
“Getting Clojure” by Russ Olsen
Personal Summary

Patrick Bucher

2023-08-13

Contents

1 Hello, Clojure 2

2 Vectors and Lists 5

3 Maps, Keywords, and Sets 8

4 Logic 12

5 More Capable Functions 16

6 Functional Things 21

7 Let 25

8 Def, Symbols, and Vars 28

9 Namespaces 29

10 Sequences 34

11 Lazy Sequences 40

12 Destructuring 43

13 Records and Protocols 46

14 Tests 51

15 Spec 58

16 Interoperating with Java 65

1

17 Threads, Promises, and Futures 69

18 State 72

19 Read and Eval 81

20 Macros 85

This is a rough summary of Getting Clojure by Russ Olsen. Some examples have been taken from
the original, some have beenmodified, and some have beenmade up. Instructions for Setup have
been added for Arch Linux and Emacs.

1 Hello, Clojure

Install Clojure and Leiningen on Arch Linux:

pacman -S clojure leiningen

Start a REPL:

$ lein repl

Write a “HelloWorld” program on the REPL:

> (println "Hello, World!")
Hello, World!
nil

Install Cider and ClojureMode for Emacs:

M-x package-install RET clojure-mode RET
M-x package-install RET cider RET

Write the same program (with comments) to hello.clj (using Emacs):

;; Hello World program in Clojure.
(println "Hello, World!") ; Say hi.

Run the REPL in Emacs:

M-x cider-jack-in

2

https://pragprog.com/titles/roclojure/getting-clojure/
https://cider.mx/

Use C-c C-k to evaluate the entire buffer, or just the expression in front of the curser using C-c
C-e.

Comments startwith a semicolonandendwith the line. Comments that takeupawhole line start
with two semicolons by convention.

Run the program:

$ clojure -M hello.clj
Hello, World!

Or shorter:

$ clj -M hello.clj
Hello, World!

Use basic arithmetic functions:

> (+ 3 2)
5
> (- 100 3 7)
90
> (+ (* 3 6) (/ 12 4))
21
> (/ 8 3) ; produces a ratio
8/3
> (quot 8 3) ; truncates
2

Bind a symbol to a value:

> (def result (* 13 12))
> (println result)
156

Concatenate multiple values as a string:

> (str 1 "to" 2)
"1to2"

Write and call the “HelloWorld” program as a function:

3

> (defn hello-world [] (println "Hello, World!"))
> (hello-world)
Hello, World!

Use a single function parameter:

(defn greet [whom]
(println "Hello," whom))

> (greet "John")
Hello, John

Usemultiple function parameters:

(defn average [a b]
(/ (+ a b) 2))

> (average 10 4)
7

Usemultiple expressions in the function body:

(defn average [a b]
(def a-plus-b (+ a b))
(def half-the-sum (/ a-plus-b 2))
half-the-sum)

> (average 24 6)
15

The last expression of the function body (here: half-the-sum) is returned.

Create and run a proper application using Leiningen:

$ lein new app hello-world
$ cd hello-world
$ lein run
Hello, World!

Extend the example (src/hello_world/core.clj) as follows:

4

(ns hello-world.core
(:gen-class))

(defn greet [app whom]
(println app "greets" whom))

(defn -main
[& args]
(greet "Hello World" "the user"))

And run it again:

$ lein run
Hello World greets the user

2 Vectors and Lists

Create a vector of numbers:

> [1 2 3 4]
[1 2 3 4]

A vector can hold values of different types:

> [1 "two" 3.0 "four"]
[1 "two" 3.0 "four"]

Vectors can be nested:

> [1 ["foo" "bar"] 2 ["qux" "baz"]]
[1 ["foo" "bar"] 2 ["qux" "baz"]]

Vectors can also be created using the vector function:

> (vector 1 2 3 4)
[1 2 3 4]
> (vector (vector "one" "two") "three" (vector "four" "five"))
[["one" "two"] "three" ["four" "five"]]

count returns the number of elements in a vector:

5

> (def numbers [1 3 9 27])
> (count numbers)
4

first returns the first element of a vector:

> (first [1 2 3 4])
1
> (first [])
nil

rest returns all but the first elements of a vector as a sequence:

> (rest [1 2 3 4])
> (rest [1])
()
> (rest [])
()

nth returns the element at position n (zero-based index):

> (nth [1 2 3 4] 2)
3

The nth element can also be accessed using the vector’s name and an index:

> (def numbers [1 2 3 4 5])
> (numbers 3)
4

conj adds an element to the end of a vector:

> (def cities ["London", "New York", "Berlin"])
> (conj cities "Moscow")
["London" "New York" "Berlin" "Moscow"]

cons adds an element to the front of a vector:

> (def countries ["USA", "Germany", "Turkey"])
> (cons "Russia" countries)
("Russia" "USA" "Germany" "Turkey")

6

Actually, a new vector or sequence, respectively, is created, holding the additional element.

A list can be created as follows:

> '("New York" "London" "Berlin")
("New York" "London" "Berlin")

Or using the list function:

> (list "New York" "London" "Berlin")
("New York" "London" "Berlin")

The functions count, first, rest, and nth can be applied to lists, too:

> (def countries '("USA" "Russia" "Germany" "France"))
> (count countries)
4
> (first countries)
"USA"
> (rest countries)
("Russia" "Germany" "France")
> (nth countries 3)
"France"

Unlike vectors, a list can not be used like a function:

> (countries 3)
Execution error (ClassCastException) at user/eval2092 (REPL:1).
clojure.lang.PersistentList cannot be cast to clojure.lang.IFn

Vectors are implemented as arrays, lists are implemented as linked lists. This has some implica-
tions:

• Appending to the front is fast for lists and slow for vectors.
• Appending to the end is fast for vectors and slow for lists.
• Accessing vector elements happens in constant time.
• Accessing list element n happens in n steps.

The conj function therefore adds elements to the front of lists and to the end of vectors:

> (conj [1 2 3] "what")
[1 2 3 "what"]
> (conj '(1 2 3) "what")
("what" 1 2 3)

7

3 Maps, Keywords, and Sets

Maps are created using pairs within curly braces:

> {"title" "War and Peace" "author" "Lev Tolstoy" "year" 1869}
{"title" "War and Peace", "author" "Lev Tolstoy", "year" 1869}

Commas between key-value pairs can be used for better readability, but are optional:

> {"title" "War and Peace", "author" "Lev Tolstoy", "year" 1869}
{"title" "War and Peace", "author" "Lev Tolstoy", "year" 1869}

Maps can also be created using the hash-map function:

> (hash-map "title" "War and Peace" "author" "Lev Tolstoy" "year" 1869)
{"author" "Lev Tolstoy", "title" "War and Peace", "year" 1869}

The left part of the pair is the key, the right part the value of the entry.

get looks up the value of an entry by its key:

> (def book {"title" "War and Peace" "author" "Lev Tolstoy" "year" 1869})
> (get book "author")
"Lev Tolstoy"

Like vectors, elements can be accessed without an explicit function call:

> (book "title")
"War and Peace"
> (book "year")
1869
> (book "publisher")
nil

Idiomatically, keywords starting with a colon are used as map keys:

> (def book {:title "War and Peace" :author "Lev Tolstoy" :year 1869})
> book
{:title "War and Peace", :author "Lev Tolstoy", :year 1869}
> (book :title)
"War and Peace"

8

Keywords can also be used for map lookups:

> (:title book)
"War and Peace"

assoc returns amapwith an element either overwritten or added:

> (def book {:title "War and Peace" :author "Lev Tolstoy" :year 1869})
{:title "War and Peace", :author "Lev Tolstoy", :year 1869}
> (assoc book :pages 2000)
{:title "War and Peace", :author "Lev Tolstoy", :year 1869, :pages 2000}
> (assoc book :pages 1987)
{:title "War and Peace", :author "Lev Tolstoy", :year 1869, :pages 1987}

Using assoc, it’s possible to add/modify multiple key-value pairs at once:

> (def employee {:name "Dilbert"})
> (assoc employee :job "Engineer" :salary 120000)
{:name "Dilbert", :job "Engineer", :salary 120000}

dissoc removes amap’s entry by its key:

> (def employee {:name "Dilbert" :note "smelly"})
> (dissoc employee :note)
{:name "Dilbert"}

Like assoc, multiple keys can be used at once with dissoc:

> (def employee {:name "Dilbert" :note "smelly" :terminate "Jan 2023"})
> (dissoc employee :note :terminate)
{:name "Dilbert"}

Keys not found in themapwill be ignored silently:

> (dissoc employee :sex-appeal :girlfriend :hobbies)
{:name "Dilbert", :note "smelly", :terminate "Jan 2023"}

keys returns the map’s keys (in unspecified order):

9

> (def book {:title "War and Peace" :author "Lev Tolstoy" :year 1869})
> (keys book)
(:title :author :year)

Use a sorted-map for specified key ordering:

> (def book (sorted-map :title "War and Peace" :author "Lev Tolstoy" :year 1869))
> (keys book)
(:author :title :year)

keys returns the map’s values in arbitrary order, matching the key’s order:

> (vals book)
("War and Peace" "Lev Tolstoy" 1869)
> (keys book)
(:title :author :year)

A set can be created as follows (commas being optional):

> #{"Dilbert", "Alice", "Wally"}
#{"Alice" "Wally" "Dilbert"}

An element must not occur more than once:

> #{"Dilbert", "Alice", "Wally", "Dilbert"}
Syntax error reading source at (REPL:1:42).
Duplicate key: Dilbert

contains? checks if an element is contained in a set:

> (def employees #{"Dilbert", "Alice", "Wally", "Ashok"})
> (contains? employees "Dilbert")
true
> (contains? employees "Pointy Haired Boss")
false

This lookup can be donewithout calling a function, returning the element if it is contained, or nil
if the element is missing:

10

> (employees "Dilbert")
"Dilbert"
> (employees "Ratbert")
nil

Whenworking with keywords, the order can be switched:

> (def genres #{:scifi :action :drama :love})
> (genres :scifi)
:scifi
> (:scifi genres)
:scifi

Functions like count, first, and rest handle map entries as two-element vectors:

> (def employee {:name "Dilbert" :age 42 :job "Engineer"})
> (count employee)
3
> (first employee)
[:name "Dilbert"]
> (rest employee)
([:age 42] [:job "Engineer"])

A set can be extendes using conj:

> (conj genres :western)
#{:western :scifi :drama :action :love}

An element won’t be added a second time (without causing an error):

> (conj genres :western)
#{:western :scifi :drama :action :love}
> (conj genres :western)
#{:western :scifi :drama :action :love}

disj returns a set without the specified element:

> (disj genres :western)
#{:scifi :drama :action :love}

11

No error occurs if the element is missing:

> (disj genres :comedy)
#{:scifi :drama :action :love}

Be aware that nil is a valid set entry andmap key:

> (contains? #{:foo :bar nil} nil)
true

4 Logic

Conditional code can be executed using if:

(if (= guess secret-number)
(println "You guessed the secret number.")
(println "Sorry, wrong number guessed..."))

If the boolean expression (first argument) holds true, the second argument is evaluated; other-
wise, the (optional) third argument is evaluated.

Being an expression, if returns a value:

(defn yield-rate [balance]
(if (>= balance 0) 0.125 12.5))

> (yield-rate 300)
0.125
> (yield-rate -150)
12.5

nilwill be returned if the condition evaluates to false and if there’s no else branch.

Comparison operators like =, not=, and >= are actually functions, which can take two or more ar-
guments:

12

> (= 2 2 2 2 3)
false
> (= 2 2 2 2 2 2)
true

> (not= 1 1 1 1)
false
> (not= 1 1 2 1)
true

> (>= 9 6 4 4 1)
true
> (>= 9 6 4 5 1)
false

Predicate functions return whether or not an expression is of some specific type:

> (number? 1987)
true
> (string? "Dilbert")
true
> (keyword? :title)
true
> (map? {:born 1987})
true
> (vector? [1 2 3])
true

Multiple conditions can be combined using and, or, and not:

> (or (and (> 5 3) (< 1 6)) (not (= 3 1)))
true

Both or and and are short-circuit operations (nothing is printed here):

> (or (= 1 1) (println "strange"))
true
> (and (not= 1 1) (println "strange"))
false

Every value besides false and nil is treated as truthy (i.e. will be evaluated to true), even empty
collections and the number 0:

13

> (if [] (println "[] is truthy"))
[] is truthy
nil

> (if 0 (println "0 is truthy"))
0 is truthy
nil

Multiple expressions can be grouped together using do:

(if (= guess secret-number)
(do

(println "You guessed the secret number.")
(println "A winner is you.")
{:points 100})

(do
(println "You guessed the wrong number.")
(println "Shame on you.")
{:points 0}))

The do expression evaluates to its last argument.

If no elsebranch is required, when canbe used instead of if, which allows formultiple expressions
without using do:

(when (= guess secret-number)
(println "You guessed the secret number.")
(println "A winner is you.")
{:points 100})

If the condition doesn’t hold true, nil is returned (like if).

Instead of nestingmultiple ifs, cond can be used for handlingmultiple conditions:

(defn check [guess secret-number]
(cond

(= guess secret-number) (println "correct")
(< guess secret-number) (println "too low")
(> guess secret-number) (println "too high")))

> (check 3 3)
correct
nil

14

> (check 4 3)
too high
nil

> (check 3 4)
too low
nil

Idiomatically, a catch-all :else clause is added tomake sure that every condition is handled:

(defn check [guess secret-number]
(cond

(= guess secret-number) (println "correct")
(< guess secret-number) (println "too low")
(> guess secret-number) (println "too high")
:else (println "You broke the universe")))

Since :else is truthy, its branch will be evaluated unless any other branch was evaluated before.
(Any truthy value could be used instead of :else.)

