildcard certificates, respectively. The CAA record’s value contains the name of
the CA that is allowed to issue a (wildcard) certificate for the respective domain. On entry per
CA and domain is required. The CA’s website should mention the exact name to be used for
the value field.

This entries define that Let’s Encrypt can issue certificates for the domain foobar.com, but
only SwissSign is allowed to issue wildcard certificates for the same domain:

foobar.com 3600 IN CAA 0 issue "letsencrypt.org"
foobar.com 3600 IN CAA O dssuewild "swisssign.com"

The value ; (semicolon) indicates that no CA is allowed to issue a certificate for the respec-
tive domain, which is useful to prevent any CA respecting CAA entries from issuing wildcard
certificates:

foobar.com 3600 IN CAA 0 issue "letsencrypt.org"
foobar.com 3600 IN CAA 0O dssuewild ";"

The CAA record is checked when a certificate is issued by the CA. Check if your CA respects

CAA records and make sure to follow your CA’s documentation. CAA is still optional, but might
become mandatory in the future.

46

https://hstspreload.org/
https://hstspreload.org/removal/

Chapter 9: TLS Testing and Certificate Analysis

Even though most applications deploying TLS can be tested manually with little effort, system-
atic testing is better performed using automated tools, of which many exist.

Testing Server Configuration

SSL Labs is a free service to test your TLS server configuration. It performs a wide assessment
covering many TLS features, and reports a grade from A (best) to F (worst). Using default con-
figuration settings and allowing old protocol versions and algorithms can yield surprisingly
low grades. The grade, however, will improve quickly as you follow the reported hints. Test
regularly: a high grade detoriates if the configuration is not adjusted to ever-evolving stan-

dards.

Test SSL provides a shell script to perform similar kinds of tests like SSL Labs, but also works
on servers not facing the Internet or using different protocols than HTTP(S). Your operating
system may offer a package for testss1.sh. The script is written in Bash and relies on basic
Unix utilities. A simple test against a web server can be run as follows:

$ testssl https://foobar.com

The output contains similar information as SSL Lab’s report. Multiple operating systems and
clients are simulated during the test.

To test servers running other applications than web servers, indicate the protocol using the
--starttls, or, short, -t flag:

$ testssl --starttls dimap mail.foobar.com:993

Cryptcheck offers a similar service like SSL Labs and Test SSL. Test them to figure out which
one suits your needs best.

Bad SSL offers examples demonstrating how bad certificates or misconfigured TLS/SSL behave
with your client.

47

https://www.ssllabs.com/ssltest/
https://testssl.sh/
https://cryptcheck.fr/
https://badssl.com/

Testing Certificate Transparency

A public CA must keep records of which certificates it signs, and publish that information to
public certificate logs, which then can be checked by auditors (Certificate Transparency). The
CA also must published timely information on its revoked certificates.

Certificate Transparency is not only useful for auditors scrutinizing CAs, but also for domain
owners that want to figure out which certificates have been issued and are deemed trustworthy
for one’s domain. For this purpose, services based on public certificate logs such as Certificate
Search or the Google Transparency Report can be used. Make sure that only certificates can
be found that were issued by CAs you really used!

A TLS certificate itself contains proof that it was submitted to a Certificate Transparency log.
The CA, before sending you the requested certificate, submits a preliminary certificate to a
Certificate Transparency log, which is then signed using a Signed Certificate Timestamp (SCT)
by the log. That SCT is then copied into the real certificate being returned from the CA to the
requestor. SCT is still optional, but certificates lacking one might be considered unsafe in the
future.

Chapter 10: Becoming a CA

Even though using a professionally maintained CA is usually the best option, sometimes you
need to run your own CA.

A Private Trust Anchor is based on a self-signed certificate, which initially is not trusted by the
clients, until you install the root certificate on them. This effort is proportional to the number
of clients, servers, and applications that are going to use your own CA.

Running a CA on a virtual machine is fine for testing and education, but for a professional
setup, your CA should run on a server not facing the Internet. Building and running your own
CA teaches you a lot about TLS and X.509.

While everything can be built with OpenSSL alone, consider commercial CA solutions for a
professional setup, such as easy-rsa, XCA, Dogtag, FreeIPA, or EJBCA. There is also a lot of
software capable of signing certificates you might already be running, such as Active Directory,
Puppet, FreeNAS, Hashicorp Vault etc.

