
Elixir Basics
Notes for «Elixir in Action» (2nd Edition)

Patrick Bucher

2023-02-25

Contents

1 Setup 3
1.1 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Variables 4

3 Modules 5
3.1 Imports and Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Module Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Functions 8
4.1 Function Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Arities and Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Data Types 11
5.1 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.4.1 Cons Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.5.1 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.7.1 Binary Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.7.2 Character Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.8 First-Class Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8.1 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.9 Higher-Level Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.9.1 Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1



5.9.2 Keyword Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.9.3 MapSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.9.4 Date and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.9.5 IO Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Operators 25

7 Pattern Matching 26
7.1 Matching with Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Nested Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Re-using Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.5 Matching Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.6 MatchingMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.7 Matching Binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.8 Matching Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.9 CompundMatches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.10 Matching Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.10.1 Multiclause Lambdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.11 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.12 With . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 Iterations 36
8.1 Recursion and Tail-Call Optimization . . . . . . . . . . . . . . . . . . . . . . . . 37
8.2 Higher-Order Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
8.3 Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.4 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 Abstraction 43
9.1 Basic Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2 Composing Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 Structuring Data withMaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4 Abstracting with Structs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.5 CRUDOperations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.6 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 Concurrency Primitives 51
10.1 Stateless Server Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.2 Stateful Server Process (Simple State) . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3 Stateful Server Process (Nested State) . . . . . . . . . . . . . . . . . . . . . . . . 56

11 Generic Server Process 58
11.1 Implementing a Generic Server Process . . . . . . . . . . . . . . . . . . . . . . . . 58
11.2 Transparent Use of Server Process . . . . . . . . . . . . . . . . . . . . . . . . . . 60
11.3 Asynchronous Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2



11.4 GenServer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
11.5 Worker Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

12 Error Handling 69
12.1 try/catch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
12.2 try/catch Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
12.3 Error Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.4 Cleanup Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.5 Defining Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
12.6 Errors in Concurrent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

12.6.1 Trapping Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
12.6.2 Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

These notes are based on Elixir in Action by Saša Jurić.

1 Setup

Install Elixir (on Arch Linux):

# pacman -S elixir

The following binaries are now available:

• elixir(1): The Elixir script runner
• elixirc(1): The Elixir compiler
• iex(1): The Elixir shell

Check the installed version:

$ elixir --version

Run Elixir interactively:

$ iex
iex(1)> IO.puts("Hello, World!")
Hello, World!
:ok

Write an Elixir script (examples/hello.exs, the s stands for “script”):

IO.puts("Hello, World!")

3

https://www.manning.com/books/elixir-in-action-second-edition


Run the Elixir script:

$ elixir hello.exs
Hello, World!

1.1 Documentation

• Install Elixir
• Introduction
• Reference
• Erlang Documentation
• Elixir/Erlang Crash Course
• IEx
• Mix (Build Tool)

For interactive help, launch iex and type h:

$ iex
iex(1)> h

For help on a specific topic, launch iex and type h [topic]:

$ iex
iex(1)> h Kernel

2 Variables

Variables are dynamically typed. Variable assignments (bindings) are expressions; they return the
value being assigned:

> a = 3
3
> b = 1.5
1.5
> c = a + b
4.5

Variable namesmust startwith a lowercase alphabetic character or anunderscore. By convention,
only lowercase characters, numbers, and underscores are used; the last character can also be a
question (?) or exclamationmark (!):

4

https://elixir-lang.org/install.html
https://elixir-lang.org/getting-started/introduction.html
https://hexdocs.pm/elixir/
https://www.erlang.org/doc/
https://elixir-lang.org/crash-course.html
https://hexdocs.pm/iex/IEx.html
https://hexdocs.pm/mix/Mix.html


• good_variable_name
• good_variable_name_2
• good_variable_name?
• good_variable_name!
• validButNotGoodVariableName
• InvalidVariableName

Variables cannot be changed, but rebound:

> a = 3
3
> a = 4
4

3 Modules

Functions are grouped together inModules (examples/geometry.ex):

defmodule Geometry do
def rectangle_area(a, b) do

a * b
end

def rectangle_perimeter(a, b) do
2 * a + 2 * b

end
end

Modules can be used interactively using iex:

$ iex
> Geometry.rectangle_area(3, 2)
6
> Geometry.rectangle_perimeter(3, 2)
10

Module names are written in CamelCase; alphanumeric characters and the dot are allowed in
them.

Multiple modules can be defined in the same file. Modules can also be nested hierarchically
(examples/calculator.ex):

5



defmodule Calculator do
defmodule Basic do

def add(a, b) do
a + b

end
end

defmodule Advanced do
def pow(a, b) do
Integer.pow(a, b)

end
end

end

Themodule names are qualified with a dot:

$ iex examples/calculator.ex
> Calculator.Basic.add(5, 3)
8
> Calculator.Advanced.pow(5, 2)
25

3.1 Imports and Aliases

Other modules can be imported into the current module, so that function calls don’t have to be
qualified using theirmodule name. It’s also possible to use an alias name for an importedmodule
(examples/hello_calculator.ex):

defmodule Geometry do
def rectangle_area(a, b) do

a * b
end

def rectangle_perimeter(a, b) do
2 * a + 2 * b

end
end

defmodule HelloCalculator do
import IO
alias Geometry, as: Geom

def rect_info(a, b) do

6



area = Geom.rectangle_area(a, b)
perimeter = Geom.rectangle_perimeter(a, b)
puts("Rectangle(#{a}, #{b}): Area #{area}, Perimeter: #{perimeter}")

end
end

The module HelloCalculator imports IO, so puts can be used without further qualification (in-
stead of IO.puts). Geometry is also imported, but using an alias, so that it can be used as Geom:

$ iex examples/hello_calculator.ex
> HelloCalculator.rect_info(3, 5)
Rectangle(3, 5): Area 15, Perimeter: 16
:ok

The Kernel module is always imported automatically, so that its functions can be used without
further qualification.

3.2 Module Attributes

Moduleattributesareused todefineconstantsandtoprovidedocumentation (examples/free_fall.ex):

defmodule FreeFall do
@moduledoc "Offers functions concerning the free fall of objects"
@gravity 9.81

@doc "Computes the velocity on impact given the height"
@spec impact_velocity(number) :: number
def impact_velocity(height) do

:math.sqrt(2 * @gravity * height)
end

@doc "Computes the time it takes for the object to reach the ground"
@spec fall_time(number) :: number
def fall_time(height) do

impact_velocity(height) / @gravity
end

end

@gravity defines a compile-time constant.

@moduledoc and @doc provides documentation for the surrounding module and for the following
function, respectively. @spec provides type specificatons that can be analyzed using the dia-
lyzer The module needs to be compiled in order to have this documentation accessible during
runtime:

7

https://hexdocs.pm/elixir/Kernel.html
https://hexdocs.pm/elixir/typespecs.html
https://www.erlang.org/doc/man/dialyzer.html
https://www.erlang.org/doc/man/dialyzer.html


$ elixirc examples/free_fall.ex
$ file Elixir.FreeFall.beam
Elixir.FreeFall.beam: Erlang BEAM file
$ iex
> Code.fetch_docs(FreeFall)
{:docs_v1, 2, :elixir, "text/markdown",
%{"en" => "Offers functions concerning the free fall of objects"}, %{},
[

{{:function, :fall_time, 1}, 10, ["fall_time(height)"],
%{"en" => "Computes the time it takes for the object to reach the ground"},
%{}},

{{:function, :impact_velocity, 1}, 5, ["impact_velocity(height)"],
%{"en" => "Computes the velocity on impact given the height"}, %{}}

]}

The help function (h) is more helpful for interactive use:

> h FreeFall

FreeFall

Offers functions concerning the free fall of objects

> h FreeFall.impact_velocity

def impact_velocity(height)

@spec impact_velocity(number()) :: number()

Computes the velocity on impact given the height

TheModule documentation contains more information on built-in module attributes.

4 Functions

Functionsmustalwaysbepartof amodule. The samenaming rulesas for variablesapply,whereas
? indicates a predicate function (that returns true or false), and ! that a function may cause a
runtime error.

Small functions can be written on a single line:

8

https://hexdocs.pm/elixir/Module.html


defmodule Geometry do
def rectangle_area(a, b), do: a * b
def rectangle_perimeter(a, b), do: 2 * a + 2 * b

end

Notice the , after the parameter list, the : after do, and the missing end indicator after the func-
tion.

4.1 Function Composition

The module SwissGrading computes rounded grades from a number of points achieved and the
maximum points achievable (examples/swiss_grading.ex):

defmodule SwissGrading do
def grade(points, max) do

points
|> ratio(max)
|> multiply(5)
|> add(1)
|> round(0.1)

end

defp ratio(x, y) do
x / y

end

defp multiply(x, y) do
x * y

end

defp add(x, y) do
x + y

end

defp round(x, precision) do
round(x * 1 / precision) * precision

end
end

Functions defined using defp are private to the module, i.e. not exported.

Twomechanisms for function composition are used in the grade() function:

1. The return value of a function is carried over in a variable (points_ratio, exact_grade).
2. The function calls are nested (add(multiply(points_ratio, 5), 1)).

9



The pipeline operator |> offers a more succinct notation for this purpose:

def grade(points, max) do
points |> ratio(max) |> multiply(5) |> add(1) |> round(0.1)

end

For each use of the pipeline, the value of the expression from the left is taken and used as the first
argument for the function call on the right.

Longer pipelines are usually spread out over multiple lines:

def grade(points, max) do
points
|> ratio(max)
|> multiply(5) # scaling from 0..1 to 0..5
|> add(1) # shifting from 0..5 to 1..6
|> round(0.1)

end

Comments start with the # character and go to the end of the line. There’s no special syntax for
multi-line comments, i.e. every line of a multi-line comment has to start with a #.

4.2 Arities and Default Values

The number of arguments a function expects is called the function’s arity. This number is referred
to in the documentation, e.g. SwissGrading.grade/2 denoting that the grade() function of the
SwissGradingmodule expects 2 arguments.