For multiple equality comparisons against constants, case can be used instead of cond:

(defn color-hex-code [color]
(case color

:red "#ff0000"
:green "#00ff00"
:blue "#0000ff"
"unknown"))

> (color-hex-code :red)
"#ff0000"
> (color-hex-code :black)
"unknown"

Exceptions can be handled using try/catch:

(defn safe-divide [dividend divisor]
(try

(/ dividend divisor)
(catch ArithmeticException e

(println "One does not simply divide by zero."))))

15

> (safe-divide 9 3)
3

> (safe-divide 9 0)
One does not simply divide by zero.
nil.

Exceptions can be thrown using throw and ex-info:

(defn publish [book]
(when (< (:pages book) 50)

(throw
(ex-info "A book needs fifty pages or more!" book))))

> (publish {:title "Hello" :pages 30})
Execution error (ExceptionInfo) at user/publish (REPL:4).
A book needs fifty pages or more!

ex-infoexpectsa stringmessageandamapargument, andcanbecaughtasclojure.lang.ExceptionInfo.

5 More Capable Functions

Multi-arity functions accept different sets of parameters:

(defn greet
([to-whom] (println "Hello" to-whom))
([message to-whom] (println message to-whom)))

> (greet "John")
Hello John
> (greet "Hi" "John")
Hi John

In order to reduce the amount of duplicated code, it’s common that lower arity functions call the
function with the highest arity by filling in themissing parameters with default values:

(defn greet
([to-whom] (greet "Hello" to-whom))
([message to-whom] (println message to-whom)))

16

Variadic functions accept a variable number of arguments:

(defn output-all [& args]
(println "args" args))

> (output-all "one")
args (one)
> (output-all "one" 2 "three" 4.0)
args (one 2 three 4.0)

The arguments left of the ampersand are regular arguments:

(defn output-all [x y & args]
(println "x" x "y" y "args" args))

> (output-all "one" 2 "three" 4.0)
x one y 2 args (three 4.0)

Multi-arity and variadic functions are good at dealing with a different number of arguments. Mul-
timethods are useful to deal with different characteristics of arguments. They consist of:

1. A dispatch function (defn) that assigns a keyword to an argument.
2. Amultimethod (defmulti) that groups the implementations and refers to thedispatch func-

tion.
3. Multiple methods (defmethod), of which each handles one type of argument.

Consider employees being stored in different formats:

;; implicit fields: first name, job
(def dogbert ["Dogbert" "Head of Abuse"])
(def ashok ["Ashok" "Technical Intern"])

;; relevant fields: name, position
(def alice {:name "Alice" :position "Engineer" })
(def wally {:name "Wally" :position "Engineer" })

;; relevant fields: first-name, job
(def catbert {:first-name "Catbert" :job "HR Manager"})
(def dilbert {:first-name "Dilbert" :job "Engineer" :department "IT"})

The dispatch function figures out which format such an entry has:

17

(defn dispatch-employee-format [employee]
(cond

(vector? employee) :vector-employee
(and (contains? employee :name)

(contains? employee :position)) :min-employee
(and (contains? employee :first-name)

(contains? employee :job)) :max-employee))

Themultimethod defines amethod name and connects it to the dispatcher:

(defmulti normalize-employee dispatch-employee-format)

The implementations all have the same name, but handle a different keyword, as mapped by the
dispatcher function:

(defmethod normalize-employee :vector-employee [employee]
{:first-name (nth employee 0) :role (nth employee 1)})

(defmethod normalize-employee :min-employee [employee]
{:first-name (:name employee) :role (:position employee)})

(defmethod normalize-employee :max-employee [employee]
{:first-name (:first-name employee) :role (:job employee)})

The different kind of employee data structures are converted to a common format:

> (normalize-employee dogbert)
{:first-name "Dogbert", :role "Head of Abuse"}
> (normalize-employee alice)
{:first-name "Alice", :role "Engineer"}
> (normalize-employee dilbert)
{:first-name "Dilbert", :role "Engineer"}

If the dispatchmethod cannot match the argument submitted, an exception will be thrown:

> (normalize-employee {:first-name "Topper" :position "Head of Annoyance"})
Execution error (IllegalArgumentException) at user/eval2108 (REPL:1).
No method in multimethod 'normalize-employee' for dispatch value: null

18

This condition can be handled properly by defining a :default branch in the dispatcher func-
tion.

Implementations formultimethods canbedefined indifferent files,which allows for extensibility.
This allows for polymorphism not just based on type, but also based on values.

Some functions are best implemented recursively:

(def employees [{:name "Dilbert" :salary 120000}
{:name "Wally" :salary 130000}
{:name "Alice" :salary 110000}
{:name "Boss" :salary 380000}
{:name "Ashok" :salary 54000}])

(defn sum-payroll
([employees] (sum-payroll employees 0))
([employees total]

(if (empty? employees)
total
(sum-payroll

(rest employees)
(+ total (:salary (first employees)))))))

> (sum-payroll employees)
794000

Thesum-payroll functioncould runoutof stack space if theemployeevectorgets toobig. Therefore,
Clojure supports tail call optimization, by simply replacing the function call with recur:

(defn sum-payroll
([employees] (sum-payroll employees 0))
([employees total]

(if (empty? employees)
total
(recur

(rest employees)
(+ total (:salary (first employees)))))))

Themulti-arity function can be simplified to a single-arity function using a loop expression:

(defn sum-payroll [employees]
(loop [employees employees total 0]

(if (empty? employees)

19

total
(recur

(rest employees)
(+ total (:salary (first employees)))))))

This construct defines and invokes a pseudo-function, where the employees parameter is initial-
ized with the employees argument of the sum-payroll function; and total is initialized to 0. This
values will be re-initialized by recur (employees to (rest employees) and total to itself plus the
current employees salary).

In practice, higher-ordered functions such as map are preferred over loop/recur constructs.

Since comments are dropped upon compilation, docstrings provide a way of documenting code
that will be preserved. They are accessible via the docmacro:

(defn average
"Computes the average of a and b."
[a b]
(/ (+ a b) 2.0))

> (average 3 2)
2.5

> (doc average)

user/average
([a b])

Computes the average of a and b.
nil

Docstrings can also be used for other constructs than functions:

> (def dilbert "The smelly IT guy..." {:name "Dilbert" :job "Engineer"})
> (doc dilbert)

user/dilbert

The smelly IT guy...
nil

Amap containing :pre and :post entries can be used to enforce pre- and post-conditions:

20

(defn give-raise [employee amount]
{:pre [(<= amount 10000) (not= (:name employee) "Ashok")]
:post [(<= (:salary %) 180000)]}

(assoc employee :salary (+ (:salary employee) amount)))

The :pre conditionmakes sure that a raisemust not exceed 100000, and that an employee named
Ashok will never get a raise.

The :post condition makes sure that after a raise, no employee will have a salary of more than
180000. The return value is referred by %.

> (give-raise {:name "Dilbert" :salary 120000} 5000)
{:name "Dilbert", :salary 125000}

> (give-raise {:name "Wally" :salary 110000} 15000)
Execution error (AssertionError) at user/give-raise (REPL:1).
Assert failed: (<= amount 10000)

> (give-raise {:name "Ashok" :salary 45000} 1000)
Execution error (AssertionError) at user/give-raise (REPL:1).
Assert failed: (not= (:name employee) "Ashok")

> (give-raise {:name "Ted" :salary 175000} 8000)
Execution error (AssertionError) at user/give-raise (REPL:1).
Assert failed: (<= (:salary %) 180000)

6 Functional Things

Functions are values, which can be passed to other functions:

(def dilbert {:name "Dilbert" :job "Engineer" :salary 120000})
(def ashok {:name "Ashok" :job "Intern" :salary 45000})

(defn well-paid? [employee]
(> (:salary employee) 100000))

(defn nerd? [employee]
(= (:job employee) "Engineer"))

(defn both? [employee pf1 pf2]
(and (pf1 employee)

(pf2 employee)))

21

> (both? dilbert well-paid? nerd?)
true

> (both? ashok well-paid? nerd?)
false

Anonymous functions can be defined using fn:

(both? dilbert
(fn [e] (> (:salary e) 100000))
(fn [e] (= (:name e) "Dilbert")))

This can be used to created parametrized functions using a lexical closure:

(defn cheaper-func [max-salary]
(fn [employee]

(< (:salary employee) max-salary)))

(def working-poor? (cheaper-func 50000))
(def cheap-hire? (cheaper-func 100000))

> (working-poor? ashok)
true

> (cheap-hire? dilbert)
false

The apply function applies a function to each argument:

> (apply + [1 2 3])
6

partial creates a new function by partially filling in the arguments for an existing function. Here,
the plus function is partially applied with a single number:

> (def increment (partial + 1))
> (increment 1)
2
> (increment 10)
11

22

And here, the give-raise function is partially applied to define the amount parameter:

(def dilbert {:name "Dilbert" :salary 120000 :job "Engineer"})

(defn give-raise [amount employee]
(assoc employee :salary (+ amount (:salary employee))))

(def small-raise (partial give-raise 1000))

> (small-raise dilbert)
{:name "Dilbert", :salary 121000, :job "Engineer"}

complement produces a new function by wrapping a function with a not call:

(defn is-cheap? [employee]
(<= (:salary employee) 100000))

(def is-expensive? (complement is-cheap?))

> (is-cheap? dilbert)
false
> (is-expensive? dilbert)
true

every-pred combines multiple predicate function with and:

(defn cheap? [employee]
(<= (:salary employee) 100000))

(defn engineer? [employee]
(= "Engineer" (:job employee)))

(defn smelly? [employee]
(= "Dilbert" (:name employee)))

(def fire? (every-pred (complement cheap?) engineer? smelly?))

> (fire? {:name "Dilbert" :salary 120000 :job "Engineer"})
true

> (fire? {:name "Ted" :salary 180000 :job "Marketing"})
false

23

Function literals or lambdas can be defined using #:

> (apply #(+ %1 %2 %3) [1 2 3])
6

Since there is no argument list, the arguments are referred to using %1, %2, etc. The highest-
numbered argument defines the number of arguments:

> (apply #(+ %5 %6) [1 2 3 4 5 6])
11

The arguments one to four (i.e. [1 2 3 4]) are ignored.

If only a single argument is needed, it can be referred to by % instead of %1:

> (apply #(* 2 %) [123])
246

Use lambdas for very short and simple functions. Use fn if named arguments are useful. Use defn
for lengthy functions with a proper name.

defn can be defined in terms of def and fn:

(defn hello [to-whom]
(println "Hello" to-whom))

Has the same effect as:

(def hello
(fn [to-whom]

(println "Hello" to-whom)))

updateworks on amap by applying a function to amap’s entry:

(def dilbert {:name "Dilbert" :salary 120000 :job "Engineer"})

(defn promote [employee raise-func]
(update employee :salary raise-func))

> (promote dilbert #(+ % 1000))
{:name "Dilbert", :salary 121000, :job "Engineer"}

24

update-in accepts an additional path to locate the field in a nestedmap to be updated:

(def dogbertix {:name "Dogbertix" :ceo {:name "Dogbert" :salary 250000}})

(defn give-bonus [company]
(update-in company [:ceo :salary] #(* 2 %)))

> (give-bonus dogbertix)
{:name "Dogbertix", :ceo {:name "Dogbert", :salary 500000}}

7 Let

compute-bonus needs to calculate the same value twice; once for the if condition, and once for the
return value of the function:

(defn compute-bonus [employee bonus-rate max-bonus]
(if (<= (* (:salary employee) bonus-rate) max-bonus)

(* (:salary employee) bonus-rate)
max-bonus))

(def dilbert {:name "Dilbert" :salary 120000})

> (compute-bonus dilbert 0.1 5000)
5000

> (compute-bonus dilbert 0.1 25000)
12000.0

let defines re-usable local bindings:

(defn compute-bonus [employee bonus-rate max-bonus]
(let [bonus (* (:salary employee) bonus-rate)]

(if (<= bonus max-bonus)
bonus
max-bonus)))

The expression on the right-hand side is assigned to the symbol on the left-hand side of the vector.
Multiple local bindings can be created at once:

> (let [a 1 b 2 c 3] (println (+ a b c)))
6

25

Later bindings have access to earlier bindings to their left:

> (let [a 1 b (* 2 a) c (* 2 b)] (println a b c))
1 2 4

The function compute-bonus calculates the employee’s bonus by looking up their bonus rate in a
map:

(def employee-bonus-rates
{"Dilbert" 0.05 "Dogbert" 0.25 "Pointy-Haired Boss" 1.0})

(defn compute-bonus [salary employee-name bonus-rates min-bonus]
(let [bonus-rate (bonus-rates employee-name)

bonus (* salary bonus-rate)]
(if (< bonus min-bonus)

min-bonus
bonus)))

> (compute-bonus 120000 "Dilbert" employee-bonus-rates 1000)
6000.0

> (compute-bonus 200000 "Dogbert" employee-bonus-rates 10000)
50000.0

The map of employee-bonus-rates has to be carried along wherever a bonus has to be calculated.
A better approach is to return individual functions by employee that have their bonus rate
parametrized:

(defn mk-compute-bonus-func [employee-name bonus-rates min-bonus]
(let [bonus-rate (bonus-rates employee-name)]

(fn [salary]
(let [bonus (* bonus-rate salary)]

(if (< bonus min-bonus)
min-bonus
bonus)))))

(def calc-dilbert-bonus
(mk-compute-bonus-func "Dilbert" employee-bonus-rates 1000))

(def calc-dogbert-bonus
(mk-compute-bonus-func "Dogbert" employee-bonus-rates 10000))

26

> (calc-dilbert-bonus 120000)
6000.0

> (calc-dogbert-bonus 200000)
50000.0

let is used to bind local variables that are referred to by another function (lexical closure).