You can also deploy ACME internally using Boulder (the open source ACME server from Let’s
Encrypt) or step-ca. ACME also allows you to build your own CA for small, internal setups.

43

https://crt.sh/
https://crt.sh/
https://transparencyreport.google.com/https/certificates?hl=en

CA Components

An OCSP responder is available as openss1l-ocsp (1), which should not be exposed to the
Internet. Updates might break your setup, so prepare for debugging and research sessions
when running your own CA using OpenSSL.

Signing certificates require databases of issued and revoked certificates. Such a database can
be run using openssl-ca(1l), which, however, doesn’t support locking, and therefore is not
suited for usage of multiple simultaneous users.

You need one Certificate Revocation List per signing certificate, which must be made publicly
available by a web server. (For internal usage, a web server only internally reachable is fine.)

You also need an OCSP responder with access to your certificate databases. In a professional
setup, those Internet-facing services should run on a different machine than the CA itself.

OpenSSL Root CA Configuration

CA files are usually put into /root/CA and must be only accessible by the root user:

mkdir /root/CA
chmod 700 /root/CA

Modern CAs use both a root and an intermediary certificate. The configuration file
openssl.cnf helps to keep them separated—and your certificates and keys organized.

Your root and intermediary certificate are going to need separate configurations. Put the root
certificate under /root/CA/root, and the configuration under /root/CA/root/openssl.cnf:

mkdir /root/CA/root

chmod 700 /root/CA/root

touch /root/CA/root/openssl.cnf
chmod 600 /root/CA/root/openssl.cnf

ETE T TS

The [ca] section contains settings that apply to the openss1l ca command:

[cal
default_ca = CA_default

The CA is, thus, configured in a section called CA_default:

[CA_default]
dir = /root/CA/root

49

This defines the directory where the CA is going to be put in. The dir setting then can be
referred from a variable called $dr for further configuration.

certs = $dir/certs
new_certs_dir = $dir/newcerts
crl_dir = $dir/crl

Thus, critical certificates, such as the root certificate, are put into $d+ir/certs, new certificates
into $dir/newcerts, and the Certificate Revocation List into $dir/crl

Create those directories, and some others (of which more later), beforehand:

mkdir -p /root/CA/root/{certs,crl,csr,newcerts,private}
find /root/CA/root -type d -exec chmod -R 700 {} \;

And continue with the configuration (/root/CA/root/openssl.cnf):

database = $dir/index.txt
serial = $dir/serial

The database of signed certificates is stored under $dir/index. txt, and the certificate serial
numbers under $dir/serial.

private_key $dir/private/ca.key.pem
certificate = $dir/certs/ca.cert.pem

This defines the location of your private key and CA certificate. Create $dir/private before-
hand, only accessible to root.

crlnumber = $dir/crlnumber
crl = $8dir/crl/ca.crl.pem
crl_extensions = crl_ext

default_crl_days = 30

Those options are needed for certificate revocation, which you, hopefully, won’t ever need. The
crlnumber file contains the next CRL number to be used. The cr1 option points to the current
PEM-encoded CRL. X.509 extensions used for CRLs are listed in the cr1_ext section. A CRL is
good for default_crl_days, and must be renewed within that period, i.e. while still valid.

50

name_opt = ca_default
cert_opt = ca_default
default_days = 375
default_md = sha256
preserve = no

policy = policy_strict

The ca_default option points to modern settings to be used for the signing command. A
certificate, by default, should expire within 375 days. With preserve = no, some obsolete
backward compatibilities are deactivated. The policy setting points to another section named
policy_strict.

A root certificate should only be allowed to sign intermediate certificates; root and intermediate
certificates therefore must belong to the same organization. A strict policy is configured as
follows:

[policy_strict]

countryName = match
stateOrProvinceName = match
localityName = match
organizationName = match
organizatoinalUnitName = optional
commonName = supplied
emailAddress = optional

Thus, country, state/province, and organization must be the same in the CSR as in the signing
certificate. Organization unit and email are optional settings, and any value can be supplied as
the (mandatory) common name.