Lower-arity functions often use higher-arity functions to perform theirwork, as inc/1does using
inc/2:

defmodule Increment do
def inc(a, x) do

a + x
end

def inc(a) do
inc(a, 1)

end
end

The two function definitions can bemerged by using a default value for the x argument using the
\\ operator (examples/increment.ex):

10



defmodule Increment do
def inc(a, x \\ 1) do

a + x
end

end

5 Data Types

5.1 Integers

Integers don’t have an upper limit:

> 123456789 * 987654321 * 123456789 * 987654321
14867566530049990397812181822702361

The underscore character can be used as a visual delimiter:

> 100_000_000 * 0.753_214_978
75321497.8

Integer division and remainder are done using the Kernel functions div and rem:

> div(25, 4)
6
> rem(25, 4)
1

5.2 Atoms

Atoms are named constants that either start with a colon or an uppercase letter:

> :an_atom
:an_atom
> :"an atom with spaces"
:"an atom with spaces"
> AlsoAnAtom
AlsoAnAtom

Atoms are prefixed with Elixir automatically:

11



> AnAtom == Elixir.AnAtom
true

Boolean values are actually atoms:

> true == :true
true
> false == :false
true

And so is nil:

> nil == :nil
true

Both nil and false are treated as falsy, all the other values as truthy, i.e. they evaluate to false or
true, respectively:

> nil || false || 4
4

5.3 Tuples

Tuples group values together in a collection with a fixed size:

> dilbert = {"Dilbert", 42, 120_000}
{"Dilbert", 42, 120000}

Elements can be accessed using the Kernel function elem/2:

> elem(dilbert, 0)
"Dilbert"
> elem(dilbert, 2)
120000

The put_elem/3 function doesn’tmodify the tuple, but returns a copy of it, with the given element
replaced:

> older_dilbert = put_elem(dilbert, 1, 43)
{"Dilbert", 43, 120000}

12



5.4 Lists

Lists are variable-sized collections to store multiple values

> numbers = [3, 7, 8, 2]
[3, 7, 8, 2]

They are implemented as linked lists, therefore many operations have a runtime complexity of
O(n), as does the length/1 function:

> length(numbers)
4

The in operator can be used to check whether or not a value is contained in a list:

> 7 in numbers
true
> 9 in numbers
false

Both the List and the Enummodule offer functions for dealing with lists.

A list element can be accessed by its index using the Enum.at/2 function:

> Enum.at(numbers, 0)
3
> Enum.at(numbers, 3)
2

Like tuples, lists are immutable. Modified copies of them can be created using functions such as
List.repalce_at/3 and List.insert_at/3:

> new_numbers = List.replace_at(numbers, 0, 1)
[1, 7, 8, 2]
> more_numbers = List.insert_at(numbers, 2, 4)
[3, 7, 4, 8, 2]

Use the index -1 to append an element at the end of a list:

> even_more_numbers = List.insert_at(more_numbers, -1, 5)
[3, 7, 4, 8, 2, 5]

13

https://hexdocs.pm/elixir/List.html
https://hexdocs.pm/elixir/Enum.html


Two lists can be concatenated using the ++ operator:

> [1, 2, 3] ++ [4, 5, 6]
[1, 2, 3, 4, 5, 6]

5.4.1 Cons Cells

Lists are implemented as cons cells (i.e. like in LISP) and support a special head/tail syntax:

[head | tail]

The head goes to the left side of the |, the tail to its right side:

> numbers = [1 | [2, 3, 4]]
[1, 2, 3, 4]

The hd (head) and tl (tail) function can be used to access the head (a single value) and the tail
(usually a list) of a list:

> hd(numbers)
1
> tl(numbers)
[2, 3, 4]

Lists with a tail that is not itself a list are called improper lists.

The head/tail syntax can be used to push elements at the front of a list with O(1) complexity:

> numbers_from_zero = [0 | numbers]
[0, 1, 2, 3, 4]

14



5.5 Maps

Maps are key/value stores commonly used as dynamically sized associative arrays or as records. A
map is created using the %{} syntax:

> empty_map = %{}
%{}

Amap can be created with initial values defined as key/value pairs:

> squares = %{1 => 1, 2 => 4, 3 => 9}
%{1 => 1, 2 => 4, 3 => 9}

Using the Map/new/1 function, a map is created based on a list of key/value tuples:

> doubles = Map.new([{1, 2}, {2, 4}, {3, 6}])
%{1 => 2, 2 => 4, 3 => 6}

A value can be retrieved by indicating the key in square brackets:

> squares[1]
1
> squares[2]
4

If the key is not found in themap, nil is returned:

> squares[4]
nil

The Map.get/3 function accepts a fallback value for this case:

> Map.get(squares, 3, :not_found)
9
> Map.get(squares, 4, :not_found)
:not_found

The Map.fetch/2 function indicates whether or not the value was found:

15



> Map.fetch(squares, 3)
{:ok, 9}
> Map.fetch(squares, 4)
:error

The Map.fetch!/2 function (notice the !) raises an error if the key indicated is not contained in
the givenmap.

Otheruseful functions forMapsareMap.put/3, Map.delete/2, andMap.update/4, aswell asothers
in theMapmodule.

Since maps are enumerables, the functions of the Enummodule can be used on them, too.

5.5.1 Records

Maps can be used as records:

> dilbert = %{:name => "Dilbert", :age => 42, :job => "Engineer"}
%{age: 42, job: "Engineer", name: "Dilbert"}
> dilbert[:name]
"Dilbert"

If the keys are atoms, this shorter syntax can be used:

> ashok = %{name: "Ashok", age: 25, job: "Intern"}
%{age: 25, job: "Intern", name: "Ashok"}
> ashok.name
"Ashok"

Existing fields can be updated using this special syntax:

> promoted_ashok = %{ashok | age: 26, job: "Engineer"}
%{age: 26, job: "Engineer", name: "Ashok"}

16

https://hexdocs.pm/elixir/Map.html
https://hexdocs.pm/elixir/Enum.html


5.6 Binaries

Binaries are sequences of bytes enclosed in << and >>:

> <<1, 16, 128>>
<<1, 16, 128>>

Values bigger than 255 (2⁸-1) are truncated:

> <<255, 256, 257, 511, 512, 513>>
<<255, 0, 1, 255, 0, 1>>

The amount of bits to be used for each value can be defined:

> <<15::4>>
<<15::size(4)>>
> <<15::4, 12::4>>
<<252>>

For the output, the two binaries 15 (1111) and 12 (1100) are normalized (11111100), which results in
the value 252.

A sequence of binaries only consisting of items with the size of a single bit is called a bitstring:

> <<1::1, 0::1, 1::1, 1::1>>
<<11::size(4)>>

The bit sequence 1011 is a decimal 11 in the normalized form.

Multiple binaries can be combined using the <> operator:

> <<1, 2, 3>> <> <<4, 5, 6>>
<<1, 2, 3, 4, 5, 6>>

5.7 Strings

Elixir has no dedicated string type, but stores them either as binaries or as lists of characters.

17



5.7.1 Binary Strings

Strings can be defined using double quotes:

> name = "Dilbert"
"Dilbert"

Expressions can be embedded into strings using #{} (string interpolation):

> name = "Dilbert"
> age = 42
> profession = "Engineer"
> description = "#{name} is a #{age} years old #{profession}."
"Dilbert is a 42 years old Engineer."

Escape sequences such as \t, \n, \r, \\, and \" are supported, too.

Strings can also be defined using the sigil ~s(), which allows the use of unescaped double quotes
within the string:

> IO.puts(~s("Trust me, I'm an engineer!", Dilbert said.))
"Trust me, I'm an engineer!", Dilbert said.

The sigil ~S() ignores interpolation and escaping:

> ~S(#{name} is a #{age} years old #{profession}.)
"\#{name} is a \#{age} years old \#{profession}."
> ~S(age:\t42 years)
"age:\\t42 years"

The special heredoc syntax supports multi-line strings:

> """
> This is on a single line.
> """
"This is on a single line.\n"

Since strings are binaries, they can be concatenated using the <> operator:

> profession = "Engineer"
> "Dilbert's profession: " <> profession
"Dilbert's profession: Engineer"

The Stringmodule contains functions for handling (UTF-8) strings.

18

https://hexdocs.pm/elixir/String.html


5.7.2 Character Lists

Strings can also be represented as lists of characters within single quotes:

> 'ABC'
'ABC'

Which is syntactic sugar for creating a list of their ASCII codes:

> [65, 66, 67]
'ABC'

If a list consists of numbers representing printable characters, it is displayed as characters.

Character lists are incompatible to binary strings, but offer similar features (escaping, interpola-
tion, sigils, heredocs):

> name = "Dilbert"
> age = 42
> IO.puts('Name:\t#{name}\nAge:\t#{age}')
Name: Dilbert
Age: 42
> IO.puts(~c('My name is #{name}', he said.))
'My name is Dilbert', he said.
> IO.puts(~C('My name is #{name}', he said.))
'My name is #{name}', he said.

A character list can be converted into a binary string using List.to_string/1:

> List.to_string('ABC')
"ABC"

A binary string can be converted to a character list using String.to_charlist/1:

> String.to_charlist("ABC")
'ABC'

In general, binary strings should be preferred to character lists. However, some Erlang libraries
require the use of character lists, in which case the conversion functions above are helpful.

19



5.8 First‐Class Functions

Functions are first-class citizens; they can be assigned to a variable.

Anonymous functions or lambdas can be created using the fn keyword:

> twice = fn x -> 2 * x end

Calling a lambda requires using the dot operator:

> twice.(5)
10

Functions can be passed to other functions, e.g. to process lists of items:

> Enum.map([1, 2, 3], twice)
[2, 4, 6]

The function argument can also be a function literal:

> Enum.map([1, 2, 3], fn x -> 2 * x end)
[2, 4, 6]

An existing function, like IO.puts/1, can be used as a lambda with the capture operator &:

> Enum.each([1, 2, 3], &IO.puts/1)
1
2
3

Lambda expressions can be shortened by using the capture operator and by referring to the n-th
parameter as &[n] in the function definition:

> Enum.map([1, 2, 3], &(2 * &1))
[2, 4, 6]

20



5.8.1 Closures

A lambda function captures variables bound at the time of its definition:

> percentage = 75
> get_percentage = fn x -> (percentage / 100) * x end
> percentage = 99
> Enum.map([1, 2, 3], get_percentage)
[0.75, 1.5, 2.25]

Thepercentage 75 is used andnot 99, because the first valuewas bound at the timeof the function
definition.

5.9 Higher‐Level Types

5.9.1 Ranges

A range of numbers can be expressed using the .. notation:

> numbers = 1..10

The in operator can be used to determine whether or not a number is within a range:

> 0 in numbers
false
> 10 in numbers
true

A range is an enumerable, and, thus, can be processed using the functions of the Enummodule:

> Enum.each(1..3, &IO.puts/1)
1
2
3

21



5.9.2 Keyword Lists

Some functions, such as IO.inspect/2 expect optional arguments as a keyword list, which can be
constructed as a list of atom/value tuples:

> options = [{:width, 3}, {:limit, 2}]
> IO.inspect([100, 200, 300], options)
[100,
200,
...]

This alternative syntaxmakes the definitionmore elegant:

> options = [width: 3, limit: 2]
> IO.inspect([100, 200, 300], options)
[100,
200,
...]

Or even shorter without an intermediate variable and square brackets:

> IO.inspect([100, 200, 300], width: 3, limit: 2)
[100,
200,
...]