The following function outputs book entries with their authors, if available:

(def books [{:title "War and Peace" :author "Lev Tolstoy"}
{:title "Beowulf"}
{:title "The Name of the Rose" :author "Umberto Eco"}
{:title "Till Eulenspiegel"}])

(defn output [book]
(let [author (:author book)]

(if author
(str (:title book) " by " author)
(:title book))))

> (map output books)
("War and Peace by Lev Tolstoy" "Beowulf" "The Name of the Rose by Umberto Eco" "Till Eulenspiegel")

if and let can be combined to if-let, making the function shorter:

(defn output [book]
(if-let [author (:author book)]

(str (:title book) " by " author)
(:title book)))

First, the bindingwith let is created; second, the bound value is evaluated using if (yielding true
for any truthy value).

when-let combines whenwith let in the sameway:

(defn writtey-by [book]
(when-let [author (:author book)]

(str (:title book) " was written by " author)))

> (map writtey-by books)
("War and Peace was written by Lev Tolstoy" nil "The Name of the Rose was written by Umberto Eco" nil)

27

8 Def, Symbols, and Vars

Like keywords, symbols are values. Whereas keywords evaluate to themselves, symbols created
with def are bound to other values. The symbol itself can be accessed programmatically using the
single quote:

> (def first-name "Dilbert")
> first-name
"Dilbert"
> 'first-name
first-name
> (str 'first-name)
"first-name"
> (= 'first-name 'last-name)
false
> (= 'first-name 'first-name)
true

A symbol and a value are bound together using a var, which is accessible through the pound char-
acter and the symbol:

> (def first-name "Dilbert")
#'user/first-name
> (def the-name #'first-name)

Symbol and value then can be accessed as follows:

> (.-sym the-name)
first-name
> (.get the-name)
"Dilbert"

Vars aremutable, so that bindings can be re-defined during development, say, in a REPL session.

Dynamic bindigs can be changedusing binding and are, by convention, surroundedby asterisks (*)
or “earmuffs”:

> (def ^:dynamic *debug-enabled* false)
> *debug-enabled*
false

> (binding [*debug-enabled* true]
(println *debug-enabled*))

true

28

Vars are not supposed to be used like variables in other programming languages. Use ^:dynamic
vars and binding sparingly.

The REPL provides some dynamic vars *[n]where [n] denotes the n-last result:

> (+ 2 1)
3
> (+ 5 4)
9
(- *1 *2) ; 9 - 3
6

Dynamic vars can be changed using the set! function:

> (def employees ["Dilbert" "Wally" "Alice" "Ted" "Ashok"])
> employees
["Dilbert" "Wally" "Alice" "Ted" "Ashok"]
> (set! *print-length* 2)
> employees
["Dilbert" "Wally" ...]

*e denotes the last exception thrown:

> (/ 3 0)
Execution error (ArithmeticException) at user/eval2038 (REPL:1).
Divide by zero
> *e
#error {
:cause "Divide by zero"
...

9 Namespaces

Vars, which represent the binding between a symbol and a value, live in namespaces. There is al-
ways one current namespace, affected by calls of def.

The REPL creates and uses a namespace called user:

> (def employee "Dilbert")
#'user/employee

29

The employee symbol is bound to the value "Dilbert"within the user namespace.

A new namespace can be created andmade the current namespace using ns:

> (ns dilbertix)
> (def employees [:dilbert :alice :wally])
#'dilbertix/employees

Calling nswith an existing namespacemakes that namespace the current one, without changing
it:

> (ns user)
> (def today "Sunday")
#'user/today

After switching back, the bindings are still available:

> (ns dilbertix)
> employees
[:dilbert :alice :wally]

Symbols from other namespaces can be referred to using a fully qualified symbol:

> (ns user)
> dilbertix/employees

Namespaces defined in other files need to be loaded before they can be used. The function clo-
jure.data/diff is unavailable by default:

> (def engineers [:alice :dilbert :wally])
> (def high-performers [:alice :dilbert :topper])
> (clojure.data/diff engineers high-performers)
Execution error (ClassNotFoundException) at java.net.URLClassLoader/findClass (URLClassLoader.java:382).

The clojure.data namespace can bemade available using require:

> (require 'clojure.data)
> (clojure.data/diff engineers high-performers)
[[nil nil :wally] [nil nil :topper] [:alice :dilbert]]

30

Given a new project skeleton:

$ lein new app dilbertix

Containing the file src/dilbertix/core.clj:

(ns dilbertix.core
(:gen-class))

(defn -main
"I don't do a whole lot ... yet."
[& args]
(println "Hello, World!"))

The namespace dilbertix.core and the file’s location dilbertix/core.clj match together: A
namespace foo.bar is to be found in a file foo/bar.clj.

Dashes need to be converted to underscores: The namespace foo-bar.qux is to be found in the file
foo_bar/qux.clj.

Thus, a new namespace dilbertix.employees is to be defined within the project folder in the file
src/dilbertix/employees.clj:

(ns dilbertix.employees)

(def job-satisfaction 0.0021)

(def employees [:dilbert :alice :wally])

The namespace definition can be supplied with :require expressions:

(ns dilbertix.core
(:require dilbertix.employees)
(:gen-class))

(defn -main
[& args]
(println "Our Employees:" dilbertix.employees/employees))

Notice the difference between the stand-alone require:

(require 'dilbertix.employees) ; symbol, quoted

31

And the expression within the ns definition:

(:require dilbertix.employees) ; keyword, unquoted

Aliases can be defined tomake imported names shorter:

(require '[dilbertix.employees :as employees])

Orwithin the namespace definition:

(ns dilbertix.core
(:require [dilbertix.employees :as employees]))

Which allows for shorter references:

(println employees/job-satisfaction)

Instead of:

(println dilbertix.employees/job-satisfaction)

Aliases don’t mask ordinary bindings, so an employees var would still be visible.

Using :refer, vars from another namespace are pulled into the current namespace:

(require '[dilbertix.employees :refer [employees job-satisfaction])

Which would mask an existing employees binding in the current namespace. Therefore, :refer
should be used sparingly.

The current namespace is available through the symbol *ns*:

> (println *ns*)
#object[clojure.lang.Namespace 0x38158523 user]

Existing namespaces can be looked up by their name:

> (find-ns 'user)
#object[clojure.lang.Namespace 0x38158523 "user"]

32

Namespaces can be discovered:

> (ns-map *ns*)
{primitives-classnames #'clojure.core/primitives-classnames, +' #'clojure.core/+' ...
;; omitted

The namespace is part of the symbol and can be extracted using the namespace function:

> (def hello "world")
> (namespace 'user/hello)
"user"

The namespace clojure.core provides functions such as println or first and ismade ready auto-
matically:

(require '[clojure.core :refer :all])

There is no hierarchy of namespaces. The dots in clojure.core.data are just part of the name.

Using require, a namespace only gets loaded once, which is sensible for code within files. In a
REPL session, reloadingmodified code is common, and the :reload keyword can be used:

(require :reload '[dilbertix.employees :as employees])

Symbols no longer needed can be removed using ns-unmap:

(ns-unmap 'dilbertix.employees)

defoncemakes sure a symbol is only bound to a value once, even if the definition is required using
:reload:

(defonce answer-to-everything (summarize-all-books))

If the symbol is supposed to be rebound nonetheless, it can be unmapped:

(ns-unmap *ns* 'answer-to-everything)

33

10 Sequences

The different collection types (maps, vectors, lists, sets) share a commonwrapper interface called
a sequence. That’s why the count function (and many others) work on different kinds of collec-
tions:

> count [1 2 3]) ; vector: number of items
3
> (count {:name "John" :age 29}) ; map: number of key-value pairs
2

The seq function wraps any collection in a sequence:

> (seq {:age 42 :name "Dilbert"})
([:age 42] [:name "Dilbert"]) ; sequence of key-value pairs

> (seq ["Alice", "Dilbert", "Wally"])
("Alice" "Dilbert" "Wally") ; looks like a list, is a sequence

seq returns nilwhen invoked on an empty collection:

> (seq '()) ; empty list
nil
> (seq []) ; empty vector
nil
> (seq {}) ; empty map
nil
> (seq #{}) ; empty set
nil

Like rest, next returns all but the first elements of a sequence:

> (rest [1 2 3])
(2 3)
> (next [1 2 3])
(2 3)

Unlike rest, next returns nil if the remainder is an empty sequence:

34

> (rest [1])
()
> (next [1])
nil

Always rely on rest and next returning an empty collection or nil, respectively; never compare the
result of first against nil for this purpuse:

;; bad idea!
(defn is-empty [collection]

(= (first (seq collection)) nil))

> (is-empty [1 2 3]) ; correct
false
> (is-empty []) ; correct
true
> (is-empty [nil 1 2]) ; wrong!
true

;; better approach
(defn is-empty [collection]

(= (next (seq collection)) nil))

> (is-empty [1 2 3]) ; correct
false
> (is-empty []) ; correct
true
> (is-empty [nil 1 2]) ; correct
false

New elements can be added to the front of a sequence using cons:

> (cons 0 (seq [1 2 3]))
(0 1 2 3)
> (cons [:job "Engineer"] (seq {:name "Dilbert" :age 42}))
([:job "Engineer"] [:name "Dilbert"] [:age 42])

rest, next, cons (but not conj), sort, reverse all return sequences.

A seqable is something that seq can turn into a sequence.

partition chops a sequence (or seqable) into a sequence of smaller junks:

35

> (partition 2 [1 2 3 4 5])
((1 2) (3 4))

interleave zips two sequences together:

> (interleave [1 3 5 7 9] [2 4 6 8])
(1 2 3 4 5 6 7 8)

interpose adds a separator value in between the elements:

> (interpose "and" ["Dilbert" "Wally" "Alice"])
("Dilbert" "and" "Wally" "and" "Alice")
> (interpose '+ [1 2 3])
(1 + 2 + 3)

filter accepts a predicate function and a sequence, and returns a new sequence holding the ele-
ments for which the predicate holds true:

> (defn negative? [x] (< x 0))
> (filter negative? [5 -5 10 -10])
(-5 -10)

(defn useful? [employee]
(not= (:job employee) "Manager"))

> (filter useful? [{:name "Pointy Haired Boss" :job "Manager"}
{:name "Dilbert" :job "Engineer"}])

({:name "Dilbert", :job "Engineer"})

Like filter, some applies a predicate to the elements of a sequence. Unlike filter, it returns the
first truthy value returned by the predicate:

> (some neg? [1 2 3])
nil
> (some neg? [1 2 -3])
true

(defn useful-name [employee]
(when

(not= (:job employee) "Manager")
(:name employee)))

36

> (some useful-name [{:name "Pointy Haired Boss" :job "Manager"}
{:name "Dilbert" :job "Engineer"}])

"Dilbert"

map transforms the elements of a sequence using a function:

(defn raise-salary [employee]
(assoc employee :salary (* 1.2 (:salary employee))))

> (map raise-salary [{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

({:name "Dilbert", :salary 144000.0} {:name "Ashok", :salary 12000.0})

> (map :name [{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

("Dilbert" "Ashok")

comp (for “compose”) produces a function by applying the argument functions from right to left
(first, the salary is raised; second, the :name is extracted):

> (map (comp :name raise-salary)
[{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

(144000.0 12000.0)

for processes a sequence element by element:

> (def employees [{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

> (for [e employees] (:name e))
("Dilbert" "Ashok")

reduce combines the elements of a sequence into a single value. It works with a function that
requires two values: an accumulator and the current element:

> (reduce (fn [acc x] (+ acc x)) [1 2 3 4])
10
> (reduce (fn [acc x] (* acc x)) [1 2 3 4])
24

37

The starting value of the accumulator can be defined, too:

> (reduce (fn [acc x] (+ acc x)) 100 [1 2 3 4])
110

If the start value is left out, the first element will be used for it.

Since arithmetic operators are functions, this can be simplified:

> (reduce + [1 2 3 4])
10
> (reduce * [1 2 3 4])
24

Those higher-order functions can be used to compose elegant solutions:

(def employees [{:name "Dilbert" :salary 120000}
{:name "Wally" :salary 130000}
{:name "Alice" :salary 11000}
{:name "Dogbert" :salary 180000}
{:name "Topper" :salary 150000}])

(defn top-earners [n employees]
(apply

str
(interpose

" >= "
(map :name (take n (reverse (sort-by :salary employees)))))))

> (top-earners 3 employees)
"Dogbert >= Topper >= Wally"

> (top-earners 5 employees)
"Dogbert >= Topper >= Wally >= Dilbert >= Alice"

> (top-earners 1 employees)
"Dogbert"

The definition of top-earners needs to be read from the inside out. The pointy arrow function ->>
allows for an easier to read syntax without any runtime performance overhead:

38

(defn top-earners [n employees]
(->>

employees
(sort-by :salary)
reverse
(take n)
(map :name)
(interpose " >= ")
(apply str)))

The ->> function uses the result of a function as the last argument for the next function all; -> as
the first argument for the subsequent function call.

