
Summary of “Getting Clojure”
(Russ Olsen)
Patrick Bucher

Contents

1 Hello, Clojure 2

2 Vectors and Lists 5

3 Maps, Keywords, and Sets 7

4 Logic 12

5 More Capable Functions 16

6 Functional Things 21

7 Let 25

8 Def, Symbols, and Vars 27

9 Namespaces 29

10Sequences 34

11Lazy Sequences 40

12Destructuring 43

13Records and Protocols 46

14Tests 51

15Spec 58

16 Interoperating with Java 65

1

17Threads, Promises, and Futures 68

18State 72

19Read and Eval 81

20Macros 85
This is a rough summary of Getting Clojure by Russ Olsen. Some examples
have been taken from the original, some have been modified, and some
have been made up.

1 Hello, Clojure

Install Clojure and Leiningen on Arch Linux:

pacman -S clojure leiningen

Start a REPL:

$ lein repl

Write a “Hello World” program on the REPL:

> (println "Hello, World!")
Hello, World!
nil

Write the same program with comments to hello.clj:

;; Hello World program in Clojure.

(println "Hello, World!") ; Say hi.

Comments start with a semicolon and end with the line. Comments that
take up a whole line start with two semicolons by convention.
Run the program:

$ clojure hello.clj
Hello, World!

2

https://pragprog.com/titles/roclojure/getting-clojure/

Use basic arithmetic functions:

> (+ 3 2)
5
> (- 100 3 7)
90
> (+ (* 3 6) (/ 12 4))
21
> (/ 8 3) ; produces a ratio
8/3
> (quot 8 3) ; truncates
2

Bind a symbol to a value:

> (def result (* 13 12))
> (println result)
156

Concatenate multiple values as a string:

> (str 1 "to" 2)
"1to2"

Write and call the “Hello World” program as a function:

> (defn hello-world [] (println "Hello, World!"))
> (hello-world)
Hello, World!

Use a single function parameter:

(defn greet [whom]
(println "Hello," whom))

> (greet "John")
Hello, John

Use multiple function parameters:

3

(defn average [a b]
(/ (+ a b) 2))

> (average 10 4)
7

Use multiple expressions in the function body:

(defn average [a b]
(def a-plus-b (+ a b))
(def half-the-sum (/ a-plus-b 2))
half-the-sum)

> (average 24 6)
15

The last expression of the function body (here: half-the-sum) is re-
turned.
Create and run a proper application using Leiningen:

$ lein new app hello-world
$ cd hello-world
$ lein run
Hello, World!

Extend the example (src/hello_world/core.clj) as follows:

(ns hello-world.core
(:gen-class))

(defn greet [app whom]
(println app "greets" whom))

(defn -main
[& args]
(greet "Hello World" "the user"))

And run it again:

$ lein run
Hello World greets the user

4

2 Vectors and Lists

Create a vector of numbers:

> [1 2 3 4]
[1 2 3 4]

A vector can hold values of different types:

> [1 "two" 3.0 "four"]
[1 "two" 3.0 "four"]

Vectors can be nested:

> [1 ["foo" "bar"] 2 ["qux" "baz"]]
[1 ["foo" "bar"] 2 ["qux" "baz"]]

Vectors can also be created using the vector function:

> (vector 1 2 3 4)
[1 2 3 4]
> (vector (vector "one" "two") "three" (vector "four" "five"))
[["one" "two"] "three" ["four" "five"]]

count returns the number of elements in a vector:

> (def numbers [1 3 9 27])
> (count numbers)
4

first returns the first element of a vector:

> (first [1 2 3 4])
1
> (first [])
nil

rest returns all the elements of a vector but the first as a sequence:

5

> (rest [1 2 3 4])
> (rest [1])
()
> (rest [])
()

nth returns the element at position n (zero-based index):

> (nth [1 2 3 4] 2)
3

The nth element can also be accessed using the vector’s name and an in-
dex:

> (def numbers [1 2 3 4 5])
> (numbers 3)
4

conj adds an element to the end of a vector:

> (def cities ["London", "New York", "Berlin"])
> (conj cities "Moscow")
["London" "New York" "Berlin" "Moscow"]

cons adds an element to the front of a vector:

> (def countries ["USA", "Germany", "Turkey"])
> (cons "Russia" countries)
("Russia" "USA" "Germany" "Turkey")

Actually, a new vector or sequence, respectively, is created, holding the
additional element.
A list can be created as follows:

> '("New York" "London" "Berlin")
("New York" "London" "Berlin")

Or using the list function:

> (list "New York" "London" "Berlin")
("New York" "London" "Berlin")

6

The functions count, first, rest, and nth can be applied to lists, too:

> (def countries '("USA" "Russia" "Germany" "France"))
> (count countries)
4
> (first countries)
"USA"
> (rest countries)
("Russia" "Germany" "France")
> (nth countries 3)
"France"

Unlike vectors, a list can not be used like a function:

> (countries 3)
Execution error (ClassCastException) at user/eval2092 (REPL:1).
clojure.lang.PersistentList cannot be cast to clojure.lang.IFn

Vectors are implemented as arrays, lists are implemented as linked lists.
This has some implications:

• Appending to the front is fast for lists and slow for vectors.
• Appending to the end is fast for vectors and slow for lists.

The conj function therefore adds elements to the front of lists and to the
end of vectors:

> (conj [1 2 3] "what")
[1 2 3 "what"]
> (conj '(1 2 3) "what")
("what" 1 2 3)

3 Maps, Keywords, and Sets

Maps are created using pairs within curly braces:

> {"title" "War and Peace" "author" "Lev Tolstoy" "year" 1869}
{"title" "War and Peace", "author" "Lev Tolstoy", "year" 1869}

Commas between key-value pairs can be used for better readability, but
are optional:

7

> {"title" "War and Peace", "author" "Lev Tolstoy", "year" 1869}
{"title" "War and Peace", "author" "Lev Tolstoy", "year" 1869}

Maps can also be created using the hash-map function:

> (hash-map "title" "War and Peace" "author" "Lev Tolstoy" "year" 1869)
{"author" "Lev Tolstoy", "title" "War and Peace", "year" 1869}

The left part of the pair is the key, the right part the value of the entry.
get looks up the value of an entry by its key:

> (def book {"title" "War and Peace" "author" "Lev Tolstoy" "year" 1869})
> (get book "author")
"Lev Tolstoy"

Like vectors, elements can be accessed without an explicit function call:

> (book "title")
"War and Peace"
> (book "year")
1869
> (book "publisher")
nil

Idiomatically, keywords starting with a colon are used as map keys:

> (def book {:title "War and Peace" :author "Lev Tolstoy" :year 1869})
> book
{:title "War and Peace", :author "Lev Tolstoy", :year 1869}
> (book :title)
"War and Peace"

Keywords can also be used for map lookups:

> (:title book)
"War and Peace"

assoc returns a map with an element either overwritten or added:

8

> (def book {:title "War and Peace" :author "Lev Tolstoy" :year 1869})
{:title "War and Peace", :author "Lev Tolstoy", :year 1869}
> (assoc book :pages 2000)
{:title "War and Peace", :author "Lev Tolstoy", :year 1869, :pages 2000}
> (assoc book :pages 1987)
{:title "War and Peace", :author "Lev Tolstoy", :year 1869, :pages 1987}

Using assoc, it’s possible to add/modify multiple key-value pairs at once:

> (def employee {:name "Dilbert"})
> (assoc employee :job "Engineer" :salary 120000)
{:name "Dilbert", :job "Engineer", :salary 120000}

dissoc removes a map’s entry by its key:

> (def employee {:name "Dilbert" :note "smelly"})
> (dissoc employee :note)
{:name "Dilbert"}

Like assoc, multiple keys can be used at once with dissoc:

> (def employee {:name "Dilbert" :note "smelly" :terminate "Jan 2023"})
> (dissoc employee :note :terminate)
{:name "Dilbert"}

Keys not found in the map will be ignored silently:

> (dissoc employee :sex-appeal :girlfriend :hobbies)
{:name "Dilbert", :note "smelly", :terminate "Jan 2023"}

keys returns the map’s keys (in unspecified order:

> (def book {:title "War and Peace" :author "Lev Tolstoy" :year 1869})
> (keys book)
(:title :author :year)

Use a sorted-map for specified key ordering:

> (def book (sorted-map :title "War and Peace" :author "Lev Tolstoy" :year 1869))
> (keys book)
(:author :title :year)

9

keys returns the map’s values in arbitrary, but matching the key’s order:

> (vals book)
("War and Peace" "Lev Tolstoy" 1869)
> (keys book)
(:title :author :year)

A set can be created as follows (commas being optional):

> #{"Dilbert", "Alice", "Wally"}
#{"Alice" "Wally" "Dilbert"}

An element must not occur more than once:

> #{"Dilbert", "Alice", "Wally", "Dilbert"}
Syntax error reading source at (REPL:1:42).
Duplicate key: Dilbert

contains? checks if an element is contained in a set:

> (def employees #{"Dilbert", "Alice", "Wally", "Ashok"})
> (contains? employees "Dilbert")
true
> (contains? employees "Pointy Haired Boss")
false

This lookup can be done without calling a function, returning the element
if it is contained, or nil if the element is missing:

> (employees "Dilbert")
"Dilbert"
> (employees "Ratbert")
nil

When working with keywords, the order can be switched:

> (def genres #{:scifi :action :drama :love})
> (genres :scifi)
:scifi
> (:scifi genres)
:scifi

10

Functions like count, first, and rest handle map entries as two-element
vectors:

> (def employee {:name "Dilbert" :age 42 :job "Engineer"})
> (count employee)
3
> (first employee)
[:name "Dilbert"]
> (rest employee)
([:age 42] [:job "Engineer"])

A set can be extendes using conj:

> (conj genres :western)
#{:western :scifi :drama :action :love}

An element won’t be added a second time without) error:

> (conj genres :western)
#{:western :scifi :drama :action :love}
> (conj genres :western)
#{:western :scifi :drama :action :love}

disj returns a set without the specified element:

> (disj genres :western)
#{:scifi :drama :action :love}

No error occurs if the element is missing:

> (disj genres :comedy)
#{:scifi :drama :action :love}

Be aware taht nil is a valid set entry and map key:

> (contains? #{:foo :bar nil} nil)
true

11

4 Logic

Conditional code can be executed using if:

(if (= guess secret-number)
(println "You guessed the secret number.")
(println "Sorry, wrong number guessed..."))

If the boolean expression (first argument) holds true, the second argument
is evaluated; otherwise, the (optional) third argument is evaluated.
Being an expression, if returns a value:

(defn yield-rate [balance]
(if (>= balance 0) 0.125 12.5))

> (yield-rate 300)
0.125
> (yield-rate -150)
12.5

nil will be returned if the condition evaluates to false and if there’s no
else branch.
Comparison operators like =, not=, and >= are actually functions, which
can take two or more arguments:

> (= 2 2 2 2 3)
false
> (= 2 2 2 2 2 2)
true

> (not= 1 1 1 1)
false
> (not= 1 1 2 1)
true

> (>= 9 6 4 4 1)
true
> (>= 9 6 4 5 1)
false

Predicate functions return whether or not an expression is of some specific
type:

12

> (number? 1987)
true
> (string? "Dilbert")
true
> (keyword? :title)
true
> (map? {:born 1987})
true
> (vector? [1 2 3])
true

Multiple conditions can be combined using and, or, and not:

> (or (and (> 5 3) (< 1 6)) (not (= 3 1)))
true

Both or and and are short-circuit operations (nothing is printed here):

> (or (= 1 1) (println "strange"))
true
> (and (not= 1 1) (println "strange"))
false

Every value besides false and nil is treated as truthy (i.e. will be evalu-
ated to true), even empty collections and the number 0:

> (if [] (println "[] is truthy"))
[] is truthy
nil

> (if 0 (println "0 is truthy"))
0 is truthy
nil

Multiple expressions can be grouped together using do:

(if (= guess secret-number)
(do
(println "You guessed the secret number.")
(println "A winner is you.")
{:points 100})

(do
(println "You guessed the wrong number.")
(println "Shame on you.")
{:points 0}))

13

The do expression evaluates to its last argument.
If no else branch is required, when can be used instead of if, which allows
for multiple expressions without using do:

(when (= guess secret-number)
(println "You guessed the secret number.")
(println "A winner is you.")
{:points 100})

If the condition doesn’t hold true, nil is returned (like if).
Instead of nesting multiple ifs, cond can be used for handling multiple
conditions:

(defn check [guess secret-number]
(cond
(= guess secret-number) (println "correct")
(< guess secret-number) (println "too low")
(> guess secret-number) (println "too high")))

> (check 3 3)
correct
nil

> (check 4 3)
too high
nil

> (check 3 4)
too low
nil

Idiomatically, a catch-all :else clause is added to make sure that every
condition is handled:

(defn check [guess secret-number]
(cond
(= guess secret-number) (println "correct")
(< guess secret-number) (println "too low")
(> guess secret-number) (println "too high")
:else (println "You broke the universe")))

14

Since :else is truthy, its branch will be evaluated unless any other branch
was evaluated before. (Any truthy value could be used instead of :else.)
For multiple equality comparisons against constants, case can be used
instead of cond:

(defn color-hex-code [color]
(case color
:red "#ff0000"
:green "#00ff00"
:blue "#0000ff"
"unknown"))

> (color-hex-code :red)
"#ff0000"
> (color-hex-code :black)
"unknown"

Exceptions can be handled using try/catch:

(defn safe-divide [dividend divisor]
(try
(/ dividend divisor)
(catch ArithmeticException e
(println "One does not simply divide by zero."))))