Settings for generating CSRs are pre-defined in the req section:

[req]

default_bits = 4096
distinguished_name = req_distinguished_name
string_mask = utf8only

default_md = sha256

x509_extensions = v3_ca

prompt = no

Those are settings commonly used for CSRs as of the year 2021. Never set default_keyfile
to your private key location, which might overwrite your CA’s key by an incomplete command
accidentally run.

Both req_distinguished_name and v3_ca point to further sections of those names:

51

[v3_ca]

subjectKeyIdentifier hash

authorityKeyIdentifier = keyid:always,issuer

critical,CA:true
critical,digitalSignature,cRLSign,keyCertSign

basicConstraints
keyUsage

Particular certificates are identified by a unique hash code (subjectKeyIdentifier). Pub-
lic keys used to create those certificates require a key id and an optional issuer indication;
both pieces of information will end up in the certificate (authorityKeyIdentifier). Cre-
ated certificates can be used to sign further certificates (CA: true), which must be respected
by the client (marked as critical); so CA certificates can be created with this configuration
(basicConstraints). The CA is allowed to sign certificates and its own CRL (keyUsage),
which, again, the client must accept (critical).

The certificates signed by the intermediate certificate must not be allowed to sign other certifi-
cates by themselves. Therefore, pathlen:0 must be added to the basicConstraints to an
otherwise identical v3_intermediate_ca section:

[v3_intermediate_ca]

subjectKeyIdentifier hash

authorityKeyIdentifier = keyid:always,issuer

basicConstraints critical,CA:true,pathlen:0

keyUsage = critical,digitalSignature,cRLSign,keyCertSign

Pre-defined options for new CSRs can be defined in the req_distinguished_name section,
as pointed to from the req section further above:

[req_distinguished_name]

C = CH
ST = Luzern
L = Luzern

0 = Frickelbude
OU = Software Development
CN = CA Root Certificate

Create the Root CA
Once configuration and directory structure are ready, the serial numbers for certificates and

CRL need to be initialized. A random value is used in a productive setting, but starting at 1000
is fine for a test environment:

52

echo 1000 >/root/CA/root/serial
echo 1000 >/root/CA/root/crlnumber

Also create an empty index file used as the database for signed certificates:
touch /root/CA/root/index.txt

Use restrictive access rights for all those files:

find /root/CA/root/ -type f -exec chmod 600 {} \;

Now it’s time to create the root certificate with a very long lifetime (7300 days, i.e. 20 years),
based on the settings configured before:

openssl req -config /root/CA/root/openssl.cnf -newkey rsa \
-keyout /root/CA/root/private/ca.key.pem \
-x509 -days 7300 -extensions v3_ca \
-out /root/CA/root/certs/ca.cert.pem

Make sure to use a strong passphrase, and store that passphrase somewhere safe. Check if the
certificate was created according to the settings you configured:

openssl x509 -in /root/CA/root/certs/ca.cert.pem -noout -text

Install this private root certificate ca.cert.pem to the trusted certificate store of your clients.
The root CA is ready now.

OpenSSL Intermediate CA Configuration

The intermediate CA is created with the same directory structure as the root CA, and initialize
the serial numbers:

mkdir -p /root/CA/intermediate/{certs,crl,csr,newcerts,private}
echo 1000 >/root/CA/intermediate/serial

echo 1000 >/root/CA/intermediate/crl_number

touch /root/CA/intermediate/index.txt

cp /root/CA/root/openssl.cnf /root/CA/intermediate/

T oF H F

Again, use restrictive access rights for the intermediate CA’s directory structure:

53

find /root/CA/intermediate -type d -exec chmod 700 {} \;
find /root/CA/intermediate -type f -exec chmod 600 {} \;

The configuration file copied further above must be adjusted to the intermediate CA. First,
modify the dir setting:

[CA_default]
dir = /root/CA/intermediate

Thanks to the relative paths based on $dir used elsewhere in the configuration, the other
settings now point to the right paths. Adjust file names to the intermediate CA (still in the
CA_default section):

$dir/private/intermediate.key.pem
$dir/certs/intermediate.cert.pem
$dir/crl/intermediate.crl.pem

private_key
certificate
crl

copy_extensions = copy
policy policy_loose

The copy_extensions setting instructs OpenSSL to copy any extension set in the CSR but
not by the CA. The policy setting points to a section called policy_loose, so rename and
reconfigure the copied policy_strict section, so that the intermediate CA can sign a wider
range of CSRs:

[policy_loose]

countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Only a Common Name must be supplied. In the req_distinguished_name section, the Com-
mon Name must be adjusted, stating that it is an intermediate, not a root CA:

[req_distinguished_name]

C = CH
ST = Luzern
L = Luzern

54

0 = Frickelbude
ou Software Development
CN = CA Intermediate Certificate 1

The number 1 is attached, so that multiple intermediate CAs can be created later. Keep the
other settings identical as foor the root CA.

Create the Intermediate CA

The configuration is now ready to create the certificate for the intermediate CA, mostly similar
to creating the root CA certificate:

openssl req -config /root/CA/intermediate/openssl.cnf -newkey rsa \
-keyout /root/CA/intermediate/private/intermediate.key.pem \
-out /root/CA/intermediate/csr/intermediate.cert.csr

Use a different but equally strong passphrase as for the root CA. The intermediate CA’s CSR
can now be signed using the root certificate and the passphrase for its private key:

openssl ca -batch -config /root/CA/root/openssl.cnf \
-extensions v3_intermediate_ca -days 3600 -notext \
-in /root/CA/1intermediate/csr/intermediate.cert.csr \
-out /root/CA/intermediate/certs/intermediate.cert.pem

A shorter but still quite long lifetime (10 years) is used for the intermediate CA certificate.

Check the database (/root/CA/root/index.txt), which should now contain one entry start-
ing with V for “valid” (as opposed to R for “revoked”, or E for “expired”). The other fields show
the expiration date timestamp, the revocation date timestamp (missing for certificates not re-
voked yet), the serial number (starting at 1000), the file name (always unknown in this setup),
and, finally, the Distinguished Name (output shortened):

cat /root/CA/root/index.txt
V 310624143604Z 1000 unknown /C=CH/[...]/CN=CA Intermediate Certificate 1

The database is updated as you run the openssl ca command in context of your root CA. A
copy of the certificate is stored under the newcerts directory, named after its serial number.
Make backups when signing certificates.

Copy the intermediate certificate as the foundation for chain files:

cp /root/CA/intermediate/certs/intermediate.cert.pem /root/CA/chain.pem

55

OCSP Responder

Your CA needs an OCSP responder, so that clients can check the revocation status of indi-
vidual certificates signed by your CA. The OCSP responder needs a certificate itself, which
must be signed by the intermediate CA. This certificate can be configured as follows under
/root/CA/intermediate/ocsp.cnf

[req]

prompt = no

default_bits = 4096
distinguished_name = req_distinguished_name
default_md = sha256

default_keyfile = ocsp.privkey.pem

[req_distinguished_name]

C =CH

ST = Luzern

L = Luzern

0 = Frickelbude
OU = OCsP

CN = OCSP Responder

Only the Organizational Unit and the Common Name differ from the settings used before. The
OCSP certificate then can be created as follows:

openssl req -config /root/CA/intermediate/ocsp.cnf -newkey rsa \
-out /root/CA/intermediate/csr/ocsp.cert.csr

Once more, use a strong and unique passphrase. Configure the X.509 extensions needed for
OCSP directly in the intermediate CA’s openssl.cnf:

[ocsp]

basicConstraints = CA:FALSE
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer

keyUsage = critical,digitalSignature
extendedKeyUsage = critical,0CSPSigning

With this OCSP policy in place, and the CSR created before, the OCSP certificate can be signed
as follows:

56

openssl ca -batch -config /root/CA/intermediate/openssl.cnf \
-extensions ocsp -notext \
-in /root/CA/intermediate/csr/ocsp.cert.csr \
-out /root/CA/intermediate/certs/ocsp.cert.pem

When prompted, use the intermediary CA’s passphrase for signing. An OCSP responder using
this certificate can now be set up, available under a domain like ocsp. [yourdomain]. [tld],
usually running on port 80.

