
Learning Rust
Personal Summary

Patrick Bucher

2024-03-12

Contents

1 Getting Started 5
1.1 Setup . 5
1.2 HelloWorld (manually) . 6
1.3 HelloWorld (using Cargo) . 6

2 Guessing Game 8
2.1 User Input . 8
2.2 RandomNumbers . 8
2.3 Compare Numbers . 9
2.4 Loops and User Input . 9

3 Common Programming Concepts 10
3.1 Variables and Constants . 10
3.2 Data Types . 11

3.2.1 Primitive Types . 11
3.2.2 Compound Types . 13

3.3 Functions . 14
3.4 Comments . 15
3.5 Control Flow . 15

3.5.1 Conditional Execution . 15
3.5.2 Loops . 15

4 Ownership 16
4.1 Stack and Heap . 17
4.2 Moving . 17

4.2.1 Move on Function Call . 18
4.3 Borrowing with References . 19

4.3.1 Data Races . 19

1

4.3.2 Dangling Pointers . 20
4.4 String Slices . 21

5 Structs 22
5.1 Tuple Structs . 25
5.2 Debug Output . 25
5.3 Methods . 26

6 Enumerations and Pattern Matching 28
6.1 The Option<T> Enumeration . 30
6.2 PatternMatching . 31

7 Modules 34
7.1 Hierarchy: Logical and Physical . 35
7.2 Visibility: Private and Public . 37
7.3 Using External Crates andModules . 38

8 Common Collections 40
8.1 Vector . 41
8.2 String . 43
8.3 HashMap . 44

9 Error Handling 47
9.1 Unrecoverable Errors: panic! . 47
9.2 Recoverable Errors: Result<T, E> . 48

9.2.1 unwrap and expect . 49
9.2.2 Error Propagation . 50

9.3 Validation Types . 51
9.4 Using panic! or Result<T, E>? . 52

10 Traits, Generics and Lifetimes 53
10.1 Traits . 53

10.1.1 Default Implementations . 54
10.2 Generics . 55

10.2.1 Generic Structs . 55
10.2.2 Generic Enums . 57
10.2.3 Generic Functions . 57
10.2.4 Trait Bounds . 59
10.2.5 Generic Methods . 60
10.2.6 Conditionally ImplementMethods . 62
10.2.7 Compilation and Performance . 63

10.3 Lifetimes . 64
10.3.1 Dangling References . 64
10.3.2 Lifetimes in Functions . 65
10.3.3 Lifetime Annotations in Structs . 67

2

10.3.4 Lifetime Elision . 68
10.3.5 Static Lifetime . 68
10.3.6 Generics, Traits, and Lifetimes Combined 69

11 Writing Automated Tests 70
11.1 Assertions . 71
11.2 Custom Failure Messages . 73
11.3 Testing for Panics . 75
11.4 Test Execution . 76

11.4.1 Arguments . 76
11.4.2 Parallel Execution . 76
11.4.3 Output . 77
11.4.4 Test Selection . 77
11.4.5 Ignoring Tests . 78

11.5 Test Organization . 79
11.5.1 Unit Tests . 79
11.5.2 Integration Tests . 80
11.5.3 Binary Crates . 82

12 An I/O Project: Building a Command Line Program 83
12.1 Command Line Arguments . 83

12.1.1 Extracting the Parsing Logic . 84
12.2 Reading and Processing a File . 85
12.3 Error Handling . 85

12.3.1 User-Friendly Error Messages . 86
12.3.2 Error Message Instead of Panic . 86

12.4 Refactoring . 87
12.5 Test-Driven Development . 89

12.5.1 Failing Test Case . 90
12.5.2 Dummy Implementation . 90
12.5.3 Real Implementation . 90

12.6 Environment Variable for Case Insensitive Search 91
12.6.1 Additional Option . 92
12.6.2 Printing to Standard Error . 94

13 Functional Language Features 95
13.1 Closures . 95

13.1.1 Closure Syntax . 95
13.1.2 Closure Semantics . 96
13.1.3 Use-Case: Memoization . 97
13.1.4 Fixing the Cache Using aMap . 100

13.2 Iterators . 101
13.2.1 The Iterator Trait and the nextMethod 102
13.2.2 Consuming Adaptors . 102

3

13.2.3 Iterator Adaptors . 103
13.2.4 Filtering . 103
13.2.5 Implementing an Iterator . 103

13.3 Improvements to minigrep . 105
13.3.1 Owning Iterator instead of clone . 105
13.3.2 Iterator vs. Explicit Loop . 106

14 Cargo and Crates.io 107
14.1 Customizing Builds . 108
14.2 Publishing Crates . 108

14.2.1 The mememo Crate . 109
14.2.2 Documentation Comments . 110
14.2.3 Re-exports . 111
14.2.4 Crate Metadata . 112
14.2.5 Publishing the Crate . 113
14.2.6 Un-publishing Versions . 113

14.3 Workspaces . 114
14.3.1 Example: meanworkspace . 114

14.4 Cargo Binaries . 117

15 Smart Pointers 118
15.1 Box<T>: Store Data on the Heap . 118

15.1.1 Recursive Types: Cons List . 118
15.2 Deref Trait . 118

15.2.1 Custom Smart Pointers . 118
15.2.2 Deref Coercion . 118

15.3 Drop Trait . 118
15.3.1 Dropping Early . 118

15.4 Rc<T>: Count References . 118
15.4.1 Share Data . 118

15.5 RefCell<T> . 118
15.5.1 Interior Mutability Pattern . 118
15.5.2 Multiple Mutable Owners . 118

15.6 Referency Cycles andMemory Leaks . 118
15.6.1 Weak<T>: Prevent Reference Cycles . 118

This document is a personal summary of the book The Rust Programming Language by Steve Klab-
nik and Carol Nichols (No Starch Press, 2018). The structure of the original book has been kept
on the chapter level, but may vary within the chapters. [The summary is currently extended and
updated to the second edition of said book and to the 2021 edition of Rust.]

Some of the example code I made up on my own, the rest I took from the book. The formatting
tool rustfmthas been applied formost of the example code, so the code looks different in the book
and inmy notes on some places.

4

1 Getting Started

1.1 Setup

Setup using rustup (make sure to have a C linker and compiler installed):

$ curl https: //sh.rustup.rs -sSf | sh

Proceed with default options to get the latest stable release.

To update the environment variables, either log out and in again, or update themmanually:

$ source $HOME/.cargo/env

Check the version of the Rust compiler (rustc) and documentation (rustdoc):

$ rustc --version
rustc 1.76.0
$ rustdoc --version
rustdoc 1.76.0

Open the local documentation in a browser:

$ rustup doc

Update Rust once in a while:

$ rustup update

Uninstall Rust and rustupwhen no longer needed:

$ rustup self uninstall

5

1.2 Hello World (manually)

Create a file hello.rs:

fn main() {
println!("Hello, world!");

}

The following tokens are used:

• fn is the keyword to create a function.
• main is the name of the function that gets executed first when the program is started.
• () is an empty parameter list, because main doesn’t expect any parameters.
• { starts the function body.
• println! is a macro (not a function) that prints a line of text to the standard output.
• "Hello, world!" is the string literal to be printed.
• ; is needed at the end of every statement.
• } ends the function body.

Compile and run the program:

$ rustc hello.rs
$./hello
Hello, world!

1.3 Hello World (using Cargo)

Check if cargo has been installed properly:

$ cargo --version
1.76.0

Create a new binary project using cargo (as opposed to a library, whichwould take the parameter
--lib instead of --bin):

$ cargo new hello_world --bin

A directory hello_world has been created with the following contents:

• src/: the folder containing the source code for the project
• src/main.rs: the source code file containing the main function
• .git and .gitignore: files for Git (define another version control system using the --vcs
parameter)

6

• Cargo.toml: the file containing the project configuration:

[package]
name = "hello_world"
version = "0.1.0"
edition = "2021"

[dependencies]

TOML stands for Tom’s Obvious, Minimal Language. The project doesn’t have any dependencies
yet.

Build and execute (for testing):

$ cargo build
$./target/debug/hello_world
Hello, world!

Build and execute (for release with optimized binary):

$ cargo build --release
$./target/release/hello_world
Hello, world!

A new file Cargo.lock is created to keep track of the dependencies versions.

Build and run in one step:

$ cargo run
Hello, world!

Only check the source code without creating a binary (faster):

$ cargo check

7

2 Guessing Game

2.1 User Input

Bring the standard input/output library into scope:

use std ::io;

Create a new String and bind it to a mutable variable:

let mut s = String ::new();

Read a line of user input into a String, fail with an error message if it didn’t work; print the input
otherwise:

let mut input = String ::new();
io ::stdin()

.read_line(&mut input)

.expect("reading string failed"); // stops program execution
println!("{}", input);

Convert a the String from above into a number (unsigned 32-bit integer), fail with an error mes-
sage if it didn’t work; print the converted number otherwise:

let input: u32 = guess.trim().parse().expect("not a number");
println!("{}", input);

The second variable input shadows the first variable with the same name.