Towrite functionsusingoptional arguments, consider theKeywordmodule (examples/salary.ex):

defmodule Salary do
def pay_out(employee, salary, opts \\ []) do

bonus = Keyword.get(opts, :bonus, 0)
taxes = Keyword.get(opts, :taxes, 0)
gross = salary + bonus
net = gross - gross * taxes
IO.puts("#{employee} earns $#{net}")

end
end

The function Salary.pay_out/3 now supports optional keywords:

22

https://hexdocs.pm/elixir/Keyword.html


$ iex examples/salary.ex
> Salary.pay_out("Dilbert", 80000)
Dilbert earns $80000
> Salary.pay_out("Dilbert", 80000, bonus: 10000)
Dilbert earns $90000
> Salary.pay_out("Dilbert", 80000, bonus: 10000, taxes: 0.2)
Dilbert earns $7.2e4

5.9.3 MapSet

Sets only contain each value once and are implemented as a MapSet (module MapSet):

> numbers = MapSet.new([1, 3, 6])
#MapSet<[1, 3, 6]>
> numbers = MapSet.put(numbers, 2)
#MapSet<[1, 2, 3, 6]>
> numbers = MapSet.put(numbers, 3)
#MapSet<[1, 2, 3, 6]>

A MapSet is an enumerable:

> Enum.each(numbers, &IO.puts/1)
1
2
3
6

5.9.4 Date and Time

Date and time objects can be conveniently be created using sigils:

> today = ~D[2021-12-28]
> today.year
2021
> today.month
12
> today.day
28

> lunch = ~T[12:30:00]
lunch.hour

23

https://hexdocs.pm/elixir/MapSet.html


> lunch.minute
30
> lunch.second
0

The Date and Timemodule contain useful functions to work with those types.

Date and time can be combined to a naive date time, i.e. without time zone:

> lunch_today = ~N[2021-12-28 12:30:00]
> lunch_today.year
2021
> lunch_today.minute
30

A time zone can be added as follows:

> lunch_today_utc = DateTime.from_naive!(lunch_today, "Etc/UTC")
~U[2021-12-28 12:30:00Z]
> lunch_today_utc.time_zone
"Etc/UTC"

See themodules NaiveDateTime and DateTime.

5.9.5 IO Lists

IO lists are special kinds of lists to build up data for I/O incrementally, which onlymust consist of
integers (0..255), binaries, and other IO lists:

> output = [[['F', 'o'], 'o'], "ba", 'r']
> IO.puts(output)
Foobar

Appending to a list is an O(1) operation, i.e. very efficient:

> output = []
[]
> output = [output, "Hello"]
[[], "Hello"]
> output = [output, ", "]
[[[], "Hello"], ", "]

24

https://hexdocs.pm/elixir/Date.html
https://hexdocs.pm/elixir/Time.html
https://hexdocs.pm/elixir/NaiveDateTime.html
https://hexdocs.pm/elixir/DateTime.html


> output = [output, "World!"]
[[[[], "Hello"], ", "], "World!"]
> IO.puts(output)
Hello, World!

6 Operators

Operators are implemented as functions of the Kernelmodule:

> 3 + 5
8
> Kernel.+(3, 5)
8

Instead of defining lambda functions:

> Enum.reduce([1, 2, 3], fn x, y -> x + y end)
6

The operator functions of the Kernelmodule can be used:

> Enum.reduce([1, 2, 3], &Kernel.+/2)
6

Or shorter (Kernel is imported automatically):

> Enum.reduce([1, 2, 3], &+/2)
6

There are comparison operators for weak and strict equality:

> 1 == 1.0
true
> 1 === 1.0
false

25



7 Pattern Matching

The matching operator = is more powerful than an assignment operator in other languages. A
pattern on the left side matching the expression on the right side creates variable bindings:

> employee = {"Dilbert", 42}
> {name, age} = employee

7.1 Matching with Constants

The pattern can contain constants that must bematched:

> dilbert = {:employee, "Dilbert", 42}
> dogbert = {:consultant, "Dogbert", 7}
> {:employee, name, _} = dilbert
> name
"Dilbert"
> {:employee, name, _} = dogbert
** (MatchError) no match of right hand side value: {:consultant, "Dogbert", 7}

For values not to be bound, the anonymous variable (_) can be used in the pattern to ignore them.
A variable starting with _won’t be bound, but has a descriptive name:

> {:employee, name, _age} = dilbert

Functions like File.read/1 return a tuple of either the form {:ok, value} or {:error, reason},
which can bematched accordingly:

> File.read("/home/patrick/.vimrc")
{:ok, "..."}
> File.read("/home/patrick/.foobar")
{:error, :enoent}

7.2 Nested Patterns

Patterns can be nested:

> corporation = {:anycorp, {:ceo, "Pointy Haired Boss"}}
> {:anycorp, {:ceo, ceo_name}} = corporation
> ceo_name
"Pointy Haired Boss"

26



7.3 Re‐using Bindings

For values that are expected to be equal, the same binding can be usedmultiple times:

> red_rgb = {255, 0, 0}
> {red, other, other} = red_rgb
> red
255
> {value, value, value} = red_rgb
** (MatchError) no match of right hand side value: {255, 0, 0}

7.4 Pinning

For matching against the content of a variable, use the pin operator ^:

> redish_color = {255, 34, 78}
> max_rgb = 255
> {^max_rgb, green, blue} = redish_color
> green
34
> blue
78

7.5 Matching Lists

Lists can bematched using individual elements:

> [a, b, c] = [1, 2, 3]
> a
1

Or by splitting the head from the tail:

> [head | tail] = [1, 2, 3]
> head
1
> tail
[2, 3]

27



7.6 Matching Maps

Maps can bematched partially:

> dilbert = %{name: "Dilbert", age: 42, job: "Engineer"}
> %{name: name} = dilbert
> name
"Dilbert"

7.7 Matching Binaries

Binaries can bematched completely:

> numbers = <<1, 2, 3>>
> <<a, b, c>> = numbers
> c
3

Or using a the special :: binary syntax, indicating that the rest is a binary of arbitrary length:

> <<first, rest :: binary>> = numbers
> first
1
> rest
<<2, 3>>

Or using a specified amounts of bits to bematched:

> <<a :: 2, b :: 4, c :: 2>> = << 151 >>
> a
2
> b
5
> c
3

Here, 151 (10010111) is split into 2 (10), 5 (0101), and 3 (11).

28



7.8 Matching Strings

Since strings are based on binaries, they can bematched the same:

> <<a, b, c>> = "ABC"
> a
65
> b
66
> c
67

This is error-pronewhendealingwith unicode strings. Matching the beginning of a string ismore
practical:

> command = "ping paedubucher.ch"
> "ping " <> domain = command
> domain
"paedubucher.ch"

7.9 Compund Matches

Matches can be chained to extract values on different levels on a single line:

> :calendar.local_time()
{{2022, 1, 7}, {7, 37, 44}}
> {{year, _, _}, {hour, _, _}} = {date, time} = now = :calendar.local_time()
> year
2022
> hour
7
> date
{2022, 1, 7}
> time
{7, 39, 4}
> now
{{2022, 1, 7}, {7, 39, 4}}

The sequence doesn’t matter, as long as the patterns all match:

> {date, time} = {{year, _, _}, {hour, _, _}} = now = :calendar.local_time()
{{2022, 1, 7}, {7, 40, 26}}

29



7.10 Matching Functions

When multiple functions with the same name are available, the arguments are matched against
the parameter patterns defined by the functions (examples/area.ex):

defmodule Area do
def area({:square, s}) when is_number(s) and s > 0 do

s * s
end

def area({:rectangle, w, h}) when is_number(w) and is_number(h) and w > 0 and h > 0 do
w * h

end

def area({:circle, r}) when is_number(r) and r > 0 do
:math.pi() * :math.pow(r, 2)

end

def area(_) do
{:invalid_shape}

end
end

Twomechanisms are used to find the proper clause upon a function call:

1. Structural matching of the argument: It must be a tuple beginning with one of the given
atom (:square, :rectangle, etc.).

2. Guards: Constraints such as is_numbermust be fulfilled. (See the Guards documentation
for a list of allowed expressions.)

The last clause, area(_), will match any caller providing a single argument:

$ iex examples/area.ex
> Area.area({:square, 3})
9
> Area.area({:rectangle, 2, 3})
6
> Area.area({:circle, 5})
78.53981633974483
> Area.area({:triangle, 4, 3, 2})
{:invalid_shape}
> Area.square({:square, 3, 2})
* (UndefinedFunctionError) function Area.square/1 is undefined or private
Area.square({:square, 3, 2})

30

https://hexdocs.pm/elixir/guards.html


The order of the clauses matters: Make sure that the catch-all clause area(_) is listed as the last
one.

All the clauses of the same arity are captured together:

> area_fun = &Area.area/1
> area_fun.({:square, 3})
9
> area_fun.({:rectangle, 3, 2})
6

7.10.1 Multiclause Lambdas

Lambdas can also consist of multiple clauses (examples/testnum.exs):

test_num = fn
x when is_number(x) and x > 0 ->

:positive

x when is_number(x) and x < 0 ->
:negative

x when is_number(0) and x == 0 ->
:zero

end

IO.puts(test_num.(13))
IO.puts(test_num.(-6))
IO.puts(test_num.(0))

Notice that clauses are not terminated explicitly; they end when the next clause begins, or the
lambda expression ends.

$ elixir examples/testnum.exs
positive
negative
zero

7.11 Conditionals

These four implementations of FizzBuzz demonstrate different approaches for dealing with con-
ditionals (examples/fizzbuzz.ex):

31



defmodule FizzBuzz do
defmodule UnlessIfElse do

def fizzbuzz(min, max) when min <= max do
Enum.each(min..max, &fizzbuzz/1)

end

defp fizzbuzz(x) do
unless rem(x, 3) == 0 or rem(x, 5) == 0 do
IO.puts(x)

end

if rem(x, 15) == 0 do
IO.puts("FizzBuzz")

else
if rem(x, 3) == 0 do

IO.puts("Fizz")
else

if rem(x, 5) == 0 do
IO.puts("Buzz")

end
end

end
end

end

defmodule Multiclause do
def fizzbuzz(min, max) when min <= max do
Enum.each(min..max, &fizzbuzz/1)

end

defp fizzbuzz(x) when rem(x, 15) == 0, do: IO.puts("FizzBuzz")
defp fizzbuzz(x) when rem(x, 3) == 0, do: IO.puts("Fizz")
defp fizzbuzz(x) when rem(x, 5) == 0, do: IO.puts("Buzz")
defp fizzbuzz(x), do: IO.puts(x)

end

defmodule Cond do
def fizzbuzz(min, max) when min <= max do
Enum.each(min..max, &fizzbuzz/1)

end

defp fizzbuzz(x) do
cond do
rem(x, 15) == 0 -> IO.puts("FizzBuzz")

32



rem(x, 3) == 0 -> IO.puts("Fizz")
rem(x, 5) == 0 -> IO.puts("Buzz")
true -> IO.puts(x)

end
end

end

defmodule Case do
def fizzbuzz(min, max) when min <= max do
Enum.each(min..max, &fizzbuzz/1)

end

defp fizzbuzz(x) do
case {rem(x, 3), rem(x, 5)} do
{0, 0} -> IO.puts("FizzBuzz")
{0, _} -> IO.puts("Fizz")
{_, 0} -> IO.puts("Buzz")
{_, _} -> IO.puts(x)

end
end

end
end

Allmoduleshave a function fizzbuzz/2 that takes the lower andupper bounds for a rangeof num-
bers to process, and a function fizzbuzz/1 that deals with an individual number; the latter func-
tion being called from the former with each element out of the range. The function fizzbuzz/1 is
implemented using different language constructs in each sub-module:

• UnlessIfElseusesbranchingas known fromprocedural languageswith constructs like un-
less, if, and else.