Running the OCSP Responder

For testing and education purposes, OpenSSL’s built-in OCSP responder can be used. (For
Internet-facing production servers, use something else.) The OCSP responder can be run using
the openss1-ocsp command:

openssl ocsp -port 80 -text -index /root/CA/intermediate/index.txt \
-CA /root/CA/chain.pem \
-rkey /root/CA/ocsp.privkey.pem \
-rsigner /root/CA/intermediate/certs/ocsp.cert.pem

The passphrase for the OCSP private key must be entered. The server runs on port 80 (-port
80), and will send textual output to its clients (-text). The other options provide the files
necessary to check a certificate’s revocation status.

In order to try out the client, some certificates should be created and revoked for proper demon-
stration, of which more later.

Issuing Web Site Certificates

In order to issue certificates for web sites, an according policy has to be defined for the inter-
mediate CA (/root/CA/intermediate/openssl.cnf):

[server_cert]

basicConstraints = CA:FALSE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer:always

keyUsage = critical,digitalSignature,keyEncipherment
extendedKeyUsage = serverAuth

authorityInfoAccess OCSP;URI:http://ocsp.frickelbude.ch:86
crlDistributionPoints = URI:http://crl.frickelbude.ch/intermediate.crl

57

The first three settings basicConstraints, subjectKeyIdentifier, and keyUsage have
been used like this before. The authorityKeyIdentifier makes sure that OpenSSL only is-
sues a certificate if an issuer is defined. The extendedKeyUsage setting serverAuth restricts
certificates for server applications. The last two options authorityInfoAccess and crlD-
istributionPoints point to the OCSP and CRL facilities of your intermediate CA, so that
the client can verify the certificate’s revocation status.

Now that the configuration is ready for issuing server certificates, a certificate for the domain
paedubucher. chisrequested using the following configuration (/ tmp/paedubucher.ch.cnf):

[req]

prompt = no
default_bits = 2048
default_md = sha256

default_keyfile paedubucher.ch.private.key
distinguished_name = req_distinguished_name
v3_req

req_extensions

[req_distinguished_name]

CN = paedubucher.ch
[v3_req]
subjectAltName = @alt_names

[alt_names]

DNS.1 = paedubucher.ch
DNS.2 = www.paedubucher.ch
DNS.3 = mail.paedubucher.ch

A CSR is created based on that configuration as follows (see chapter 6 for details):

$ openssl genpkey -genparam -out /tmp/paedubucher.ch.params.pem \
—algorithm ec -pkeyopt ec_paramgen_curve:prime256v1l
$ openssl req -newkey ec:/tmp/paedubucher.ch.params.pem \
-config /tmp/paedubucher.ch.cnf -out /tmp/paedubucher.ch.csr

When prompted, enter some distinguished name (e.g. paedubucher.ch).

After the CA verified the ownership of the domain by the requestor, the CSR can be copied into
the intermediate CA’s csr folder and signed:

cp /tmp/paedubucher.ch.csr /root/CA/intermediate/csr/
openssl ca -batch -config /root/CA/intermediate/openssl.cnf \

58

-extensions server_cert -notext \
-in /root/CA/intermediate/csr/paedubucher.ch.csr

The passphrase for the intermediate CA’s private key is required. The certificate will end up
under /root/CA/intermediate/newcerts/1001.pem

Combine this certificate with the foundation for the chain file, and deliver the resulting file to
the requestor:

cat /root/CA/chain.pem /root/CA/intermediate/newcerts/1001.pem \
>/tmp/paedubucher.ch.fullchain.pem

Since the certificate just has been issued and wasn’t revoked yet, the OCSP responder should
consider it good

openssl ocsp -issuer /root/CA/chain.pem -text -url http://localhost:80 \
-cert /root/CA/intermediate/newcerts/1001.pem

Output (shortened to last line):
/root/CA/intermediate/newcerts/1001.pem: good

Issuing Client Certificates

A client certificate requires different X.509 extensions than a server certificate. Add a section
called user_cert to your intermediate CA’s configuration (/root/CA/intermediate/openssl.cnf):

[user_cert]

basicConstraints = CA:FALSE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

keyUsage = critical,nonRepudiation,digitalSignature, \
keyEncipherment

extendedKeyUsage = clientAuth,emailProtection

OCSP;URI:http://ocsp.frickelbude.ch:80
URI:http://crl.frickelbude.ch/intermediate.crl

authorityInfoAccess
crlDistributionPoints

Only the keyUsage and extendedKeyUsage settings differ from the server_cert configu-
ration.