2.2 Random Numbers

In order to generate random numbers, the rand crate needs to be added as a dependency in
Cargo.toml:

[dependencies]
rand = "0.3.14"

The version indicator "0.3.14" is shorthand for "^0.3.14" and means: any version with a public
API compatible to version 0.3.14.

As soon as the project is built (using cargo build), all the dependencies are resolved (libc as a
dependency from rand, for example), and the working version configuration is written to a file
Cargo.lock. This version configuration is used for the next build, unless the dependencies in the
Cargo.toml file are updated, or the command cargo update is executed. The latter option will
update the rand dependency.

8

https://crates.io/crates/rand

Build and view the documentation of all the project’s dependencies, including the rand crate, in
the web browser:

$ cargo doc --open

Make the rand crate available in the project:

extern crate rand;

Import the Rng trait, which is needed to create random numbers within a certain range:

use rand ::Rng;

Create a random number within a range (lower bound inclusive, upper bound exclusive):

let min = 1;
let max = 101;
let number = rand ::thread_rng().gen_range(min, max);
println!("Random number 1..100: {}", number);

2.3 Compare Numbers

Make the Ordering enum available, which covers all the possible results of a comparison:

use std ::cmp ::Ordering;

Compare two numbers which one another using patternmatching:

let a = 3;
let b = 5;
match a.cmp(&b) {

Ordering ::Less => println!("a<b"),
Ordering ::Greater => println!("a>b"),
Ordering ::Equal => println!("a=b"),

}

2.4 Loops and User Input

Request user input until a number is entered using a infinite loop:

9

loop {
let mut input = String ::new();
println!("enter a number");
match io ::stdin().read_line(&mut input) {

Result ::Ok(_) => (), // do nothing
Result ::Err(_) => continue, // once again

}
let input: u32 = match input.trim().parse() {

Ok(num) => num, // parsed input as the match expression's result
Err(_) => {

println!("not a number");
continue; // once again

}
};
// do something sensible with the number entered
break;

}

3 Common Programming Concepts

Rust offers the common features of structured programming languages, but implements some in
a special way.

3.1 Variables and Constants

Variables are immutable by default:

let x = 3;
x = 5; // error: cannot assign twice to immutable variable `x`

Only the values of variables declared as mutable can be changed:

let mut x = 3;
x = 5; // OK

Variables can be redeclared, even their type can be changed:

let x = 3;
let x = x * x;
let x = x + 1;
println!("{}", x); // 10

let x = "10110";

10

let x = x.len();
println!("{}", x); // 5

In the examples above, five immutable variables called x have been declared; no variablewas ever
changed. This technique is called shadowing: the second x shadows the first x, the third x shadows
the second x, etc.

Constants are a lot like immutable variables, but:

1. cannot be declared as mutable
2. are declared using the const keyword (as apposed to let)
3. can be declared in any scope
4. can only be assigned to expressions known at compile time
5. use the ALL_UPPERCASE naming convention
6. require a type annotation

const SPEED_OF_LIGHT: u32 = 299_792_458; // in meters per second (vacuum)

The _ (underscore) is for optical groupings of three and has no special meaning.

3.2 Data Types

Rust is statically typed. The types of variablesmust be known at compile time. Inmany cases, the
type can be inferred from the context, in other cases, the typemust be annotated:

let foo = "test"; // string inferred
let bar = 10_000; // integer inferred

let qux: u32 = "42".parse().expect("can't parse to u32");

Without the annotation for qux, the compilerwouldn’t know towhich type parse()has to convert
the given string.

3.2.1 Primitive Types

Rust offers four basic types of scalar (single values): integers, floating point numbers, booleans
and characters.

11

Size Signed Unsigned

3.2.1.1 Integers Integers exist as signed and unsigned variants:

Size Signed Unsigned

8-bit i8 u8
16-bit i16 u16
32-bit i32 u32
64-bit i64 u64
Architecture isize usize
Range -(2^[n-1])..2^[n-1]-1 0..2^n-1

In general, i32works fastest, even on 64-bit platforms.

The type names can be used as suffixes in literals:

let a: u8 = 255;
let a = 255u8;

let b: i8 = -128;
let b = -128i8;

Integer literals can be written in binary, octal, decimal (default) and hexadecimal notation:

let base2 = 0b01100100; // binary: prefix 0b
let base8 = 0755; // octal: prefix 0
let base10 = 1234567890; // decimal: no prefix
let base16: u32 = 0xdeadbeef; // hexadecimal: prefix 0x

Thehexadecimalnumberneedsa typeannotation, because thesigned32-bit integer (i32) inferred
is too small for it.

There is a special byte prefix to convert ASCII characters into numbers:

let ascii_capital_a = b'A'; // 65

Arithmetic operators can be applied both to variables and literals:

let sum = 3 + 5; // 8
let difference = sum - 5 // 3
let product = difference * sum; // 24
let quotient = product / 2; // 12
let remainder = quotient * 5; // 2

12

3.2.1.2 Floating Point Numbers Rust supports floating point numbers according to the IEEE-754
standardwith single precision (f32) and double precision (f64). A lot of the integer notations and
conventions can be used for floating point numbers, too:

let a = 13.2;
let b: f32 = 3.41;
let c = 5.324f64;
let d = 123_456.789;

3.2.1.3 Boolean The bool type knows two values: true and false:

let right = true; // type inferred
let wrong: bool = false; // with type annotation

3.2.1.4 Character Characters in Rust are UTF-8 encoded, and therefore not the same thing as a
single byte:

let latin_lower_c = 'c'; // 99 (requires one byte)
let cyrillic_upper_d = 'Д'; // 1044 (requires two bytes)

3.2.2 Compound Types

Rust has two compound types: tuples and arrays.

3.2.2.1 Tuples A tuple groups together values of (possibly) different types. A tuple’s elements
can be accessed using dot-notation (using a zero-based index) or through the means of destruc-
turing:

let t: (i32, f64, u8) = (123, 4.56, 78);

// dot-notation
let a = t.0;
let b = t.1;
let c = t.2;

// destructuring
let (a, b, c) = t;

13

3.2.2.2 Arrays Rust’s arrays have a fixed size, so elements can be neither added nor removed, but
replaced if the array is declared as mutable. Unlike tupels, all elements of an array must be of the
same type.

let mut a = [1, 2, 3, 4, 5];
a[0] = 5;
a[4] = 1;
println!("[{},{},{},{},{}]", a[0], a[1], a[2], a[3], a[4]); // [5,2,3,4,1]

The usage of out-of-bounds indices either causes a runtime panic (if the index value is computed
at runtime) or doesn’t even compile (if the index value can be computed at compile time).

3.3 Functions

Function names should follow the snake_case convention, i.e. all letters are in lowercase, and the
words are separated by an underscore _.

The order of the function’s declarations doesn’t matter; function calls are possible forwards and
backwards.

The parameter and return types of a function are not inferred andmust be declared explicitly. The
parameter’s types are annotated as for variables; the return type is indicated after anarrow(->):

fn sum_up(a: i32, b: i32) -> i32 {
a + b

}

A function can either end in an expression (as above), which is used as the function’s return value,
or an expression can be returned explicitly using the return statement:

fn sum_up(a: i32, b: i32) -> i32 {
return a + b;

}

Any block can return a value:

let y = {
let x = 3;
x + 5 // expression: no semicolon

}; // semicolon, ending the let statement

Because statements do not return values, this code doesn’t compile:

let c = (let b = (let c = 1)); // error: expected expression

14

3.4 Comments

Single-line comments start with // and end at the line’s end.

Multi-line comments start with /* and end with */.

3.5 Control Flow

3.5.1 Conditional Execution

Only bool expressions are allowed for if conditions:

if x < 4 {
println!("low");

} else if x < 7 {
println!("medium");

} else {
println!("high");

}

if is an expression, not a statement, and therefore can return a value:

let max = if a > b {
a

} else {
b

};

It’s important that the expressions of both arms are of the same data type!