• Multiclause uses guards to dispatch the function call to the right clause.
• Condmakes use of the cond construct, which provides a branching facility withmultiple al-
ternatives, reminiscent of if/else if from procedural languages. The last condition, true,
is similar to the default arm in the switch/case construct from procedural programming
languages.

• Casemakes use of the case construct, which is quite similar to cond, but works rather like
switch/case than if/else if from procedural language, because all the arms are based on
the initially stated expression. It is far more powerful than switch/case though, because it
uses patternmatching instead of a simple equality check.

The implementation using cond is the shortest. The implementation using case arguably the
clearest; themulticlause implementation themost idiomatic froma functional programming per-
spective. The implementation using if, unless, and else looks the most convoluted; those con-
structs are too blunt for dealing withmany possibilities.

33



Notice that all the constructs return a value; however, only the side effect of IO.puts/1 is of inter-
est in this example.

7.12 With

Consider this list of employees (examples/users.exs):

employees = [
%{

"name" => "Dilbert",
"username" => "dilbo",
"password" => "Uyee7oox0OK8johG",
"email" => "dilbo@corp.com",
"age" => 42

},
%{

"name" => "Pointy Haired Boss",
"username" => "theboss",
"email" => "boss@corp.com",
"age" => 52,
"golf_handicap" => 17,
"cars_owned" => 3

},
%{

"name" => "Wally",
"username" => "lazybone",
"password" => "qwerty",
"email" => "wally@corp.com",
"age" => 47,
"years_wasted" => 27

},
%{

"name" => "Dogbert",
"email" => "doggo@corp.com",
"age" => 13,
"current_lawsuits" => 3,
"allegations" => ["fraud", "arson", "tax evasion"]

},
%{

"name" => "Alice",
"username" => "alicepro",
"password" => "IHateThisPlace",
"email" => "alice@corp.com",

34



"age" => 39
},
%{

"name" => "Catbert",
"username" => "thecat",
"password" => "23jd92039d20",
"age" => 11,
"years_in_jail" => 5,
"former_employers" => ["aramco", "facebook"]

}
]

The list’s items are heterogenous, i.e. the maps contain different sets of keys: Some contain all
the credentials ("username", "email", and "password"), some don’t. The credentials shall be ex-
tracted and printed using this pipeline:

employees |> Enum.map(&Credentials.extract/1) |> Enum.each(&IO.inspect/1)

The Credentialsmodule is implemented as follows (examples/users.exs):

defmodule Credentials do
def extract(employee) do

case extract_username(employee) do
{:error, reason} ->
{:error, reason}

{:ok, username} ->
case extract_email(employee) do

{:error, reason} ->
{:error, reason}

{:ok, email} ->
case extract_password(employee) do
{:error, reason} ->

{:error, reason}

{:ok, password} ->
%{username: username, email: email, password: password}

end
end

end
end

defp extract_username(%{"username" => username}), do: {:ok, username}
defp extract_username(_), do: {:error, "username missing"}

35



defp extract_email(%{"email" => email}), do: {:ok, email}
defp extract_email(_), do: {:error, "email missing"}

defp extract_password(%{"password" => password}), do: {:ok, password}
defp extract_password(_), do: {:error, "password missing"}

end

The private helper functions on the bottom are used to extract specific fields. They return {:ok,
value}, if the desired field is found, and {:error, reason} otherwise.

The extract/1 function stops after the first field of the item isn’t found and propagates the error
to the caller. This approach using nested case constructs doesn’t scale well, because there’s an
additional indentation level for each field to be extracted.

This code can be rewritten using the with special form:

def extract(employee) do
with {:ok, username} <- extract_username(employee),

{:ok, email} <- extract_email(employee),
{:ok, password} <- extract_password(employee) do

%{username: username, email: email, password: password}
end

end

The pattern on the left must be matched by the expression on the right. If matching, the next
pattern is matched against the expression; otherwise the unmatching expression is returned:

$ elixir examples/users.exs
%{email: "dilbo@corp.com", password: "Uyee7oox0OK8johG", username: "dilbo"}
{:error, "password missing"}
%{email: "wally@corp.com", password: "qwerty", username: "lazybone"}
{:error, "username missing"}
%{email: "alice@corp.com", password: "IHateThisPlace", username: "alicepro"}
{:error, "email missing"}

See the documentation on with/1 for further details.

8 Iterations

Elixir has no loop constructs such as while and do/while. Iterations, therefore, must be imple-
mented using recursion.

36

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#with/1


8.1 Recursion and Tail‐Call Optimization

Themodule Factorial implements a factorial function in twoways (examples/factorial.ex):

defmodule Factorial do
def factorial(0), do: 1
def factorial(x) when x > 0, do: x * factorial(x - 1)

def factorial_tail(0), do: 1
def factorial_tail(x) when x > 0, do: factorial_tail(x, 1)
defp factorial_tail(0, acc), do: acc
defp factorial_tail(x, acc), do: factorial_tail(x - 1, x * acc)

end

The first implementation (factorial) uses classic iteration. For every recursive function call, a
new stack frame is created:

Factorial.factorial(5)
5 * Factorial.factorial(4)

5 * 4 * Factorial.factorial(3)
5 * 4 * 3 * Factorial.factorial(2)

5 * 4 * 3 * 2 * Factorial.factorial(1)
5 * 4 * 3 * 2 * 1 * Factorial.factorial(0)

5 * 4 * 3 * 2 * 1 * 1
5 * 4 * 3 * 2 * 1

5 * 4 * 3 * 2
5 * 4 * 6

5 * 24
120

Thefirst clause is the basic case, which is often based on amathematical definition (e.g. the factorial
of 0 is 1). The second clause is the general case, which makes subsequent calls to itself in order to
reduce the problem towards the basic case.

The second implementation (factorial_tail) uses tail-call optimization. The intermediate re-
sult is carried over using an accumulator parameter. Since the subsequent function call is the last
thing the function does, and there’s no pendingmultiplication to be done, the runtime can re-use
the existing stack frame:

Factorial.factorial_tail(5)
Factorial.factorial_tail(5, 1)
Factorial.factorial_tail(4, 5)
Factorial.factorial_tail(3, 20)
Factorial.factorial_tail(2, 60)

37



Factorial.factorial_tail(1, 120)
Factorial.factorial_tail(0, 120)
120

Except for very small recursive tasks, recursive functions should be implemented using tail-
calls.

Accumulator parameters are an implementation detail. Therefore, two clauses without accumu-
lators are exported. The clauses dealing with accumulators are not exported, and the exported
clause for the general case deals with the initialization of the accumulator.

8.2 Higher‐Order Functions

Iterations often are performed over existing enumerations of values. The Enummodule provides
a lot of functions for this purpose.

Consider this Iterationmodule (examples/iteration.ex):

defmodule Iteration do
def each([head], func) do

func.(head)
end

def each([head | tail], func) do
func.(head)
each(tail, func)

end
end

Which can be used as follows:

$ iex examples/iteration.ex
> Iteration.each([1, 2, 3], &IO.puts/1)
1
2
3

The same can be achieved using Enum.each/2without writing any recursive code:

$ iex
> Enum.each([1, 2, 3], &IO.puts/1)
1
2
3

38

https://hexdocs.pm/elixir/Enum.html


Higher-order functions, such as Enum.each/2, expect a function as an argument, and/or return a
function as their return value. The filter, map, reduce pattern is a common combination of such
higher-order functions:

• filter: Only retain elements matching a certain condition (as defined in a predicate func-
tion).

• map: Transform each element using the given function into another value.
• reduce: Combine all the values to a single one.

HigherOrder.sum_of_squares/1 accepts an enumeration of values, only retains the numbers (fil-
ter), squares them(map), andsumsupthosevalues (reduce) inapipeline (examples/higher_order/1):

defmodule HigherOrder do
def sum_of_squares(values) do

values
|> Enum.filter(fn v -> is_number(v) end)
|> Enum.map(fn v -> v * v end)
|> Enum.reduce(fn v, acc -> v + acc end)

end
end

Which can be used as follows:

$ iex examples/higher_order.ex
> HigherOrder.sum_of_squares(["foo", 3, 2, "bar", 4])
29

Notice that Enum.sum/1 could have been used instead of Enum.reduce/2:

$ iex
> Enum.sum([1, 2, 3])
6

Enum.reduce/3 accepts an additional initialization value for the accumulator:

$ iex
> Enum.reduce([1, 2, 3], 100, &+/2)
106

The sum of the given enumeration (1 + 2 + 3 = 6) is added up to the provided accumulator of 100.
Instead of defining a lambda for summing up two values (fn a, b -> a + b end), the Kernel.+/2
function is captured as a lambda (&+/2).

39



8.3 Comprehensions

Comprehensionsareused to iterateoveroneormany collectables (lists,maps, ranges, etc.), thereby
producing a new collection.

$ iex
> for i <- [1, 2, 3], do: i * 2
[2, 4, 6]
> for j <- 1..5, do: j * j
[1, 4, 9, 16, 25]

Reading frommultiple collectables is similar to using nested loops in a structured programming
language:

> for i <- 1..10, j <- 1..10, do: i * j
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 3, 6, 9, 12,
15, 18, 21, 24, 27, 30, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 5, 10, 15, 20,
25, 30, 35, 40, 45, 50, ...]

Comprehensions can produce collections other than lists by specifying an into clause:

> for i <- 1..4, j <- 1..4, into: %{}, do: {{i, j}, i * j}
%{

{1, 1} => 1,
{1, 2} => 2,
{1, 3} => 3,
{1, 4} => 4,
{2, 1} => 2,
{2, 2} => 4,
{2, 3} => 6,
{2, 4} => 8,
{3, 1} => 3,
{3, 2} => 6,
{3, 3} => 9,
{3, 4} => 12,
{4, 1} => 4,
{4, 2} => 8,
{4, 3} => 12,
{4, 4} => 16

}

Also, an optional filter clause can be defined (here: i*j < 10):

40



> for i <- 1..10, j <- 1..10, i*j < 10, do: {{i, j}, i * j}
[

{{1, 1}, 1},
{{1, 2}, 2},
{{1, 3}, 3},
{{1, 4}, 4},
{{1, 5}, 5},
{{1, 6}, 6},
{{1, 7}, 7},
{{1, 8}, 8},
{{1, 9}, 9},
{{2, 1}, 2},
{{2, 2}, 4},
{{2, 3}, 6},
{{2, 4}, 8},
{{3, 1}, 3},
{{3, 2}, 6},
{{3, 3}, 9},
{{4, 1}, 4},
{{4, 2}, 8},
{{5, 1}, 5},
{{6, 1}, 6},
{{7, 1}, 7},
{{8, 1}, 8},
{{9, 1}, 9}

]

See for special form for further details.