Since Clojure provides somanyways of processing sequences, turning something into a sequence
can be a big step to solving that problem.

line-seq turns the lines of a text file into a (lazy) sequence. Given this CSV employee database
(employees.txt):

Pointy Haired Boss;Manager;58;250000
Dilbert;Engineer;42;120000
Alice;Engineer;39;110000
Wally;Engineer;52;130000
Dogbert;Consultant;7;390000
Topper;Salesman;35;850000
Ted;Project Manager;45;280000

read-employee-db turns it into a sequence of maps:

(require '[clojure.java.io :as io])
(require '[clojure.string :as str])

(defn split-by [sep]
(fn [line]

(str/split line sep)))

(defn to-employee [values]
(zipmap [:name :job :age :salary] values))

(defn read-employee-db [filename]
(with-open [r (io/reader filename)]

(map
(comp to-employee (split-by #";"))

39

(doall (line-seq r)))))

> (read-employee-db "employees.txt")
((:name "Pointy Haired Boss" :job "Manager" :age "58" :salary "250000")
(:name "Dilbert" :job "Engineer" :age "42" :salary "120000")
(:name "Alice" :job "Engineer" :age "39" :salary "110000")
(:name "Wally" :job "Engineer" :age "52" :salary "130000")
(:name "Dogbert" :job "Consultant" :age "7" :salary "390000")
(:name "Topper" :job "Salesman" :age "35" :salary "850000")
(:name "Ted" :job "Project Manager" :age "45" :salary "280000"))

Which then can be processed using the top-earners function from before:

> (top-earners 3 (read-employee-db "employees.txt"))
"Topper >= Dogbert >= Ted"

Using regular expressions, strings can be turned into sequences (e.g. of words):

> (re-seq #"\w+" "this is some sentence to be split") ; split by whitespace
("this" "is" "some" "sentence" "to" "be" "split")

Even though sequences are extremely useful, data structures like maps and vectors loose some of
their power whenwrapped as a sequence.

11 Lazy Sequences

Unlike sequences, lazy sequences only make up their values as they are actually needed.

repeat creates a lazy sequence that contains the given element unlimited times:

> (def words (repeat "duck"))

There are, of course, not unlimited instances of the string "duck" put into memory, which would
be impossible to do. The elements of the lazy sequence are only created when used:

> (nth words 3)
"duck"
> (nth words 123456)
"duck"

> (take 3 words)
("duck" "duck" "duck")

40

cycle creates a lazy sequence by repeating a given sequence endlessly:

> (take 7 (cycle [1 2 3]))
(1 2 3 1 2 3 1)

iterate creates a lazy sequence based on a function. The first argument is a function to be called
for each subsequent iteration; the second argument is a starting value:

> (def counter (iterate inc 1))
> (take 3 counter)
(1 2 3)
> (take 12 counter)
(1 2 3 4 5 6 7 8 9 10 11 12)

Note that the lazy sequence is not consumed like an iterator in other programming languages.

This counter sequence can be used to enumerate items of a sequence:

> (interleave ["Alive" "Dilbert" "Wally"] counter)
("Alive" 1 "Dilbert" 2 "Wally" 3)

Or:

> (zipmap counter ["Alive" "Dilbert" "Wally"])
{1 "Alive", 2 "Dilbert", 3 "Wally"}

map is lazy, so it can be applied to unbound lazy sequences:

> (defn twice [x] (* 2 x))
> (def doubled (map twice counter))
> (take 7 doubled)
(2 4 6 8 10 12 14)

Combined with cycle, map can be used to combine existing elements in all possible ways (permu-
tations):

41

(def names ["Alice" "Dilbert" "Wally" "Ashok" "Dogbert"])
(def adjectives ["great" "lazy" "nerdy" "evil"])
(def professions ["engineer" "manager" "consultant"])

(defn combine-employees [name adjective profession]
(str name " the " adjective " " profession))

(def employees
(map combine-employees

(cycle names)
(cycle adjectives)
(cycle professions)))

> (take 8 employees)
("Alice the great engineer" "Dilbert the lazy manager" "Wally the nerdy consultant"
"Ashok the evil engineer" "Dogbert the great manager" "Alice the lazy consultant"
"Dilbert the nerdy engineer" "Wally the evil manager")

lazy-seq creates a lazy sequence from an existing sequence:

> (def numbers (lazy-seq [1 2 3]))
(take 2 numbers)
(1 2)

The following function generates an infinite number of Fibonacci numbers as a lazy sequence:

(defn fibs
([] (fibs 1 1))
([a b] (cons a (lazy-seq (fibs b (+ a b))))))

The implementation of arity 0 just calls the implementation of arity 2with the first two Fibonacci
numbers. The current element is consed onto the sequence; the next element is then computed
using a recursive call by increasing the numbers:

> (take 10 (fibs))
(1 1 2 3 5 8 13 21 34 55)

Never output lazy sequences as if they were finite:

> (def counter (iterate inc 1))
> counter ; bad idea

42

Or at least be sure to set *print-length* before doing so:

> (set! *print-length* 10)
> counter
(1 2 3 4 5 6 7 8 9 10 ...)

doall realizes a lazy sequence, which should only be done for finite lazy sequences:

> (doall counter) ; bad idea, again...

doseq is similar to for and useful if the iteratio step is more interesting than the result:

> (def numbers (take 5 counter))
> (doseq [n numbers]

(println "Current iteration" n))
Current iteration 1
Current iteration 2
Current iteration 3
Current iteration 4
Current iteration 5

Infinite sequences should not be sorted or reduced.

Many functions are lazy, such as take.

Notice that working with lazy sequences opens a timely gap between when the instruction to do
something is given and when it is actually done. This can cause trouble when working with side-
effects (e.g. files read/written with slurp/spitwhose content changes in themeantime).

12 Destructuring

Destructuring is a tool for unpacking data structures with little syntax:

> (def employees ["Dilbert" "Wally"])
> (let [[nerd lazybone] employees]

(println nerd "is a nerd")
(println lazybone "is a lazybone"))

Dilbert is a nerd
Wally is a lazybone

43

The left side vector of let describes the data to be extracted. The right side expression is the data
structure to be unpacked.

The unpacking need not be exhaustive. Values can be simply dropped on the right side:

> (let [[a b c] ["foo" "bar" "baz" "qux"]] ; "qux" ignored
(println a b c))

foo bar baz

And the dummy symbol _ can be used to drop values from the left side:

> (let [[_ a _ b] ["foo" "bar" "baz" "qux"]] ; "foo" and "qux" ignored
(println a b))

bar qux

Nested structures can be destructured using a nested pattern on the left side:

> (def teams [["Dilbert" "Alice" "Wally"] ["Dogbert" "Ratbert" "Catbert"]])
> (let [[[dilbert _ wally] [dogbert _ catbert]] teams]

(println dilbert wally dogbert catbert))

Anything that can be turned into a sequence can be destructured:

> (let [[one _ _ four] '(1 2 3 4)]
(println one four))

1 4

> (let [[b a r] "bar"]
(println b a r))

b a r

> (let [[a _ b _ c] (iterate inc 1)]
(println a b c))

1 3 5

Destructuring can not only be used with let, but also when calling functions:

> (defn fire [[scapegoat-one scapegoat-two]]
(println scapegoat-one "and" scapegoat-two "are fired!"))

> (fire ["Dilbert" "Alice" "Wally" "Dogbert"])
Dilbert and Alice are fired!

44

When destructuring maps, the variable to be bound stands on the left, and the keyword for the
value to be extracted stands on the right:

> (def employees {:engineer "Dilbert" :consultant "Dogbert" :slacker "Wally"})
> (let [{scapegoat :engineer} employees]

(println scapegoat))
Dilbert

Nested data structures can be destructured, too:

> (def company {:name "Random Inc."
:employees [{:name "Dilbert" :role "Engineer"}

{:name "Dogbert" :role "Consultant"}]})
> (let [{[{looser-job :role} {leech :name}] :employees} company]

(println looser-job "is the worst job and" leech "is a leech"))
Engineer is the worst job and Dogbert is a leech

If all of a map’s values are to be bound, listing all the keys is cumbersome:

> (def employees [{:name "Dilbert" :role "Engineer" :age 42}
{:name "Dogbert" :role "Consultant" :age 7}])

> (defn describe [{name :name role :role age :age}]
(println name "is a" age "year old" role))

> (map describe employees)
Dilbert is a 42 year old Engineer
Dogbert is a 7 year old Consultant

The :keys keyword allows for a shorter mapping:

> (defn describe [{:keys [name role age]}]
(println name "is a" age "year old" role))

If the passed value should not only be destructured, but also retained in its entirety, the :as key-
word can be used.

> (defn add-greeting [{:keys [name role age] :as employee}]
(assoc employee

:greeting
(str "I'm a " age " year old " role " called " name)))

> (map add-greeting employees)
({:name "Dilbert", :role "Engineer", :age 42,

45

:greeting "I'm a 42 year old Engineer called Dilbert"}
{:name "Dogbert", :role "Consultant", :age 7,
:greeting "I'm a 7 year old Consultant called Dogbert"})

Default values can be provided using the :or keyword:

> (defn email [{:keys [user host domain]
:or {user "root", host "localhost", domain "local"} :as parts}]

(str user "@" host "." domain))
> (email {:user "john"})
"john@localhost.local"
> (email {:host "dilbertix" :domain "com"})
"root@dilbertix.com"

Destructuring can’t be used directly with def, only within let.

13 Records and Protocols

A common tradeoff in programming is between generic and specialized solutions. Maps are generic
and very flexible. They can deal with arbitrary keys, which comes with a runtime penalty when
dealing with huge amounts of data.

Records are specialized data structures dealing only with a set of predefined keys:

> (defrecord Employee [name age job salary])

defrecord creates three vars: one for the record type, and two factory functions ->Employee and
map ->Employee to create instances of the record type:

> (def dilbert (->Employee "Dilbert" 42 "Engineer" 120000))

> (def alice (map->Employee
{:name "Alice"
:age 37
:job "Engineer"
:salary 110000}))

An instance of a record can be used like a map:

46

> (:name dilbert)
"Dilbert"

> (:job alice)
"Engineer"

> (keys dilbert)
(:name :age :job :salary)

> (def alice-promoted (assoc alice :salary 120000 :job "Head of Engineering"))
> alice-promoted
#user.Employee{:name "Alice", :age 37, :job "Head of Engineering", :salary 120000}

It’s also possible to associate extra fields with a record; however, those don’t get the speed opti-
mization of the record’s defined fields:

> (def dilbert-secret (assoc dilbert :note "Smelly and ugly guy"))
> dilbert-secret
#user.Employee{:name "Dilbert", :age 42, :job "Engineer",

:salary 120000, :note "Smelly and ugly guy"}

While the speed advantage of records is only noticable for large amounts of data, the documenta-
tion provided by records is always helpful:

> (defrecord Poet [name century works])
> (defrecord FictionalCharacter [name show traits])

> (def homer-1
(->Poet "Homer" "8th/7th B.C." ["Iliad" "Odyssey"]))

> (def homer-2
(->FictionalCharacter "Homer" "The Simpsons" ["lazy" "stupid" "impulsive"]))

class returns the underlying type of a record instance:

> (class homer-1)
user.Poet

> (class homer-2)
user.FictionalCharacter

instance? (like Java’s instanceof) checks if an instance if of a specific record type:

47

> (instance? FictionalCharacter homer-1)
false

> (instance? FictionalCharacter homer-2)
true

This offers one primitive way to create polymorphic functions:

(defn output [x]
(if (instance? FictionalCharacter x)

(println (:name x) "the" (:traits x) "character from" (:show x))
(println (:name x) "the author of" (:works x) "who lived" (:century x))))

> (output homer-1)
Homer the author of [Iliad Odyssey] who lived 8th/7th B.C.

> (output homer-2)
Homer the [lazy stupid impulsive] character from The Simpsons

However, protocols are a better alternative for this purpose. A protocol (here: Person) defines a
set of functions (here: describe, greet) that can be performed on different kinds of records imple-
menting that protocol:

(defprotocol Person
(describe [this])
(greet [this msg]))

The functions of the protocol need to be implemented by the records. The protocol name (here:
Person) is followed by themethod definitions:

(defrecord Poet [name century works]
Person
(describe [this]

(str
(:name this)
", the author of " (clojure.string/join ", " (:works this))
" who lived in " (:century this)))

(greet [this msg]
(str

msg " " (:name this)
", author of " (clojure.string/join ", " (:works this)))))

48

(defrecord FictionalCharacter [name show traits]
Person
(describe [this]

(str
(:name this)
", the " (clojure.string/join ", " (:traits this))
" character from " (:show this)))

(greet [this msg]
(str

msg " " (:name this)
", you " (clojure.string/join ", " (:traits this))
" character from " (:show this))))

The first argument (conventionally called this) refers to the instance the function is called on:

> (def homer-1
(->Poet "Homer" "8th/7th B.C." ["Iliad" "Odyssey"]))

> (describe homer-1)
"Homer, the author of Iliad, Odyssey who lived in 8th/7th B.C."
> (greet homer-1 "Greetings")
"Greetings Homer, author of Iliad, Odyssey"

> (def homer-2
(->FictionalCharacter "Homer" "The Simpsons" ["lazy" "stupid" "impulsive"]))

> (describe homer-2)
"Homer, the lazy, stupid, impulsive character from The Simpsons"
> (greet homer-2 "Hi")
"Hi Homer, you lazy, stupid, impulsive character from The Simpsons"

New protocols can be created and implemented for existing types using extend-protocol:

(defprotocol Greetable
(say-hi [this]))

(extend-protocol Greetable
Employee
(say-hi [employee]

(str "Hello, I'm " (:name employee) ". I work as a " (:job employee) "."))
Poet
(say-hi [poet]

(str "Greetings, I'm " (:name poet) ", author of "
(clojure.string/join ", " (:works poet)) "."))

49

FictionalCharacter
(say-hi [character]

(str "Hi, I'm " (:name character) " from " (:show character) ".")))

> (say-hi dilbert)
"Hello, I'm Dilbert. I work as a Engineer."