> (safe-divide 9 3)
3

> (safe-divide 9 0)
One does not simply divide by zero.
nil.

Exceptions can be thrown using throw and ex-info:

(defn publish [book]
(when (< (:pages book) 50)
(throw
(ex-info "A book needs fifty pages or more!" book))))

> (publish {:title "Hello" :pages 30})
Execution error (ExceptionInfo) at user/publish (REPL:4).
A book needs fifty pages or more!

ex-info expects a string message and a map argument, and can be caught
as clojure.lang.ExceptionInfo.

15

5 More Capable Functions

Multi-arity functions accept different sets of parameters:

(defn greet
([to-whom] (println "Hello" to-whom))
([message to-whom] (println message to-whom)))

> (greet "John")
Hello John
> (greet "Hi" "John")
Hi John

In order to reduce the amount of duplicated code, it’s common that lower
arity functions call the function with the highest arity by filling in the miss-
ing parameters with default values:

(defn greet
([to-whom] (greet "Hello" to-whom))
([message to-whom] (println message to-whom)))

Variadic functions accept a variable number of arguments:

(defn output-all [& args]
(println "args" args))

> (output-all "one")
args (one)
> (output-all "one" 2 "three" 4.0)
args (one 2 three 4.0)

The arguments left of the ampersand are regular arguments:

(defn output-all [x y & args]
(println "x" x "y" y "args" args))

> (output-all "one" 2 "three" 4.0)
x one y 2 args (three 4.0)

Multi-arity and variadic functions are good at dealing with a different num-
ber of arguments. Multimethods are useful to deal with different charac-
teristics of arguments. They consist of:

16

1. A dispatch function (defn) that assigns a keyword to an argument.
2. Amultimethod (defmulti) that groups the implementations and refers

to the dispatch function.
3. Multiple methods (defmethod), of which each handles one type of ar-

gument.

Consider employees being stored in different formats:

;; implicit fields: first name, job
(def dogbert ["Dogbert" "Head of Abuse"])
(def ashok ["Ashok" "Technical Intern"])

;; relevant fields: name, position
(def alice {:name "Alice" :position "Engineer" })
(def wally {:name "Wally" :position "Engineer" })

;; relevant fields: first-name, job
(def catbert {:first-name "Catbert" :job "HR Manager"})
(def dilbert {:first-name "Dilbert" :job "Engineer" :department "IT"})

The dispatch function figures out which format such an entry has:

(defn dispatch-employee-format [employee]
(cond
(vector? employee) :vector-employee
(and (contains? employee :name)

(contains? employee :position)) :min-employee
(and (contains? employee :first-name)

(contains? employee :job)) :max-employee))

The multimethod defines a method name and connects it to the dis-
patcher:

(defmulti normalize-employee dispatch-employee-format)

The implementations all have the same name, but handle a different key-
word, as mapped by the dispatcher function:

(defmethod normalize-employee :vector-employee [employee]
{:first-name (nth employee 0) :role (nth employee 1)})

(defmethod normalize-employee :min-employee [employee]
{:first-name (:name employee) :role (:position employee)})

17

(defmethod normalize-employee :max-employee [employee]
{:first-name (:first-name employee) :role (:job employee)})

The different kind of employee data structures are converted to a common
format:

> (normalize-employee dogbert)
{:first-name "Dogbert", :role "Head of Abuse"}
> (normalize-employee alice)
{:first-name "Alice", :role "Engineer"}
> (normalize-employee dilbert)
{:first-name "Dilbert", :role "Engineer"}

If the dispatch method cannot match the argument submitted, an excep-
tion will be thrown:

> (normalize-employee {:first-name "Topper" :position "Head of Annoyance"})
Execution error (IllegalArgumentException) at user/eval2108 (REPL:1).
No method in multimethod 'normalize-employee' for dispatch value: null

This condition can be handled properly by defining a :default branch in
the dispatcher function.
Implementations for multimethods can be defined in different files, which
allows for extensibility. This allows for polymorphism not just based on
type, but also based on values.
Some functions are best implemented recursively:

(def employees [{:name "Dilbert" :salary 120000}
{:name "Wally" :salary 130000}
{:name "Alice" :salary 110000}
{:name "Boss" :salary 380000}
{:name "Ashok" :salary 54000}])

(defn sum-payroll
([employees] (sum-payroll employees 0))
([employees total]
(if (empty? employees)

total
(sum-payroll

(rest employees)
(+ total (:salary (first employees)))))))

18

> (sum-payroll employees)
794000

The sum-payroll function could run out of stack space if the employee vec-
tor gets too big. Therefore, Clojure supports tail call optimization, by sim-
ply replacing the function call with recur:

(defn sum-payroll
([employees] (sum-payroll employees 0))
([employees total]
(if (empty? employees)
total
(recur

(rest employees)
(+ total (:salary (first employees)))))))

The multi-arity function can be simplified to a single-arity function using
a loop expression:

(defn sum-payroll [employees]
(loop [employees employees total 0]
(if (empty? employees)
total
(recur

(rest employees)
(+ total (:salary (first employees)))))))

This construct defines and invokes a pseudo-function, where the employees
parameter is initialized with the employees argument of the sum-payroll
function; and total is initialized to 0. This values will be re-initialized by
recur (employees to (rest employees) and total to itself plus the current
employees salary).
In practice, higher-ordered functions such as map are preferred over
loop/recur constructs.
Since comments are dropped upon compilation, docstrings provide a way
of documenting code that will be preserved. They are accessible via the
doc macro:

(defn average
"Computes the average of a and b."
[a b]

19

(/ (+ a b) 2.0))

> (average 3 2)
2.5

> (doc average)

user/average
([a b])

Computes the average of a and b.
nil

Docstrings can also be used for other constructs than functions:

> (def dilbert "The smelly IT guy..." {:name "Dilbert" :job "Engineer"})
> (doc dilbert)

user/dilbert

The smelly IT guy...
nil

A map containing :pre and :post entries can be used to enforce pre- and
post-conditions:

(defn give-raise [employee amount]
{:pre [(<= amount 10000) (not= (:name employee) "Ashok")]
:post [(<= (:salary %) 180000)]}

(assoc employee :salary (+ (:salary employee) amount)))

The :pre condition makes sure that a raise must not exceed 100000, and
that an employee named Ashok will never get a raise.
The :post condition makes sure that after a raise, no employee will have
a salary of more than 180000. The return value is referred by %.

> (give-raise {:name "Dilbert" :salary 120000} 5000)
{:name "Dilbert", :salary 125000}

> (give-raise {:name "Wally" :salary 110000} 15000)
Execution error (AssertionError) at user/give-raise (REPL:1).
Assert failed: (<= amount 10000)

> (give-raise {:name "Ashok" :salary 45000} 1000)

20

Execution error (AssertionError) at user/give-raise (REPL:1).
Assert failed: (not= (:name employee) "Ashok")

> (give-raise {:name "Ted" :salary 175000} 8000)
Execution error (AssertionError) at user/give-raise (REPL:1).
Assert failed: (<= (:salary %) 180000)

6 Functional Things

Functions are values, which can be passed to other functions:

(def dilbert {:name "Dilbert" :job "Engineer" :salary 120000})
(def ashok {:name "Ashok" :job "Intern" :salary 45000})

(defn well-paid? [employee]
(> (:salary employee) 100000))

(defn nerd? [employee]
(= (:job employee) "Engineer"))

(defn both? [employee pf1 pf2]
(and (pf1 employee)

(pf2 employee)))

> (both? dilbert well-paid? nerd?)
true

> (both? ashok well-paid? nerd?)
false

Anonymous functions can be defined using fn:

(both? dilbert
(fn [e] (> (:salary e) 100000))
(fn [e] (= (:name e) "Dilbert")))

This can be used to created parametrized functions using a lexical clo-
sure:

(defn cheaper-func [max-salary]
(fn [employee]

21

(< (:salary employee) max-salary)))

(def working-poor? (cheaper-func 50000))
(def cheap-hire? (cheaper-func 100000))

> (working-poor? ashok)
true

> (cheap-hire? dilbert)
false

The apply function applies a function for each argument:

> (apply + [1 2 3])
6

partial creates a new function by partially filling in the arguments for an
existing function. Here, the plus function is partially applied with a single
number:

> (def increment (partial + 1))
> (increment 1)
2
> (increment 10)
11

And here, the give-raise function is partially applied to define the amount
parameter:

(def dilbert {:name "Dilbert" :salary 120000 :job "Engineer"})

(defn give-raise [amount employee]
(assoc employee :salary (+ amount (:salary employee))))

(def small-raise (partial give-raise 1000))

> (small-raise dilbert)
{:name "Dilbert", :salary 121000, :job "Engineer"}

complement produces a new function by wrapping a function with a not
call:

22

(defn is-cheap? [employee]
(<= (:salary employee) 100000))

(def is-expensive? (complement is-cheap?))

> (is-cheap? dilbert)
false
> (is-expensive? dilbert)
true

every-pred combines multiple predicate function with and:

(defn cheap? [employee]
(<= (:salary employee) 100000))

(defn engineer? [employee]
(= "Engineer" (:job employee)))

(defn smelly? [employee]
(= "Dilbert" (:name employee)))

(def fire? (every-pred (complement cheap?) engineer? smelly?))

> (fire? {:name "Dilbert" :salary 120000 :job "Engineer"})
true

> (fire? {:name "Ted" :salary 180000 :job "Marketing"})
false

Function literals or lambdas can be defined using #:

> (apply #(+ %1 %2 %3) [1 2 3])
6

Since there is no argument list, the arguments are referred to using %1, %2,
etc. The highest-numbered argument defines the number of arguments:

> (apply #(+ %5 %6) [1 2 3 4 5 6])
11

The arguments one to four (i.e. [1 2 3 4]) are ignored.
If only a single argument is needed, it can be referred by % instead of %1:

23

> (apply #(* 2 %) [123])
246

Use lambdas for very short and simple functions. Use fn if named argu-
ments are useful. Use defn for lengthy functions with a proper name.
defn can be defined in terms of def and fn:

(defn hello [to-whom]
(println "Hello" to-whom))

Has the same effect as:

(def hello
(fn [to-whom]
(println "Hello" to-whom)))

update works on a map by applying a function to a map’s entry:

(def dilbert {:name "Dilbert" :salary 120000 :job "Engineer"})

(defn promote [employee raise-func]
(update employee :salary raise-func))

> (promote dilbert #(+ % 1000))
{:name "Dilbert", :salary 121000, :job "Engineer"}

update-in accepts an additional path to locate the field in a nested map to
be updated:

(def dogbertix {:name "Dogbertix" :ceo {:name "Dogbert" :salary 250000}})

(defn give-bonus [company]
(update-in company [:ceo :salary] #(* 2 %)))

> (give-bonus dogbertix)
{:name "Dogbertix", :ceo {:name "Dogbert", :salary 500000}}

24

7 Let

compute-bonus needs to calculate the same value twice; once for the if
condition, and once for the return value of the function:

(defn compute-bonus [employee bonus-rate max-bonus]
(if (<= (* (:salary employee) bonus-rate) max-bonus)
(* (:salary employee) bonus-rate)
max-bonus))

(def dilbert {:name "Dilbert" :salary 120000})

> (compute-bonus dilbert 0.1 5000)
5000

> (compute-bonus dilbert 0.1 25000)
12000.0

let defines re-usable local bindings:

(defn compute-bonus [employee bonus-rate max-bonus]
(let [bonus (* (:salary employee) bonus-rate)]
(if (<= bonus max-bonus)
bonus
max-bonus)))

The expression on the right-hand side is assigned to the symbol on the left-
hand side of the vector. Multiple local bindings can be created at once:

> (let [a 1 b 2 c 3] (println (+ a b c)))
6

Later bindings have access to earlier bindings to their left:

> (let [a 1 b (* 2 a) c (* 2 b)] (println a b c))
1 2 4

The function compute-bonus calculates the employee’s bonus by looking up
their bonus rate in a map:

25

(def employee-bonus-rates
{"Dilbert" 0.05 "Dogbert" 0.25 "Pointy-Haired Boss" 1.0})

(defn compute-bonus [salary employee-name bonus-rates min-bonus]
(let [bonus-rate (bonus-rates employee-name)

bonus (* salary bonus-rate)]
(if (< bonus min-bonus)

min-bonus
bonus)))

> (compute-bonus 120000 "Dilbert" employee-bonus-rates 1000)
6000.0

> (compute-bonus 200000 "Dogbert" employee-bonus-rates 10000)
50000.0

The map of employee-bonus-rates has to be carried away wherever a
bonus has to be calculated. A better approach is to return individual func-
tions by employee that have their bonus rate parametrized:

(defn mk-compute-bonus-func [employee-name bonus-rates min-bonus]
(let [bonus-rate (bonus-rates employee-name)]
(fn [salary]
(let [bonus (* bonus-rate salary)]

(if (< bonus min-bonus)
min-bonus
bonus)))))

(def calc-dilbert-bonus
(mk-compute-bonus-func "Dilbert" employee-bonus-rates 1000))

(def calc-dogbert-bonus
(mk-compute-bonus-func "Dogbert" employee-bonus-rates 10000))

> (calc-dilbert-bonus 120000)
6000.0

> (calc-dogbert-bonus 200000)
50000.0

let is used to bind local variables that are referred to by another function
(lexical closure).
The following function outputs book entries with their authors, if avail-
able:

26

(def books [{:title "War and Peace" :author "Lev Tolstoy"}
{:title "Beowulf"}
{:title "The Name of the Rose" :author "Umberto Eco"}
{:title "Till Eulenspiegel"}])

(defn output [book]
(let [author (:author book)]
(if author
(str (:title book) " by " author)
(:title book))))

> (map output books)
("War and Peace by Lev Tolstoy" "Beowulf" "The Name of the Rose by Umberto Eco" "Till Eulenspiegel")

if and let can be combined to if-let, making the function shorter:

(defn output [book]
(if-let [author (:author book)]
(str (:title book) " by " author)
(:title book)))

First, the binding with let is created; second, the bound value is evaluated
using if (yielding true for any truthy value).
when-let combines when with let in the same way:

(defn writtey-by [book]
(when-let [author (:author book)]
(str (:title book) " was written by " author)))

> (map writtey-by books)
("War and Peace was written by Lev Tolstoy" nil "The Name of the Rose was written by Umberto Eco" nil)

8 Def, Symbols, and Vars

Like keywords, symbols are values. Whereas keywords evaluate to them-
selves, symbols created with def are bound to other values. The symbol
itself can be accessed programmatically using the single quote:

> (def first-name "Dilbert")
> first-name
"Dilbert"

27

> 'first-name
first-name
> (str 'first-name)
"first-name"
> (= 'first-name 'last-name)
false
> (= 'first-name 'first-name)
true

A symbol and a value are bound together using a var, which is accessible
through the pound character and the symbol:

> (def first-name "Dilbert")
#'user/first-name
> (def the-name #'first-name)

Symbol and value then can be accessed as follows:

> (.-sym the-name)
first-name
> (.get the-name)
"Dilbert"

Vars are mutable, so that bindings can be re-defined during development,
say, in a REPL session.
Dynamic bindigs can be changed using binding and are, by convention,
surrounded by asterisks (*) or “earmuffs”:

> (def ^:dynamic *debug-enabled* false)
> *debug-enabled*
false

> (binding [*debug-enabled* true]
(println *debug-enabled*))

true

Vars are not supposed to be used like variables in other programming lan-
guages. Use ^:dynamic vars and binding sparingly.
The REPL provides some dynamic vars *[n] where [n] denotes the n-last
result:

28

> (+ 2 1)
3
> (+ 5 4)
9
(- *1 *2) ; 9 - 3
6

Dynamic vars can be changed using the set! function:

> (def employees ["Dilbert" "Wally" "Alice" "Ted" "Ashok"])
> employees
["Dilbert" "Wally" "Alice" "Ted" "Ashok"]
> (set! *print-length* 2)
> employees
["Dilbert" "Wally" ...]

*e denotes the last exception thrown:

> (/ 3 0)
Execution error (ArithmeticException) at user/eval2038 (REPL:1).
Divide by zero
> *e
#error {
:cause "Divide by zero"
...

9 Namespaces

Vars, which represent the binding between a symbol and a value, live in
namespaces. There is always one current namespace, affected by calls of
def.
The REPL creates and uses a namespace called user:

> (def employee "Dilbert")
#'user/employee

The employee symbol is bound to the value "Dilbert" within the user
namespace.
A new namespace can be created and made the current namespace using
ns:

29

> (ns dilbertix)
> (def employees [:dilbert :alice :wally])
#'dilbertix/employees

Calling ns with an existing namespace makes that namespace the current,
without changing it:

> (ns user)
> (def today "Sunday")
#'user/today

After switching back, the bindings are still available:

> (ns dilbertix)
> employees
[:dilbert :alice :wally]

Symbols from other namespaces can be referred to using a fully qualified
symbol:

> (ns user)
> dilbertix/employees

Namespaces defined in other files need to be loaded before they can be
used. The function clojure.data/diff is unavailable by default:

> (def engineers [:alice :dilbert :wally])
> (def high-performers [:alice :dilbert :topper])
> (clojure.data/diff engineers high-performers)
Execution error (ClassNotFoundException) at java.net.URLClassLoader/findClass (URLClassLoader.java:382).

The clojure.data namespace can be made available using require:

> (require 'clojure.data)
> (clojure.data/diff engineers high-performers)
[[nil nil :wally] [nil nil :topper] [:alice :dilbert]]

Given a new project skeleton:

$ lein new app dilbertix

30

Containing the file src/dilbertix/core.clj:

(ns dilbertix.core
(:gen-class))

(defn -main
"I don't do a whole lot ... yet."
[& args]
(println "Hello, World!"))

The namespace dilbertix.core and the file’s location dilbertix/core.clj
match together: A namespace foo.bar is to be found in a file foo/bar.clj.
Dashes need to be converted to underscores: The namespace foo-bar.qux
is to be found in the file foo_bar/qux.clj.
Thus, a new namespace dilbertix.employees is to be defined within the
project folder in the file src/dilbertix/employees.clj:

(ns dilbertix.employees)

(def job-satisfaction 0.0021)

(def employees [:dilbert :alice :wally])

The namespace definition can be supplied with :require expressions:

(ns dilbertix.core
(:require dilbertix.employees)
(:gen-class))

(defn -main
[& args]
(println "Our Employees:" dilbertix.employees/employees))

Notice the difference between the stand-alone require:

(require 'dilbertix.employees) ; symbol, quoted

And the expression within the ns definition:

(:require dilbertix.employees) ; keyword, unquoted

31

Aliases can be defined to make imported names shorter:

(require '[dilbertix.employees :as employees])

Or within the namespace definition:

(ns dilbertix.core
(:require [dilbertix.employees :as employees]))

Which allows for shorter references:

(println employees/job-satisfaction)

Instead of:

(println dilbertix.employees/job-satisfaction)

Aliases don’t mask ordinary bindings, so an employees var would still be
visible.
Using :refer, vars from anothe rnamespace are pulled into the current
namespace:

(require '[dilbertix.employees :refer [employees job-satisfaction])

Which would mask an existing employees binding in the current names-
pace. Therefore, :refer should be used sparingly.
The current namespace is available through the symbol *ns*:

> (println *ns*)
#object[clojure.lang.Namespace 0x38158523 user]

Existing namespaces can be looked up by their name:

> (find-ns 'user)
#object[clojure.lang.Namespace 0x38158523 "user"]

Namespaces can be discovered:

32

> (ns-map *ns*)
{primitives-classnames #'clojure.core/primitives-classnames, +' #'clojure.core/+' ...
;; omitted

The namespace is part of the symbol and can be extracted using the names-
pace function:

> (def hello "world")
> (namespace 'user/hello)
"user"

The namespace clojure.core provides functions such as println or first
and is made ready automatically:

(require '[clojure.core :refer :all])

There is no hierarchy of namespaces. The dots in clojure.core.data are
just part of the name.
Using require, a namespace only gets loaded once, which is sensible for
code within files. In a REPL session, reloading modified code is common,
and the :reload keyword can be used:

(require :reload '[dilbertix.employees :as employees])

Symbols no longer needed can be removed using ns-unmap:

(ns-unmap 'dilbertix.employees)

defonce makes sure a symbol is only bound to a value once, even if the
definition is required using :reload:

(defonce answer-to-everything (summarize-all-books))

If the symbol is supposed to be rebound nonetheless, it can be un-
mapped:

(ns-unmap *ns* 'answer-to-everything)

33

10 Sequences

The different collection types (maps, vectors, lists, sets) share a common
wrapper interface called a sequence. That’s why the count function (and
many others) work on different kinds of collections:

> count [1 2 3]) ; vector: number of items
3
> (count {:name "John" :age 29}) ; map: number of key-value pairs
2

The seq function wraps any collection in a sequence:

> (seq {:age 42 :name "Dilbert"})
([:age 42] [:name "Dilbert"]) ; sequence of key-value pairs

> (seq ["Alice", "Dilbert", "Wally"])
("Alice" "Dilbert" "Wally") ; looks like a list, is a sequence

seq returns nil when invoked on an empty collection:

> (seq '()) ; empty list
nil
> (seq []) ; empty vector
nil
> (seq {}) ; empty map
nil
> (seq #{}) ; empty set
nil

Like rest, next returns all but the first elements of a sequence:

> (rest [1 2 3])
(2 3)
> (next [1 2 3])
(2 3)

Unlike rest, next returns nil the remainder is an empty sequence:

> (rest [1])
()
> (next [1])
nil

34

Always rely on rest and next returning an empty collection or nil, respec-
tively; never compare the result of first against nil for this purpuse:

;; bad idea!
(defn is-empty [collection]

(= (first (seq collection)) nil))

> (is-empty [1 2 3]) ; correct
false
> (is-empty []) ; correct
true
> (is-empty [nil 1 2]) ; wrong!
true

;; better approach
(defn is-empty [collection]

(= (next (seq collection)) nil))

> (is-empty [1 2 3]) ; correct
false
> (is-empty []) ; correct
true
> (is-empty [nil 1 2]) ; correct
false

New elements can be added to the front of a sequence using cons:

> (cons 0 (seq [1 2 3]))
(0 1 2 3)
> (cons [:job "Engineer"] (seq {:name "Dilbert" :age 42}))
([:job "Engineer"] [:name "Dilbert"] [:age 42])

rest, next, cons (but not conj), sort, reverse all return sequences.
A seqable is something that seq can turn into a sequence.
partition chops a sequence (or seqable) into a sequence of smaller
junks:

> (partition 2 [1 2 3 4 5])
((1 2) (3 4))

interleave zips two sequences together:

35

> (interleave [1 3 5 7 9] [2 4 6 8])
(1 2 3 4 5 6 7 8)

interpose adds a separator value in between the elements:

> (interpose "and" ["Dilbert" "Wally" "Alice"])
("Dilbert" "and" "Wally" "and" "Alice")
> (interpose '+ [1 2 3])
(1 + 2 + 3)

filter accepts a predicate function and a sequence, and returns a new
sequence holding the elements for which the predicate holds true:

> (defn negative? [x] (< x 0))
> (filter negative? [5 -5 10 -10])
(-5 -10)

(defn useful? [employee]
(not= (:job employee) "Manager"))

> (filter useful? [{:name "Pointy Haired Boss" :job "Manager"}
{:name "Dilbert" :job "Engineer"}])

({:name "Dilbert", :job "Engineer"})

Like filter, some applies a predicate to the elements of a sequence. Unlike
filter, it returns the first truthy value returned by the predicate:

> (some neg? [1 2 3])
nil
> (some neg? [1 2 -3])
true

(defn useful-name [employee]
(when
(not= (:job employee) "Manager")
(:name employee)))

> (some useful-name [{:name "Pointy Haired Boss" :job "Manager"}
{:name "Dilbert" :job "Engineer"}])

"Dilbert"

map transforms the elements of a sequence using a function:

36

(defn raise-salary [employee]
(assoc employee :salary (* 1.2 (:salary employee))))

> (map raise-salary [{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

({:name "Dilbert", :salary 144000.0} {:name "Ashok", :salary 12000.0})

> (map :name [{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

("Dilbert" "Ashok")

comp (for “compose”) produces a function by applying the argument func-
tions from right to left (first, the salary is raised; second, the :name is
extracted):

> (map (comp :name raise-salary)
[{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

(144000.0 12000.0)

for processes a sequence element by element:

> (def employees [{:name "Dilbert" :salary 120000}
{:name "Ashok" :salary 10000}])

> (for [e employees] (:name e))
("Dilbert" "Ashok")

reduce combines the elements of a sequence into a single value. It works
with a function that requires two values: an accumulator and the current
element:

> (reduce (fn [acc x] (+ acc x)) [1 2 3 4])
10
> (reduce (fn [acc x] (* acc x)) [1 2 3 4])
24

The starting value of the accumulator can be defined, too:

> (reduce (fn [acc x] (+ acc x)) 100 [1 2 3 4])
110

If the start value is left out, the first element will be used for it.
Since arithmetic operators are functions, this can be simplified:

37

> (reduce + [1 2 3 4])
10
> (reduce * [1 2 3 4])
24

Those higher-order functions can be used to compose elegant solutions:

(def employees [{:name "Dilbert" :salary 120000}
{:name "Wally" :salary 130000}
{:name "Alice" :salary 11000}
{:name "Dogbert" :salary 180000}
{:name "Topper" :salary 150000}])

(defn top-earners [n employees]
(apply
str
(interpose

" >= "
(map :name (take n (reverse (sort-by :salary employees)))))))

> (top-earners 3 employees)
"Dogbert >= Topper >= Wally"

> (top-earners 5 employees)
"Dogbert >= Topper >= Wally >= Dilbert >= Alice"

> (top-earners 1 employees)
"Dogbert"

The definition of top-earners needs to be read from the inside out. The
pointy arrow function ->> allows for an easier to read syntax without any
runtime performance overhead:

(defn top-earners [n employees]
(->>
employees
(sort-by :salary)
reverse
(take n)
(map :name)
(interpose " >= ")
(apply str)))

38

The ->> function uses the result of a function as the last argument for
the next function all; -> as the first argument for the subsequent function
call.
Since Clojure provides so many ways of processing sequences, turning
something into a sequence can be a big step to solving that problem.
line-seq turns the lines of a text file into a (lazy) sequence. Given this
CSV employee data base (employees.txt):

Pointy Haired Boss;Manager;58;250000
Dilbert;Engineer;42;120000
Alice;Engineer;39;110000
Wally;Engineer;52;130000
Dogbert;Consultant;7;390000
Topper;Salesman;35;850000
Ted;Project Manager;45;280000

read-employee-db turns it into a sequence of maps:

(require '[clojure.java.io :as io])
(require '[clojure.string :as str])

(defn split-by [sep]
(fn [line]
(str/split line sep)))

(defn to-employee [values]
(zipmap [:name :job :age :salary] values))

(defn read-employee-db [filename]
(with-open [r (io/reader filename)]
(map
(comp to-employee (split-by #";"))
(doall (line-seq r)))))

> (read-employee-db "employees.txt")
((:name "Pointy Haired Boss" :job "Manager" :age "58" :salary "250000")
(:name "Dilbert" :job "Engineer" :age "42" :salary "120000")
(:name "Alice" :job "Engineer" :age "39" :salary "110000")
(:name "Wally" :job "Engineer" :age "52" :salary "130000")
(:name "Dogbert" :job "Consultant" :age "7" :salary "390000")
(:name "Topper" :job "Salesman" :age "35" :salary "850000")
(:name "Ted" :job "Project Manager" :age "45" :salary "280000"))

39

Which then can be processed using the top-earners function from be-
fore:

> (top-earners 3 (read-employee-db "employees.txt"))
"Topper >= Dogbert >= Ted"

Using regular expressions, strings can be turned into sequences (e.g. of
words):

> (re-seq #"\w+" "this is some sentence to be split") ; split by whitespace
("this" "is" "some" "sentence" "to" "be" "split")

Even though sequences are extremely useful, data structures like maps
and vectors loose some of their power when wrapped as a sequence.