3.5.2 Loops

loop runs infinitely, unless ended with break:

let numbers = [1, 2, 3, 4, 5];
let mut i = 0;
loop {

println!("{}", numbers[i]);
if i >= 4 {

break;
} else {

i += 1;
}

}

15

while checks a condition on every iteration before the its block is executed:

let numbers = [1, 2, 3, 4, 5];
while i < 5 {

println!("{}", numbers[i]);
i += 1;

}

for iterates over the items of a collection, e.g. an array:

let numbers = [1, 2, 3, 4, 5];
for i in numbers.iter() {

println!("{}", i);
}

The for loop is by far themost commonly used in Rust.

continue leaves the loop’s block andmoved forward to the next iteration:

let numbers = [1, 2, 3, 4, 5];
for i in numbers.iter() {

if i % 2 == 0 {
continue; // skip even numbers

}
println!("{}", i);

}

4 Ownership

Rust neither has garbage collection nor requiresmanualmemorymanagement. It uses a third ap-
proach: Memory ismanaged through a system of rules enforced by the compiler―the ownership
model. The rules are:

1. Each value has a variable that’s called its owner.
2. There can be only one owner at a time.
3. When the owner goes out of scope, the value is dropped.

Rust calls the drop() function for every variable at the end of its scope to free the memory. The
owner variable will be no longer valid from this point.

16

4.1 Stack and Heap

Variables of primitive types (integers, floats, booleans, characters and tuples solely consisting of
primitive types) are stored entirely on the stack. If a variable is assigned to a variable of a primitive
type, the whole stack content is copied:

let a = 3;
let b = a; // the value of a is copied

Types with sizes unknown at compile time, like strings, are stored on the heap:

let s1 = String ::from("hello");
let s2 = s1; // the value of s1 is NOT copied

Copying the content of s1would be expensive in terms of runtime performance. Therefore, only
the pointer to the string’s heapmemory location is copied, i.e. the variable’s stack content is (just
like for primitives), but here the stack content is a pointer to the heap. (Note: This is not what
actually happens; see below!)

The content of a heap variable can be created using the clone()method:

let s1 = String ::from("hello");
let s2 = s1.clone();

4.2 Moving

The different handling of stack and heap objects has consequences in regard tomemorymanage-
ment. The automatic drop() on primitive variables at the end of a scope is unproblematic:

// before: a and b out of scope
{

let a = 3;
let b = a;

}
// after: a and b out of scope

Thevalue of awas copied, andonly the stackmemoryof a and b is freed. Thebehaviour is different
for objects on the heap:

// before: s1 and s2 out of scope
{

let s1 = String ::from("hello");
let s2 = s1;
// call drop() on s1 and s2

}
// after: s1 and s2 out of scope

17

Freeing the samememory twice corrupts thememory, could cause a program to crash andmight
cause a security vulnerability. To prevent such problems, the assignment s2 = s1 in the program
above does not create a shallow copy (and also not a deep copy, as alreadymentioned). The value is
insteadmoved from s1 to s2, and s2 becomes the new owner. The variable s1 cannot be used any
longer from that point:

let s1 = String ::from("hello");
let s2 = s1; // value of s1 moves to s2
println!("s1={}", s1); // invalid, value moved to s2
println!("s2={}", s2); // valid, s2 is the new owner

4.2.1 Move on Function Call

A function call behaves a lot like an assignment in terms of ownership of the parameters. A func-
tion expecting a Stringwill take ownership of that value, but a integer valuewill just be copied:

fn move_or_copy(str: String, nbr: i32) {
println!("str={}, nbr={}", str, nbr);

}

fn main() {
let s = String ::from("abc");
let i = 42;
move_or_copy(s, i); // move s, copy i
println!("s={}", s); // invalid: s was moved
println!("i={}", i); // valid: i was copied

}

The ownership of s can bemoved back by returning it from the function:

fn move_or_copy(str: String, nbr: i32) -> String {
println!("str={}, nbr={}", str, nbr);
str // return

}

fn main() {
let s = String ::from("abc");
let i = 42;
let s2 = move_or_copy(s, i); // take the ownership of the object back
println!("s2={}", s2); // valid now!
println!("i={}", i);

}

18

4.3 Borrowing with References

Obtaining the ownership of a variable and giving it back is tedious. A variable can be borrowed
instead by using a reference. A reference is denoted by an ampersand in front of the type (&String)
and value (&s):

fn borrow(str: &String) { // &String: reference to String
println!("str={}", str);

}

fn main() {
let s = String ::from("abc");
borrow(&s); // &s is a reference to s
println!("s={}", s); // valid: s was only borrowed, not owned

}

The value of a reference can only be modified if the reference is mutable. Mutable references are
denotedby the token &mut in frontof the type (&mut String) andvalue (&mut s). Mutable references
can only be acquired frommutable variables:

fn manipulate(str: &mut String) { // &mut String: mutable reference to String
str.push_str("...xyz"); // allows for manipulation

}

fn main() {
let mut s = String ::from("abc"); // mutable variable
manipulate(&mut s); // mutable reference
println!("s={}", s); // valid: s was only borrowed, not owned

}

4.3.1 Data Races

Having multiple references to a memory object allows for data races: The values is updated
through one reference, and the other references are not aware of that. Rust eliminates data races
by enforcing a very strict set of rules:

One can only have:

1) either onemutable reference
2) or multiple immutable references

to the same value in the same scope.

Onemutable reference is ok:

19

let mut s = String ::from("hello");
let r1 = &mut s;
println!("{}", r1);

Twomutable references are not ok:

let mut s = String ::from("hello");
let r1 = &mut s;
let r2 = &mut s; // error, only one mutable reference allowed
println!("{}", r1);
println!("{}", r2);

However, twomutable references in different scopes are ok:

let mut s = String ::from("hello");
{

let r1 = &mut s;
println!("{}", r1);

} // r1 goes out of scope
let r2 = &mut s;
println!("{}", r2);

Multiple immutable references are ok:

let mut s = String ::from("hello");
let r1 = &s;
let r2 = &s;
println!("{}", r1);
println!("{}", r2);

But only as long as there is nomutable reference:

let mut s = String ::from("hello");
let r1 = &s;
let r2 = &s;
let r3 = &mut s; // error, one mutable or multiple immutable references allowed
println!("{}", r1);
println!("{}", r2);
println!("{}", r3);

4.3.2 Dangling Pointers

A function returning a pointer to a heap value that goes out of scope at the end of that function is
called a dangling pointer. Using dangling pointers can crash the programand cause severe security
problems. Rust doesn’t allow dangling pointers:

20

fn dangle() -> &String {
let s = String ::from("hello");
&s // return a reference to an object owned by this function

} // s goes out of scope

fn main() {
println!("{}", dangle()); // invalid: dangling ponter

}

The functionmust hand over the ownership of the objects it created for further use:

fn dangle() -> String { // return the string (with ownership)
let s = String ::from("hello");
s // move

}

fn main() {
println!("{}", dangle()); // valid: owned value

}

4.4 String Slices

A string slice is a reference to a part of a string. A slice stores the starting point within the string
and its length. The slice boundaries are statedwith a inclusive lower and a exclusive upper bound,
so that upper-lower computes to the slice length:

let s = String ::from("hello world");
let hello = &s[0..5];
let world = &s[6..11];
println!("{}, {}!", hello, world); // hello, world!

The lower and upper bound can be omitted, defaulting to zero resp. to the string length. If both
bounds are omitted, the slice spans over the whole string:

let s = String ::from("hello world");
let hello = &s[..5]; // lower bound defaults to 0
let world = &s[6..]; // upper bound defaults to s.len()
println!("{}, {}!", hello, world); // hello, world!

let slice = &s[..]; // no bounds: span over whole string
println!("{}", slice); // hello world

When usingmulti-byte/non-ASCII characters, the slicemust neither start nor end in between the
UTF-8 character boundaries:

21

let privet = String ::from("привет");
let pri = &privet[..6]; // ok: "при"
let vet = &privet[6..]; // ok: "вет"
println!("{}{}", pri, vet);
let pri_ = &privet[..7]; // wrong: "при" + first byte of 'в'

A string cannot bemodified when a slice is referring to it:

let mut s = String ::from("abcdefg");
let abc = &s[..4];
s.push_str("hijklmnop"); // invalid: already borrowed immutably

Moving the immutable reference into its own scope solves the problem:

let mut s = String ::from("abcdefg");
{

let abc = &s[..4];
}
s.push_str("hijklmnop"); // valid: immutable borrow already dropped

String literals are string slices referring to a certain memory area within the binary program. It’s
a good practice to accept string slices (type &str) as function parameters, because string literals
already are string slices, and instances of String are cast to a string slice by referring:

fn quote(s: &str) {
println!("«{}»", s);

}

fn main() {
let s = String ::from("Hello, World!");
quote(&s); // String object: cast by referring
quote("Hello, World!"); // string literal: already a slice

}

Slices can also be created on other sequences, such as integer arrays:

let fib = [1, 1, 2, 3, 5, 8, 13, 21];
let slice = &fib[2..7]; // [2, 3, 5, 8, 13]

5 Structs

Structs name and group togethermultiple related values of possibly different types to a new type.
Unlike tuples, structs give names to thewhole and its parts, and the order of fields neithermatters
for initialization nor accessing values.