> (say-hi homer-1)
"Greetings, I'm Homer, author of Iliad, Odyssey"

> (say-hi homer-2)
"Hi, I'm Homer from The Simpsons."

It is also possible to implement protocols for existing data types:

(extend-protocol Greetable
String
(say-hi [string]

(str "Hi, I'm the String '" string "'."))
Boolean
(say-hi [bool]

(str "Hi, I'm the Boolean '" bool "'.")))

> (say-hi "foobar")
"Hi, I'm the String 'foobar'."

> (say-hi false)
"Hi, I'm the Boolean 'false'."

Records and their instances resemble classes and objects, but they don’t have hierarchies and are
immutable. Protocols are similar to abstract classes or interfaces, but more flexible: They can
be implemented without touching the definition of the type the methods are implemented for;
and, again, they don’t come in hierarchies. Also, most object-oriented programming languages
require the programmer to use classes, objects, and interfaces. Records and protocols, however,
are optional: Better start without them, and only use them if they bring some tangible benefit.

Protocols andmultimethods have a lot in common, but also some differences:

• Multimethods define single, stand-alone operations. Protocols group related operations
together.

• Multimethods support an arbitrary dispatch mechanism. Protocols dispatch based on a
type.

50

Simple one-off implementations of a protocol as a single instance (say, for test doubles) can be
created using reify:

(def dirty-harry
(reify Person

(describe [_] "Lieutenant Harry Callahan, San Francisco Police Department")
(greet [_ msg] (str msg ", punk. Feeling lucky today?"))))

> (describe dirty-harry)
"Lieutenant Harry Callahan, San Francisco Police Department"

> (greet dirty-harry "Hi, there")
"Hi there, punk. Feeling lucky today?"

Since thiswasn’t used in any of the method bodies, it was replaced by _.

Themethods defined for a protocol could pollute the namespace:

> (defprotocol Items (count [this]))
Warning: protocol #'user/Items is overwriting function count

When in doubt, put protocols in their own namespace.

deftype is a more generic version of defrecord and requires the programmer to provide all of the
behaviour of a new type. This is more work than defining a new record, but allows for more flexi-
bility.

14 Tests

For the following example, a new project company is created:

$ lein new company

A fixed set of employees is defined in src/company/employees.clj:

(ns company.employees)

(def employees [{:name "Dilbert" :age 42 :job "Engineer" :salary 120000}
{:name "Alice" :age 37 :job "Engineer" :salary 115000}
{:name "Wally" :age 47 :job "Engineer" :salary 130000}
{:name "Pointy Haired Boss" :age 57 :job "Manager" :salary 250000}

51

{:name "Ashok" :age 22 :job "Intern" :salary 18000}
{:name "Dogbert" :age 7 :job "Consultant" :salary 470000}
{:name "Catbert" :age 9 :job "Head of HR" :salary 190000}])

Some functions to operate on a set of employees are provided in src/company/core.clj:

(ns company.core)

(defn find-by-name
"Search for an employee by name (unique result)"
[employees by-name]
(first (filter #(= (:name %1) by-name) employees)))

(defn sum-salaries
"Sum up the salaries of all given employees"
[employees]
(reduce #(+ %1 %2) (map #(:salary %1) employees)))

Unit tests can be created using the clojure.test library. In src/company/core_test.clj, test cases
for the functions in company.core are defined. The test functions from clojure.core, the func-
tions to be tested from company.core, and the static set of employees in company.employees are
required:

(ns company.core-test
(:require [clojure.test :refer :all])
(:require [company.core :as cc])
(:require [company.employees :as ce]))

A simple test is defined using deftest and the is assertion function:

(deftest test-finding-employee-by-name
(is (not (nil? (cc/find-by-name ce/employees "Dilbert")))))

The test can be executed with Leiningen:

$ lein test
lein test company.core-test

Ran 1 tests containing 1 assertions.
0 failures, 0 errors.

52

To test another function, another deftest is created:

(deftest test-sum-up-employee-salaries
(is (= 1293000 (cc/sum-salaries ce/employees))))

Multiple test cases can be grouped together and described using testing as so-called subtests or
contexts:

(deftest test-finding-employee-by-name
(testing "Finding employees"

(is (not (nil? (cc/find-by-name ce/employees "Dilbert"))))
(is (not (nil? (cc/find-by-name ce/employees "Catbert")))))

(testing "Not finding employees"
(is (nil? (cc/find-by-name ce/employees "Sharkbert")))
(is (nil? (cc/find-by-name ce/employees "Competent Boss")))))

In order to test a property of the code, one needs to workwith examples that exercise that property.
Instead of making up examples manually, the test.check library can be used for Property-Based
Testing. First, test.check needs to be added as a dependency (project.clj):

:dependencies [[org.clojure/clojure "1.10.1"]
[org.clojure/test.check "1.1.0"]]

Random data can then be created using generators:

> (require '[clojure.test.check.generators :as gen])
> (gen/sample gen/string-alphanumeric)
("" "M" "Lw" "cs9" "CtQU" "yOg95" "YE" "3XTEL" "001qEF3w" "ZTwzwZ")

gen/string-alphanumeric generates an endless stream of alphanumeric strings (including empty
ones), gen/sample takes a sample of that stream. In order to test the functions for the employee
database, the constrained generators for the followingmap keywords are needed:

• :name: alphanumeric, non-empty
• :age: numeric, positive, non-zero
• :job: alphanumeric, non-empty
• :salary: numeric, positive, non-zero

The constraints can bemodeled using such-that predicates:

53

https://github.com/clojure/test.check

(def text-gen
(gen/such-that not-empty gen/string-alphanumeric))

> (gen/sample text-gen)
("1JB" "91" "t" "FJyD" "34eM" "3h0a5" "9fhzo" "8v31R" "00O83F" "PNEEsZQMe")

(def num-gen
(gen/such-that (complement zero?) gen/pos-int))

> (gen/sample num-gen)
(1 3 1 3 2 4 1 3 5 5)

A single employeemap can be created using those functions:

(def employee-gen
(gen/hash-map :name text-gen

:age num-gen
:job text-gen
:salary num-gen))

> (gen/sample employee-gen)
({:name "wlf", :age 3, :job "8", :salary 1}
{:name "5", :age 1, :job "ZR", :salary 1}
{:name "Hd", :age 2, :job "L3", :salary 3}) ; output shortened

An endless supply of non-empty employee databases (vectors) can be generated:

(def payroll-gen
(gen/not-empty (gen/vector employee-gen)))

> (gen/sample payroll-gen)
([{:name "uQ", :age 2, :job "Zl", :salary 2}]
[{:name "VR", :age 2, :job "ME", :salary 2}
{:name "vj", :age 3, :job "8", :salary 1}]

[{:name "BYsO", :age 2, :job "p7", :salary 2}]) ; output shortened

In order to conduct tests, a random example has to be plucked from the test data. Here, gen/let
is used to create a map containing a payroll together with one single employee taken from that
payroll (from the inventory built by inventory-gen, assign a random, single element to book):

54

(def payroll-and-employee-gen
(gen/let [payroll payroll-gen

employee (gen/elements payroll)]
{:payroll payroll :employee employee}))

> (gen/smaple payroll-and-employee-gen)
({:payroll [{:name "Y0", :age 2, :job "K0", :salary 1}],
:employee {:name "Y0", :age 2, :job "K0", :salary 1}}
:employee {:name "Q", :age 3, :job "T", :salary 1}}

{:payroll [{:name "qv", :age 3, :job "2ys", :salary 3}
{:name "n", :age 2, :job "893", :salary 1}
{:name "2g", :age 3, :job "cLx", :salary 2}],

:employee {:name "2g", :age 3, :job "cLx", :salary 2}}) ; output shortened

Once the functions to generate the test data are ready, the property needs to be expressed with
property test functions, provided by the test.check library:

> (require '[clojure.test.check.properties :as prop])

A theorem—e.g. the increment of a number is bigger than that number—can be expressed using
prop/for-all:

(prop/for-all [i gen/pos-int]
(< i (inc i)))

Computers can’t prove theorems, but only execute tests, for which test.check provides
functions:

> (require '[clojure.test.check :as tc])

To perform a test, a limit (e.g. 50) of examples to be considered needs to be supplied using
tc/quick-check, which wraps the theorem from above:

(tc/quick-check 50
(prop/for-all [i gen/pos-int]

(< i (inc i))))

This function produces an output describing the tests conducted:

{:result true, :pass? true, :num-tests 50, :time-elapsed-ms 4,
:seed 1622715897727}

55

(The seed value could be used to reproduce the random data that was generated.)

Finally, these tools can be combined to write property test functions:

(def tc/quick-check 50
(prop/for-all [p-and-e payroll-and-employee-gen]

(= (cc/find-by-name (:payroll p-and-e) (-> p-and-e :employee :name))
(:employee i-and-e))))

For each payroll/employee sample, the function to be tested cc/find-by-name is called with the
whole payroll and the randomly picked employee’s name. The result is than compared to random
employee extracted by the generator before.

In order to integrate this property-based test into the native test runner, defspec from test.check
can be used:

> (require '[clojure.test.check.clojure-test :as ctest])

The test can then be defined using ctest/decspec as follows:

(ctest/defspec find-by-name-finds-employee 50
(prop/for-all [p-and-e payroll-and-employee-gen]

(= (cc/find-by-name (:payroll p-and-e) (-> p-and-e :employee :name))
(:employee p-and-e))))

Which then can be tested using Leiningen:

$ lein test

lein test company.core-property-test
{:result true, :num-tests 50, :seed 1622716789601, :time-elapsed-ms 92,
:test-var "find-by-name-finds-employee"}

lein test company.core-test

Ran 3 tests containing 6 assertions.
0 failures, 0 errors.

Here’s thewholeproperty-based test for theemployeedatabase (test/company/core_property_test.clj):

56

(ns company.core-property-test
(:require [clojure.test :refer :all])
(:require [company.core :as cc])
(:require [clojure.test.check :as tc])
(:require [clojure.test.check.clojure-test :as ctest])
(:require [clojure.test.check.generators :as gen])
(:require [clojure.test.check.properties :as prop]))

(def text-gen
(gen/such-that not-empty gen/string-alphanumeric))

(def num-gen
(gen/such-that (complement zero?) gen/pos-int))

(def employee-gen
(gen/hash-map :name text-gen

:age num-gen
:job text-gen
:salary num-gen))

(def payroll-gen
(gen/not-empty (gen/vector employee-gen)))

(def payroll-and-employee-gen
(gen/let [payroll payroll-gen

employee (gen/elements payroll)]
{:payroll payroll :employee employee}))

(ctest/defspec find-by-name-finds-employee 50
(prop/for-all [p-and-e payroll-and-employee-gen]

(= (cc/find-by-name (:payroll p-and-e) (-> p-and-e :employee :name))
(:employee p-and-e))))

While unit tests are easier to implement and understand, they often cover only a fewhand-picked
examples, leaving much of the input space untested. Property-based testing is harder to imple-
ment and understand, but covers a much wider range of possible inputs. However, one might
jump to the wrong conclusion that all possibilities are covered, where generators probably miss
some basic but crucial cases (e.g. picking 0 as a random number for testing division by zero).

Therefore, it’s a good idea to startwith someunit tests covering the basic and corner cases (say, all
combinations of a devision with positive and negative numbers, and zero). Property-based tests
can then be introduced to cover more of the input space.

Notice that property-based tests are non-deterministic. Re-starting a failed test pipeline might
yield a test run without errors, but the underlying error remains.

57

Even having only one single trivial test case is way better than having no test cases at all:

(require '[clojure.test :refer :all])
(require '[company.core :as cc])
(require '[company.employees :as ce])

(deftest test-sum-up-employee-salaries
(is (= 1293000 (cc/sum-salaries ce/employees))))

This test case reveals a lot about the code base being tested:

• There is a namespace called company.core, providingmore or less useful functions.
• There is a namespace called company.employees, providing an actual database of employee
records.

• There is a function sum-salaries that calculates the total salaries of an employee database,
returning a positive integer.

Simple unit tests can bemademore powerful by using parameters with are:

(deftest test-finding-employee-by-name-parametrized
(testing "Finding employees by their name, checking their roles"

(are [actual expected] (= (:job actual) expected)
(cc/find-by-name ce/employees "Dilbert") "Engineer"
(cc/find-by-name ce/employees "Ashok") "Intern"
(cc/find-by-name ce/employees "Dogbert") "Consultant")))

Here, three examples are provided, each consisting of two expressions: The left (the actual func-
tion call) beingmapped to actual, the right (the expected result) beingmapped to expected. The
test consists of comparing a property of actual (the job of the employee) to the expected value.
This helps keeping the test definition separate from the test examples, whichmakes it less effort-
ful to addmore test cases.

15 Spec

Clojure programmers are often more concerned with the shape of data rather than its type.
The question is rather “is this a vector of maps each providing a :name key?” than “is this a
NamedItemsVector?”.

The shape of data can be verified by providing functions such as this:

58

(defn employee? [x]
(and

(map? x)
(string? (:name x))
(pos-int? (:age x))
(string? (:job x))
(pos-int? (:salary x))))

> (employee? {:name "Dilbert" :age 42 :job "Engineer" :salary 120000})
true
> (employee? {:name "Clint Eastwood" :age 82 :role "Dirty Harry"})
false

Thismanual approach doesn’t scalewell. Considermatching the shape of strings: Writing a state
machine manually for every pattern neither scales well. Instead, regular expressions are used to
describe those patterns. The clojure.spec library provides facilities to define and check the shape
of data; it works like regular expressions for data structures:

> (require '[clojure.spec.alpha :as s])

clojure.spec is about to be finished, and therefore is used under the namespace .alpha for the
time being.