11 Lazy Sequences

Unlike sequences, lazy sequences only make up their values as they are
actually needed.
repeat creates a lazy sequence that contains the given element unlimited
times:

> (def words (repeat "duck"))

There are, of course, not unlimited instances of the string "duck" put into
memory, which would be impossible to do. The elements of the lazy se-
quence are only created when used:

> (nth words 3)
"duck"
> (nth words 123456)
"duck"

> (take 3 words)
("duck" "duck" "duck")

cycle creates a lazy sequence by repeating a given sequence endlessly:

> (take 7 (cycle [1 2 3]))
(1 2 3 1 2 3 1)

40

iterate creates a lazy sequence based on a function. The first argument is
a function to be called for each subsequent iteration; the secund argument
is a starting value:

> (def counter (iterate inc 1))
> (take 3 counter)
(1 2 3)
> (take 12 counter)
(1 2 3 4 5 6 7 8 9 10 11 12)

Note that the lazy sequence is not consumed like an iterator in other pro-
gramming languages.
This counter sequence can be used to enumerate items of a sequence:

> (interleave ["Alive" "Dilbert" "Wally"] counter)
("Alive" 1 "Dilbert" 2 "Wally" 3)

Or:

> (zipmap counter ["Alive" "Dilbert" "Wally"])
{1 "Alive", 2 "Dilbert", 3 "Wally"}

map is lazy, so it can be applied to unbound lazy sequences:

> (defn twice [x] (* 2 x))
> (def doubled (map twice counter))
> (take 7 doubled)
(2 4 6 8 10 12 14)

Combined with cycle, map can be used to combine existing elements in all
possible ways (permutations):

(def names ["Alice" "Dilbert" "Wally" "Ashok" "Dogbert"])
(def adjectives ["great" "lazy" "nerdy" "evil"])
(def professions ["engineer" "manager" "consultant"])

(defn combine-employees [name adjective profession]
(str name " the " adjective " " profession))

(def employees
(map combine-employees
(cycle names)

41

(cycle adjectives)
(cycle professions)))

> (take 8 employees)
("Alice the great engineer" "Dilbert the lazy manager" "Wally the nerdy consultant"
"Ashok the evil engineer" "Dogbert the great manager" "Alice the lazy consultant"
"Dilbert the nerdy engineer" "Wally the evil manager")

lazy-seq creates a lazy sequence from an existing sequence:

> (def numbers (lazy-seq [1 2 3]))
(take 2 numbers)
(1 2)

Never output lazy sequences as if they were finite:

> (def counter (iterate inc 1))
> counter ; bad idea

Or at least be sure to set *print-length* before doing so:

> (set! *print-length* 10)
> counter
(1 2 3 4 5 6 7 8 9 10 ...)

doall realizes a lazy sequence, which should only be done for finite lazy
sequences:

> (doall counter) ; bad idea, again...

doseq is similar to for and useful if the iteratio step is more interesting
than the result:

> (def numbers (take 5 counter))
> (doseq [n numbers]

(println "Current iteration" n))
Current iteration 1
Current iteration 2
Current iteration 3
Current iteration 4
Current iteration 5

42

Infinite sequences should not be sorted or reduced.
Many functions are lazy, such as take.
Notice that working with lazy sequences opens a timely gap between when
the instruction to do something is given and when it is actyally done. This
can cause troubles when working with side-effects (e.g. files read/written
with slurp/spit whose content changes in the meantime).

12 Destructuring

Destructuring is a tool for unpacking data structures with little syntax:

> (def employees ["Dilbert" "Wally"])
> (let [[nerd lazybone] employees]

(println nerd "is a nerd")
(println lazybone "is a lazybone"))

Dilbert is a nerd
Wally is a lazybone

The left side vector of let describes the data to be extracted. The right
side expression is the data structure to be unpacked.
The unpacking need not be exhaustive. Values can be simply dropped on
the right side:

> (let [[a b c] ["foo" "bar" "baz" "qux"]] ; "qux" ignored
(println a b c))

foo bar baz

And the dummy symbol _ can be used to drop values from the left side:

> (let [[_ a _ b] ["foo" "bar" "baz" "qux"]] ; "foo" and "qux" ignored
(println a b))

bar qux

Nested structures can be destructured using a nested pattern on the left
side:

> (def teams [["Dilbert" "Alice" "Wally"] ["Dogbert" "Ratbert" "Catbert"]])
> (let [[[dilbert _ wally] [dogbert _ catbert]] teams]

(println dilbert wally dogbert catbert))

43

Anything that can be turned into a sequence can be destructured:

> (let [[one _ _ four] '(1 2 3 4)]
(println one four))

1 4

> (let [[b a r] "bar"]
(println b a r))

b a r

> (let [[a _ b _ c] (iterate inc 1)]
(println a b c))

1 3 5

Destructuring can not only be used with let, but also when calling func-
tions:

> (defn fire [[scapegoat-one scapegoat-two]]
(println scapegoat-one "and" scapegoat-two "are fired!"))

> (fire ["Dilbert" "Alice" "Wally" "Dogbert"])
Dilbert and Alice are fired!

When destructuring maps, the variable to be bound stands on the left, and
the keyword for the value to be extracted stands on the right:

> (def employees {:engineer "Dilbert" :consultant "Dogbert" :slacker "Wally"})
> (let [{scapegoat :engineer} employees]

(println scapegoat))
Dilbert

Nested data structures can be destructured, too:

> (def company {:name "Random Inc."
:employees [{:name "Dilbert" :role "Engineer"}

{:name "Dogbert" :role "Consultant"}]})
> (let [{[{looser-job :role} {leech :name}] :employees} company]

(println looser-job "is the worst job and" leech "is a leech"))
Engineer is the worst job and Dogbert is a leech

If all of a map’s values are to be bound, listing all the keys is cumber-
some:

44

> (def employees [{:name "Dilbert" :role "Engineer" :age 42}
{:name "Dogbert" :role "Consultant" :age 7}])

> (defn describe [{name :name role :role age :age}]
(println name "is a" age "year old" role))

> (map describe employees)
Dilbert is a 42 year old Engineer
Dogbert is a 7 year old Consultant

The :keys keyword allows for a shorter mapping:

> (defn describe [{:keys [name role age]}]
(println name "is a" age "year old" role))

If the passed value should not only be destructured, but also retained in
its entirety, the :as keyword can be used.

> (defn add-greeting [{:keys [name role age] :as employee}]
(assoc employee

:greeting
(str "I'm a " age " year old " role " called " name)))

> (map add-greeting employees)
({:name "Dilbert", :role "Engineer", :age 42,

:greeting "I'm a 42 year old Engineer called Dilbert"}
{:name "Dogbert", :role "Consultant", :age 7,
:greeting "I'm a 7 year old Consultant called Dogbert"})

Default values can be provided using the :or keyword:

> (defn email [{:keys [user host domain]
:or {user "root", host "localhost", domain "local"} :as parts}]

(str user "@" host "." domain))
> (email {:user "john"})
"john@localhost.local"
> (email {:host "dilbertix" :domain "com"})
"root@dilbertix.com"

Destructuring can’t be used directly with def, only within let.

45

13 Records and Protocols

A common tradeoff in programming is between generic and specialized
solutions. Maps are generic and very flexible. They can deal with arbi-
trary keys, which comes with a runtime penalty when dealing with huge
amounts of data.
Records are specialized data structures dealing only a set of predefined
keys:

> (defrecord Employee [name age job salary])

defrecord creates three vars: one for the record type, and two factory
functions ->Employee and map->Employee to create instances of the record
type:

> (def dilbert (->Employee "Dilbert" 42 "Engineer" 120000))

> (def alice (map->Employee
{:name "Alice"
:age 37
:job "Engineer"
:salary 110000}))

An instance of a record can be used like a map:

> (:name dilbert)
"Dilbert"

> (:job alice)
"Engineer"

> (keys dilbert)
(:name :age :job :salary)

> (def alice-promoted (assoc alice :salary 120000 :job "Head of Engineering"))
> alice-promoted
#user.Employee{:name "Alice", :age 37, :job "Head of Engineering", :salary 120000}

It’s also possible to associate extra fields with a record; however, those
don’t get the speed optimization of the record’s defined fields:

46

> (def dilbert-secret (assoc dilbert :note "Smelly and ugly guy"))
> dilbert-secret
#user.Employee{:name "Dilbert", :age 42, :job "Engineer",

:salary 120000, :note "Smelly and ugly guy"}

While the speed advantage of records is only noticable for large amounts
of data, the documentation provided by records is always helpful:

> (defrecord Poet [name century works])
> (defrecord FictionalCharacter [name show traits])

> (def homer-1
(->Poet "Homer" "8th/7th B.C." ["Iliad" "Odyssey"]))

> (def homer-2
(->FictionalCharacter "Homer" "The Simpsons" ["lazy" "stupid" "impulsive"]))

class returns the underlying type of a record instance:

> (class homer-1)
user.Poet

> (class homer-2)
user.FictionalCharacter

instance? (like Java’s instanceof) checks if an instance if of a specific
record type:

> (instance? FictionalCharacter homer-1)
false

> (instance? FictionalCharacter homer-2)
true

This offers one primitive way to create polymorphic functions:

(defn output [x]
(if (instance? FictionalCharacter x)
(println (:name x) "the" (:traits x) "character from" (:show x))
(println (:name x) "the author of" (:works x) "who lived" (:century x))))

> (output homer-1)
Homer the author of [Iliad Odyssey] who lived 8th/7th B.C.

> (output homer-2)
Homer the [lazy stupid impulsive] character from The Simpsons

47

However, protocols are a better alternative for this purpose. A protocol
(here: Person) defines a set of functions (here: describe, greet) that can
be performed on different kinds of records implementing that protocol:

(defprotocol Person
(describe [this])
(greet [this msg]))

The functions of the protocol need to be implemented by the records. The
protocol name (here: Person) is followed by the method definitions:

(defrecord Poet [name century works]
Person
(describe [this]
(str
(:name this)
", the author of " (clojure.string/join ", " (:works this))
" who lived in " (:century this)))

(greet [this msg]
(str
msg " " (:name this)
", author of " (clojure.string/join ", " (:works this)))))

(defrecord FictionalCharacter [name show traits]
Person
(describe [this]
(str
(:name this)
", the " (clojure.string/join ", " (:traits this))
" character from " (:show this)))

(greet [this msg]
(str
msg " " (:name this)
", you " (clojure.string/join ", " (:traits this))
" character from " (:show this))))

The first argument (conventionally called this) refers to the instance the
function is called on:

> (def homer-1
(->Poet "Homer" "8th/7th B.C." ["Iliad" "Odyssey"]))

> (describe homer-1)
"Homer, the author of Iliad, Odyssey who lived in 8th/7th B.C."

48

> (greet homer-1 "Greetings")
"Greetings Homer, author of Iliad, Odyssey"

> (def homer-2
(->FictionalCharacter "Homer" "The Simpsons" ["lazy" "stupid" "impulsive"]))

> (describe homer-2)
"Homer, the lazy, stupid, impulsive character from The Simpsons"
> (greet homer-2 "Hi")
"Hi Homer, you lazy, stupid, impulsive character from The Simpsons"

New protocols can be created and implemented for existing types using
extend-protocol:

(defprotocol Greetable
(say-hi [this]))

(extend-protocol Greetable
Employee
(say-hi [employee]
(str "Hello, I'm " (:name employee) ". I work as a " (:job employee) "."))
Poet
(say-hi [poet]
(str "Greetings, I'm " (:name poet) ", author of "

(clojure.string/join ", " (:works poet)) "."))
FictionalCharacter
(say-hi [character]
(str "Hi, I'm " (:name character) " from " (:show character) ".")))

> (say-hi dilbert)
"Hello, I'm Dilbert. I work as a Engineer."

> (say-hi homer-1)
"Greetings, I'm Homer, author of Iliad, Odyssey"

> (say-hi homer-2)
"Hi, I'm Homer from The Simpsons."

It is also possible to implement protocols for existing data types:

(extend-protocol Greetable
String
(say-hi [string]
(str "Hi, I'm the String '" string "'."))

Boolean

49

(say-hi [bool]
(str "Hi, I'm the Boolean '" bool "'.")))

> (say-hi "foobar")
"Hi, I'm the String 'foobar'."