22

A struct is defined using the keyword struct, a name (in capitals) and a list of fields (name-type
pairs) in curly braces:

struct Employee {
name: String,
position: String,
logins: u64,
active: bool,

}

Anew instanceof a struct is createdbydefining itsfield inkey-valuenotation. All fields aremanda-
tory and need to be initialized:

let dilbert = Employee {
name: String ::from("Dilbert"),
position: String ::from("Engineer"),
logins: 962,
active: true,

};

Whenmarked as mutable, fields of a struct instance can be changed:

let mut dilbert = Employee {
name: String ::from("Dilbert"),
position: String ::from("Engineer"),
logins: 962,
active: true,

};
dilbert.name = String ::from("Dilberto");
dilbert.position = String ::from("Head of Engineering");
dilbert.logins += 1;
dilbert.active = false;

Only the struct instance as a whole can bemarked as mutable, not single fields.

A struct without any fields is called a unit-like struct. It can be useful where a value is needed
formally, but doesn’t matter:

struct Empty{};
let container = Empty{};

Factory functions are helpful to create new struct instances, especially if they consist of a mix of
custom and default values:

23

fn create_employee(name: String, position: String) -> Employee {
Employee {

name: name,
position: position,
logins: 0,
active: true,

}
}

If thefield and the variable assigned to it have the samename, thefield init shorthand syntax allows
to only indicate the name once:

fn create_employee(name: String, position: String) -> Employee {
Employee {

name,
position,
logins: 0,
active: true,

}
}

This not only works for function parameters, but for any variables in scope:

let name = String ::from("Catbert");
let position = String ::from("Evil Genius");
let catbert = Employee {

name,
position,
logins: 0,
active: true,

};

New instances can be created based on existing ones:

let wally = Employee {
name: String ::from("Wally"),
position: dilbert.position,
logins: 312,
active: dilbert.active,

};

The struct update syntax allows to initialize the remaining fields based on the value of an existing
instance:

24

let wally = Employee {
name: String ::from("Wally"),
logins: 312,
..dilbert // use Dilbert's values for fields not yet initialized

};

5.1 Tuple Structs

A tuple struct is a tuple with a name. The name belongs to the type definition, therefore this two
tuple structs are not compatible to each other:

struct RGB(u8, u8, u8);
struct Block(u8, u8, u8);

let red = RGB(255, 0, 0);
let cube = Block(1, 1, 1);

A loose bunch of variables on one side and a struct on the other side can be seen as the two ex-
tremes of a continuum:

1. loose variables can be grouped together to a tuple
2. a tuple can be named as a whole to get a named tuple
3. the fields of a named tuple can be named to get a struct

5.2 Debug Output

Struct instances can be printed out if they derive the trait std ::fmt ::Debug:

#[derive(Debug)]
struct Employee {

name: String,
position: String,
logins: u64,
active: bool,

}

fn main() {
let dilbert = Employee {

name: String ::from("Dilbert"),
position: String ::from("Engineer"),
logins: 962,
active: true,

};

25

println!("{:?}", dilbert);
println!("{:#?}", dilbert);

}

The {:?} output format prints the struct on a single line, whereas the {:#?} output format uses
multiple lines and indents the fields:

Employee { name: "Dilbert", position: "Engineer", logins: 962, active: true }
Employee {

name: "Dilbert",
position: "Engineer",
logins: 962,
active: true

}

5.3 Methods

A method is a function defined in the context of a struct. The instance of the struct the method
is called on is automatically provided as the first parameter called self. The methods of a struct
must be declared within one or multiple impl blocks:

struct Rectangle {
width: u32,
height: u32,

}

impl Rectangle {
fn area(&self) -> u32 {

self.width * self.height
}

}

The areamethod accepts a reference to a Rectangle (the type doesn’t need to be declared, because
it can be inferred). The method can be called using dot notation on the struct instance (the refer-
ence operator & is optional):

fn main() {
let r = Rectangle {

width: 3,
height: 4,

};
println!("{}", r.area()); // 12
println!("{}", &r.area()); // with optional reference operator

}

26

The self instance can bemodified by accepting amutable reference:

impl Rectangle {
fn stretch(&mut self, factor: u32) {

self.width *= factor;
self.height *= factor;

}
}

fn main() {
let mut r = Rectangle {

width: 3,
height: 4,

};
println!("{}", r.area()); // 3 * 4 = 12
r.stretch(2);
println!("{}", r.area()); // 6 * 8 = 48

}

Methods that own the self parameter are rare. They’re helpful when a new instance is created
based on an old one, and the old instance must no longer be used afterwards. The old instance is
consumed by themethod:

impl Rectangle {
fn transform(self, factor: u32) -> Rectangle {

Rectangle {
width: self.width * factor,
height: self.height * factor,

}
}

}

fn main() {
let r = Rectangle {

width: 3,
height: 4,

};
let r = r.transform(2);
println!("{}", r.area());

}

Associated functions, similar to static methods in other programming languages, belong to a
struct, but do not take a self parameter; they are often used as constructors:

27

impl Rectangle {
fn square(size: u32) -> Rectangle {

Rectangle {
width: size,
height: size,

}
}

}

An associated function can be called using double colon notation on the struct, as already used
for String ::from() before:

fn main() {
let r = Rectangle ::square(3);
println!("w: {}, h: {}", r.width, r.height); // w: 3, h: 3

}

6 Enumerations and Pattern Matching

Enumerations (short: enums) are types defined by enumerating its possible values and encode
meaning along with data. The enum’s different values are called its variants.

A enum is defined using the enum keyword and a list of variants within curly braces:

enum ColorType {
RGBA,
CMYK,

}

The variants of an enum belong to the same type. They are namespaced under the enum’s name
and need to be qualified in order to be used:

let rgba = ColorType ::RGBA;
let cmyk = ColorType ::CMYK;

A function can accept values of either variant by annotating the enum’s name as the expected
type:

fn list_colors(color_type: ColorType) {
// ...

}

fn main() {
list_colors(ColorType ::RGBA;);

28

list_colors(ColorType ::CMYK);
}

Variants can hold their own data. The amount, structure and type of the associated data can vary
betweendifferent variants. It is possible to use single scalars, tuples, anonymous structs and even
other enums:

#[derive(Debug)]
enum ColorType {

Unspecified, // no data
Named(String), // single value
RGBA(u8, u8, u8, f32), // tuple
CMYK {

cyan: u8,
magenta: u8,
yellow: u8,
black: u8,

}, // anonymous struct
}

Even though the variants are made up of different types, they still belong to the same enum
type.

Enums can havemethods attached to them in impl blocks:

impl ColorType {
fn print(&self) {

println!("{:?}", self);
}

}

fn main() {
let none = ColorType ::Unspecified;
let fuchsia = ColorType ::Named(String ::from("fuchsia"));
let red = ColorType ::RGBA(255, 0, 0, 0.5);
let yellow = ColorType ::CMYK {

cyan: 0,
magenta: 0,
yellow: 100,
black: 0,

};

none.print();
fuchsia.print();
red.print();

29

yellow.print();
}

Output:

Unspecified
Named("fuchsia")
RGBA(255, 0, 0, 0.5)
CMYK { cyan: 0, magenta: 0, yellow: 100, black: 0 }

6.1 The Option<T> Enumeration

Unlikemanyotherprogramming language, Rusthasno null (or nil) references. The absence (and
presence) of a value is instead expressed by the Option<T>; an enumwith two variants and a type
parameter T:

enum Option<T> {
Some(T),
None,

}

The variant Some holds a value of type T. The variant None is used to signify the absence of a value
and therefore does not hold any. The enum Option<T> and its variants Some(T) and None are in-
cluded in the prelude and hence are not required to be made available first. They can be used
without qualification:

let a_number = Some(42);
let a_word = Some(String ::from("whatever"));
let none: Option<i32> = None;

The type can be inferred in case of Some but must be annotated for None, for there is no value to
infer from.

A instance of Option<T> can not be treated like an instance of T:

let a: i32 = 3;
let b: Option<i32> = Some(4);
let c: Option<i32> = None;

let x = a + b; // error
let y = a + c; // error

30

The variable a is of type i32, while b and c are of type Option<i32>. Trying to handle them alike
causes a compilation error. This is exactly the point, because adding a only possibly available value
to a existing value cannot be guaranteed to work. The compiler makes sure that a value is always
there when needed.

Option<T>must be converted to Tbefore it can beused. The enumoffersmethods for that purpose,
but the general approach is to use patternmatching.