The s/valid? function expects a predicate function and a value and returns whether or not the
value passes the validation:

> (s/valid? number? 44)
true
> (s/valid? string? 44)
false

Multiple predicates can be combined using clojure.spec/and:

(def n-leq-100
(s/and number? #(<= % 100)))

> (s/valid? n-leq-100 99)
true

> (s/valid? n-leq-100 101)
false

59

https://clojure.org/about/spec

A predicate function n-leq-100 is called a spec. The whole library and concept is called clo-
jure.spec.

Predicates can also be combined using clojure.spec/or, which requires additional keywords de-
scribing the checks:

(def far-from-zero?
(s/or :positive #(> % +10)

:negative #(< % -10)))

> (s/valid? far-from-zero? 5)
false
> (s/valid? far-from-zero? 15)
true
> (s/valid? far-from-zero? -5)
false
> (s/valid? far-from-zero? -15)
true

The keywords :positive and :negative are useful for providing feedback in case the value fails to
match the spec (more of which later).

Multiple predicates can be combined to build new predicates:

(def n-pos? #(>= % 0))
(def n-leq-100? #(<= % 100))
(def n-even? #(= (mod % 2) 0))
(def n-pos-even-leq-100

(s/and
n-pos?
n-leq-100?
n-even?))

> (s/valid? n-pos-even-leq-100 99)
false
> (s/valid? n-pos-even-leq-100 98)
true

spec/coll-of can be used to check if something is a collection of something:

(def coll-of-strings? (s/coll-of string?))

> (s/valid? coll-of-strings? ["John" "Doe"])

60

true
> (s/valid? coll-of-strings? ["one" "two" "three" 4 "five"])
false

spec/cat can be used to create this should follow that specs (descriptive keywords are needed):

(def s-n-s-n? (s/cat :s1 string? :n1 number? :s2 string? :n2 number?))

> (s/valid? s-n-s-n? ["Dilbert" 42 "Ashok" 21])
true
> (s/valid? s-n-s-n? ["Dilbert" "Alice" "Dogbert" "Wally"])
false

Specs formaps can bewritten using the keys function (using the employeesdatabase from the last
chapter src/company/employees.clj):

(ns company.employees
(:require [clojure.spec.alpha :as s]))

(def employee-s?
(s/keys :req-un [:company.employees/name

:company.employees/age
:company.employees/job
:company.employees/salary]))

> (require '[clojure.spec.alpha :as s])
> (require '[company.employees :as ce])
> (s/valid? ce/employee-s? {:name "Dilbert" :age 42 :job "Engineer" :salary 120000})
true
> (s/valid? ce/employee-s? {:name "Ashok" :age 27 :job "Intern"})
false

Here, namespace-qualified keys (:company.employees/name) have been used. However, the -un
part of :req-unmeans unqualified, so the keys of amap value don’t have to be qualified in order to
match.

In order to use specs in different locations, they can be stored in a global registry (“global”
means JVM-wide) using clojure.spec/def. This registers an employee record as :com-
pany.employees/employee:

(s/def :company.employees/employee
(s/keys :req-un [:company.employees/name

61

:company.employees/age
:company.employees/job
:company.employees/salary]))

The spec can be used globally under its global name:

> (s/valid? :company.employees/employee
{:name "Dilbert" :age 42 :job "Engineer" :salary 120000})

true

Keywords must be fully qualified in the spec definition because of the global registry, otherwise
they could collidewith other keywords. However, fromwithin the namespace company.employees,
the shortcut ::name can be used instead of :company.employees.name. Thus, the above spec can be
simplified:

(s/def :company.employees/employee
(s/keys :req-un [::name

::age
::job
::salary]))

clojure.spec tries to look up the fully qualified keys in the registry. If a spec is found, the value
associated with that key is validated against it. (Otherwise, no validation takes place.)

Let’s create additional specs for the map keywords:

(s/def ::name string?)

(s/def ::age int?)

(s/def ::job string?)

(s/def ::salary int?)

(s/def ::employee
(s/keys :req-un [::name

::age
::job
::salary]))

(s/def ::employees (s/coll-of ::employee))

62

> (s/valid? :company.employees/employee
{:name "Dilbert" :age 42 :job "Engineer" :salary 120000})

true
> (s/valid? :company.employees/employee

{:name "Ashok" :age 27 :job "Intern" :salary "nothing"})
false

When using heavily nested specs, it’s often unclear why a particular value failed to match a spec.
In this case, clojure.spec/explain can be used (just like valid):

> (s/explain :company.employees/employee
{:name "Ashok" :age 27 :job "Intern" :salary "nothing"})

"nothing" - failed: int? in: [:salary] at: [:salary] spec: :company.employees/salary

explain always returns nil and prints its result. The related function clojure.spec/conform, on
the other side, returns the (positively)matching value, or :clojure.spec.alpha/invalid in case of
a mismatch:

> (s/conform :company.employees/employee
{:name "Dilbert" :age 42 :job "Engineer" :salary 120000})

{:name "Dilbert", :age 42, :job "Engineer", :salary 120000}
> (s/conform :company.employees/employee

{:name "Ashok" :age 27 :job "Intern" :salary "nothing"})
:clojure.spec.alpha/invalid

Specs can also be used to validate the arguments of a function. One way is to use :pre and :post
conditions with functions (src/company/core.clj):

(ns company.core
(:require [company.employees])
(:require [clojure.spec.alpha :as s]))

(defn find-by-name
"Search for an employee by name (unique result)"
[employees by-name]
{:pre [(s/valid? :company.employees/employees employees)

(s/valid? :company.employees/name by-name)]}
(first (filter #(= (:name %1) by-name) employees)))

A more convenient way is to define those conditions separately from the function using
clojure.spec/fdef:

63

(s/fdef find-by-name
:args (:by-name :company.employees/name))

Those checks come with a significant performance penalty and are therefore deactivated by de-
fault. They can be activated by explicitly instrumenting a function:

> (require '[company.employees])
> (require '[clojure.spec.alpha :as s])
> (require '[clojure.spec.test.alpha :as st])

> (st/instrument 'company.core/find-by-name)
> (find-by-name company.employees/employees "Dilbert")
{:name "Dilbert", :age 42, :job "Engineer", :salary 120000}

> (find-by-name company.employees/employees :dilbert)
Execution error - invalid arguments to company.core/find-by-name at ...
:dilbert - failed: string? at: [:by-name] spec: :company.employees/name

This should only be used during development and testing.

Creating specs providesmuch information that can be used for generating test data. Consider the
function introduce (src/company/employees.clj) and its spec:

(defn introduce [employee]
(str "Hello, my name is "

(:name employee)
", I'm "
(:age employee)
" years old."))

(s/fdef introduce :args (s/cat :employee :company.employees/employee))

> (st/instrument 'company.core/introduce)
> (introduce (find-by-name company.employees/employees "Dilbert"))
"Hello, my name is Dilbert, I'm 42 years old."

Using the :ret keyword, the return value of the function can be checked if it contains the static
portion of the text:

(s/fdef introduce
:args (s/cat :employee :company.employees/employee)
:ret (s/and string?

64

(partial re-find #"Hello, my name is ")
(partial re-find #"I'm ")
(partial re-find #" years old.")))

The functionmust be instrumented for testing:

> (require '[clojure.spec.test.alpha :as stest])
> (stest/check 'company.core/introduce)
({:spec #object[clojure.spec.alpha$fspec_impl$reify__2524 0x58782ed6
"clojure.spec.alpha$fspec_impl$reify__2524@58782ed6"],
:clojure.spec.test.check/ret {:result true, :pass? true, :num-tests 1000,

:time-elapsed-ms 431, :seed 1622747931886},
:sym company.core/introduce})

The :fn keyword can be used to provide a function for performing additional checks. The
employee-exists function gets both the arguments (args) and the return value (ret) of the
instrumented function as arguments. The employee’s name is extracted, and it is checked, if that
name is contained in the return value:

(defn employee-exists [{:keys [args ret]}]
(let [employee (-> args :employee :name)]

(not (neg? (.indexOf ret employee)))))

(s/fdef introduce
:args (s/cat :employee :company.employees/employee)
:ret (s/and string?

(partial re-find #"Hello, my name is ")
(partial re-find #"I'm ")
(partial re-find #" years old."))

:fn employee-exists)

When dealing with keyword specs, double-check that there are no typos. Misnamed keywords
won’t be validated by a spec.

16 Interoperating with Java

Since Clojure is based on the Java Virtual Machine, Java code can be used directly from Clojure
using its interoperation facilities (interop). The Clojure REPL is also a great tool to explore Java
APIs.

Java offers the class java.io.File, which abstracts the concept of a file. The JavaDoc shows that
there is a constructor expecting a pathname. A file can, thus, created as follows (note the additional
dot after java.io.File):

65

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

> (def employees-file (java.io.File. "employees.txt"))

Methods of the created File instance can be called with a dot in front of the method name:

> (.exists employees-file)
false
> (.getAbsolutePath employees-file)
"/home/patrick/employees.txt"

Some classes, such as java.awt.Rectangle, offer public fields, which can be accessed by prepend-
ing a dot and aminus:

> (def rect (java.awt.Rectangle. 0 0 15 25))
> (.-width rect)
15
> (.-height rect)
25

When refering to a class repeatedly, typing out the fully qualified class name becomes tedious.
Therefore, classes can be imported. Use import from the REPL:

> (import java.io.File)

Or :import of nswithin a .clj source file:

(:ns company.core
(:import java.io.File))

Once imported, File can be used as follows:

(def backup (File. "backup.txt"))

To import multiple classes from the same package, just put them into a list separated by space
(whichmust be quoted in the REPL):

> (import '(java.io File InputStream))

Andwithout quotation from a .clj source file:

66

(:ns company.core
(:import (java.io File InputStream))

Classes from the package java.lang are automatically imported.

Static fields andmethods can be accessed using a forward slash:

> (def dump (File. (str "data" File/separator "dump.txt")))
> (.getAbsolutePath dump)
"/home/patrick/data/dump.txt"

> (def temp (File/createTempFile "employees" ".txt"))
> (.getAbsolutePath temp)
"/tmp/employees6472489788961466629.txt"

Java libraries can be used just like Clojure libraries. Let’s import the Gson library for reading and
writing JSON to the company project (project.clj):

:dependencies [[org.clojure/clojure "1.10.1"]
[org.clojure/test.check "1.1.0"]
[com.google.code.gson/gson "2.8.0"]] ; new import

The library can be used—and explored—from the REPL:

$ lein repl

First, the Gson class needs to be imported (here, tab completion comes in handy to figure out the
package structure):

> (import com.google.gson.Gson)

Second, a Gson object needs to be initialized:

> (def gson-obj (Gson.))

NowClojure values can be turned into JSON strings:

67

> (.toJson gson-obj 42)
"42"

> (.toJson gson-obj [7 14 21 28])
"[7,14,21,28]"

> (def employees [{:name "Dilbert" :age 42 :job "Engineer" :salary 120000}
{:name "Alice" :age 37 :job "Engineer" :salary 115000}
{:name "Wally" :age 47 :job "Engineer" :salary 130000}])

> (.toJson gson-obj employees)
"[{\":name\":\"Dilbert\",\":age\":42,\":job\":\"Engineer\",\":salary\":120000},

{\":name\":\"Alice\",\":age\":37,\":job\":\"Engineer\",\":salary\":115000},
{\":name\":\"Wally\",\":age\":47,\":job\":\"Engineer\",\":salary\":130000}]"

Even though interoperabilitybetweenClojureand Javaworksalmost seamlessly, a fewdifferences
have to be considered.

First, a Java method is not a function, and, thus, cannot be bound like a Clojure functon to a sym-
bol:

> (.count [1 2 3])
3
> (def count-method .count)
Syntax error compiling at (/tmp/form-init2910488673606898294.clj:1:1).
Unable to resolve symbol: .count in this context

However, it is possible to turn amethod into a function using memfn:

> (def count-method (memfn count))
> (count-method [1 2 3])
3

This is helpful when dealing with higher-order functions, such as map:

> (def files [(File. "source.txt") (File. "target.txt")])
> (map (memfn exists) files)
(false false)

Second, many Java objects are mutable, which might be surprising after dealing with Clojure’s
immutable collections:

68

> (import java.util.Vector)
> (def employees (java.util.Vector.))
> (.addElement employees "Dilbert")
> (.addElement employees "Alice")
> (.addElement employees "Wally")
> employees
["Dilbert" "Alice" "Wally"]

Rather than returning a vectorwith the element added, nil is returned, and the element added as
a side effect. Use Clojure’s collections instead, unless mutability is needed.

17 Threads, Promises, and Futures

Threads are a very powerful, but also dangerous tool, especiallywhenused in the context ofmuta-
ble values. At runtime, a Clojure program is a Java program, and every Java program runs a single
main thread. Additional threads can be started by using Java’s Thread class:

> (defn say-hello [] (println "Hello!"))
> (def thread (Thread. say-hello))
> (.start thread)
Hello!

AClojure function say-hello is defined, and a thread is created based on that function (which is a
Runnable). Once the thread is started, the function is executed.

The effect of multiple threads running can be shown by putting one thread to sleep for a while:

> (defn say-hello []
(println "Hello, once!")
(Thread/sleep 1000)
(println "Hello, again!"))

> (def thread (Thread. say-hello))
> (.start thread)
Hello, once!
;; waiting for a second, the REPL is not blocking...
Hello, again!