> (say-hi false)
"Hi, I'm the Boolean 'false'."

Records and their instances resemble classes and objects, but they don’t
have hierarchies and are immutable. Protocols are similar to abstract
classes or interfaces, but more flexible: They can be implemented with-
out touching the definition of the type the methods are implemented for;
and, again, they don’t come in hierarchies. Also, most object-oriented pro-
gramming languages require the programmer to use classes, objects, and
interfaces. Records and protocols, however, are optional: Better start
without them, and only use them if they bring some tangible benefit.
Protocols and multimethods have a lot in common, but also some differ-
ences:

• Multimethods define single, stand-alone operations. Protocols group
related operations together.

• Multimethods support an arbitrary dispatch mechanism. Protocols
dispatch based on a type.

Simple one-off implementations of a protocol as a single instance (say, for
test doubles) can be created using reify:

(def dirty-harry
(reify Person
(describe [_] "Lieutenant Harry Callahan, San Francisco Police Department")
(greet [_ msg] (str msg ", punk. Feeling lucky today?"))))

> (describe dirty-harry)
"Lieutenant Harry Callahan, San Francisco Police Department"

> (greet dirty-harry "Hi, there")
"Hi there, punk. Feeling lucky today?"

Since this wasn’t used in any of the method bodies, it was replaced by
_.
The methods defined for a protocol could pollute the namespace:

50

> (defprotocol Items (count [this]))
Warning: protocol #'user/Items is overwriting function count

When in doubt, put protocols in their own namespace.
deftype is a more generic version of defrecord and requires the program-
mer to provide all of the behaviour of a new type. This is more work than
defining a new record, but allows for more flexibility.

14 Tests

For the following example, a new project company is created:

$ lein new company

A fixed set of employees is defined in src/company/employees.clj:

(ns company.employees)

(def employees [{:name "Dilbert" :age 42 :job "Engineer" :salary 120000}
{:name "Alice" :age 37 :job "Engineer" :salary 115000}
{:name "Wally" :age 47 :job "Engineer" :salary 130000}

{:name "Pointy Haired Boss" :age 57 :job "Manager" :salary 250000}
{:name "Ashok" :age 22 :job "Intern" :salary 18000}

{:name "Dogbert" :age 7 :job "Consultant" :salary 470000}
{:name "Catbert" :age 9 :job "Head of HR" :salary 190000}])

Some functions to operate on a set of employees are provided in
src/company/core.clj:

(ns company.core)

(defn find-by-name
"Search for an employee by name (unique result)"
[employees by-name]
(first (filter #(= (:name %1) by-name) employees)))

(defn sum-salaries
"Sum up the salaries of all given employees"
[employees]
(reduce #(+ %1 %2) (map #(:salary %1) employees)))

51

Unit tests can be created using the clojure.test library. In src/company/core_test.clj,
test cases for the functions in company.core are defined. The test func-
tions from clojure.core, the functions to be tested from company.core,
and the static set of employees in company.employees are required:

(ns company.core-test
(:require [clojure.test :refer :all])
(:require [company.core :as cc])
(:require [company.employees :as ce]))

A simple test is defined using deftest and the is assertion function:

(deftest test-finding-employee-by-name
(is (not (nil? (cc/find-by-name ce/employees "Dilbert")))))

The test can be executed with Leiningen:

$ lein test
lein test company.core-test

Ran 1 tests containing 1 assertions.
0 failures, 0 errors.

To test another function, another deftest is created:

(deftest test-sum-up-employee-salaries
(is (= 1293000 (cc/sum-salaries ce/employees))))

Multiple test cases can be grouped together and described using testing
as so-called subtests or contexts:

(deftest test-finding-employee-by-name
(testing "Finding employees"
(is (not (nil? (cc/find-by-name ce/employees "Dilbert"))))
(is (not (nil? (cc/find-by-name ce/employees "Catbert")))))

(testing "Not finding employees"
(is (nil? (cc/find-by-name ce/employees "Sharkbert")))
(is (nil? (cc/find-by-name ce/employees "Competent Boss")))))

In order to test a property of the code, one needs to work with exam-
ples that exercise that property. Instead of making up examples manu-
ally, the test.check library can be used for Property-Based Testing. First,
test.check needs to be added as a dependency (project.clj):

52

https://github.com/clojure/test.check

:dependencies [[org.clojure/clojure "1.10.1"]
[org.clojure/test.check "1.1.0"]]

Random data can then be created using generators:

> (require '[clojure.test.check.generators :as gen])
> (gen/sample gen/string-alphanumeric)
("" "M" "Lw" "cs9" "CtQU" "yOg95" "YE" "3XTEL" "001qEF3w" "ZTwzwZ")

gen/string-alphanumeric generates an endless stream of alphanumeric
strings (including empty ones), gen/sample takes a sample of that stream.
In order to test the functions for the employee data base, the constrained
generators for the following map keywords are needed:

• :name: alphanumeric, non-empty
• :age: numeric, positive, non-zero
• :job: alphanumeric, non-empty
• :salary: numeric, positive, non-zero

The constraints can be modeled using such-that predicates:

(def text-gen
(gen/such-that not-empty gen/string-alphanumeric))

> (gen/sample text-gen)
("1JB" "91" "t" "FJyD" "34eM" "3h0a5" "9fhzo" "8v31R" "00O83F" "PNEEsZQMe")

(def num-gen
(gen/such-that (complement zero?) gen/pos-int))

> (gen/sample num-gen)
(1 3 1 3 2 4 1 3 5 5)

A single employee map can be created using those functions:

(def employee-gen
(gen/hash-map :name text-gen

:age num-gen
:job text-gen
:salary num-gen))

> (gen/sample employee-gen)
({:name "wlf", :age 3, :job "8", :salary 1}
{:name "5", :age 1, :job "ZR", :salary 1}
{:name "Hd", :age 2, :job "L3", :salary 3}) ; output shortened

53

An endless supply of non-empty employee databases (vectors) can be gen-
erated:

(def payroll-gen
(gen/not-empty (gen/vector employee-gen)))

> (gen/sample payroll-gen)
([{:name "uQ", :age 2, :job "Zl", :salary 2}]
[{:name "VR", :age 2, :job "ME", :salary 2}
{:name "vj", :age 3, :job "8", :salary 1}]

[{:name "BYsO", :age 2, :job "p7", :salary 2}]) ; output shortened

In order to conduct tests, a random example has to be plucked from the test
data. Here, gen/let is used to create a map containing a payroll together
with one single employee taken from that payroll (from the inventory built
by inventory-gen, assign a random, single element to book):

(def payroll-and-employee-gen
(gen/let [payroll payroll-gen

employee (gen/elements payroll)]
{:payroll payroll :employee employee}))

> (gen/smaple payroll-and-employee-gen)
({:payroll [{:name "Y0", :age 2, :job "K0", :salary 1}],

:employee {:name "Y0", :age 2, :job "K0", :salary 1}}
:employee {:name "Q", :age 3, :job "T", :salary 1}}

{:payroll [{:name "qv", :age 3, :job "2ys", :salary 3}
{:name "n", :age 2, :job "893", :salary 1}
{:name "2g", :age 3, :job "cLx", :salary 2}],

:employee {:name "2g", :age 3, :job "cLx", :salary 2}}) ; output shortened

Once the functions to generate the test data are ready, the property needs
to be expressed with property test functions, provided by the test.check
library:

> (require '[clojure.test.check.properties :as prop])

A theorem—e.g. the increment of a number is bigger than that number—
can be expressed using prop/for-all:

(prop/for-all [i gen/pos-int]
(< i (inc i)))

54

Computers can’t prove theorems, but only execute tests, for which
test.check provides functions:

> (require '[clojure.test.check :as tc])

To perform a test, a limit (e.g. 50) of examples to be considered needs to be
supplied using tc/quick-check, which wraps the theorem from above:

(tc/quick-check 50
(prop/for-all [i gen/pos-int]
(< i (inc i))))

This function produces an output describing the tests conducted:

{:result true, :pass? true, :num-tests 50, :time-elapsed-ms 4,
:seed 1622715897727}

(The seed value could be used to reproduce the random data that was
generated.)
Finally, these tools can be combined to write property test functions:

(def tc/quick-check 50
(prop/for-all [p-and-e payroll-and-employee-gen]
(= (cc/find-by-name (:payroll p-and-e) (-> p-and-e :employee :name))

(:employee i-and-e))))

For each payroll/employee sample, the function to be tested cc/find-by-
name is called with the whole payroll and the randomly picked employee’s
name. The result is than compared to random employee extracted by the
generator before.
In order to integrate this property-based test into the native test runner,
defspec from test.check can be used:

> (require '[clojure.test.check.clojure-test :as ctest])

The test can then be defined using ctest/decspec as follows:

(ctest/defspec find-by-name-finds-employee 50
(prop/for-all [p-and-e payroll-and-employee-gen]
(= (cc/find-by-name (:payroll p-and-e) (-> p-and-e :employee :name))

(:employee p-and-e))))

55

Which then can be tested using Leiningen:

$ lein test

lein test company.core-property-test
{:result true, :num-tests 50, :seed 1622716789601, :time-elapsed-
ms 92,
:test-var "find-by-name-finds-employee"}

lein test company.core-test

Ran 3 tests containing 6 assertions.
0 failures, 0 errors.

Here’s the whole property-based test for the employee database
(test/company/core_property_test.clj):

(ns company.core-property-test
(:require [clojure.test :refer :all])
(:require [company.core :as cc])
(:require [clojure.test.check :as tc])
(:require [clojure.test.check.clojure-test :as ctest])
(:require [clojure.test.check.generators :as gen])
(:require [clojure.test.check.properties :as prop]))

(def text-gen
(gen/such-that not-empty gen/string-alphanumeric))

(def num-gen
(gen/such-that (complement zero?) gen/pos-int))

(def employee-gen
(gen/hash-map :name text-gen

:age num-gen
:job text-gen
:salary num-gen))

(def payroll-gen
(gen/not-empty (gen/vector employee-gen)))

(def payroll-and-employee-gen
(gen/let [payroll payroll-gen

employee (gen/elements payroll)]
{:payroll payroll :employee employee}))

56

(ctest/defspec find-by-name-finds-employee 50
(prop/for-all [p-and-e payroll-and-employee-gen]
(= (cc/find-by-name (:payroll p-and-e) (-> p-and-e :employee :name))

(:employee p-and-e))))

While unit tests are easier to implement and understand, they often
cover only a few hand-picked examples, leaving much of the input space
untested. Property-based testing is harder to implement and understand,
but covers a much wider space of possible inputs. However, one might
jump to the wrong conclusion that all possibilities are covered, where
generators probably miss some basic but crucial cases (e.g. picking 0 as
a random number for testing division by zero).
Therefore, it’s a good idea to start with some unit tests covering the ba-
sic cases (say, all combinations of a devision with positive and negative
numbers, and zero). Property-based tests can then be introduced to cover
more of the input space.
Notice that property-based tests are non-deterministic. Re-starting
a failed test pipeline might yield a test run without errors, but the
underlying error remains.
Even having only one single trivial test case is way better than having no
test cases at all:

(require '[clojure.test :refer :all])
(require '[company.core :as cc])
(require '[company.employees :as ce])

(deftest test-sum-up-employee-salaries
(is (= 1293000 (cc/sum-salaries ce/employees))))

This test case reveals a lot about the code base being tested:

• There is a namespace called company.core, providing more or less
useful functions.

• There is a namespace called company.employees, providing an actual
database of employee records.

• There is a function sum-salaries that calculates the total salaries of
an employee database, returning a positive integer.

Simple unit tests can be made more powerful by using parameters with
are:

57

(deftest test-finding-employee-by-name-parametrized
(testing "Finding employees by their name, checking their roles"

(are [actual expected] (= (:job actual) expected)
(cc/find-by-name ce/employees "Dilbert") "Engineer"
(cc/find-by-name ce/employees "Ashok") "Intern"
(cc/find-by-name ce/employees "Dogbert") "Consultant")))

Here, three examples are provided, each consisting of two expressions:
The left (the actual function call) being mapped to actual, the right (the
expected result) beingmapped to expected. The test consists of comparing
a property of actual (the job of the employee) to the expected value. This
helps keeping the test definition separate from the test examples, which
makes it less effortful to add more test cases.

15 Spec

Clojure programmers are often more concerned with the shape of data
rather than its type. The question is rather “is this a vector of maps each
providing a :name key?” than “is this a NamedItemsVector?”.
The shape of data can be verified by providing functions such as this:

(defn employee? [x]
(and
(map? x)
(string? (:name x))
(pos-int? (:age x))
(string? (:job x))
(pos-int? (:salary x))))

> (employee? {:name "Dilbert" :age 42 :job "Engineer" :salary 120000})
true
> (employee? {:name "Clint Eastwood" :age 82 :role "Dirty Harry"})
false

This manual approach doesn’t scale well. Consider matching the shape of
strings: Writing a state machine manually for every pattern neither scales
well. Instead, regular expressions are used to describe those patterns.
The clojure.spec library provides facilities to define and check the shape
of data; it works like regular expressions for data structures:

> (require '[clojure.spec.alpha :as s])

58

https://clojure.org/about/spec

clojure.spec is about to be finished, and therefore is used under the
namespace .alpha for the time being.
The s/valid? function expects a predicate function and a value and re-
turns whether or not the value passes the validation:

> (s/valid? number? 44)
true
> (s/valid? string? 44)
false

Multiple predicates can be combined using clojure.spec/and:

(def n-leq-100
(s/and number? #(<= % 100)))

> (s/valid? n-leq-100 99)
true

> (s/valid? n-leq-100 101)
false

A predicate function n-leq-100 is called a spec. The whole library and
concept is called clojure.spec.
Predicates can also be combined using clojure.spec/or, which requires
additional keywords describing the checks:

(def far-from-zero?
(s/or :positive #(> % +10)

:negative #(< % -10)))

> (s/valid? far-from-zero? 5)
false
> (s/valid? far-from-zero? 15)
true
> (s/valid? far-from-zero? -5)
false
> (s/valid? far-from-zero? -15)
true

The keywords :positive and :negative are useful for providing feedback
in case the value fails to match the spec (more of which later).
Multiple predicates can be combined to build new predicates:

59

(def n-pos? #(>= % 0))
(def n-leq-100? #(<= % 100))
(def n-even? #(= (mod % 2) 0))
(def n-pos-even-leq-100

(s/and
n-pos?
n-leq-100?
n-even?))