6.2 Pattern Matching

The match controlflowoperator allows to compareavalueagainst a series of patterns andexecutes
a branch of code for thematching pattern.

In the context of enums, match allows to execute different code for a value according to its vari-
ant. Every variant has an expression, statement or block assignedwith the => operator, called the
variant’s arm:

enum Animal {
Blobfish,
Human,
Fox,
Octopus,
Centipede,

}

fn number_of_legs(animal: Animal) -> u8 {
match animal {

Animal ::Blobfish => 0,
Animal ::Human => {

println!("not counting arms");
2

},
Animal ::Fox => 4,
Animal ::Octopus => {

println!("arms or legs? legs!");
return 8;

},
Animal ::Centipede => 100,

}
}

fn main() {
let johnny = Animal ::Human;
let legs = number_of_legs(johnny);

31

println!("{} legs", legs);
}

If one or many variants were missing, the programwould not compile:

fn number_of_legs(animal: Animal) -> u8 {
match animal {

Animal ::Blobfish => 0,
Animal ::Fox => 4,
Animal ::Centipede => 100,

}
}

match animal {
^^^^^^ patterns `Human` and `Octopus` not covered

Matches are said to be exhaustive; the compiler makes sure that all the possibilities are handled.
If one or many variants are not of interest, the _ pattern, which matches to anything, can be used
for the last arm. (If it were not the last arm, the subsequent patterns could not possibly match,
because _ alreadymatched everything.)

fn number_of_legs(animal: Animal) -> u8 {
match animal {

Animal ::Blobfish => 0,
Animal ::Fox => 4,
Animal ::Centipede => 100,
_ => 0,

}
}

If no code were to be executed for the default case, the unit value () can be used:

match animal {
Animal ::Blobfish => println!("0"),
Animal ::Fox => println!("4"),
Animal ::Centipede => println!("100"),
_ => (),

}

This onlyworks if match is usedasa statementasopposed toanexpression; the latter alwaysneeds
to yield a value.

If only a single variant is of interest, the if let construct can be used to make the code more
concise. Consider this match expression:

32

let val = Some(42);
match val {

Some(42) => println!("correct"),
_ => (),

}

Which can be rewritten using the if let [pattern] = [value] pattern as follows:

let val = Some(42);
if let Some(42) = val {

println!("correct");
}

The resulting code is shorter, but the compiler no longer checks if all variants are beinghandled.

One common use case for pattern matching is to extract a value of an enum’s variant. Consider
this enumwith a enhanced Centipede definition, of which the value needs to be extracted:

enum Animal {
Blobfish,
Human,
Fox,
Octopus,
Centipede(String),

}

fn number_of_legs(animal: Animal) -> u8 {
match animal {

Animal ::Blobfish => 0,
Animal ::Human => 2,
Animal ::Fox => 4,
Animal ::Octopus => 8,
Animal ::Centipede(kind) => {

if kind == "Stone Centipede" {
30

} else if kind == "Giant Readhead Centipede" {
42

} else {
100

}
}

}
}

fn main() {

33

let centi = Animal ::Centipede(String ::from("Stone Centipede"));
let legs = number_of_legs(centi);
println!("{} legs", legs);

}

The Animal ::Centipede(kind) pattern is said to bind to a value. This technique is also used to un-
pack the T instance of a Option<T>. Consider this safe division function, which returns the result-
ing quotient wrapped in a Option<f32>—or None, if the division is undefined when the divisor is
zero:

fn divide(dividend: i32, divisor: i32) -> Option<f32> {
if divisor == 0 {

return None;
}
Some(dividend as f32 / divisor as f32)

}

The result of the divide() function ishandledwithpatternmatching, ensuring that alwaysavalue
present bymapping None to 0:

let a = 10;
let b = 3;
let c = 0;

let x = match divide(a, b) {
Some(q) => q,
None => 0.0,

};
let y = match divide(a, c) {

Some(q) => q,
None => 0.0,

};

println!("x={}, y={}", x, y); // x=3.3333333, y=0

7 Modules

Just like lines of code can be organized as functions, entities like functions, enums, structs and
constants can be organized in a higher logical unit: modules.

The following examples are demonstrated using two different crates:

1. netlib: a library crate containing themodules

• src/lib.rs as the starting point

34

2. nettool: a binary crate using themodules

• src/main.rs as the starting point

The crates are created in the same directory using cargo:

$ cargo new netlib --lib
$ cargo new nettool --bin

Modules are not restricted to the usage within library crates. The purpose of this structure is to
demonstrate how a binary crate can make use of a library, and libraries offer not only loose func-
tions in general, but functions organized in amodule structure.

A module is declared using the mod keyword, following the module name and the module defini-
tion (its content) within curly braces (netlib/src/lib.rs):

mod network {
fn connect() {}

}

The functions of a module are said to live in the module’s namespace, which is expressed by the
reference network ::connect for the above example.

Multiple modules can be declared alongside in the same file:

mod network {
fn connect() {}

}
mod database {

fn connect() {}
}

The code compiles, even though two functions called “connect” are declared in the same file, be-
cause the functions are in two different modules and hence in different namespaces.

7.1 Hierarchy: Logical and Physical

Modules can be nested to represent hierarchic module structures:

mod server {
fn serve() {}
mod producer {

fn produce() {}
}

}
mod client {

fn consume() {}

35

}
mod database {

fn backup() {}
}

Afile containingmultiple and/ornestedmodules tends tobecomebig (manydefinitions) andhard
to read (deeper indentation levels). Itmakes sense tonot only organizemodules logically, but also
physically in terms of files.

A module’s declaration and definition can be taken apart. In case of the module database, the
definition remains in the file src/lib.rs:

mod server {
mod producer {}

}
mod client {}
mod database;

The definition (consisting of a single function) is then expected to be in a file named after the
module (src/database.rs):

mod database {
fn backup() {}

}

During the compilation process, lib.rs (library crate) or main.rs (binary crate), respectively, are
considered for declarations. The module declaration points the compiler forward to another file;
the module database is looked for in the file database.rs in the src/ folder.

Extracting a nested module (server) with one or many child modules (producer) of its own re-
quires another organization:

1. The parent module servermust reside in a subfolder named after the module src/server/
in a file called mod.rs.

2. The child module producermust reside in the folder of its parent module src/server/ in a
file named after the child module producer.rs.

The root file lib.rs, with the definition of server extracted, looks like this:

mod server;
mod client {

fn consume() {}
}
mod database;

The file server/mod.rs only contains the server module’s definitions, not the declaration line mod
server itself, which is already implied by the context:

36

mod producer;
fn serve() {}

The submodule server ::producermust reside in the file server/producer.rs:

mod producer {
fn produce() {}

}

In summary, the module structure looks like this:

netlib
server

producer
database

While the file system structure looks like this:

src/
lib.rs
server/

mod.rs
producer.rs

database.rs

7.2 Visibility: Private and Public

Functions and other items are private to the enclosing module by default, and hence cannot be
accessed from the outside. The pub keywordmakes thempublic, so that they can be used from the
outside, too.

A public function or module is only accessible from the outside if all the enclosing modules are
declared public as well:

mod parent {
pub mod bazzer {

pub mod open {
pub fn baz() {}

}
}
pub mod quxer {

mod locked { // private module
pub fn qux() {}

}

37

}
}

fn main() {
parent ::bazzer ::open ::baz(); // works: whole path is public
parent ::quxer ::locked ::qux(); // doesn't work: private module in path

}

Private items—modules, functions, etc.—can only be accessed from:

1. its immediate parent module
2. the parent’s child modules (siblings)

• the parent module can be referred to using the super keyword in themodule path

mod parent {
mod first { // private module

pub fn one() {} // public function
}
fn zero() {

first ::one(); // 1. immediate parent module
}
mod second {

fn two() {
super ::first ::one(); // 2. parent's child module (sibling)

}
}

}

Private functions that aren’t used within their visible context cause a compiler warning, because
they aren’t needed and therefore be better deleted. Public functions—whether used locally or
not—do not cause such a warning, because they are intended for external use; and the external
context is not knownduring compilation. (A library doesn’t know fromwhere and how it is going
to be used.)

7.3 Using External Crates and Modules

Library crates are only useful when they are eventually used by some binary. Let’s assume the
following crates are createdwithin the sameparentdirectory, a house (library) serving its resident
(binary):

$ cargo new house --lib
$ cargo new resident --bin

The library consists of a module withmultiple submodules in house/src/lib.rs:

38

pub mod basement {
pub mod freezer {

pub mod door {
pub fn open() {

println!("open the door of the freezer in the basement");
}
pub fn close() {

println!("close the door of the freezer in the basement");
}

}
}

}

If the resident binary wants to make use of the house library, it must declare that dependency in
resident/Cargo.toml:

[package]
name = "resident"
version = "0.1.0"
authors = ["patrickbucher <patrick.bucher@stud.hslu.ch>"]
edition = "2018"

[dependencies]
house = { path = "../house", version = "*" }

The path is indicated relatively (../house), and any version can be used (*).