When multiple threads are running, program execution gets non-deterministic, unless control
mechanisms are put in place. Let’s consider these two functions working on a shared variable:

69

(def employee-of-the-month "Dilbert")
(defn make-alice-eom []

(def employee-of-the-month "Alice"))
(defn make-wally-eom []

(def employee-of-the-month "Wally"))

The behaviour is completely deterministic when the functions are executed one after another:

> (make-alice-eom)
> (make-wally-eom)
employee-of-the-month
"Wally"

However, when the functions are executed in separate threads, the result depends on mere
chance:

(defn race-condition []
(let [thread-alice (Thread. make-alice-eom)

thread-wally (Thread. make-wally-eom)]
(.start thread-alice)
(.start thread-wally)))

> (race-condition)
> employee-of-the-month
"Wally"

Even though the thread started later will usually finish later in this example, no such guarantee
can be given. Notmodifying shared variables and using immutable data structures helps to avoid
such race conditions. Notice that dynamic vars live in thread local storage, and, thus, can be used
safely from different threads.

Some threads do theirwork in the background, butweneed tomake sure that they canfinish their
work before the main thread finishes using join:

(defn delete-cache []
(.delete (java.io.File. "/tmp/cache.txt")))

> (def delete-thread (Thread. delete-cache))
> (.start delete-thread)
> (.join delete-thread)

70

joinwaits until the thread is finished and then returns nil.

It is often useful to get back a result from a computation performed in a thread. A promise is some
kind of a value trap that will deliver a value when demanded. A promise is created using the
promise function:

> (def the-result (promise))

A value is delivered using the deliver function:

> (deliver the-result "Dilbert")

The value then can be grabbed using deref or using @:

> (println "The result is:" (deref the-result))
The result is: Dilbert
> (println "The result is:" @the-result)
The result is: Dilbert

Once set, the value of a promise can’t be changed again; the value trap was shut!

Promises are useful in the context ofmultiple threads. Consider this employee database, towhich
two functions shall be applied concurrently:

(def employees [{:name "Dilbert" :age 42 :salary 120000}
{:name "Ashok" :age 27 :salary 18000}
{:name "Topper" :age 37 :salary 250000}])

(defn average-age [employees]
(float (/ (reduce + (map :age employees)) (count employees))))

(defn average-salary [employees]
(float (/ (reduce + (map :salary employees)) (count employees))))

The two calculations can be executed in separate threads and deliver their results using a promise.
The parallel processing (givenmultiple CPUs) might come in handy as the database grows:

(defn perform-calculations [employees]
(let [age-prom (promise)

pay-prom (promise)]
(.start (Thread. #(deliver age-prom (average-age employees))))
(.start (Thread. #(deliver pay-prom (average-salary employees))))

71

(println "Average age:" @age-prom)
(println "Average salary:" @pay-prom)))

> (perform-calculations employees)
Average age: 35.333332
Average salary: 129333.336

No join is needed, since the threads are done after delivering their values.

This whole process can be simplified by using a future, which is a promise that brings its own
thread along:

(defn perform-calculations [employees]
(let [age-future (future (average-age employees))

pay-future (future (average-salary employees))]
(println "Average age:" @age-future)
(println "Average salary:" @pay-future)))

> (perform-calculations employees)
Average age: 35.333332
Average salary: 129333.336

A function callwrappedusing futurewill be executed in its own threadanddeliver its returnvalue
to be grabbed using deref or @.

In general, prefer futures over promises, because they don’t require dealing with threads directly.
Formorefine-grainedcontrol, considerusing Java’s thread-pool facilities (java.util.concurrent.Executors).

In practice, it is often a sensible approach to provide a timeout (here: 500 milliseconds) and a
fallback value (here: the keyword :timeoutwith a promise):

(deref calc-prom 500 :timeout)

pmap is a function that, from the outside, works like map, but, on the inside, uses multiple threads
to process the elements in parallel (hence the name; parallelmap). Parallel processing comeswith
some performance overhead and should only be used if it brings a net performance win.

18 State

The less mutable state a program has, the easier it is to understand. However, modeling things
that do change over time requires state.

Consider this employee database with a hire to add new employees to it:

72

(def employees [{:name "Dilbert" :job "Engineer" :salary 120000}
{:name "Alice" :job "Engineer" :salary 110000}
{:name "Dogbert" :job "Consultant" :salary 250000}])

(defn hire [employee]
(conj employees employee))

> (hire {:name "Wally" :job "Engineer" :salary 130000})
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}]

> employees
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}]

The function produces a new list with the additional employee, but the original list of employees
remains the same.

The state of the employeesvector could be changedusing def (notice the exclamationmark in hire!
to denote the side-effect):

(defn hire! [employee]
(def employees (conj employees employee)))

> (hire! {:name "Wally" :job "Engineer" :salary 130000})
> employees
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}]

The employees vector was updated, however, not in a thread-safe manner (see previous chapter).

Thread-safe state change can be achieved by using atoms, which wrap the value to be changed:

(def employees
(atom [{:name "Dilbert" :job "Engineer" :salary 120000}

{:name "Alice" :job "Engineer" :salary 110000}
{:name "Dogbert" :job "Consultant" :salary 250000}]))

73

(defn hire! [employee]
(swap! employees #(conj % employee)))

The atom function wraps the employees vector, which then can be updated in a thread-safe man-
ner using swap!, which takes two arguments: first, the atom to be updated (employees), second, a
function to be applied to produce the new value to be stored in the atom. Note that employees is
no longer a vector, but a vector wrapped in an atom.

The employees database can now be updated thread-safely in place:

> (hire! {:name "Wally" :job "Engineer" :salary 130000})

To access the value wrapped in the atom, use deref or @ (as with promises and futures):

> (deref employees)
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}] ; new entry

> @employees
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}] ; new entry

Any value can be wrapped in an atom, consider this counter:

(def counter (atom 0))

(defn increase-counter! [amount]
(swap! counter + amount))

The swap! function applies the + function to the counter atom. The amount value is handed over to
the + function by swap!:

> (increase-counter! 1)
> @counter
1
> (increase-counter! 5)
> @counter
6

74

When an atom is updated using swap!, it performs the following steps to guarantee thread
safety:

1. The current value of the atom is read.
2. The update function is called to produce the new value.
3. The current value of the atom is read again, and compared to the value read previously.

• If the value did not change in the meantime, the value is updated.
• If the value did change in the meantime, the whole process is repeated from the first
step.

Note that the update function can be called multiple times for a single update! Therefore it’s im-
portant, that the update function has no side effects!

Sometimes, therearemultiple values thatneed tobesynchronized. Consider this emptyemployee
database, forwhich also the total number of employees, and the total salary needs to be kept track
of:

(def employees (atom []))

(def total-payroll (atom 0))

(def total-staff (atom 0))

The hire! function tries to keep track of those three atoms:

(defn hire! [employee]
(swap! employees #(conj % employee))
(swap! total-payroll #(+ (:salary employee)))
(swap! total-staff inc))

> (hire! {:name "Dogbert" :salary 250000})
> (hire! {:name "Dilbert" :salary 120000})

> @employees
[{:name "Dogbert", :salary 250000}
{:name "Dilbert", :salary 120000}]

> @total-payroll
370000
> @total-staff
2

This seems to work fine, but the atoms are out of sync between the calls to swap!:

75

(defn hire! [employee]
(swap! employees #(conj % employee))
; out of sync
(swap! total-payroll #(+ (:salary employee)))
; out of sync
(swap! total-staff inc))

The three values must be updated either all together or not at all, like an atomic database transac-
tion.

Suchgroupsof atomscanbemanagedas refs,whicharea lot likeatoms, butusedifferent functions.
First, ref is used instead of atom for the wrapping:

(def employees (ref []))

(def total-payroll (ref 0))

(def total-staff (ref 0))

Second, alter is used instead of swap!. And, third, all the updates belonging to the same transac-
tion are grouped together using dosync:

(defn hire! [employee]
(dosync

(alter employees #(conj % employee))
(alter total-payroll #(+ % (:salary employee)))
(alter total-staff inc)))

Now all the values are kept perfectly in sync. When read, all the three values being alteredwithin
the same call to dosyncwill either yield all the old or all the new values:

> (hire! {:name "Catbert" :salary 180000})
> (hire! {:name "Alice" :salary 120000})
> @employees
[{:name "Catbert", :salary 180000}
{:name "Alice", :salary 120000}]

> @total-payroll
300000
> @total-staff
2

76

If the old value of a ref is not of interest, use ref-set instead of alter, providing just the new
value.

Sometimes, modifications to values should be accompanied by some side effects, say, writing
changes to a filewhennew items are added. Consider the function notify-new-hire togetherwith
the old version of hire! working on a single atom. Every time a new employee is hired, notify-
new-hire is called:

(def employees (atom []))

(defn notify-new-hire [employee]
(println "Watch out for" (:name employee)))

(defn hire! [employee]
(notify-new-hire employee)
(swap! employees #(conj % employee)))

> (hire! {:name "Alice" :salary 120000})
Watch out for Alice

This works fine—until an update has to be retried because the values have been modified in be-
tween. In this case, notify-new-hirewould be executedmultiple times, which is not wanted.

An agent is an atom that can be combinedwith side-effects. Instead of calling swap!, the function
send is used to both update the agent, and to produce the side effect:

(def employees (agent []))

(defn notify-new-hire [employee]
(println "Watch out for" (:name employee)))

(defn hire! [employee]
(send employees

(fn [old-employees]
(notify-new-hire employee)
(conj old-employees employee))))

Notice that an anonymous function (fn) has been used instead of a lambda expression. Every
agent has its own queue of functions. When hire! gets called, the call to the anonymous function
gets queued up. sendworks asynchronously, i.e. it returns immediately after the functionwas put
into the queue. The agent pops an outstanding function call from the queue and executes it. The
side effect (calling notify-new-hire) and the update are then performed:

77

> (hire! {:name "Ratbert" :salary 0})
Watch out for Ratbert
> (hire! {:name "Alice" :salary 115000})
Watch out for Alice
> @employees
[{:name "Ratbert", :salary 0}
{:name "Alice", :salary 115000}]

Since agents perform their updates in their own thread, exceptions caused by a failed update are
not reported immediately. Consider this agent for tracking donations:

(def donations (agent 0))

(defn praise-donor [amount donor]
(println "Praise" donor "for donating" amount "coins!"))

(defn donate! [amount donor]
(send donations

(fn [old-donations]
(praise-donor amount donor)
(+ old-donations amount))))

> (donate! 100 "John")
Praise John for donating 100 coins!
> @donations
0

If the arguments amount (integer) and donor (string) are swapped, the operation cannot be com-
pleted:

> (donate! "Jane" 200)
Praise 200 for donating Jane coins!
> @donations
100

Themessage from the side effect looks suspicious, and the donations haven’t been increased. But
the error can go unnoticed until the next update is done:

> (donate! 300 "Jim")
Execution error (ClassCastException) at user/donate!$fn (REPL:5).
java.lang.String cannot be cast to java.lang.Number

78

In this case, the agent has to be re-started using agent-restart. The error condition can be de-
tected using agent-error:

(if (agent-error donations)
(restart-agent donations 0 :clear-actions true))

However, the valuemanaged by the agent is reset to 0 in the process.

Make sure to call shutdown-agents at the end of the -main function of your program, so that the
agent’s threads get properly terminated:

(defn -main []
;; working with agents
(shutdown-agents))

Use the following guidelines to pick the proper mechanism for your state changes:

1. If a value remainsmostly stable, put it into a var.
2. If a number of values need to be updated together without side effects, use refs.
3. If the update of values is to be accompanied by side effects, or if the update function takes

a lot of time, use an agent.
4. If you have a single value that changes without additional side effects, us an atom.

Instead of using refs, the values to be updated could also be grouped into a single data structure,
which is then wrapped in an atom:

(def payroll (atom {:total-staff 0
:total-payroll 0
:employees []}))

(defn hire! [employee]
(swap! payroll

(fn [old]
(assoc old

:total-staff (inc (:total-staff old))
:total-payroll (+ (:total-payroll old) (:salary employee))
:employees (conj (:employees old) employee)))))

> (hire! {:name "Alice" :salary 115000})
> (hire! {:name "Dogbert" :salary 250000})
> @payroll
{:total-staff 2,
:total-payroll 365000,
:employees [{:name "Alice", :salary 115000}

{:name "Dogbert", :salary 250000}]}

79

There are various functions in Clojure making use of atoms, e.g. memoize, which wraps a function
with a cache that maps the arguments to the computed return values. Consider this Fibonacci
function:

(defn fib [n]
(println "Computing Fibonacci number for" n)
(cond

(= n 0) 1
(= n 1) 1
(> n 1) (+ (fib (- n 1)) (fib (- n 2)))
:else (throw (ex-info "fib(n) only defined for n >= 0"))))

> (fib 1)
Computing Fibonacci number for 1
1

> (fib 2)
Computing Fibonacci number for 2
Computing Fibonacci number for 1
Computing Fibonacci number for 0
2

> (fib 3)
Computing Fibonacci number for 4
Computing Fibonacci number for 3
Computing Fibonacci number for 2
Computing Fibonacci number for 1
Computing Fibonacci number for 0
Computing Fibonacci number for 1
Computing Fibonacci number for 2
Computing Fibonacci number for 1
Computing Fibonacci number for 0
5

The function is called with the same argument multiple times, which slows down the computa-
tion for bigger n.

memoizewraps the function so that it caches its return values by argument:

> (def fib (memoize fib))
> (fib 1)
Computing Fibonacci number for 1
1

80

> (fib 2)
Computing Fibonacci number for 2
Computing Fibonacci number for 0
2
> (fib 3)
Computing Fibonacci number for 3
3
> (fib 4)
Computing Fibonacci number for 4
5
> (fib 10)
Computing Fibonacci number for 10
Computing Fibonacci number for 9
Computing Fibonacci number for 8
Computing Fibonacci number for 7
Computing Fibonacci number for 6
Computing Fibonacci number for 5
89

The function returned by memoize has its own atom,which serves as a cache for the results having
been computed.