To create the CSR for the client certificate, define the settings as follows in a file under
/tmp/patrick.bucher.cnf:

59

[req]

prompt = no
default_bits = 2048
default_md = sha256

default_keyfile patrick.bucher-private.key
distinguished_name = req_distinguished_name

[req_distinguished_name]
CN = Patrick Bucher
emailAddress = patrick.bucher@mailbox.org

[v3_req]
subjectAltName = email:patrick.bucher@mailbox.org

Create a CSR for a client certificate as follows:

$ openssl req -newkey rsa -config /tmp/patrick.bucher.cnf \
-out /tmp/patrick.bucher.csr

After validation, move the CSR to your intermediate CA’s csr folder and sign it:

cp /tmp/patrick.bucher.csr /root/CA/intermediate/csr/

openssl ca -batch -config /root/CA/intermediate/openssl.cnf \
-extensions user_cert -notext \
-in /root/CA/intermediate/csr/patrick.bucher.csr

Again, the passphrase for the intermediate CA’s private key is required. The certificate will
end up under /root/CA/intermediate/newcerts/1002.pem, which can be returned to the
requestor.

Revoking Certificates
Consider that the private key of the domain paedubucher.ch, for which a certificate was

issued further above (1001. pem), was leaked. The certificate must be revoked. Do so using the
openssl ca command’s -revoke flag:

openssl ca -config /root/CA/intermediate/openssl.cnf \
-revoke /root/CA/intermediate/newcerts/1001.pem

Check the database under /root/CA/intermediate/index.txt, which now should contain
a revocation date for the respective certificate:

60

R 2208251522347 210815153420Z 1001 unknown /CN=paedubucher.ch
Use the OCSP responder to check that this certificate is no longer considered good:

openssl ocsp —issuer /root/CA/chain.pem -text -url http://localhost:80 \
-cert /root/CA/intermediate/newcerts/1001.pem

Output (shortened to last three lines):

/root/CA/intermediate/newcerts/1001.pem: revoked
This Update: Aug 15 15:37:10 2021 GMT
Revocation Time: Aug 15 15:34:20 2021 GMT

Generating the CRL

Whereas the OCSP responder uses this database for informing clients about the revocation, the
CRL must be generated as an extra step. The CRL must be signed and encoded by the CA, a
lot like a certificate. For this purpose, define the crl_ext section, as already pointed to in
/root/CA/intermediate/openssl.cnf

[erl_ext]
authorityKeyIdentifier = keyid:always

The CRL can be signed by its key ID alone (mandatory). Create the CRL as follows, with today’s
date as its file name:

today="$(date +'%Y-%m-%d')"
openssl ca -config /root/CA/intermediate/openssl.cnf -gencrl \
-out "/root/CA/intermediate/crl/${today}.crl.pem"

The passphrase for the intermediate CA is required.

Copy the file to a location served by the URL indicated as the crlDistributionPoints in
the server_cert section of the intermediate CA’s openssl.cnf.

Locally, you can view the CRL as follows (given t:
openssl crl -text -noout -in "/root/CA/intermediate/crl/${today}.crl.pem"

The section Revoked Certificates of the output should mention the certificate for pae-
dubucher.ch (resp. its serial number) that was revoked before.

Revoked Certificates:

Serial Number: 1001
Revocation Date: Aug 15 15:34:20 2021 GMT

61

Appendix A: Web Server Setup Using Apache 2

In order to setup and test Dehydrated for the domain foobar.com, a web server must be
running, serving that particular site. (Use a real domain owned by you instead.) This quick
tutorial describes how to do so under Debian 10 (Buster).