8.4 Streams

The Enummodule works eagerly, i.e. it performs is work as its functions are invoked on the entire
collection. Consider the function even_fizz_buzz_enum (examples/special_numbers.ex):

defmodule SpecialNumbers do
def even_fizz_buzz_enum(n) do

1..100
|> Enum.filter(fn x -> rem(x, 2) == 0 end)
|> Enum.filter(fn x -> rem(x, 3) == 0 end)
|> Enum.filter(fn x -> rem(x, 5) == 0 end)
|> Enum.take(n)

end
end

41

https://hexdocs.pm/elixir/Kernel.SpecialForms.html#for/1


The function is supposed to return n elements that are divisible without remainder by 2, 3, and 5.
There are two problems:

First, each invocation of the filter function iterates over the entire collection it’s called on. (Re-
versing the order of the filter operations would reduce the workload, because less numbers are
divisible by 5 then by 2.)

Second, the function only works for small nwith the given range:

$ iex examples/special_numbers.ex
> SpecialNumbers.even_fizz_buzz_enum(3)
[30, 60, 90]
> SpecialNumbers.even_fizz_buzz_enum(10)
[30, 60, 90]

In order to support bigger n, the initial range needed to beway bigger, increasing the performance
penalty by themultiple iterations necessary.

The Stream module is the lazy brother of Enum. Rather than performing the operations as
requested, its functions keep track of the operations to be performed on each element. An eager
operation, like from the Enummodule, will then finally perform those operations:

Here’s the function from above re-implemented using the Streammodule:

defmodule SpecialNumbers do
def even_fizz_buzz_stream(n) do

Stream.iterate(1, fn x -> x + 1 end)
|> Stream.filter(fn x -> rem(x, 2) == 0 end)
|> Stream.filter(fn x -> rem(x, 3) == 0 end)
|> Stream.filter(fn x -> rem(x, 5) == 0 end)
|> Enum.take(n)

end
end

First, the finite range of numbers is replaced by Stream.iterate/2, which produces an endless
stream of number, each successor value being calculated by the lambda expression based on the
initial value.

Second, the filter/2 function of the Streammodule is used instead of the one from the Enummod-
ule, turning the eager operation into a lazy one.

This implementation also supports bigger n arguments:

$ iex examples/special_numbers.ex
> SpecialNumbers.even_fizz_buzz_stream(3)
[30, 60, 90]

42

https://hexdocs.pm/elixir/Stream.html


> SpecialNumbers.even_fizz_buzz_stream(10)
[30, 60, 90, 120, 150, 180, 210, 240, 270, 300]

9 Abstraction

In object-oriented languages, methods are called on instances of classes:

Employee dilbert = new Employee();
dilbert.setSalary(120000);

In Elixir, the functions of a module are used to work on its data type:

dilbert = Employee.new()
dilbert = Employee.set_salary(dilbert, 120000)

Modifier functions take a data object as the first parameter and return a new data object with the
modification applied:

new_list = List.insert_at(old_list, -1, :hello)

Query functions also take a data object as the first (and often: sole) parameter and return some
information about the given data object:

name_length = String.length(name)

By convention,manymodules provides a new function, which creates a data object of the type the
respective module deals with.

days = MapSet.new()

Due to the convention that the module’s data object is the first parameter, the operations men-
tioned can be pipelined:

$ iex
> MapSet.new() |> MapSet.put(:mo) |> MapSet.put(:tu) |> MapSet.member?(:mo)
true

43



9.1 Basic Abstraction

Theseprinciples areapplied tocreateaBuddiesmodule,whichcanbeused tomanageyour friends
living indifferent cities. Themodule shall beusedas follows(examples/buddies/buddies_v1.exs):

buddies =
Buddies.new()
|> Buddies.add_entry("Rome", "Giorgio")
|> Buddies.add_entry("Rome", "Matteo")
|> Buddies.add_entry("Moscow", "Yuri")
|> Buddies.add_entry("Moscow", "Ivan")

Buddies.entries(buddies, "Rome")
|> Enum.each(&IO.puts/1)

1. A new data object is created using the new/0 function.
2. New entries are added using the add_entry/3modifier function.
3. The entries of a certain city are returned using the entries/2 query function.

Themodule is implemented as follows (examples/buddies/buddies_v1.exs):

defmodule Buddies do
def new() do

%{}
end

def add_entry(buddies, city, name) do
Map.update(buddies, city, [name], fn names -> [name | names] end)

end

def entries(buddies, city) do
Map.get(buddies, city, [])

end
end

1. The new/0 function returns an empty map, which is the data structure being used to store
the buddies with their city.

2. The add_entry/3 function adds a newbuddywith a city. Map.update/4provides a powerful
API for this purpose:

• If city does not yet exist as a key in the map, the third argument ([name]) is used to
create the initial value to be stored under that key.

• If city does exist already as a key in themap, an updater lambda is used to update the
value. The existing value is passed as the lambda’s sole parameter. The new item is
added at the front of the existing entries.

44



3. The entries/2 function returns the list stored under the given city. An empty list ([]) is
given as the third argument to Map.get/3, which is returned if no elements are storedunder
city in the buddiesmap.

9.2 Composing Abstractions

Storing a list of values under a key can be used in more situations than for storing ToDo entries.
The details of managing such a map thus can be abstracted away by a newmodule called Multi-
Dict (examples/buddies/multi_dict.ex):

defmodule MultiDict do
def new(), do: %{}

def add(dict, key, value) do
Map.update(dict, key, [value], &[value | &1])

end

def get(dict, key) do
Map.get(dict, key, [])

end
end

Notice that in add/3, the updater lambda has been re-written using the capture opera-
tion. The Buddies module can now be expressed more simply in terms of MultiDict
(examples/buddies/buddies_v2.exs):

defmodule Buddies do
def new(), do: MultiDict.new()

def add_entry(buddies, city, name) do
MultiDict.add(buddies, city, name)

end

def entries(buddies, city) do
MultiDict.get(buddies, city)

end
end

The MultiDictmodule has to be compiled so that Buddies canmake use of it:

$ cd examples/buddies
$ elixirc multi_dict.ex
$ elixir buddies_v2.exs
Matteo

45



Giorgio

9.3 Structuring Data with Maps

The current implementation is tedious to extend: In case an additional field should be stored,
multiple functions needed to extended. It’s therefore more flexible to store the data in a map
(examples/buddies/buddies_v3.exs):

defmodule Buddies do
def new(), do: MultiDict.new()

def add_entry(buddies, entry) do
MultiDict.add(buddies, entry.city, entry)

end

def entries(buddies, city) do
MultiDict.get(buddies, city)

end
end

The MultiDictmoduleworkswithout anymodification. The client code, however, becomesmore
verbose, because amapwith keys needs to be provided:

buddies =
Buddies.new()
|> Buddies.add_entry(%{city: "Rome", name: "Giorgio"})
|> Buddies.add_entry(%{city: "Rome", name: "Matteo"})
|> Buddies.add_entry(%{city: "Moscow", name: "Yuri"})
|> Buddies.add_entry(%{city: "Moscow", name: "Ivan"})

Buddies.entries(buddies, "Rome")
|> Enum.each(&IO.inspect/1)

9.4 Abstracting with Structs

A struct is a special kind of map that defines which fields can be stored in it. A module can have
at most one struct, and a struct belongs to one module. For die Buddiesmodule, a sub-module
called Entry is defined,which contains the struct definitionand the function new/2 to create anew
one (examples/buddies/buddies_v4.exs):

defmodule Buddies do
def new(), do: MultiDict.new()

46



def add_entry(buddies, entry) do
MultiDict.add(buddies, entry.city, entry)

end

def entries(buddies, city) do
MultiDict.get(buddies, city)

end

defmodule Entry do
defstruct city: nil, name: nil

def new(city, name) do
%Entry{city: city, name: name}

end
end

end

The client code not necessarily becomes shorter, but safer:

buddies =
Buddies.new()
|> Buddies.add_entry(Buddies.Entry.new("Rome", "Giorgio"))
|> Buddies.add_entry(Buddies.Entry.new("Rome", "Matteo"))
|> Buddies.add_entry(Buddies.Entry.new("Moscow", "Yuri"))
|> Buddies.add_entry(Buddies.Entry.new("Moscow", "Ivan"))

Buddies.entries(buddies, "Rome")
|> Enum.each(&IO.inspect/1)

A struct can bematched by amap:

$ iex examples/buddies/buddies_v4.exs
> entry = Buddies.Entry.new("Bern", "Urs")
> %{city: city, name: name} = entry
> city
"Bern"
> name
"Urs"

However, a map cannot bematched by a struct:

> %Buddies.Entry{city: city, name: name} = %{city: "Bern", name: "Urs"}
** (MatchError) no match of right hand side value: %{city: "Bern", name: "Urs"}

47



This is because a struct has an additional field called __struct__ indicating the type:

> Map.to_list(entry)
[__struct__: Buddies.Entry, city: "Bern", name: "Urs"]

Existing fields of a struct can be updated with the same syntax as for a map:

> entry = Buddies.Entry.new("Bern", "Urs")
> entry = %Buddies.Entry{entry | city: "Biel"}
%Buddies.Entry{city: "Biel", name: "Urs"}

Since structsaremaps, functionsof theMapmodulecanbeusedonstructs. However, structsdonot
implement the enumerable protocol, so functions of the Enummodule cannot be used on them:

> Enum.member?(entry, :city)
** (Protocol.UndefinedError) protocol Enumerable not implemented for %Buddies.Entry{[…]

Records are similar to structs, but based on tuples instead of maps. They are used for interoper-
ability with Erlang libraries that work with records themselves.

9.5 CRUD Operations

The above Buddies module supports creating new and reading existing entries. In order to im-
plement an update and a delete operation, the entries must be identified using a unique value
(examples/buddies/buddies_v5.exs):

defmodule Buddies do
defstruct auto_id: 1, entries: %{}

def new(), do: %Buddies{}

def add_entry(buddies, entry) do
entry = Map.put(entry, :id, buddies.auto_id)
new_entries = Map.put(buddies.entries, buddies.auto_id, entry)
%Buddies{buddies | entries: new_entries, auto_id: buddies.auto_id + 1}

end

def entries(buddies, city) do
buddies.entries
|> Stream.filter(fn {_, entry} -> entry.city == city end)
|> Enum.map(fn {_, entry} -> entry end)

48

https://hexdocs.pm/elixir/Record.html


end

def update_entry(buddies, entry_id, updater_fun) do
case Map.fetch(buddies.entries, entry_id) do
:error ->
buddies

{:ok, old_entry} ->
new_entry = %{id: ^entry_id} = updater_fun.(old_entry)
new_entries = Map.put(buddies.entries, entry_id, new_entry)
%Buddies{buddies | entries: new_entries}

end
end

def delete_entry(buddies, entry_id) do
new_entries = Map.filter(buddies.entries, fn {_, e} -> e.id != entry_id end)
%Buddies{buddies | entries: new_entries}

end
end

Notice the following changes and additions:

1. Instead of re-using the MultiDict module, Buddies defines its own struct consisting of
auto_id (the identifier for the next new entry) and entries (the actual entries, which used
to be contained in the MultiDict in earlier versions).

2. The add_entry/2 function now puts the computed auto_id as the :id attribute into the
entry to be added. A new struct is returned with the entries now containing the new entry,
and the auto_id being incremented.