In order to use the external house crate from the library, it must also be declared in the code
(resident/src/main.rs):

extern crate house;

fn main() {
house ::basement ::freezer ::door ::open();
house ::basement ::freezer ::door ::close();

}

Libraries with a deep module hierarchy are painful to use if every path had to be qualified ab-
solutely. The use keyword brings a module’s content into scope, so that its content can be used
without further qualification.

extern crate house;

use house ::basement ::freezer ::door;

fn main() {

39

door ::open();
door ::close();

}

The use keyword can be applied at any level. Consider this additional enum defined in
house/src/lib.rs:

pub enum FrozenFoodType {
IceCream,
Meat,
Vegetables,
IceRocks,

}

It’s possible to import just the enum:

extern crate house;

use house ::FrozenFoodType;

fn main() {
let icecream = FrozenFoodType ::IceCream;

}

Or, one level deeper, directly the variants:

use house ::FrozenFoodType ::IceCream;

Multiple variants (or items in general) can also be imported as a list:

use house ::FrozenFoodType ::{IceCream, Meat};

It’s also possible to import all items of an entity, which should be used sparingly in order to not
pollute the namespace:

use house ::FrozenFoodType ::*;

8 Common Collections

Rust has different kinds of collections, which allow to store multiple elements of the same type.
The elements are stored on the heap, and therefore, unlike arrays, the number of items is flexi-
ble.

40

8.1 Vector

The type Vec<T> describes a vector, which stores a list of items in a continuous memory area. A
vector can be created using its associated new() function:

let v: Vec<i32> = Vec ::new();

A type annotation (within angle brackets) is needed, because there are no elements yet to infer the
type from. If a vector is to be created fromexisting items, the vec! macro (included in the prelude)
is more convenient:

let v = vec![1, 2, 3];

Elements can be added to amutable vector using the push()method:

let mut v = vec![1, 2, 3];
v.push(4);
v.push(5);
v.push(6);

There are twoways of reading the elements of a vector v:

1. Using indexing syntax &v[i], which panics if an invalid index is used.
2. Using the v.get(i)method,which returnsan Option<T>witheither avalue Some(T) for valid

indices or the None variant for invalid indices.

let v = vec![1, 2, 3];
let first = &v[0]; // 1: i32
let second = v.get(1); // Some(2): Option<i32>
let fourth = &v[3]; // panic!
let fifth = v.get(4); // None: Option<i32>

Storing a reference of a vector item is borrowing from the vector. As long as a borrow is held (and
used), the vector cannot bemodified by adding items to it:

let mut v = vec![1, 2, 3];
let one = &v[0]; // immutable borrow
v.push(4); // error: cannot borrow as mutable
println!("{}", one); // use immutable borrow later

The reason for this restriction is the way the memory of a vector is organized: If the vector no
longer fits into its current memory area after an additional item is added, the whole vector needs
to be moved to a bigger continuous memory area, and thus rendering the existing references ob-
solete.

The items of a vector can be iterated over using the for/in loop:

41

let v = vec![1, 2, 3];
for i in v {

println!("{}", i);
}

The items of a mutable vector can be modified in an iteration, if the vector is borrowed mutably
for the operation, and the item is dereferenced uponmodification:

let mut v = vec![1, 2, 3];
for i in &mut v {

*i *= 2;
}

The pop()method returns the last item of a vectorwrapped in an Option<T> and removes the item
from the vector:

let mut v = vec![1, 2, 3, 42];
if let Some(i) = v.pop() {

println!("last: {}", i);
}
println!("rest: {} {} {}", v[0], v[1], v[2]);

Vectors can store different variants of an enum, for they belong to the same type:

enum DivisionResult {
Integer(i32),
FloatingPoint(f64),
Undefined,

}

let results = vec![
DivisionResult ::Integer(3), // 6/2
DivisionResult ::FloatingPoint(3.5), // 7/2
DivisionResult ::Undefined, // 3/0

];

for r in results {
match r {

DivisionResult ::Integer(i) => println!("{}", i),
DivisionResult ::FloatingPoint(f) => println!("{}", f),
DivisionResult ::Undefined => (),

}
}

42

8.2 String

The String type is a collection of bytes which are interpreted as UTF-8 encoded text. Unlike the
string slice type str (or the reference to it &str), String is not part of the core language, but imple-
mented in the standard library.

A string can be created using the associated new() function, based on a string literal using the
associated from() function, or using the to_string()method on an existing object implementing
the Display trait:

let mut s1 = String ::new();
let mut s2 = String ::from("hello");
let mut s3 = "world".to_string();

Strings can be concatenated by using either the method push_str() (for adding a string slice) os
push() (for a single character) on amutable string:

let mut s = String ::new();
s.push_str("hello");
s.push(' ');
s.push_str("world");

Two existing strings can be combined to a third string using the + operator.

let foo = String ::from("foo");
let bar = String ::from("bar");
let qux = foo + &bar;
println!("{}", qux);
println!("{}", foo); // error: foo was consumed!
println!("{}", bar); // ok: bar was not consumed

Internally, amethodwith the signature add(self, s: &str) -> String is called, which consumes
the operand on the left, but doesn’t own the operand on the right. No strings are copied; owner-
ship of the first operand is taken and returned as the result of the concatenation.

Because chained concatenations are hard to read, the format! macro offers a more convenient
interface, which also doesn’t take ownership of any of the parameters:

let s1 = "hello".to_string();
let s2 = ", ".to_string();
let s3 = "world".to_string();
let message = format!("{}{}{}", s1, s2, s3);

Technically, the String type is a wraper over Vec<u8>. The len() method returns the number of
bytes in the string, not characters:

43

let hello = String ::from("hello");
let privet = String ::from("привет");
println!("{}", hello.len()); // 5
println!("{}", privet.len()); // 12

The first string "hello" consists only of ASCII characters, which all can be encoded with a single
byte in UTF-8. The cyrillic characters of the second string "привет", however, require two bytes in
UTF-8.

Strings cannot be indexed in Rust, because a index might only be refering to some part of a en-
coded character, and the compiler prevents such error-prone operations. An indexing operation
on the characters of a UTF-8 string would not be possible in constant time O(1), because a byte
might only be part of a character, and the surrounding bytes needed to considered, too.

Slicing strings, however, is legal, but causes a panic if a slice starts or ends between two bytes
belonging to the same character:

let privet = String ::from("привет");
let pri = &privet[0..6]; // first three characters: при
let vet = &privet[6..12]; // last three characters: вет
println!("{}{}", pri, vet); // привет
let pri_ = &privet[0..7]; // panic: index 7 not a char boundary!

It’s possible to iterate either over the bytes or the characters of a string:

let privet = String ::from("привет");
for c in privet.chars() {

print!("{}", c); // привет
}
println!();
for b in privet.bytes() {

print!("{} ", b); // 208 191 209 128 208 184 208 178 208 181 209 130
}

8.3 Hash Map

A HashMap<K, V> stores a mapping of keys of type K to values of type V using a cryptographically
safe hashing function for placement and lookup. Unlike a vector, the items cannot be retrieved by
index, but by their unique key.

The type HashMap<K, V> is not part of the prelude and hence needs to be made available with use.
A new hashmap can be created using the associated new()method. Items can be added using the
insert(k, v)method, which accepts a key and a value:

44

use std ::collections ::HashMap;

let mut points = HashMap ::new();
points.insert(String ::from("Myers"), 125);
points.insert(String ::from("Roberts"), 99);

Keys and values can be of different types, like String and i32 in the above example, but all keys
and all values must be of the same type.

A common use case is to build up a hash map based on a list of keys and another list of values.
This can be achieved by getting an iterator on each vector using the iter()method, zipping those
iterators together using the zip()method and calling the collect()method on the result:

use std ::collections ::HashMap;

let names = vec!["Myers".to_string(), "Roberts".to_string()];
let score = vec![125, 99];
let mut points: HashMap<_, _> = names.iter().zip(score.iter()).collect();

The compiler needs a type annotation for HashMap, but can infer the key and value types.