First, install Apache 2:
apt install apache2

Second, create the directory to serve your site from (replace foobar.com by your proper do-
main) with proper permissions:

mkdir -p /var/www/foobar.com/public_html
chown -R 755 /var/www/foobar.com/public_html

Third, create a simple test index page (/var /www/foobar.com/public_html/index.html):

<hl1>Hello, World!</h1l>

Fourth, create a configuration file both serving HTTP and (yet bogus) HTTPS (/etc/apache2/sites-

available/foobar.com.conf):

<VirtualHost *:443>
ServerAdmin webmaster@foobar.com
ServerName foobar.com
ServerAlias www.foobar.com www2.foobar.com
DocumentRoot /var/www/foobar.com/public_html

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

SSLEngine on

SSLCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem

SSLCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key
</VirtualHost>
<VirtualHost *:80>

ServerAdmin webmaster@foobar.com

ServerName foobar.com

ServerAlias www.foobar.com www2.foobar.com

DocumentRoot /var/www/foobar.com/public_html

62

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

Fifth, disable the default page and activate foobar.com. Also enable Apache’s SSL module:

a2dissite 000-default.conf
a2ensite foobar.com.conf
a2enmod ssl

Finally, the webserver can be restarted:
systemctl restart apache2.service
If everything works, the demo page should be available under both HTTP and HTTPS:

$ curl http://foobar.com/index.html
$ curl -k https://foobar.com/index.html

Appendix B: DNS Server Setup Using Bind9

If you want to test the DNS-01 challenge with Dehydrated, besides a web server, you also
must run your own authoritative-only DNS server. Again the domain foobar . com is used as
a placeholder, to be replaced with your real domain name. As an IP address, the placeholder
123.45.67.89 is used. Debian 10 (Buster) is used in this tutorial, too. This setup requires that
both the DNS and web server are running on the same host.

For this setup, the DNS server only manages the TXT records needed for the ACME challenge.
CNAME records are created on the main DNS server of your hosting provider, one per SAN,
pointing to the TXT records managed on your ACME-only DNS server.

First, a NS record is needed, which assigns your subdomain (_acme-challenge. foobar.com)
to the DNS server that will manage it (ns1.foobar.com). Use your registrar’s web interface
to create one.

Second, an A record is needed setting ns1. foobar.comto the IP address 123.45.67.89. (Con-
sider a glue record for this purpose.)

Make sure that UDP port 53 is open on your server:

$ nmap 123.45.67.89 -p 53

63

Install the Bind 9 on your server and check the version number:

apt install bind9 bind9utils bind9-doc
named -v

Next, enable and start the bind9 service and check its status (the last line should read: “server
is up and running”):

systemctl enable --now bind9
rndc status

Also enable the bind9-resolvconf service so that Bind can be used as the system’s default
DNS resolver:

systemctl enable --now bind9-resolvconf

Check if /etc/resolv.conf uses 127.0.0.1 as its name server:

$ cat /etc/resolv.conf
nameserver 127.0.0.1

Deactivate zone transfer and activate the query log by adding the following options to
/etc/bind/named.conf.options

allow-transfer { none; };
querylog yes;

Define your zone in /etc/bind/named.conf.local as follows:

zone "_acme-challenge.foobar.com" {
type master;
file "/var/cache/bind/db.acme.foobar.com";
allow-query { any; 1I};

s

The path /var/cache/bind is used instead of /etc/bind, because the former is allowed

using Debian’s default App Armor settings.

To create the zone file db._acme-challenge. foobar.com, copy from the template:

64

cp /etc/bind/db.empty /var/cache/bind/db._acme-challenge.foobar.com

And create a zone configuration as follows:

$TTL 300
$ORIGIN _acme-challenge.foobar.com.
@ IN SOA nsl.foobar.com. webmaster.foobar.com. (
2021072600 ;5 Serial
604800 ; Refresh
86400 ; Retry
2419200 ; Expire
86400) ; Negative Cache TTL
IN NS nsl.foobar.com.
test IN TXT "this is a test"

Check the global and zone configuration and restart the bind9 service:

named-checkconf

named-checkzone _acme-challenge.foobar.com \
/var/cache/bind/db._acme-challenge.foobar.com

zone _acme-challenge.foobar.com/IN: loaded serial 2021072600

OK

systemctl restart bind9.service

Test your DNS setup on the server by querying the test TXT record defined above:

$ dig -t txt +short test._acme-challenge.foobar.com @localhost
"this is a test"

If this succeeds, also perform the same test from your local computer:

$ dig -t txt +short test._acme-challenge.foobar.com @nsl.foobar.com
"this is a test"

If this also works, your DNS server is ready.