> (s/valid? n-pos-even-leq-100 99)
false
> (s/valid? n-pos-even-leq-100 98)
true

spec/coll-of can be used to check if something is a collection of some-
thing:

(def coll-of-strings? (s/coll-of string?))

> (s/valid? coll-of-strings? ["John" "Doe"])
true
> (s/valid? coll-of-strings? ["one" "two" "three" 4 "five"])
false

spec/cat can be used to create this should follow that specs (descriptive
keywords are needed):

(def s-n-s-n? (s/cat :s1 string? :n1 number? :s2 string? :n2 number?))

> (s/valid? s-n-s-n? ["Dilbert" 42 "Ashok" 21])
true
> (s/valid? s-n-s-n? ["Dilbert" "Alice" "Dogbert" "Wally"])
false

Specs for maps can be written using the keys function (using the employees
database from the last chapter src/company/employees.clj):

(ns company.employees
(:require [clojure.spec.alpha :as s]))

(def employee-s?
(s/keys :req-un [:company.employees/name

:company.employees/age

60

:company.employees/job
:company.employees/salary]))

> (require '[clojure.spec.alpha :as s])
> (require '[company.employees :as ce])
> (s/valid? ce/employee-s? {:name "Dilbert" :age 42 :job "Engineer" :salary 120000})
true
> (s/valid? ce/employee-s? {:name "Ashok" :age 27 :job "Intern"})
false

Here, namespace-qualified keys (:company.employees/name) have been
used. However, the -un part of :req-un means unqualified, so the keys of
a map value don’t have to be qualified in order to match.
In order to use specs in different locations, they can be stored in a global
registry (“global” means JVM-wide) using clojure.spec/def. This regis-
ters an employee record as :company.employees/employee:

(s/def :company.employees/employee
(s/keys :req-un [:company.employees/name

:company.employees/age
:company.employees/job
:company.employees/salary]))

The spec can be used globally under its global name:

> (s/valid? :company.employees/employee
{:name "Dilbert" :age 42 :job "Engineer" :salary 120000})

true

Keywords must be fully qualified in the spec definition because of the
global registry, otherwise they could collide with other keywords. How-
ever, from within the namespace company.employees, the shortcut ::name
can be used instead of :company.employees.name. Thus, the above spec
can be simplified:

(s/def :company.employees/employee
(s/keys :req-un [::name

::age
::job
::salary]))

61

clojure.spec tries to look up the fully qualified keys in the registry. If a
spec is found, the value associated with that key is validated against it.
(Otherwise, no validation takes place.)
Let’s create additional specs for the map keywords:

(s/def ::name string?)

(s/def ::age int?)

(s/def ::job string?)

(s/def ::salary int?)

(s/def ::employee
(s/keys :req-un [::name

::age
::job
::salary]))

(s/def ::employees (s/coll-of ::employee))

> (s/valid? :company.employees/employee
{:name "Dilbert" :age 42 :job "Engineer" :salary 120000})

true
> (s/valid? :company.employees/employee

{:name "Ashok" :age 27 :job "Intern" :salary "nothing"})
false

When using heavily nested specs, it’s often unclear why a particular value
failed to match a spec. In this case, clojure.spec/explain can be used
(just like valid):

> (s/explain :company.employees/employee
{:name "Ashok" :age 27 :job "Intern" :salary "nothing"})

"nothing" - failed: int? in: [:salary] at: [:salary] spec: :company.employees/salary

explain always returns nil and prints its result. The related function clo-
jure.spec/conform, on the other side, returns the (positively) matching
value, or :clojure.spec.alpha/invalid in case of a mismatch:

> (s/conform :company.employees/employee
{:name "Dilbert" :age 42 :job "Engineer" :salary 120000})

{:name "Dilbert", :age 42, :job "Engineer", :salary 120000}

62

> (s/conform :company.employees/employee
{:name "Ashok" :age 27 :job "Intern" :salary "nothing"})

:clojure.spec.alpha/invalid

Specs can also be used to validate the arguments of a function. One way is
to use :pre and :post conditions with functions (src/company/core.clj):

(ns company.core
(:require [company.employees])
(:require [clojure.spec.alpha :as s]))

(defn find-by-name
"Search for an employee by name (unique result)"
[employees by-name]
{:pre [(s/valid? :company.employees/employees employees)

(s/valid? :company.employees/name by-name)]}
(first (filter #(= (:name %1) by-name) employees)))

A more convenient way is to define those conditions separately from the
function using clojure.spec/fdef:

(s/fdef find-by-name
:args (:by-name :company.employees/name))

Those checks come with a significant performance penalty and are there-
fore deactivated by default. They can be activated by explicitly instrument-
ing a function:

> (require '[company.employees])
> (require '[clojure.spec.alpha :as s])
> (require '[clojure.spec.test.alpha :as st])

> (st/instrument 'company.core/find-by-name)
> (find-by-name company.employees/employees "Dilbert")
{:name "Dilbert", :age 42, :job "Engineer", :salary 120000}

> (find-by-name company.employees/employees :dilbert)
Execution error - invalid arguments to company.core/find-by-
name at ...
:dilbert - failed: string? at: [:by-name] spec: :company.employees/name

63

This should only be used during development and testing.
Creating specs provides much information that can be used for generating
test data. Consider the function introduce (src/company/employees.clj)
and its spec:

(defn introduce [employee]
(str "Hello, my name is "

(:name employee)
", I'm "
(:age employee)
" years old."))

(s/fdef introduce :args (s/cat :employee :company.employees/employee))

> (st/instrument 'company.core/introduce)
> (introduce (find-by-name company.employees/employees "Dilbert"))
"Hello, my name is Dilbert, I'm 42 years old."

Using the :ret keyword, the return value of the function can be checked
if it contains the static portion of the text:

(s/fdef introduce
:args (s/cat :employee :company.employees/employee)
:ret (s/and string?

(partial re-find #"Hello, my name is ")
(partial re-find #"I'm ")
(partial re-find #" years old.")))

The function must be instrumented for testing:

> (require '[clojure.spec.test.alpha :as stest])
> (stest/check 'company.core/introduce)
({:spec #object[clojure.spec.alpha$fspec_impl$reify__2524 0x58782ed6
"clojure.spec.alpha$fspec_impl$reify__2524@58782ed6"],
:clojure.spec.test.check/ret {:result true, :pass? true, :num-

tests 1000,
:time-elapsed-ms 431, :seed 1622747931886},

:sym company.core/introduce})

The :fn keyword can be used to provide a function for performing ad-
ditional checks. The employee-exists function gets both the arguments
(args) and the return value (ret) of the instrumented function as argu-
ments. The employee’s name is extracted, and it is checked, if that name
is contained in the return value:

64

(defn employee-exists [{:keys [args ret]}]
(let [employee (-> args :employee :name)]
(not (neg? (.indexOf ret employee)))))

(s/fdef introduce
:args (s/cat :employee :company.employees/employee)
:ret (s/and string?

(partial re-find #"Hello, my name is ")
(partial re-find #"I'm ")
(partial re-find #" years old."))

:fn employee-exists)

When dealing with keyword specs, double-check that there are no typos.
Misnamed keywords won’t be validated by a spec.

16 Interoperating with Java

Since Clojure is based on the Java Virtual Machine, Java code can be used
directly from Clojure using its interoperation facilities (interop). The Clo-
jure REPL is also a great tool to explore Java APIs.
Java offers the class java.io.File, which abstracts the concept of a
file. The JavaDoc shows that there is a constructor expecting a path-
name. A file can, thus, created as follows (note the additional dot after
java.io.File).

> (def employees-file (java.io.File. "employees.txt"))

Methods of the created File instance can be called with a dot in front of
the method name:

> (.exists employees-file)
false
> (.getAbsolutePath employees-file)
"/home/patrick/employees.txt"

Some classes, such as java.awt.Rectangle, offer public fields, which can
be accessed by prepending a dot and a minus:

65

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

> (def rect (java.awt.Rectangle. 0 0 15 25))
> (.-width rect)
15
> (.-height rect)
25

When refering to a class repeatedly, typing out the fully qualified class
name becomes tedious. Therefore, classes can be imported. Use import
from the REPL:

> (import java.io.File)

Or :import of ns within a .clj source file:

(:ns company.core
(:import java.io.File))

Once imported, File can be used as follows:

(def backup (File. "backup.txt"))

To import multiple classes from the same package, just put them into a list
separated by space (which must be quoted in the REPL):

> (import '(java.io File InputStream))

And without quotation from a .clj source file:

(:ns company.core
(:import (java.io File InputStream))

Classes from the package java.lang are automatically imported.
Static fields and methods can be accessed using a forward slash:

> (def dump (File. (str "data" File/separator "dump.txt")))
> (.getAbsolutePath dump)
"/home/patrick/data/dump.txt"

> (def temp (File/createTempFile "employees" ".txt"))
> (.getAbsolutePath temp)
"/tmp/employees6472489788961466629.txt"

66

Java libraries can be used just like Clojure libraries. Let’s import
the Gson library for reading and writing JSON to the company project
(project.clj):

:dependencies [[org.clojure/clojure "1.10.1"]
[org.clojure/test.check "1.1.0"]
[com.google.code.gson/gson "2.8.0"]] ; new import

The library can be used—and explored—from the REPL:

$ lein repl

First, the Gson class needs to be imported (here, tab completion comes in
handy to figure out the package structure):

> (import com.google.gson.Gson)

Second, a Gson object needs to be initialized:

> (def gson-obj (Gson.))

Now Clojure values can be turned into JSON strings:

> (.toJson gson-obj 42)
"42"

> (.toJson gson-obj [7 14 21 28])
"[7,14,21,28]"

> (def employees [{:name "Dilbert" :age 42 :job "Engineer" :salary 120000}
{:name "Alice" :age 37 :job "Engineer" :salary 115000}

{:name "Wally" :age 47 :job "Engineer" :salary 130000}])
> (.toJson gson-obj employees)
"[{\":name\":\"Dilbert\",\":age\":42,\":job\":\"Engineer\",\":salary\":120000},
{\":name\":\"Alice\",\":age\":37,\":job\":\"Engineer\",\":salary\":115000},
{\":name\":\"Wally\",\":age\":47,\":job\":\"Engineer\",\":salary\":130000}]"

Even though interoperability between Clojure and Java works almost seam-
lessly, a few differences have to be considered.
First, a Java method is not a function, and, thus, cannot be bound like a
Clojure functon to a symbol:

67

> (.count [1 2 3])
3
> (def count-method .count)
Syntax error compiling at (/tmp/form-init2910488673606898294.clj:1:1).
Unable to resolve symbol: .count in this context

However, it is possible to turn a method into a function using memfn:

> (def count-method (memfn count))
> (count-method [1 2 3])
3

This is helpful when dealing with higher-order functions, such as map:

> (def files [(File. "source.txt") (File. "target.txt")])
> (map (memfn exists) files)
(false false)

Second, many Java objects are mutable, which might be surprising after
dealing with Clojure’s immutable collections:

> (import java.util.Vector)
> (def employees (java.util.Vector.))
> (.addElement employees "Dilbert")
> (.addElement employees "Alice")
> (.addElement employees "Wally")
> employees
["Dilbert" "Alice" "Wally"]

Rather than returning a vector with the element added, nil is returned,
and the element added as a side effect. Use Clojure’s collections instead,
unless mutability is needed.

17 Threads, Promises, and Futures

Threads are a very powerful, but also dangerous tool, especially when used
in the context of mutable values. At runtime, a Clojure program is a Java
program, and every Java program runs a single main thread. Additional
threads can be started by using Java’s Thread class:

68

> (defn say-hello [] (println "Hello!"))
> (def thread (Thread. say-hello))
> (.start thread)
Hello!

A Clojure function say-hello is defined, and a thread is created based on
that function (which is a Runnable). Once the thread is started, the function
is executed.
The effect of multiple threads running can be shown by putting one thread
to sleep for a while:

> (defn say-hello []
(println "Hello, once!")
(Thread/sleep 1000)
(println "Hello, again!"))

> (def thread (Thread. say-hello))
> (.start thread)
Hello, once!
;; waiting for a second, the REPL is not blocking...
Hello, again!