Keys and values are owned by the hashmap upon insertion:

let mut map = HashMap ::new();
let key = String ::from("Miller");
let val = 42;
map.insert(key, val);
println!("{}", key); // fail: key moved to map

Values of a HashMap<K, V> can be accessed using the get() method with a key, returning an Op-
tion<&V> containing a reference to the value found.

let mut results = HashMap ::new();
results.insert("Peter".to_string(), 7.83);
results.insert("Michael".to_string(), 6.92);
results.insert("Paul".to_string(), 8.41);

if let Some(x) = results.get("Peter") {
println!("Peter: {}", x);

}

An iteration over a hashmap yields key-value tuples:

let mut results = HashMap ::new();
results.insert("Peter".to_string(), 7.83);
results.insert("Michael".to_string(), 6.92);
results.insert("Paul".to_string(), 8.41);

45

for (key, value) in &results {
println!("{}: {}", key, value);

}

There can only be stored one value per key, so calling insert(key, value)with a key already con-
tained in themap overwrites that value.

let mut results = HashMap ::new();
results.insert("Peter".to_string(), 7.83);
results.insert("Peter".to_string(), 6.92); // overwrite!

if let Some(x) = results.get("Peter") {
println!("Peter: {}", x); // 6.92

}

Oftentimes, a new value should only be inserted into a hashmap if a key is not contained in it yet.
The entry(key)method takes a key and returns a Entry: a enum indicating an entry thatmight or
might not exist. Its or_insert(val)method inserts a value into the hash map with the key given
to the initial entry(key) call if an entry for that key wasmissing:

let mut results = HashMap ::new();
results.insert("Peter".to_string(), 7.83);
results.insert("Michael".to_string(), 6.92);
results.insert("Paul".to_string(), 8.41);

results.entry("Phil".to_string()).or_insert(5.32); // new entry
results.entry("Paul".to_string()).or_insert(8.97); // existing entry

This interface is also useful for updating entries that already do exist. The or_insert(0) call in
this example is only used to make sure that there is a starting value for the counter. The mutable
reference returned by to_insert(0) is then used to increment the value, which must be derefer-
enced:

let text = "He had had had a answer";
let mut wordcount = HashMap ::new();

for word in text.split_whitespace() {
let count = wordcount.entry(word).or_insert(0);
*count += 1;

}

46

9 Error Handling

Rust hasno exceptions. Instead, it provides twowaysof dealingwithdifferent categories of errors:
the panic! macro for unrecoverable errors, and the type Result<T, E> for recoverable errors.

9.1 Unrecoverable Errors: panic!

If an error condition occurs that cannot be recovered from, calling the panic! macro (with a sen-
sible error message, indicating the underlying issue) will print the error message, undwind and
clean up the stack and quit the program:

fn main() {
panic!("Something terrible happened!");

}

The output of the programwill indicate the error:

Finished dev [unoptimized + debuginfo] target(s) in 0.00s
Running `target/debug/tmp`

thread 'main' panicked at 'Something terrible happened!', src/main.rs:2:5
note: Run with `RUST_BACKTRACE=1` environment variable to display a backtrace.

The cause of the error is not always that easy to track down. In this case, executing the program
with backtrace enabled (as suggested in the output above), the whole stack trace will be printed
out upon panicking:

$ RUST_BACKTRACE=1 cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.01s
Running `target/debug/tmp`

thread 'main' panicked at 'Something terrible happened!', src/main.rs:2:5
stack backtrace:

0: std ::sys ::unix ::backtrace ::tracing ::imp ::unwind_backtrace
at src/libstd/sys/unix/backtrace/tracing/gcc_s.rs:39

1: std ::sys_common ::backtrace ::_print
at src/libstd/sys_common/backtrace.rs:71

2: std ::panicking ::default_hook ::{{closure}}
at src/libstd/sys_common/backtrace.rs:59
at src/libstd/panicking.rs:197

3: std ::panicking ::default_hook
at src/libstd/panicking.rs:211

4: std ::panicking ::rust_panic_with_hook
at src/libstd/panicking.rs:474

47

5: std ::panicking ::begin_panic
at /rustc/a53f9df32fbb0b5f4382caaad8f1a46f36ea887c/src/libstd/panicking.rs:408

6: tmp ::main
at src/main.rs:2

7: std ::rt ::lang_start ::{{closure}}
at /rustc/a53f9df32fbb0b5f4382caaad8f1a46f36ea887c/src/libstd/rt.rs:64

8: std ::panicking ::try ::do_call
at src/libstd/rt.rs:49
at src/libstd/panicking.rs:293

9: __rust_maybe_catch_panic
at src/libpanic_unwind/lib.rs:85

10: std ::rt ::lang_start_internal
at src/libstd/panicking.rs:272
at src/libstd/panic.rs:394
at src/libstd/rt.rs:48

11: std ::rt ::lang_start
at /rustc/a53f9df32fbb0b5f4382caaad8f1a46f36ea887c/src/libstd/rt.rs:64

12: main
13: __libc_start_main
14: _start

In order to find the erroneous code of your own, start reading the backtrace at the top and
follow along until you see a source file you’ve written on your own (above: output line 6:
src/main.rs:2).

Instead of unwinding and cleaning up the stack upon panicking, the program can also abort im-
mediately, leaving the cleanup task up to the operating system. This can be configured in the
respective [profile] section (debug, release) in the project’s Cargo.toml file:

[profile.release]
panic = 'abort'

9.2 Recoverable Errors: Result<T, E>

Most error conditions do not require the program to stop, but only to take a different path in the
program logic. The result of a potentially failing operation can be expressed using the Result<T,
E> enum, which is defined as such:

enum Result<T, E> {
Ok(T),
Err(E),

}

48

An operation that couldl be executed as intended has the Ok variant set (with any appropriate
type), whereas a failing operation has the Err variant set (with some error type).

For example, themethod File ::open(filename) returns a Result<T, E>with T=std ::fs ::File set
in case of success, and E=std ::io ::Error set in case of an error.

The result can be handled using a match expression, panicking in the error case:

use std ::fs ::File;

fn main() {
let f = File ::open("hello.txt");
let f = match f {

Ok(file) => file,
Err(error) => panic!("Error opening file 'hello.txt': {:?}", error),

};
}

Since therearedifferentpossible causes forafilenotbeingable tobeopened, it ismoreappropriate
to differentiate the error occured accordingly. The kind() method of the error can be used for
this purpose, and the match guard syntax helps to prevent deeply indented error handling code
blocks:

use std ::fs ::File;
use std ::io ::ErrorKind;

fn main() {
let f = File ::open("hello.txt");
let f = match f {

Ok(file) => file,
Err(ref error) if error.kind() == ErrorKind ::NotFound => match File ::create("hello.txt") {

Ok(fc) => fc,
Err(e) => panic!("Error creating file 'hello.txt': {:?}", e),

},
Err(error) => panic!("Error opening file 'hello.txt': {:?}", error),

};
}

The ref keyword ensures that the error value is not moved inside the match arm, but referred to
instead.

9.2.1 unwrap and expect

The unwrapmethod of the Result<T, E> type is a shortcut for error handling. If the Ok variant is
set, unwrap returns the value set to the Ok variant; if the Err variant is set, the programwill cause a

49

panic with the default error message:

use std ::fs ::File;

fn main() {
let f = File ::open("hello.txt").unwrap();

}

Theexpectmethodworks just likeunwrap, but acceptsa stringparameter indicatingacustomerror
message:

use std ::fs ::File;

fn main() {
let f = File ::open("hello.txt").expect("error opening 'hello.txt'");

}

9.2.2 Error Propagation

It is not always possible or desirable to deal with every error condition where it originally occurs.
Oftentimes, the callee does not know the context, and the caller should decide on how to deal
with the error. This technique is called error propagation:

use std ::fs ::File;
use std ::io;
use std ::io ::Read;

fn read_str_from_file() -> Result<String, io ::Error> {
let f = File ::open("hello.txt");
let mut f = match f {

Ok(file) => file,
Err(e) => return Err(e), // propagate error

};
let mut s = String ::new();
match f.read_to_string(&mut s) {

Ok(_) => Ok(s),
Err(e) => Err(e), // propagate error

}
}

fn main() {
match read_str_from_file() {

Ok(_) => println!("ok"),
Err(_) => panic!("not good"),

50

}
}

This pattern is so common that Rust offers the shortcut operator ? for propagating error. The
same code becomesmuch shorter using that syntactic sugar:

use std ::fs ::File;
use std ::io;
use std ::io ::Read;

fn read_str_from_file() -> Result<String, io ::Error> {
let mut f = File ::open("hello.txt")?; // ? instead of match
let mut s = String ::new();
f.read_to_string(&mut s)?; // ? instead of match
Ok(s)

}

fn main() {
match read_str_from_file() {

Ok(_) => println!("ok"),
Err(_) => panic!("not good"),

}
}

The ? operatorworks as follows: If the expression in front of it evaluates to the Okvariant of Result,
the Ok variant is returned. If it evaluates to the Err variant instead, the Err variant is returned.