65

Appendix C: Relevant RFCs

Here’s a collection of RFC documents relevant for TLS:

« RFC 2986: CSR

o RFC 5246: TLS v1.2

« RFC 5280: X.509 CRL

« RFC 5480: ECDSA

« RFC 6066: TLS Extensions

« RFC 6125: Common Names, Wildcards
o RFC 6347: DTLS v1.2

« RFC 6797: HSTS

« RFC 6960: OCSP

« RFC 6962: Certificate Transparency

« RFC 7301: ALPN

« RFC 7633: More TLS Extensions

o RFC 8446: TLS v1.3

« RFC 8555: ACME

« RFC 8659: DNS CAA

« RFC 8737: ACME tls-alpn01 Challenge

66

https://datatracker.ietf.org/doc/html/2986
https://datatracker.ietf.org/doc/html/5246
https://datatracker.ietf.org/doc/html/5280
https://datatracker.ietf.org/doc/html/5480
https://datatracker.ietf.org/doc/html/6066
https://datatracker.ietf.org/doc/html/6125
https://datatracker.ietf.org/doc/html/6347
https://datatracker.ietf.org/doc/html/6797
https://datatracker.ietf.org/doc/html/6960
https://datatracker.ietf.org/doc/html/6962
https://datatracker.ietf.org/doc/html/7301
https://datatracker.ietf.org/doc/html/7633
https://datatracker.ietf.org/doc/html/8446
https://datatracker.ietf.org/doc/html/8555
https://datatracker.ietf.org/doc/html/8659
https://datatracker.ietf.org/doc/html/8737

	Chapter 0: Introduction
	TLS Client
	Regulation

	Chapter 1: TLS Cryptography
	Ciphers
	Security Model

	Chapter 2: TLS Connections
	Interactive TLS Sessions
	Helpful Commands and Flags

	Constraining TLS Versions and Ciphers

	Chapter 3: Certificates
	Certificate Validation and Verification
	Chain of Trust
	Certificate Formats
	DER: Distinguished Encoding Rules
	PEM: Privacy-Enhanced Mail
	PKCS#12: Public Key Cryptography Standard 12

	Certificate Contents
	Narrowing Down the Output

	Multiple Hostnames
	Fetching Certificates
	Some CA Considerations

	Chapter 4: Revocation and Invalidation
	Certificate Revocation Lists (CRL)
	Online Certificate Status Protocol (OCSP)
	OCSP Stapling
	Revocation Issues

	Chapter 5: TLS Negotiation
	Certificate Validation
	Protocol Settings
	Session Resumption
	TLS 1.2
	TLS 1.3

	TLS Failures

	Chapter 6: Certificate Signing Requests and Commecrial CAs
	Gathering Information
	RSA or ECDSA
	OpenSSL Configuration
	CSR Configuration File
	Creating the CSR
	ECDSA
	RSA
	Client Certificates

	Without Config File
	Viewing a CSR
	Storing the Certificate
	Matching CSR, Private Key, and Certificate

	Chapter 7: Automated Certificate Management Environment
	ACME Registration
	ACME Challenge Process
	ACME Challenges
	Some Practical Advice

	ACME Clients
	Dehydrated
	Dehydrated HTTP-01 Challenge
	Running Dehydrated
	Deploying the Certificate
	Cleanup
	Debugging

	Dehydrated DNS-01 Challenge
	Dynamic Zone Setup
	Creating a Test TXT Record
	Setting up DNS Aliases
	DNS-01 Hook Script

	Dehydrated Configuration per Domain
	Certificate Renewal

	Chapter 8: HSTS and CAA
	HTTP Strict Transport Security
	Deploying HSTS

	Certificate Authority Authorization

	Chapter 9: TLS Testing and Certificate Analysis
	Testing Server Configuration
	Testing Certificate Transparency

	Chapter 10: Becoming a CA
	CA Components
	OpenSSL Root CA Configuration
	Create the Root CA

	OpenSSL Intermediate CA Configuration
	Create the Intermediate CA

	OCSP Responder
	Running the OCSP Responder

	Issuing Web Site Certificates
	Issuing Client Certificates
	Revoking Certificates
	Generating the CRL

	Appendix A: Web Server Setup Using Apache 2
	Appendix B: DNS Server Setup Using Bind9
	Appendix C: Relevant RFCs