19 Read and Eval

Clojure’s syntax might look strange on the first sight, but is crucial for how the language works.
There are two critical functions in Clojure—read and eval—that relate to Clojure’s syntax.

Clojure code looks a lot like data literals:

'(dilbert pointy-haired-boss [alice]
(wally ratbert

(dogbert "some characters from dilbert...")))

Just replace the Dilbert character names by some other symbols, and you almost have Clojure
code:

'(defn say-hello [friendly]
(if friendly

(println "Hello, my dear!")))

Just remove the quote, and you have an executable Clojure function.

81

(defn say-hello [friendly]
(if friendly

(println "Hello, my dear!")))

> (say-hello true)
Hello, my dear!

Clojure code is just Clojure data, and Clojure function calls are lists. Clojure is homoiconic, which
means, code and data are the same thing.

The read function reads data, by default from the REPL (stdin), until [Return] is entered:

> (read)
1
1
> (read)
"hello"
"hello"
> (read)
(defn say-hi []

(println "Hi!"))
(defn say-hi [] (println "Hi!"))

The read function just returns returns the expression it read.

read-string reads a string and turns it into a Clojure value (notice the escaped double quotes
around the text Hi):

> (read-string "(defn say-hi [] (println \"Hi!\"))"
(defn say-hi [] (println "Hi!"))

Once data has been read (from whatever source), it can be evaluated as Clojure code using the
eval function:

> (def some-function-call '(+ 2 3))
> (eval some-function-call)
5

The code in the quoted list (+ 2 3) is compiled and run as Clojure code.

Some data types, like numbers, strings, and keywords, just evaluate to themselves:

82

> (eval 42)
42
> (eval "Dilbert")
"Dilbert"
> (eval :salary)
:salary

A Clojure function consists of different data structures—lists, vectors—which can all bemade up
as data, and then be combined to a list, which makes up an actual function that can be evalu-
ated:

> (def function-name 'say-hi)
> (def args (vector 'to-whom))
> (def output (list 'println "Hi," 'to-whom))
> (def whole-function (list 'defn function-name args output))

> (eval whole-function) ; creates function say-hi
> (say-hi "Joe")
Hi, Joe

The two functions read and eval combined can be used to read Clojure code from an external
source, say, user-specific settings from a config file. No extra language or syntax has to be made
up: The full power of Clojure is supported out of the box.

It’s also possible to define a very simple REPL using read and eval:

(defn my-repl []
(loop []

(println (eval (read)))
(recur)))

> (my-repl)
(println "Hello")
Hello
(println (+ 3 2))
5
; Hit Ctrl-D to finish

A toy version of the function eval can be implemented as an ordinary Clojure function:

(defn my-eval [expr]
(cond

83

(string? expr) expr
(keyword? expr) expr
(number? expr) expr
(symbol? expr) (my-eval-symbol expr)
(vector? expr) (my-eval-vector expr)
(list? expr) (my-eval-list expr)
:else :unknown-expression))

Strings, keywords, and numbers just evaluate to themselves, so the expr is just returned.

Symbols need to be looked up in the current environment:

(defn my-eval-symbol [expr]
(.get (ns-resolve *ns* expr)))

Vectors needs to be processed recursively:

(defn my-eval-vector [expr]
(vec (map my-eval expr)))

And lists, which can be function calls, need to be separated into the function name f and the ar-
gument list args, which are then applied using apply:

(defn my-eval-list [expr]
(let [evaled-items (map my-eval expr)

f (first evaled-items)
args (rest evaled-items)]

(apply f args)))

> (my-eval '(println "Hello"))
Hello

A real eval function compiles the given expression to Clojure code, which then can be executed a
lot faster. Therefore, eval is not to be used as an everyday tool, but only for special cases: it is
just too powerful and therefore too dangerous. It also is slower than regular Clojure code, due to the
additional compilation step.

Reading in code from arbitrary sources can also be very dangerous. Use the read function from
clojure.edn if you don’t trust the source. But read is also not a tool for everyday use, so only use
it if really needed.

84

20 Macros

Code isbothuseful andpainful: it solvesproblems, but also createsnewproblemsof its own. Writ-
ing more expressive code leads to less code. The usefulnes of code is kept, but the pain is reduced;
less code, less pain.

Macros are a powerful tool in LISP-like languages (such as Clojure) to automate some part of code
writing.

Consider a rating system in which numbers are interpreted in three categories:

• positive numbers: good
• zero: indifferent
• negative numbers: bad

This rating system could be used to print a depiction of the rating in English:

(defn print-rating [rating]
(cond

(pos? rating) (println "good")
(zero? rating) (println "indifferent")
:else (println "bad")))

> (print-rating 3)
good
> (print-rating 0)
indifferent
> (print-rating -5)
bad

Another implementation could be required to turn the rating number into a keyword for further
programmatic processing:

(defn evaluate-rating [rating]
(cond

(pos? rating) :good
(zero? rating) :indifferent
:else :bad))

> (evaluate-rating 3)
:good
> (evaluate-rating 0)
:indifferent
> (evaluate-rating -1)
:bad

85

Structurally, the two usages of cond are identical, they just have different consequences. The com-
monalities of the two functions could be factored out into a new function, arithmetic-if:

(defn arithmetic-if [n pos zero neg]
(cond

(pos? n) pos
(zero? n) zero
(neg? n) neg))

The function accepts both the number n to be categorized, and the three possible consequences of
a match: pos, zero, and neg.

This works great, if a value has to be returned, as in evaluate-rating, which can be refactored in
terms of arithmetic-if:

(defn evaluate-rating [rating]
(arithmetic-if rating :good :indifferent :bad))

> (evaluate-rating 5)
:good
> (evaluate-rating 0)
:indifferent
> (evaluate-rating -7)
:bad

The same refactoring applied to print-rating, however, produces surprising results:

(defn print-rating [rating]
(arithmetic-if rating

(println "good")
(println "indifferent")
(println "bad")))

> (print-rating 4)
good
indifferent
bad
> (print-rating 0)
good
indifferent
bad
> (print-rating -2)

86

good
indifferent
bad

All three println function calls are executed! When arithmetic-if is invoked, the arguments get
evaluated. This is unproblematic for n, which is a number and, therefore, evaluates to itself. Func-
tion calls like println, however, are evaluated by their actual execution.

If arithmetic-if expected functions as its last three parameters, print-rating could be imple-
mented based on the former:

(defn arithmetic-if [n pos-f zero-f neg-f]
(cond

(pos? n) (pos-f)
(zero? n) (zero-f)
(neg? n) (neg-f)))

(defn print-rating [rating]
(arithmetic-if rating

#(println "good")
#(println "indifferent")
#(println "bad")))

> (print-rating 4)
good
> (print-rating 0)
indifferent
> (print-rating -2)
bad

However, the implementationof evaluate-ratingnowbecomesmore complicated, thwarting the
gains made using arithmetic-if as an abstraction:

(defn evaluate-rating [rating]
(arithmetic-if rating

#(identity :good)
#(identity :indifferent)
#(identity :bad)))

> (evaluate-rating 7)
:good
> (evaluate-rating 0)
:indifferent

87

> (evaluate-rating -5)
:bad

What arithmetic-if is really supposed to do is to transform code written like this:

;; evaluate-rating
(arithmetic-if rating

:good
:indifferent
:bad)

;; print-rating
(arithmetic-if rating

(println "good")
(println "indifferent")
(println "bad"))

Into code being executed like this:

;; evaluate-rating
(cond

(pos? rating) :good
(zero? rating) :indifferent
:else :bad)

;; print-rating
(cond

(pos? rating) (println "good")
(zero? rating) (println "indifferent")
:else (println "bad"))

Since Clojure code is just data, this transformation can be made using a function building up an-
other function:

(defn arithmetic-if-to-cond [n pos zero neg]
(list 'cond (list 'pos? n) pos

(list 'zero? n) zero
:else neg))

Fed with parameters protected with a single quote from evaluation, this function produces the
desired cond forms:

88

> (arithmetic-if-to-cond 'rating
'(println "good")
'(println "indifferent")
'(println "bad"))

(cond
(pos? rating) (println "good")
(zero? rating) (println "indifferent")
:else (println "bad"))

> (arithmetic-if-to-cond 'rating
':good
':indifferent
':bad)

(cond
(pos? rating) :good
(zero? rating) :indifferent
:else :bad)

However, those cond formsare still just data, andnot compiled code that actually canbeused. Here,
macros come into play, which are defined using defmacro:

(defmacro arithmetic-if [n pos zero neg]
(list 'cond (list 'pos? n) pos

(list 'zero? n) zero
:else neg))

print-rating can now be implemented without using lambdas or quotation:

(defn print-rating [rating]
(arithmetic-if rating

(println "good")
(println "indifferent")
(println "bad")))

> (print-rating 4)
good
> (print-rating 0)
indifferent
> (print-rating -2)
bad

Which is also the case for evaluate-rating:

89

(defn evaluate-rating [rating]
(arithmetic-if rating

:good
:indifferent
:bad))

> (evaluate-rating 7)
:good
> (evaluate-rating 0)
:indifferent
> (evaluate-rating -5)
:bad

The Clojure compilation process works as follows: First, source code is read, i.e. turned into data
structures (lists, vectors, etc.). Second,macro expansion is performed, modifying those data struc-
tures. Third, those modified data structures with expanded macros are turned into byte code by
the actual compilation step.

Unlike C, Clojure macros work on the code as a data structure, not on code as mere program text,
whichmakes Clojure macros more powerful and less dangerous than Cmacros.

Thearithmetic-ifmacro fromabove requiresa lotofquotes toprevent theexpressions frombeing
evaluated. Clojure provides a templating system called syntax quoting, whichmakesmacrosmore
readable:

(defmacro arithmetic-if [n pos zero neg]
`(cond

(pos? ~n) ~pos
(zero? ~n) ~zero
:else ~neg))

Syntax quoting starts with a backquote (before cond). Within the quoted form, expressions from
the outside are referred to using a tilde prefix, which prevents them from being evalauted when
themacro is expanded before compilation.

There are a fewother syntax specialitieswhen it comes to usingmacroswith syntax quoting. Con-
sider the conjunction macro, which works like and—“conjunction” just being a fancy word for
“and”:

(defmacro conjunction
([] true)
([x] x)
([x & next]
`(let [current# ~x]

(if current# (conjunction ~@next) current#))))

90

Themacro works as follows:

1. For an empty list of conditions, true is returned (first base case).
2. For a single condition, the evaluated condition is returned (second base case).
3. For a list of more than one condition (general case), the following logic is applied:

1. The first condition is bound to current#; the suffix # being used to guarantee a unique
symbol.

2. If the current# condition evaluates to true, the conjunction macro is “called” recur-
sively with the next condition in the list. This next symbol is prefixed both by ~ for
syntax quoting, and an @—more of which later.

3. Otherwise, if current# evaluates to false, current# itself is returned, which termi-
nates the recursive process.

In order to understand the @ prefix, consider this alternative implementation of defn as a macro
called my-defn:

(defmacro my-defn [name args & body]
`(def ~name (fn ~args ~body)))

A function to add two numbers is created using my-defn:

(my-defn add-two-numbers [a b] (+ a b))

Unfortunately, the function won’t work:

> (add-two-numbers 3 4)
Execution error (ClassCastException) at user/add-two-numbers (REPL:1).
java.lang.Long cannot be cast to clojure.lang.IFn

Let’s seewhat code themacro actually generated using macroexpand-1, the first tool to be grabbed
if macros not behave as intended:

> (macroexpand-1 '(my-defn add-two-numbers [a b] (+ a b)))
(def add-two-numbers (clojure.core/fn [a b] ((+ a b))))

Notice the ((+ a b)) expressionbeingwrapped in twosets of parentheses. Expressionwas created
by ~body in the macro template, which is itself a collection because it was declared as a variadic
parameter (& body). Thus, body is a list of one element containing another list: ((+ a b)).

The @ prefixmakes sure that the collection is expanded before being written into the code. Here’s
a working version of my-defnwith this expansion:

91

(defmacro my-defn [name args & body]
`(def ~name (fn ~args ~@body)))

This creates the working code as intended:

> (macroexpand-1 '(my-defn add-two-numbers [a b] (+ a b)))
(def add-two-numbers (clojure.core/fn [a b] (+ a b)))

> (my-defn add-two-numbers [a b] (+ a b))
> (add-two-numbers 1 2)
3

Notice that macros are processed in a two-step process: First, they are expanded, second, the gen-
erated code is evaluated:

(defmacro two-step-process []
(println "This code is run upon macro expansion.")
`(fn [] (println "This code is run with the generated code.")))

> (def generated-code (two-step-process))
This code is run upon macro expansion.

> (generated-code)
This code is run with the generated code.

Also notice that macros do not exist at runtime, so their names can’t be found in a stack trace.
Macros also can’t be used like a function given to a higher-order function such as filter or map.
Only use macros if the code to be expressed is at odds with Clojure’s evaluation rules. Stick to
functions otherwise.

92

	Hello, Clojure
	Vectors and Lists
	Maps, Keywords, and Sets
	Logic
	More Capable Functions
	Functional Things
	Let
	Def, Symbols, and Vars
	Namespaces
	Sequences
	Lazy Sequences
	Destructuring
	Records and Protocols
	Tests
	Spec
	Interoperating with Java
	Threads, Promises, and Futures
	State
	Read and Eval
	Macros