3. The entries/2 function filters the entry by the given city and then extracts the entry from
the key/value pair. (The id is only used internally.)

4. The update_entry/3 function looks up an entry with the given entry_id.

• If the lookup fails (:error), the old struct is returned.
• The the lookup succeeds, the old_entry is updated using a provided updater lambda
function. Tomakesure that this lambdadoesnotalter theidof theentry, it ismatched
against %{id: ^entry_id}with the given entry_id being pinned. The updated entry
is stored in the in buddies.entries, which is then used to replace the old entries.

5. The delete_entry/2 function filters out the entry with the given entry_id and returns the
entries not containing the one with the given id.

The client code looks as follows:

buddies =
Buddies.new()
|> Buddies.add_entry(%{city: "Palermo", name: "Vito"})

49



|> Buddies.add_entry(%{city: "Bern", name: "Urs"})

Enum.each(buddies.entries, &IO.inspect/1)

buddies =
buddies
|> Buddies.delete_entry(2)
|> Buddies.update_entry(1, fn e -> Map.put(e, :name, "Don Corleone") end)

Enum.each(buddies.entries, &IO.inspect/1)

Notice the lambda replacing the :name of the entry with the identifier 1. The output then looks as
follows:

{1, %{city: "Palermo", id: 1, name: "Vito"}}
{2, %{city: "Bern", id: 2, name: "Urs"}}
{1, %{city: "Palermo", id: 1, name: "Don Corleone"}}

9.6 Protocols

Consider the module Person (examples/person.ex):

defmodule Person do
defstruct name: "" , age: 0
def new(name, age) do

%Person{name: name, age: age}
end

end

Since the data is stored in amap, it’s possible to print a Personusing IO.inspect/1, but IO.puts/1
fails:

$ iex examples/person.ex
> dilbert = Person.new("Dilbert", 42)
> IO.inspect(dilbert)
%Person{age: 42, name: "Dilbert"}
> IO.puts(dilbert)
** (Protocol.UndefinedError) protocol String.Chars not implemented for %Person{age: 42, […]

The Personmodule does not implement the String.Chars protocol, which is defined as follows:

defprotocol String.Chars do
def to_string(thing)

end

50



Notice the defmacro that does not define a function body, but only the function header (name
and arity).

A protocol can be implemented using the defimplmacro:

defimpl String.Chars, for: Person do
def to_string(thing) do

"#{thing.name} (age: #{thing.age})"
end

end

Whichmakes it possible to use IO.puts/1 on Person now:

> dilbert = Person.new("Dilbert", 42)
> IO.inspect(dilbert)
%Person{age: 42, name: "Dilbert"}
> IO.puts(dilbert)
Dilbert (age: 42)

IO.puts/1 is not aware of the different types and how they are supposed to be printed, it just
delegates the function call to String.Chars.to_string/1, which dispatches the call to the type
implementing the protocol.

It’s possible to define protocol implementations for any type; including for the Any fallback in
order to provide a default implementation.

Consider implementing the following protocols for your types:

• String.Chars to provide a string representation for output (e.g. with IO.puts/1).
• Inspect to provide a detailed string representation for your type (for IO.inspect/1).
• Enumerable so that your type works with the functions of Enum and Stream.
• Collectable so that you can collect data into your type using comprehensions.

10 Concurrency Primitives

A process is a lightweight unit of execution in the Erlang virtual machine, as opposed to the heavy
process of the operating system. Every process has its own identifier (the PID), which is assigned
upon starting it using the spawn/1 function. A process also has amailbox, queueing up a (theoret-
ically) unlimited amount of messages. If the PID of a process is known, a message can be sent to
it using the send/2 function. Themessages are processed using receive.

51



10.1 Stateless Server Process

This small echo server demonstrates those principles (examples/echoserver.exs):

defmodule Echo do
def loop() do

receive do
{:message, payload} -> IO.puts(payload)
{:important_message, payload} -> IO.puts(String.upcase(payload))
unknown -> IO.puts(:stderr, "unsupported message format")

end

loop()
end

end

printer = spawn(&Echo.loop/0)

send(printer, {:message, "Hello"})
send(printer, {:message, "World"})
send(printer, {:important_message, "and beyond"})
send(printer, {:unknown, "Universe"})
send(printer, {:message, "Goodbye"})

Process.sleep(1000)

• The Echomodule defines a single function loop/0, which handles the incoming messages.
The receive constructmatches the incomingmessage against different patterns and deals
with them accordingly. The catch-all pattern (unknown) ensures that no messages are
queueing up ad infinitum. Since receive only awaits a singlemessage, the loop/0 function
calls itself, so that the next message can be dealt with.

• A process is created using the spawn function by indicating the Echo.loop/0 function; a PID
is returned and saved in printer.

• Various messages are sent to the printer by handing over its PID and a message. Since
the Echo server runs asynchronously, the Process.sleep/1 call makes sure that the Echo
process has enough time to finish its work.

$ elixir examples/echoserver.exs Hello World AND BEYOND Goodbye unsupported mes-
sage format

52



10.2 Stateful Server Process (Simple State)

A server process can handle state by passing it to subsequent calls of its loop function. An initial
state can be provided by calling loop with an argument; modified state is provided by further
recursive calls to loop. Consider this BankAccountmodule (examples/paymentserver.exs):

defmodule BankAccount do
def pay_async(pid, payment) do

case payment do
{:incoming, amount} -> send(pid, {:pay_in, amount, self()})
{:outgoing, amount} -> send(pid, {:pay_out, amount, self()})

end
end

def query_balance(pid) do
send(pid, {:query, self()})

end

def get_result() do
receive do
{:ok, balance} -> {:ok, balance}

after
1000 -> {:err, :timeout}

end
end

def start(balance) do
spawn(fn -> loop(balance) end)

end

defp loop(balance) do
balance =

receive do
{:query, pid} ->

send(pid, {:ok, balance})
balance

{:pay_in, amount, _} ->
balance + amount

{:pay_out, amount, _} ->
new_balance = balance - amount

if new_balance >= 0 do

53



new_balance
else

balance
end

end

loop(balance)
end

end

• The pay_async/2 function expects a pid and a paymentmessage. Thismessage is forwarded
to itself, changing the atom (:incoming to :pay_in, :outgoing to :pay_out) and enriching
the message with the PID of the main process, which is gotten hold of by a call to self/0.
(The response is supposed to be sent back to that particular PID later on.)

• The query_balance/1 function also expects a pid, to which it sends a :querymessage, also
providing its PID for getting the response.

• The get_result/0 function awaits the incoming answer to the balance query. If it is not
answered within 1000milliseconds (after clause), a :timeout error is returned.

• The start/1 function is used to spawn the new process. The given initial state (balance) is
provided by a lambda.

• The loop/1 function handles the incoming messages. Since receive is an expression, the
(poentially) modified balance stores its returned value. The first clause catches :query re-
sults,whichare sent back to the caller PID. The current balance is returnedunmodified. The
second clause catches incoming payments (:pay_in), which are added to the balance. The
third clause (:pay_out) first checks the current balance, and only reduces it by the given
amount if the new balane would not be lower than zero. The loop is called again with the
(potentially) updated balance.

In this example, multiple processes are created, which run independently of each other:

accounts = %{
"Dilbert" => BankAccount.start(25_200),
"Alice" => BankAccount.start(52_900),
"Wally" => BankAccount.start(12_500)

}

# random spending 1..1000
1..10
|> Enum.each(fn _ ->

{name, account} = Enum.random(accounts)
amount = :rand.uniform(1000)
BankAccount.pay_async(account, {:outgoing, amount})
IO.puts("#{name} spent #{amount}.")

end)

54



# random salary 7000..9000
accounts
|> Enum.each(fn {name, account} ->

salary = :rand.uniform(2000) + 7000
BankAccount.pay_async(account, {:incoming, salary})
IO.puts("#{name} received a salary of #{salary}.")

end)

accounts
|> Enum.each(fn {name, account} ->

BankAccount.query_balance(account)

case BankAccount.get_result() do
{:ok, balance} ->
IO.puts("At the end of the month, #{name} has a balance of #{balance}.")

{:err, :timeout} ->
IO.puts("Retrieval of balance of #{name}'s account failed with a timeout.")

end
end)

Which produces the following output:

Alice spent 230.
Alice spent 538.
Alice spent 463.
Alice spent 491.
Wally spent 748.
Alice spent 112.
Alice spent 883.
Alice spent 712.
Alice spent 365.
Wally spent 220.
Alice received a salary of 8512.
Dilbert received a salary of 7684.
Wally received a salary of 8518.
At the end of the month, Alice has a balance of 57618.
At the end of the month, Dilbert has a balance of 32884.
At the end of the month, Wally has a balance of 20050.

55



10.3 Stateful Server Process (Nested State)

The state of a server process is not restricted to simple atomic variables such as numbers. An
existing module, such as the Buddiesmodule (examples/buddies/buddies_v5.exs), can be used
as the foundation for such a server (examples/buddies/buddies_v6.exs):

defmodule BuddyServer do
def start() do

spawn(fn -> loop(Buddies.new()) end)
end

def add_entry(entry) do
send(:buddy_server, {:add, entry})

end

def update_entry(entry_id, updater_fun) do
send(:buddy_server, {:upd, entry_id, updater_fun})

end

def delete_entry(entry_id) do
send(:buddy_server, {:del, entry_id})

end

def entries(city) do
send(:buddy_server, {:entries, city, self()})

receive do
{:ok, entries} -> entries

end
end

defp loop(buddies) do
new_buddies =

receive do
{:add, entry} ->

Buddies.add_entry(buddies, entry)

{:upd, entry_id, updater_fun} ->
Buddies.update_entry(buddies, entry_id, updater_fun)

{:del, entry_id} ->
Buddies.delete_entry(buddies, entry_id)

{:entries, city, pid} ->

56



send(pid, {:ok, Buddies.entries(buddies, city)})
buddies

end

loop(new_buddies)
end

end

The struct defined in the Buddiesmodule is passed around in between loops. Themessages (:add,
:upd, :del, and :entries) are forwardedasl calls to theunderlying Buddiesmodule (add_entry/2,
update_entry/3, delete_entry/2, and entries/2, respectively).

Notice that the server sends its messages to an atom :buddy_server instead of to a specific PID.
This is because the server process is registered under that atom before:

pid = BuddyServer.start()
Process.register(pid, :buddy_server)

The server is then used as follows:

IO.puts("adding some buddies")
BuddyServer.add_entry(%{city: "Berlin", name: "Hans"})
BuddyServer.add_entry(%{city: "Berlin", name: "Hermann"})
BuddyServer.add_entry(%{city: "Palermo", name: "Vito"})

IO.puts("entries from Berlin")
Enum.each(BuddyServer.entries("Berlin"), &IO.inspect/1)

IO.puts("entries from Berlin after deleting entry with id 2")
BuddyServer.delete_entry(2)
Enum.each(BuddyServer.entries("Berlin"), &IO.inspect/1)

IO.puts("entries from Palermo after updating entry with id 3")
BuddyServer.update_entry(3, fn e -> Map.put(e, :name, "Don Corleone") end)
Enum.each(BuddyServer.entries("Palermo"), &IO.inspect/1)

Which produces this output:

adding some buddies
entries from Berlin
%{city: "Berlin", id: 1, name: "Hans"}
%{city: "Berlin", id: 2, name: "Hermann"}
entries from Berlin after deleting entry with id 2
%{city: "Berlin", id: 1, name: "Hans"}
entries from Palermo after updating entry with id 3
%{city: "Palermo", id: 3, name: "Don Corleone"}

57



11 Generic Server Process

Server processes have some duties in common, such as spawning a process, running themessage
loop while carrying over state, dispatchingmessages etc. It therefore is beneficial to separate the
common server concerns from the actual business logic.