When multiple threads are running, program execution gets non-
deterministic, unless control mechanisms are put in place. Let’s consider
these two functions working on a shared variable:

(def employee-of-the-month "Dilbert")
(defn make-alice-eom []

(def employee-of-the-month "Alice"))
(defn make-wally-eom []

(def employee-of-the-month "Wally"))

The behaviour is completely deterministic when the functions are executed
one after another:

> (make-alice-eom)
> (make-wally-eom)
employee-of-the-month
"Wally"

However, when the functions are executed in separate threads, the result
depends on mere chance:

69

(defn race-condition []
(let [thread-alice (Thread. make-alice-eom)

thread-wally (Thread. make-wally-eom)]
(.start thread-alice)
(.start thread-wally)))

> (race-condition)
> employee-of-the-month
"Wally"

Even though the thread started later will usually finish later in this exam-
ple, no such guarantee can be given. Not modifying shared variables and
using immutable data structures helps to avoid such race conditions. No-
tice that dynamic vars live in thread local storage, and, thus, can be used
safely from different threads.
Some threads do their work in the background, but we need to make
sure that they can finish their work before the main thread finishes using
join:

(defn delete-cache []
(.delete (java.io.File. "/tmp/cache.txt")))

> (def delete-thread (Thread. delete-cache))
> (.start delete-thread)
> (.join delete-thread)

join waits until the thread is finished and then returns nil.
It is often useful to get back a result from a computation performed in a
thread. A promise is some kind of a value trap that will deliver a value
when demanded. A promise is created using the promise function:

> (def the-result (promise))

A value is delivered using the deliver function:

> (deliver the-result "Dilbert")

The value then can be grabbed using deref or using @:

> (println "The result is:" (deref the-result))
The result is: Dilbert
> (println "The result is:" @the-result)
The result is: Dilbert

70

Once set, the value of a promise can’t be changed again; the value trap
was shut!
Promises are useful in the context of multiple threads. Consider this em-
ployee database, to which two functions shall be applied concurrently:

(def employees [{:name "Dilbert" :age 42 :salary 120000}
{:name "Ashok" :age 27 :salary 18000}
{:name "Topper" :age 37 :salary 250000}])

(defn average-age [employees]
(float (/ (reduce + (map :age employees)) (count employees))))

(defn average-salary [employees]
(float (/ (reduce + (map :salary employees)) (count employees))))

The two calculations can be executed in separate threads and deliver their
results using a promise. The parallel processing (given multiple CPUs)
might come in handy as the database grows:

(defn perform-calculations [employees]
(let [age-prom (promise)

pay-prom (promise)]
(.start (Thread. #(deliver age-prom (average-age employees))))

(.start (Thread. #(deliver pay-prom (average-salary employees))))
(println "Average age:" @age-prom)
(println "Average salary:" @pay-prom)))

> (perform-calculations employees)
Average age: 35.333332
Average salary: 129333.336

No join is needed, since the threads are done after delivering their val-
ues.
This whole process can be simplified by using a future, which is a promise
that brings its own thread along:

(defn perform-calculations [employees]
(let [age-future (future (average-age employees))

pay-future (future (average-salary employees))]
(println "Average age:" @age-future)
(println "Average salary:" @pay-future)))

71

> (perform-calculations employees)
Average age: 35.333332
Average salary: 129333.336

A function call wrapped using future will be executed in its own thread
and deliver its return value to be grabbed using deref or @.
In general, prefer futures over promises, because they don’t require
dealign with threads directly. For more fine-grained control, consider
using Java’s thread-pool facilities (java.util.concurrent.Executors).
In practice, it is often a sensible approach to provide a timeout (here: 500
milliseconds) and a fallback value (here: the keyword :timeout with a
promise):

(deref calc-prom 500 :timeout)

pmap is a function that, from the outside, works like map, but, on the inside,
uses multiple threads to process the elements in parallel (hence the name;
parallelmap). Parallel processing comes with some performance overhead
and should only be used if it brings a net performance win.

18 State

The less mutable state a program has, the easier it is to understand. How-
ever, modeling things that do change over time requires state.
Consider this employee database with a hire to add new employees to it:

(def employees [{:name "Dilbert" :job "Engineer" :salary 120000}
{:name "Alice" :job "Engineer" :salary 110000}

{:name "Dogbert" :job "Consultant" :salary 250000}])

(defn hire [employee]
(conj employees employee))

> (hire {:name "Wally" :job "Engineer" :salary 130000})
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}]

> employees

72

[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}]

The function produces a new list with the additional employee, but the
original list of employees remains the same.
The state of the employees vector could be changed using def (notice the
exclamation mark in hire! to denote the side-effect):

(defn hire! [employee]
(def employees (conj employees employee)))

> (hire! {:name "Wally" :job "Engineer" :salary 130000})
> employees
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}]

The employees vector was updated, however, not in a thread-safe manner
(see previous chapter).
Thread-safe state change can be achieved by using atoms, which wraps
the value to be changed:

(def employees
(atom [{:name "Dilbert" :job "Engineer" :salary 120000}

{:name "Alice" :job "Engineer" :salary 110000}
{:name "Dogbert" :job "Consultant" :salary 250000}]))

(defn hire! [employee]
(swap! employees #(conj % employee)))

The atom function wraps the employees vector, which then can be updated
in a thread-safe manner using the swap!, which takes two arguments: first,
the atom to be updated (employees), second, a function to be applied to
produce the new value to be stored in the atom. Note that employees is no
longer a vector, but a vector wrapped in an atom.
The employees database can now be updated thread-safely in place:

> (hire! {:name "Wally" :job "Engineer" :salary 130000})

73

To access the value wrapped in the atom, use deref or @ (as with promises
and futures):

> (deref employees)
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}] ; new entry

> @employees
[{:name "Dilbert", :job "Engineer", :salary 120000}
{:name "Alice", :job "Engineer", :salary 110000}
{:name "Dogbert", :job "Consultant", :salary 250000}
{:name "Wally", :job "Engineer", :salary 130000}] ; new entry

Any value can be wrapped in an atom, consider this counter:

(def counter (atom 0))

(defn increase-counter! [amount]
(swap! counter + amount))

The swap! function applies the + function to the counter atom. The amount
value is handed over to the + function by swap!:

> (increase-counter! 1)
> @counter
1
> (increase-counter! 5)
> @counter
6

When an atom is updated using swap!, it performs the following steps to
guarantee thread safety:

1. The current value of the atom is read.
2. The update function is called to produce the new value.
3. The current value of the atom is read again, and compared to the

value read previously.
• If the value did not change in the meantime, the value is updated.
• If the value did change in the meantime, the whole process is
repeated from the first step.

74

Note that the update function can be called multiple times for a single
update! Therefore it’s important, that the update function has no side
effects!
Sometimes, there are multiple values that need to be synchronized. Con-
sider this empty employee database, for which also the total number of
employees, and the total salary needs to be kept track of:

(def employees (atom []))

(def total-payroll (atom 0))

(def total-staff (atom 0))

The hire! function tries to keep track of those three atoms:

(defn hire! [employee]
(swap! employees #(conj % employee))
(swap! total-payroll #(+ (:salary employee)))
(swap! total-staff inc))

> (hire! {:name "Dogbert" :salary 250000})
> (hire! {:name "Dilbert" :salary 120000})

> @employees
[{:name "Dogbert", :salary 250000}
{:name "Dilbert", :salary 120000}]

> @total-payroll
370000
> @total-staff
2

This seems to work fine, but the atoms are out of sync between the calls
to swap!:

(defn hire! [employee]
(swap! employees #(conj % employee))
; out of sync
(swap! total-payroll #(+ (:salary employee)))
; out of sync
(swap! total-staff inc))

75

The three values must be updated either all together or not at all, like an
atomic database transaction.
Such groups of atoms can be managed as refs, which are a lot like atoms,
but use different functions. First, ref is used instead of atom for the wrap-
ping:

(def employees (ref []))

(def total-payroll (ref 0))

(def total-staff (ref 0))

Second, alter is used instread of swap!. And, third, all the updates belong-
ing to the same transaction are grouped together using dosync:

(defn hire! [employee]
(dosync
(alter employees #(conj % employee))
(alter total-payroll #(+ % (:salary employee)))
(alter total-staff inc)))

Now all the values are kept perfectly in sync. When read, all the three
values being altered within the same call to dosync will either yield all the
old or all the new values:

> (hire! {:name "Catbert" :salary 180000})
> (hire! {:name "Alice" :salary 120000})
> @employees
[{:name "Catbert", :salary 180000}
{:name "Alice", :salary 120000}]

> @total-payroll
300000
> @total-staff
2

If the old value of a ref is not of interest, use ref-set instead of alter,
providing just the new value.
Sometimes, modifications to values should be accompanied by some side
effects, say, writing changes to a file when new items are added. Consider
the function notify-new-hire together with the old version of hire! work-
ing on a single atom. Every time a new employee is hired, notify-new-hire
is called:

76

(def employees (atom []))

(defn notify-new-hire [employee]
(println "Watch out for" (:name employee)))

(defn hire! [employee]
(notify-new-hire employee)
(swap! employees #(conj % employee)))

> (hire! {:name "Alice" :salary 120000})
Watch out for Alice

This works fine—until an update has to be retried because the values have
been modified in between. In this case, notify-new-hire would be exe-
cuted multiple times, which is not wanted.
An agent is an atom that can be combined with side-effects. Instead of
calling swap!, the function send is used to both update the agent, and to
produce the side effect:

(def employees (agent []))

(defn notify-new-hire [employee]
(println "Watch out for" (:name employee)))

(defn hire! [employee]
(send employees

(fn [old-employees]
(notify-new-hire employee)
(conj old-employees employee))))

Notice that an anonymous function (fn) has been used instead of a lambda
expression. Every agent has its own queue of functions. When hire! gets
called, the call to the anonymous function gets queued up. send worls
asynchronously, i.e. it returns immediately after the function was put into
the queue. The agent pops an outstanding function call from the queue
and executes it. The side effect (calling notify-new-hire) and the update
are then performed:

> (hire! {:name "Ratbert" :salary 0})
Watch out for Ratbert
> (hire! {:name "Alice" :salary 115000})
Watch out for Alice
> @employees

77

[{:name "Ratbert", :salary 0}
{:name "Alice", :salary 115000}]

Since agents perform their updates in their own thread, exceptions caused
by a failed update are not reported immediately. Consider this agent for
tracking donations:

(def donations (agent 0))

(defn praise-donor [amount donor]
(println "Praise" donor "for donating" amount "coins!"))

(defn donate! [amount donor]
(send donations

(fn [old-donations]
(praise-donor amount donor)
(+ old-donations amount))))

> (donate! 100 "John")
Praise John for donating 100 coins!
> @donations
0

If the arguments amount (integer) and donor (string) are swapped, the op-
eration cannot be completed:

> (donate! "Jane" 200)
Praise 200 for donating Jane coins!
> @donations
100

The message from the side effect looks suspicious, and the donations
haven’t been increased. But the error can go unnoticed until the next
update is done:

> (donate! 300 "Jim")
Execution error (ClassCastException) at user/donate!$fn (REPL:5).
java.lang.String cannot be cast to java.lang.Number

In this case, the agent has to be re-started using agent-restart. The error
condition can be detected using agent-error:

78

(if (agent-error donations)
(restart-agent donations 0 :clear-actions true))

However, the value managed by the agent is reset to 0 in the process.
Make sure to call shutdown-agents at the end of the -main function of your
program, so that the agent’s threads get properly terminated:

(defn -main []
;; working with agents
(shutdown-agents))

Use the following guidelines to pick the proper mechanism for your state
changes:

1. If a value remains mostly stable, put it into a var.
2. If a number of values need to be updated together without side effects,

use refs.
3. If the update of values is to be accompanied by side effects, or if the

update function takes a lot of time, use an agent.
4. If you have a single value that changes without additional side effects,

us an atom.

Instead of using refs, the values to be updated could also be grouped into
a single data structure, which is then wrapped in an atom:

(def payroll (atom {:total-staff 0
:total-payroll 0
:employees []}))

(defn hire! [employee]
(swap! payroll

(fn [old]
(assoc old

:total-staff (inc (:total-staff old))
:total-payroll (+ (:total-payroll old) (:salary employee))

:employees (conj (:employees old) employee)))))

> (hire! {:name "Alice" :salary 115000})
> (hire! {:name "Dogbert" :salary 250000})
> @payroll
{:total-staff 2,
:total-payroll 365000,
:employees [{:name "Alice", :salary 115000}

{:name "Dogbert", :salary 250000}]}

79

There are various functions in Clojure making use of atoms, e.g. memoize,
which wraps a function with a cache that maps the arguments to the com-
puted return values. Consider this Fibonacci function:

(defn fib [n]
(println "Computing Fibonacci number for" n)
(cond
(= n 0) 1
(= n 1) 1
(> n 1) (+ (fib (- n 1)) (fib (- n 2)))
:else (throw (ex-info "fib(n) only defined for n >= 0"))))

> (fib 1)
Computing Fibonacci number for 1
1

> (fib 2)
Computing Fibonacci number for 2
Computing Fibonacci number for 1
Computing Fibonacci number for 0
2

> (fib 3)
Computing Fibonacci number for 4
Computing Fibonacci number for 3
Computing Fibonacci number for 2
Computing Fibonacci number for 1
Computing Fibonacci number for 0
Computing Fibonacci number for 1
Computing Fibonacci number for 2
Computing Fibonacci number for 1
Computing Fibonacci number for 0
5

The function is called with the same argument multiple times, which slows
down the computation for bigger n.
memoize wraps the function so that it caches its return values by argu-
ment:

> (def fib (memoize fib))
> (fib 1)
Computing Fibonacci number for 1
1

80

> (fib 2)
Computing Fibonacci number for 2
Computing Fibonacci number for 0
2
> (fib 3)
Computing Fibonacci number for 3
3
> (fib 4)
Computing Fibonacci number for 4
5
> (fib 10)
Computing Fibonacci number for 10
Computing Fibonacci number for 9
Computing Fibonacci number for 8
Computing Fibonacci number for 7
Computing Fibonacci number for 6
Computing Fibonacci number for 5
89

The function returned by memoize has its own atom, which serves as a
cache for the results having been computed.