11.1 Implementing a Generic Server Process

The module ServerProcess (examples/server_process/v1/server_process.ex) implements a
generic server process, which relies on another module to perform the business logic:

defmodule ServerProcess do
def start(callback_module) do

spawn(fn ->
initial_state = callback_module.init()
loop(callback_module, initial_state)

end)
end

def call(server_pid, request) do
send(server_pid, {request, self()})

receive do
{:response, response} -> response

end
end

defp loop(callback_module, current_state) do
receive do
{request, caller} ->
{response, new_state} =

callback_module.handle_call(
request,
current_state

)

send(caller, {:response, response})
loop(callback_module, new_state)

end
end

end

58



• The start/1 function accepts a module reference and spawns a process. The initial state
is provided by the callback module’s init/0 function, which must be provided. The initial
state is then passed into themessage loop.

• Synchronuous messages are handled using the call/2 function, which reqires a PID and a
request. This request is sent to the indicatedprocess; themessage is enrichedusing the cur-
rent PID. The answer is awaited synchronously using receive, and the responsemessage is
returned to the caller.

• The loop/2 function keeps track of the callback module and the state. A request is simply
forwarded to the callbackmodule’s handle_call/2 function, whichmust be provided. The
response returned thereby is forwarded to the calling process, and the loop is run with the
updated state.

Any module providing init/0 and handle_call/2 can be using together with this generic server
process, e.g. this simple KeyValueStore (examples/server_process/v1/key_value_store.ex):

defmodule KeyValueStore do
def init do

%{}
end

def handle_call({:put, key, value}, state) do
{:ok, Map.put(state, key, value)}

end

def handle_call({:get, key}, state) do
{Map.get(state, key), state}

end
end

• The init/0 function just creates an emptymap as the initial state.
• The handle_call/2 function has two clauses:

1. One to handle :put calls to add a value to themap.
2. One to handle :get calls, which returns the value for a given key.

Themodules can be used together as follows:

$ cd examples/server_process/v1/
$ elixirc key_value_store.ex key_value_store.ex
$ iex
> pid = ServerProcess.start(KeyValueStore)
> ServerProcess.call(pid, {:put, :name, "Dilbert"})
:ok
> ServerProcess.call(pid, {:get, :name})
"Dilbert"

59



11.2 Transparent Use of Server Process

In the current implementation of KeyValueStore, the client has to deal explicitly with
the ServerProcess module. This can be made transparently by wrapping the calls to
ServerProcess with the interface functions start/0, put/3, and get/2 in KeyValueStore
(examples/server_process/v2/key_value_store.ex):

defmodule KeyValueStore do
def start do

ServerProcess.start(KeyValueStore)
end

def put(pid, key, value) do
ServerProcess.call(pid, {:put, key, value})

end

def get(pid, key) do
ServerProcess.call(pid, {:get, key})

end

def init do
%{}

end

def handle_call({:put, key, value}, state) do
{:ok, Map.put(state, key, value)}

end

def handle_call({:get, key}, state) do
{Map.get(state, key), state}

end
end

Which can be used as follows:

$ cd examples/server_process/v2/
$ elixirc key_value_store.ex key_value_store.ex
$ iex
> pid = KeyValueStore.start()
> KeyValueStore.put(pid, :name, "Wally")
:ok
> KeyValueStore.get(pid, :name)
"Wally"

60



Notice that the interface functions run in the client process, whereas the handler functions run in the
server process.

11.3 Asynchronous Requests

The get operation needs to be synchronous, since the client wants the response right away. The
put operation, on the other side, could bemade asynchronous, working in a fire and forgetmanner.
In Erlang/OTP, those kinds of requests are called call (synchronous) and cast (asynchronous).

The server process needs to be updated in order to support both call and cast requests
(examples/server_process/v3/server_process.ex):

defmodule ServerProcess do
def start(callback_module) do

spawn(fn ->
initial_state = callback_module.init()
loop(callback_module, initial_state)

end)
end

def call(server_pid, request) do
send(server_pid, {:call, request, self()})

receive do
{:response, response} -> response

end
end

def cast(server_pid, request) do
send(server_pid, {:cast, request})

end

defp loop(callback_module, current_state) do
receive do
{:call, request, caller} ->
{response, new_state} =

callback_module.handle_call(
request,
current_state

)

send(caller, {:response, response})
loop(callback_module, new_state)

61



{:cast, request} ->
new_state =

callback_module.handle_cast(
request,
current_state

)

loop(callback_module, new_state)
end

end
end

• Themessage sent by the call/2 function now includes the :call atom to indicate themes-
sagingmode. In themessage loop, the :call atom is used for matching those messages.

• A new function cast/2 is introduced, which sends messages prefixed with the :cast atom
to the server process. Those messages are handled in the event loop in a way that only the
state is updated, but nomessage is sent back to the caller.

The KeyValueStore module must be updated accordingly in order to support cast operations
(examples/server_process/v3/key_value_store.ex):

defmodule KeyValueStore do
def start do

ServerProcess.start(KeyValueStore)
end

def put(pid, key, value) do
ServerProcess.cast(pid, {:put, key, value})

end

def get(pid, key) do
ServerProcess.call(pid, {:get, key})

end

def init do
%{}

end

def handle_cast({:put, key, value}, state) do
Map.put(state, key, value)

end

def handle_call({:get, key}, state) do
{Map.get(state, key), state}

62



end
end

• The put/3 function now calls ServerProcess.cast/2.
• Thefirst clause of the handle_call/2 functionhas been replacedwith anew handle_cast/2
function.

The new implementation now can be used as follows:

$ cd examples/server_process/v3
$ elixirc key_value_store.ex server_process.ex
$ iex
> pid = KeyValueStore.start()
> KeyValueStore.put(pid, :name, "Dogbert")
> KeyValueStore.get(pid, :name)
"Dogbert"

It’s now up to the interface functions to decide to operate synchronously or asynchronously.

11.4 GenServer

There’s no need to implement a generic server process manually. It is already available through
the GenServer module (based on Erlang’s :gen_server). GenServer is a behaviour, which
requires the implementation of various functions, such as handle_call/3, handle_cast/2, and
init/1. There’s no need to implement all of them, since default implementations can be taken
from GenServerwith the usemacro as follows (examples/key_value_gen_server.exs):

defmodule KeyValueStore do
use GenServer

def start do
GenServer.start(KeyValueStore, nil)

end

def put(pid, key, value) do
GenServer.cast(pid, {:put, key, value})

end

def get(pid, key) do
GenServer.call(pid, {:get, key})

end

def init(_) do

63

https://hexdocs.pm/elixir/Module.html#module-behaviour


{:ok, %{}}
end

def handle_cast({:put, key, value}, state) do
{:noreply, Map.put(state, key, value)}

end

def handle_call({:get, key}, _, state) do
{:reply, Map.get(state, key), state}

end
end

{:ok, pid} = KeyValueStore.start()
KeyValueStore.put(pid, :name, "Dilbert")
name = KeyValueStore.get(pid, :name)
IO.puts(name)

• The start/0 functiondelegates the startup to GenServerbyproviding themodule referenec.
No second parameter is needed, but would be handed over to init/1, if provided.

• The put/3 and get/2 functions are interface functions that delegate their calls to GenServer
using cast (asynchronous) or call (synchronous).

• The handle_cast/2 function is the callback for asynchronous calls, and, by convention, re-
turns a tuple starting with :noreply.

• The handle_call/3 function is the callback for synchronous calls. Its second parameter is
an internal request ID,which can be ignored here. It’s returned tuple startswith the :reply
atom by convention.

Notice that GenServer.start/2 retrurns a tuple, indicating whether or not the process started
successfylly. After creation, the module can be used through its interface function; its use of
GenServer is completely transparent.

Check out the GenServer documentation for further information.

11.5 Worker Pools

The PrimeServermodule uses GenServer to find prime numbers using the PrimeNumbersmodule
(examples/prime_genserver.exs):

defmodule PrimeNumbers do
def is_prime(x) when is_number(x) and x == 2, do: true

def is_prime(x) when is_number(x) and x > 2 do
from = 2
to = trunc(:math.sqrt(x))

64

https://hexdocs.pm/elixir/GenServer.html


n_total = to - from + 1

n_tried =
Enum.take_while(from..to, fn i -> rem(x, i) != 0 end)
|> Enum.count()

n_total == n_tried
end

def is_prime(x) when is_number(x), do: false
end

defmodule PrimeServer do
use GenServer

def start() do
GenServer.start(__MODULE__, nil)

end

def is_prime(pid, x) do
GenServer.call(pid, {:is_prime, x})

end

def init(_) do
{:ok, %{}}

end

def handle_call({:is_prime, x}, _, state) do
{:reply, PrimeNumbers.is_prime(x), state}

end
end

{:ok, pid} = PrimeServer.start()

1..20
|> Stream.filter(fn i -> PrimeServer.is_prime(pid, i) end)
|> Enum.each(fn i -> IO.puts("#{i} is a prime number.") end)

Notice that the work is not parallelized, because all the calls are handled synchronously.

$ elixir examples/prime_genserver.exs
2 is a prime number.
5 is a prime number.
7 is a prime number.

65



11 is a prime number.
13 is a prime number.
17 is a prime number.
19 is a prime number.

In order to find prime numbers with multiple processes performing work in parallel, so-called
worker processes are needed. In this more involved example (examples/prime_workers.exs), con-
currency primitives are used to getmore fine-grained control over the distribution of thework:

defmodule PrimeNumbers do
def is_prime(x) when is_number(x) and x == 2, do: true

def is_prime(x) when is_number(x) and x > 2 do
from = 2
to = trunc(:math.sqrt(x))
n_total = to - from + 1

n_tried =
Enum.take_while(from..to, fn i -> rem(x, i) != 0 end)
|> Enum.count()

n_total == n_tried
end

def is_prime(x) when is_number(x), do: false
end

defmodule PrimeWorker do
def start() do

spawn(fn -> loop() end)
end

defp loop() do
receive do
{:is_prime, x, pid} ->
send(pid, {:prime_result, x, PrimeNumbers.is_prime(x)})
loop()

{:terminate, pid} ->
send(pid, {:done})

end
end

end

66



defmodule PrimeClient do
def start() do

spawn(fn -> loop(0) end)
end

def loop(found) do
receive do
{:prime_result, _, prime} ->

if prime do
loop(found + 1)

else
loop(found)

end

{:query_primes, pid} ->
send(pid, {:primes_found, found})

end

loop(found)
end

end

args = System.argv()
[n, n_workers | _] = args
{n, ""} = Integer.parse(n, 10)
{n_workers, ""} = Integer.parse(n_workers, 10)

client = PrimeClient.start()

workers =
for i <- 0..(n_workers - 1),

into: %{},
do: {i, PrimeWorker.start()}

Enum.each(2..n, fn x ->
i_worker = rem(x, n_workers)
worker = Map.get(workers, i_worker)
send(worker, {:is_prime, x, client})

end)

workers
|> Enum.each(fn {_, w} ->

send(w, {:terminate, self()})

67



receive do
{:done} -> {:nothing}

end
end)

send(client, {:query_primes, self()})

receive do
{:primes_found, found} ->

IO.puts("Found #{found} primes from 2 to #{n}.")
end

The workers are picked fairly for every number to be processed based on a modulo calculator
(rem/2). The program can be startedwith command-line arguments (the upper limit of the range
to find prime numbers in, and the number of worker processes to be used):

$ elixir examples/prime_workers.exs 1000000 1
Found 78497 prime numbers from 2 to 1000000.