19 Read and Eval

Clojure’s syntax might look strange on the first sight, but is crucial for how
the language works. There are two critical functions in Clojure—read and
eval—that relate to Clojure’s syntax.
Clojure code looks a lot like data literals:

'(dilbert pointy-haired-boss [alice]
(wally ratbert
(dogbert "some characters from dilbert...")))

Just replace the Dilbert character names by some other symbols, and al-
most have Clojure code:

'(defn say-hello [friendly]
(if friendly
(println "Hello, my dear!")))

Just remove the quote, and you have an executable Clojure function.

81

(defn say-hello [friendly]
(if friendly
(println "Hello, my dear!")))

> (say-hello true)
Hello, my dear!

Clojure code is just Clojure data, and Clojure function calls are lists. Clo-
jure is homoiconic, which means, code and data are the same thing.
The read function reads data, by default from the REPL (stdin), until [Re-
turn] is entered:

> (read)
1
1
> (read)
"hello"
"hello"
> (read)
(defn say-hi []

(println "Hi!"))
(defn say-hi [] (println "Hi!"))

The read function just returns returns the expression it read.
read-string reads a string and turns it into a Clojure value (notice the
escaped double quotes around the text Hi):

> (read-string "(defn say-hi [] (println \"Hi!\"))"
(defn say-hi [] (println "Hi!"))

Once data has been read (from whatever source), it can be evaluated as
Clojure code using the eval function:

> (def some-function-call '(+ 2 3))
> (eval some-function-call)
5

The code in the quoted list (+ 2 3) is compiled and run as Clojure code.
Some data types, like numbers, strings, and keywords, just evaluate to
themselves:

82

> (eval 42)
42
> (eval "Dilbert")
"Dilbert"
> (eval :salary)
:salary

A Clojure function consists of different data structures—lists, vectors—
which can all be made up as data, and then be combined to a list, which
makes up an actual function that can be evaluated:

> (def function-name 'say-hi)
> (def args (vector 'to-whom))
> (def output (list 'println "Hi," 'to-whom))
> (def whole-function (list 'defn function-name args output))

> (eval whole-function) ; creates function say-hi
> (say-hi "Joe")
Hi, Joe

The two functions read and eval combined can be used to read Clojure
code from an external source, say, user-specific settings from a config file.
No extra language or syntax has to be made up: The full power of Clojure
is supported out of the box.
It’s also possible to define a very simple REPL using read and eval:

(defn my-repl []
(loop []
(println (eval (read)))
(recur)))

> (my-repl)
(println "Hello")
Hello
(println (+ 3 2))
5
; Hit Ctrl-D to finish

A toy version of the function eval can be implemented as an ordinary Clo-
jure function:

83

(defn my-eval [expr]
(cond
(string? expr) expr
(keyword? expr) expr
(number? expr) expr
(symbol? expr) (my-eval-symbol expr)
(vector? expr) (my-eval-vector expr)
(list? expr) (my-eval-list expr)
:else :unknown-expression))

Strings, keywords, and numbers just evaluate to themselves, so the expr
is just returned.
Symbols need to be looked up in the current environment:

(defn my-eval-symbol [expr]
(.get (ns-resolve *ns* expr)))

Vectors needs to be processed recursively:

(defn my-eval-vector [expr]
(vec (map my-eval expr)))

And lists, which can be function calls, need to be separated into the func-
tion name f and the argument list args, which are then applied using ap-
ply:

(defn my-eval-list [expr]
(let [evaled-items (map my-eval expr)

f (first evaled-items)
args (rest evaled-items)]

(apply f args)))

> (my-eval '(println "Hello"))
Hello

A real eval function compiles the given expression to Clojure code, which
then can be executed a lot faster. Therefore, eval is not to be used as
an everyday tool, but only for special cases: it is just too powerful and
therefore too dangerous. It also is slower than regular Clojure code, due
to the additional compilation step.
Reading in code from arbitrary sources can also be very dangerous. Use
the read function from clojure.edn if you don’t trust the source. But read
is also not a tool for everyday use, so only use it if really needed.

84

20 Macros

Code is both useful and painful: it solves problems, but also creates new
problems of its own. Writing more expressive code leads to less code. The
usefulnes of code is kept, but the pain is reduced; less code, less pain.
Macros are a powerful tool in LISP-like languages (such as Clojure) to
automate some part of code writing.
Consider a rating system in which numbers are interpreted in three cate-
gories:

• positive numbers: good
• zero: indifferent
• negative numbers: bad

This rating system could be used to print a depiction of the rating in En-
glish:

(defn print-rating [rating]
(cond
(pos? rating) (println "good")
(zero? rating) (println "indifferent")
:else (println "bad")))

> (print-rating 3)
good
> (print-rating 0)
indifferent
> (print-rating -5)
bad

Another implementation could be required to turn the rating number into
a keyword for further programmatic processing:

(defn evaluate-rating [rating]
(cond
(pos? rating) :good
(zero? rating) :indifferent
:else :bad))

> (evaluate-rating 3)
:good
> (evaluate-rating 0)
:indifferent

85

> (evaluate-rating -1)
:bad

Structurally, the two usages of cond are identical, they just have different
consequences. The commonalities of the two functions could be factored
out into a new function, arithmetic-if:

(defn arithmetic-if [n pos zero neg]
(cond
(pos? n) pos
(zero? n) zero
(neg? n) neg))

The function accepts both the number n to be categorized, and the three
possible consequences of a match: pos, zero, and neg.
This works great, if a value has to be returned, as in evaluate-rating,
which can be refactored in terms of arithmetic-if:

(defn evaluate-rating [rating]
(arithmetic-if rating :good :indifferent :bad))

> (evaluate-rating 5)
:good
> (evaluate-rating 0)
:indifferent
> (evaluate-rating -7)
:bad

The same refactoring applied to print-rating, however, produces surpris-
ing results:

(defn print-rating [rating]
(arithmetic-if rating

(println "good")
(println "indifferent")
(println "bad")))

> (print-rating 4)
good
indifferent
bad
> (print-rating 0)

86

good
indifferent
bad
> (print-rating -2)
good
indifferent
bad

All three println function calls are executed! When arithmetic-if is in-
voked, the arguments get evaluated. This is unproblematic for n, which is
a number and, therefore, evaluates to itself. Function calls like println,
however, are evaluated by their actual execution.
If arithmetic-if expected functions as its last three parameters, print-
rating could be implemented based on the former:

(defn arithmetic-if [n pos-f zero-f neg-f]
(cond
(pos? n) (pos-f)
(zero? n) (zero-f)
(neg? n) (neg-f)))

(defn print-rating [rating]
(arithmetic-if rating

#(println "good")
#(println "indifferent")
#(println "bad")))

> (print-rating 4)
good
> (print-rating 0)
indifferent
> (print-rating -2)
bad

However, the implementation of evaluate-rating now becomes more com-
plicated, thwarting the gains made using arithmetic-if as an abstrac-
tion:

(defn evaluate-rating [rating]
(arithmetic-if rating

#(identity :good)
#(identity :indifferent)
#(identity :bad)))

87

> (evaluate-rating 7)
:good
> (evaluate-rating 0)
:indifferent
> (evaluate-rating -5)
:bad

What arithmetic-if is really supposed to do is to transform code written
like this:

;; evaluate-rating
(arithmetic-if rating

:good
:indifferent
:bad)

;; print-rating
(arithmetic-if rating

(println "good")
(println "indifferent")
(println "bad"))

Into code being executed like this:

;; evaluate-rating
(cond

(pos? rating) :good
(zero? rating) :indifferent
:else :bad)

;; print-rating
(cond

(pos? rating) (println "good")
(zero? rating) (println "indifferent")
:else (println "bad"))

Since Clojure code is just data, this transformation can be made using a
function building up another function:

(defn arithmetic-if-to-cond [n pos zero neg]
(list 'cond (list 'pos? n) pos

(list 'zero? n) zero
:else neg))

88

Fed with parameters protected with a single quote from evaluation, this
function produces the desired cond forms:

> (arithmetic-if-to-cond 'rating
'(println "good")
'(println "indifferent")
'(println "bad"))

(cond
(pos? rating) (println "good")
(zero? rating) (println "indifferent")
:else (println "bad"))

> (arithmetic-if-to-cond 'rating
':good
':indifferent
':bad)

(cond
(pos? rating) :good
(zero? rating) :indifferent
:else :bad)

However, those cond forms are still just data, and not compiled code that
actually can be used. Here, macros come into play, which are defined using
defmacro:

(defmacro arithmetic-if [n pos zero neg]
(list 'cond (list 'pos? n) pos

(list 'zero? n) zero
:else neg))

print-rating can now be implemented without using lambdas or quota-
tion:

(defn print-rating [rating]
(arithmetic-if rating

(println "good")
(println "indifferent")
(println "bad")))

> (print-rating 4)
good
> (print-rating 0)
indifferent
> (print-rating -2)
bad

89

Which is also the case for evaluate-rating:

(defn evaluate-rating [rating]
(arithmetic-if rating

:good
:indifferent
:bad))

> (evaluate-rating 7)
:good
> (evaluate-rating 0)
:indifferent
> (evaluate-rating -5)
:bad

The Clojure compilation process works as follows: First, source code is
read, i.e. turned into data structures (lists, vectors, etc.). Second, macro
expansion is performed, modifying those data structures. Third, those
modified data structures with expanded macros are turned into byte code
by the actual compilation step.
Unlike C, Clojure macros work on the code as a data structures, not on
code as mere program text, which makes Clojure macros more powerful
and less dangerous than C macros.
The arithmetic-if macro from above requires a lot of quotes to prevent
the expressions from being evaluated. Clojure provides a templating sys-
tem called syntax quoting, which makes macros more readable:

(defmacro arithmetic-if [n pos zero neg]
`(cond

(pos? ~n) ~pos
(zero? ~n) ~zero
:else ~neg))

Syntax quoting starts with a backquote (before cond). Within the quoted
form, expressions from the outside are referred to using a tilde prefix,
which prevents them from being evalauted when the macro is expanded
before compilation.
There are a few other syntax specialities when it comes to using macros
with syntax quoting. Consider the conjunction macro, which works like
and—“conjunction” just being a fancy word for “and”:

90

(defmacro conjunction
([] true)
([x] x)
([x & next]
`(let [current# ~x]

(if current# (conjunction ~@next) current#))))

The macro works as follows:

1. For an empty list of conditions, true is returned (first base case).
2. For a single condition, the evaluated condition is returned (second

base case).
3. For a list of more than one condition (general case), the following

logic is applied:
1. The first condition is bound to current#; the suffix # being used

to guarantee a unique symbol.
2. If the current# condition evaluates to true, the conjunction

macro is “called” recursively with the next condition in the list.
This next symbol is prefixed both by ~ for syntax quoting, and an
@—more of which later.

3. Otherwise, if current# evaluates to false, current# itself is re-
turned, which terminates the recursive process.

In order to understand the @ prefix, consider this alternative implementa-
tion of defn as a macro called my-defn:

(defmacro my-defn [name args & body]
`(def ~name (fn ~args ~body)))

A function to add two numbers is created using my-defn:

(my-defn add-two-numbers [a b] (+ a b))

Unfortunately, the function won’t work:

> (add-two-numbers 3 4)
Execution error (ClassCastException) at user/add-two-numbers (REPL:1).
java.lang.Long cannot be cast to clojure.lang.IFn

Let’s see what code the macro actually generated using macroexpand-1,
the first tool to be grabbed if macros not behave as intended:

91

> (macroexpand-1 '(my-defn add-two-numbers [a b] (+ a b)))
(def add-two-numbers (clojure.core/fn [a b] ((+ a b))))

Notice the ((+ a b)) expression being wrapped in two sets of parentheses.
Expression was created by ~body in the macro template, which is itself a
collection because it was declared as a variadic parameter (& body). Thus,
body is a list of one element containing another list: ((+ a b)).
The @ prefix makes sure that the collection is expanded before being writ-
ten into the code. Here’s a working version of my-defn with this expan-
sion:

(defmacro my-defn [name args & body]
`(def ~name (fn ~args ~@body)))

This creates the working code as intended:

> (macroexpand-1 '(my-defn add-two-numbers [a b] (+ a b)))
(def add-two-numbers (clojure.core/fn [a b] (+ a b)))

> (my-defn add-two-numbers [a b] (+ a b))
> (add-two-numbers 1 2)
3

Notice that macros are processed in a two-step process: First, they are
expanded, second, the generated code is evaluated:

(defmacro two-step-process []
(println "This code is run upon macro expansion.")
`(fn [] (println "This code is run with the generated code.")))

> (def generated-code (two-step-process))
This code is run upon macro expansion.

> (generated-code)
This code is run with the generated code.

Also notice that macros do not exist at runtime, so their names can’t be
found in a stack trace. Macros also can’t be used like a function given
to a higher-order function such as filter or map. Only use macros if the
code to be expressed is at odds with Clojure’s evaluation rules. Stick to
functions otherwise.

92

	Hello, Clojure
	Vectors and Lists
	Maps, Keywords, and Sets
	Logic
	More Capable Functions
	Functional Things
	Let
	Def, Symbols, and Vars
	Namespaces
	Sequences
	Lazy Sequences
	Destructuring
	Records and Protocols
	Tests
	Spec
	Interoperating with Java
	Threads, Promises, and Futures
	State
	Read and Eval
	Macros