The program speeds up considerably if more workers are used. On a computer with eight cores,
using 7 workers seems to sound reasonable (leaving 1 core for scheduling and other tasks):

$ time elixir examples/prime_workers.exs 1000000 7
Found 78497 prime numbers from 2 to 1000000.

real 0m16.531s
user 1m32.998s
sys 0m9.431s

However, the CPU usage never completely maxes out, so using more workers might be a good
idea:

$ time elixir examples/prime_workers.exs 1000000 100
Found 78497 prime numbers from 2 to 1000000.

real 0m10.679s
user 1m21.081s
sys 0m0.477s

100 might sound like a lot, but since BEAM processes are lightweight, even more of them can be
spawned:

68



$ time elixir examples/prime_workers.exs 1000000 1000
Found 78497 prime numbers from 2 to 1000000.

real 0m1.746s
user 0m10.579s
sys 0m0.300s

Using 1000 instead of 100 workers leads to a considerable speedup. One possible interpretation
is that the task to be performed by a process (figuring out whether or not a particular number is
a prime number) is relatively small, so it’s a good idea to havemany such tasks queued up for the
scheduler.

12 Error Handling

There are three types of runtime errors:

1. errors

• dividing a number by zero
• calling a non-existing function
• nomatching pattern
• raise("something went wrong")
• functions throwing errors end their namewith ! (e.g. File.open!)

2. exits

• a process is exited
• exit("process exits")

3. throws

• for non-local returns (resembles break, goto in procedural languages)
• throw(:thrown_value)

12.1 try/catch

Any of those errors can be caught using the try/catch special form:

examples/error_handling.ex:

defmodule ErrorHandling do
def execute(f) do

try do
f.()
IO.puts("ok")

69



catch
type, value ->
IO.puts("Error: #{inspect(type)} #{inspect(value)}")

end
end

end

$ iex examples/error_handling.ex

> ErrorHandling.execute(fn -> 3 / 5 end)
ok

> ErrorHandling.execute(fn -> 3 / 0 end)
Error: :error :badarith

> ErrorHandling.execute(fn -> raise("whatever") end)
Error: :error %RuntimeError{message: "whatever"}

> ErrorHandling.execute(fn -> :erlang.error("raw error") end)
Error: :error "raw error"

> ErrorHandling.execute(fn -> exit("ciao") end)
Error: :exit "ciao"

> ErrorHandling.execute(fn -> throw(:goodbye) end)
Error: :throw :goodbye

12.2 try/catch Expression

The try/catch special form is an expression and returns the value from the last executed state-
ment; either from the try or catch block (examples/error_expression.ex):

defmodule ErrorHandling do
def execute(f) do

try do
f.()

catch
type, value -> %{type: type, value: value}

end
end

end

$ iex examples/error_expression.ex

70



> add_numbers = fn -> 3 + 5 end
> ErrorHandling.execute(add_numbers)
8

> divide_by_zero = fn -> 3 / 0 end
> ErrorHandling.execute(divide_by_zero)
%{type: :error, value: :badarith}

> ErrorHandling.execute(&rem/2)
%{type: :error, value: {:badarity, {&:erlang.rem/2, []}}}

12.3 Error Matching

Errors can bematched and dealt with at different layers (examples/error_layers.ex):

defmodule ErrorLayers do
def execute(f) do

try do
try do
f.()

catch
:error, err -> {:failed, :with_error}

end
catch
:throw, err -> {:failed, :with_throw}

end
end

end

$ iex examples/error_layers.ex

> throw_f = fn -> throw(:fail_with_throw) end
> ErrorLayers.execute(throw_f)
{:failed, :with_throw}

> error_f = fn -> 3 / 0 end
> ErrorLayers.execute(error_f)
{:failed, :with_error}

12.4 Cleanup Code

Code in theafterblock isalwaysexecuted, regardlessofwhetheranerroroccured(examples/error_after.ex):

71



defmodule ErrorAfter do
def execute(f) do

try do
f.()

catch
type, value -> IO.puts("error: #{type} (#{value})")

after
IO.puts("done, cleaning up…")

end
end

end

$ iex examples/error_after.ex

> failing_func = fn -> 3 / 0 end
> ErrorAfter.execute(failing_func)
error: error (badarith)
done, cleaning up…

> working_func = fn -> IO.puts("working") end
> ErrorAfter.execute(working_func)
working
done, cleaning up…

Notice that after does not affect the return value of the try/catch special form!

12.5 Defining Exceptions

The defexceptionmacro can be used to define new exceptions.

12.6 Errors in Concurrent Systems

Processes are isolated and don’t sharememory. If one process crashes, the other processes are not
affected (examples/proc_crash.exs):

spawn(fn ->
spawn(fn ->

Process.sleep(1000)
IO.puts("Process 2: finishing...")

end)

raise("Process 1: failing...")
end)

72

https://hexdocs.pm/elixir/Kernel.html#defexception/1


If the program is run, Process 1 will fail due to an exception. Process 2, which was spawned from
Process 1, won’t be affected and finishes successfully:

$ iex examples/proc_crash.exs
09:55:48.783 [error] Process #PID<0.109.0> raised an exception
** (RuntimeError) Process 1: failing...

proc_crash.exs:7: anonymous fn/0 in :elixir_compiler_0.__FILE__/1
Process 2: finishing...

Processes can be bidirectionally linked together. If one process fails, the linked process will also
fail (examples/proc_link.exs):

spawn(fn ->
spawn_link(fn ->

Process.sleep(1000)
IO.puts("Process 2: finishing...")

end)

raise("Process 1: failing...")
end)

Notice that spawn_link/1 links the spawned process to the spawning process:

$ iex examples/proc_link.exs
09:57:07.740 [error] Process #PID<0.109.0> raised an exception
** (RuntimeError) Process 1: failing...

proc_link.exs:7: anonymous fn/0 in :elixir_compiler_0.__FILE__/1

A crashing process emits an exit signal to all its linked processes.

12.6.1 Trapping Exits

A linked process can react to an exit signal by setting up a trap using Process.flag/2. If a linked
process fails, an accordingmessage can be received (examples/proc_trap.exs):

spawn(fn ->
Process.flag(:trap_exit, true)

spawn_link(fn ->
raise("Something went wrong")

end)

receive do

73



msg -> IO.inspect(msg)
end

end)

Anmessage of the form {:EXIT, [from_pid], [exit_reason]} is received and printed:

$ iex examples/proc_trap.exs
10:03:14.897 [error] Process #PID<0.110.0> raised an exception
** (RuntimeError) Something went wrong

proc_trap.exs:5: anonymous fn/0 in :elixir_compiler_0.__FILE__/1
{:EXIT, #PID<0.110.0>,
{%RuntimeError{message: "Something went wrong"},
[

{:elixir_compiler_0, :"-__FILE__/1-fun-0-", 0,
[file: 'proc_trap.exs', line: 5, error_info: %{module: Exception}]}

]}}

12.6.2 Monitors

Links are bidirectional. If the errors should only be propagated in one way, amonitor can be used
instead (examples/proc_monitor.exs):

proc_finishing =
spawn(fn ->

Process.sleep(1000)
IO.puts("process 1 finishing")

end)

proc_failing =
spawn(fn ->

raise("process 2 failing")
end)

Process.monitor(proc_finishing)
Process.monitor(proc_failing)

receive do
msg -> IO.inspect(msg)

end

receive do
msg -> IO.inspect(msg)

end

74



Process.monitor/1 establishes anunidirectional linkwhich allows the spawningprocess tomon-
itor the other processes. The monitoring process receives a message if a monitored process fin-
ishes or fails:

$ elixir examples/proc_monitor.exs
10:30:31.372 [error] Process #PID<0.99.0> raised an exception
** (RuntimeError) process 2 failing

proc_monitor.exs:9: anonymous fn/0 in :elixir_compiler_0.__FILE__/1
{:DOWN, #Reference<0.2077770098.3528720387.219719>, :process, #PID<0.99.0>,
{%RuntimeError{message: "process 2 failing"},
[

{:elixir_compiler_0, :"-__FILE__/1-fun-1-", 0,
[file: 'proc_monitor.exs', line: 9, error_info: %{module: Exception}]}

]}}
process 1 finishing
{:DOWN, #Reference<0.2077770098.3528720387.219718>, :process, #PID<0.98.0>,
:normal}

Notice that process 1 finishes with :normal, while process 2 throws a RuntimeError.

Notice that themonitoring process does not crash itself when amonitored process crashes.

75


	Setup
	Documentation

	Variables
	Modules
	Imports and Aliases
	Module Attributes

	Functions
	Function Composition
	Arities and Default Values

	Data Types
	Integers
	Atoms
	Tuples
	Lists
	Cons Cells

	Maps
	Records

	Binaries
	Strings
	Binary Strings
	Character Lists

	First-Class Functions
	Closures

	Higher-Level Types
	Ranges
	Keyword Lists
	MapSet
	Date and Time
	IO Lists


	Operators
	Pattern Matching
	Matching with Constants
	Nested Patterns
	Re-using Bindings
	Pinning
	Matching Lists
	Matching Maps
	Matching Binaries
	Matching Strings
	Compund Matches
	Matching Functions
	Multiclause Lambdas

	Conditionals
	With

	Iterations
	Recursion and Tail-Call Optimization
	Higher-Order Functions
	Comprehensions
	Streams

	Abstraction
	Basic Abstraction
	Composing Abstractions
	Structuring Data with Maps
	Abstracting with Structs
	CRUD Operations
	Protocols

	Concurrency Primitives
	Stateless Server Process
	Stateful Server Process (Simple State)
	Stateful Server Process (Nested State)

	Generic Server Process
	Implementing a Generic Server Process
	Transparent Use of Server Process
	Asynchronous Requests
	GenServer
	Worker Pools

	Error Handling
	try/catch
	try/catch Expression
	Error Matching
	Cleanup Code
	Defining Exceptions
	Errors in Concurrent Systems
	Trapping Exits
	Monitors