One difference between the two implementations above is that ? causes a call to the from function
of the From trait to convert the error type to the defined return type (io ::Error in this case).

The same function can bemade even shorter by chaining themethod calls after the ? operator:

fn read_str_from_file() -> Result<String, io ::Error> {
let mut s = String ::new();
File ::open("hello.txt")?.read_to_string(&mut s)?;
Ok(s)

}

The ? operator can only be used in functions that return a Result<T, E>.

9.3 Validation Types

Using validation functions throughout the code to prevent errors can be tedious and lead to re-
peated code. Restrictions, say, on the value range of variables, can be better expressed by types.

51

The builtin u8 type, for example, is the perfect choice if discrete numbers from 0 to 255 are the
only acceptable values. However, there’s not a builtin type for every restriction needed. (Like a
program for a lottery game,whichonly accepts numbers between 1 and45.) In this case, it’s better
to implement a new custom type.

Implementing a custom validation type requires three things:

1. A private value variable with an appropriate range, enclosing the possible value range.
2. A public newmethod containing the validation code, which accepts a value parameter to be

checked.
3. A public valuemethod, returning the underlying value.

For the lottery game, a custom validation type can be implemented as follows:

pub struct Guess {
value: u8,

}

impl Guess {
pub fn new(value: u8) -> Guess {

if value < 1 || value > 45 {
panic!("acceptable range: 1..45");

}
Guess { value }

}

pub fn value(&self) -> u8 {
self.value

}
}

fn main() {
Guess ::new(10); // ok
Guess ::new(0); // not ok
Guess ::new(50); // not ok

}

9.4 Using panic! or Result<T, E>?

Since there’s noway to recover fromapanic, workingwith Result<T, E> is isually themore appro-
priate choice. The use of panic! (and the methods unwrap and expect, which also cause a panic)
should be restricted to the following situations:

1. When a test case that needs to fail as a whole.
2. If an error is logically impossible, but the compiler cannot figure that out.

52

3. If the code could end up in a bad state that cannot be recovered from, leading to further
undefined states. This usually happenswhen the caller is using an API thewrongway (con-
tract violation). An API causing a panic must alwaysmention that in its documentation.

4. For example code and prototypes.

10 Traits, Generics and Lifetimes

Traits and generics help programmers write more flexible code that can be re-used instead of be-
ing copied and (slightly) modified all the time. Lifetimes ensure that no invalid references can
occur, which is one of the pillars of Rust’s runtime safety.

10.1 Traits

Traits are Rust’s way of declaring common functionality (a set of method signatures) that can be
implemented by different types.

A trait is defined using the trait keyword, following a list of method signatures:

pub trait Summary {
fn summarize(&self) -> String;

}

The trait is public, so that it can be implemented in other crates as well.

Given the structs NewsArticle and Tweet:

pub struct NewsArticle {
pub headline: String,
pub location: String,
pub author: String,
pub content: String,

}

pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,

}

The Summary trait can be implemented for them using the for keyword:

53

impl Summary for NewsArticle {
fn summarize(&self) -> String {

format!("{}, by {} ({})", self.headline, self.author, self.location)
}

}

impl Summary for Tweet {
fn summarize(&self) -> String {

format!("{}: {}", self.username, self.content)
}

}

The summarizemethod can then be used like this:

fn main() {
let n = NewsArticle {

headline: "Sack of Rice Fell Down".to_string(),
location: "China".to_string(),
author: "Russel F. Important".to_string(),
content: "Well, the headline says it all...".to_string(),

};
let t = Tweet {

username: "@russelfimportant".to_string(),
content: "Sack of Rice fell down in China.".to_string(),
reply: false,
retweet: false,

};
println!("NewsArticle: {}", n.summarize());
println!("Twitter: {}", t.summarize());

}

Output:

NewsArticle: Sack of Rice Fell Down, by Russel F. Important (China)
Twitter: @russelfimportant: Sack of Rice fell down in China.

A trait can only be implemented if either the trait or the type is local to the crate. External traits
cannot be implemented on external types.

10.1.1 Default Implementations

A trait can define a default behaviour for a method, i.e. providing a method implementation that
can but does not has to be overwritten. If the default implementation is not to be overwritten, the
trait can be implemented with an empty impl block:

54

pub trait Summary {
fn summarize(&self) -> String {

String ::from("(Read more...)")
}

}

pub struct BlogPost {
pub title: String,
pub url: String,
pub author: String,

}

impl Summary for BlogPost {}

Default implementations can call other methods of the same trait, even those without a default
implementation. It is not possible to call the default implementation from an overriding imple-
mentation.

10.2 Generics

Instead of writing the same data structure or function over and over for different types (say, i32
and f32 for amathematics library that supports both integer and floating point arithmetic), types
can be parametrized using generics.

10.2.1 Generic Structs

The two structs PointDiscrete and PointContinuous define the same fields (x and y), but use dif-
ferent type for those: integers and floats.

struct PointDiscrete {
x: i32,
y: i32,

}

struct PointContinuous {
x: f32,
y: f32,

}

Those two types canalmost beusedalike, but for the type system, there something fundamentally
different.

55

fn main() {
let a = PointDiscrete { x: 12, y: 7 };
let b = PointContinuous { x: 3.75, y: 2.12 };
println!("a=({}, {}), b=({}, {})", a.x, a.y, b.x, b.y);

}

Introducing a generic type parameter T not only helps merging the two struct definitions to one,
but also allows using other types, such as f64 or u16:

struct Point<T> {
x: T,
y: T,

}

fn main() {
let a = Point { x: 12, y: 7 };
let b = Point { x: 3.75, y: 2.12 };
println!("a=({}, {}), b=({}, {})", a.x, a.y, b.x, b.y);

}

The actual types of point a and b are inferred. Since there’s only a single type parameter defined,
and T is the same for the field x and y, the following code won’t compile:

let c = Point { x: 10, y: 3.14 };
println!("c=({}, {})", c.x, c.y);

The compiler infers some integer type for x, so ymust also be an integer:

error[E0308]: mismatched types –> src/main.rs:11:31 | 11 | let c = Point { x: 10, y: 3.14 }; | ^^^^
expected integer, found floating-point number | = note: expected type {integer} found type
{float}

If two type parameters, T und U, are used for the struct definitions, the above code compiles, no
matter if T and U are the same types or different:

struct Point<T, U> {
x: T,
y: U,

}

fn main() {
let a = Point { x: 12, y: 7 };
let b = Point { x: 3.75, y: 2.12 };
println!("a=({}, {}), b=({}, {})", a.x, a.y, b.x, b.y);

let c = Point { x: 10, y: 3.14 };

56

println!("c=({}, {})", c.x, c.y);
}

However, using different types for x and y could make it harder to use common operations on
those fields: The less the compiler knows about a type, the fewer operations can be performed on
fields of that type. Therefore generic type parameters should only be used if it clearly serves the
use case at hand, and not for flexibility for it’s own sake.

10.2.2 Generic Enums

Rust’s twomost common enums, Option<T> and Result<T, E> use generic type parameters:

enum Option<T> {
Some(T),
None,

}

Option only has a single type parameter, T. The None case does not need a type, because it is used
to signify the absence of a value, and hence the absence of a type.

enum Result<T, E> {
Ok(T),
Err(E),

}

Result, however, is parametrized with two types, T and E; the E parameter is used for some error
type, whereas the T parameter specifies the type for the result of a successful operation, which
usually is not an error message, even though this enum definition does not forbid using it that
way.

10.2.3 Generic Functions

The two functions largest_i and largest_f take a list of integers (i32) or floats (f32), respectively,
find the biggest item in the list and return it:

fn largest_i(list: &[i32]) -> i32 {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item
}

}

57

largest
}

fn largest_f(list: &[f32]) -> f32 {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item
}

}

largest
}

fn main() {
let integers = vec![53, 12, 76, 19, 44, 98, 72];
let floats = vec![1.45, 93.9, 64.3, 91.3, 45.1];

println!("largest of {:?}: {}", integers, largest_i(&integers));
println!("largest of {:?}: {}", floats, largest_f(&floats));

}

Even though the method only differs in the signature and body (the implementation) is exactly
the same twice, the whole code has been duplicated.

Using generics, type information can be parametrized to avoid such duplication. This implemen-
tation replaces the specific types i32 and f32with a generic type parameter T (a common conven-
tion for “type”):

fn largest<T>(list: &[T]) -> T { // T instead of i32/f32
// implementation unchanged

}

Unfortunately, this method does not compile:

error[E0369]: binary operation `>` cannot be applied to type `T`
--> src/main.rs:29:17
|

29 | if item > largest {
| ---- ^ ------- T
| |
| T
|
= note: `T` might need a bound for `std ::cmp ::PartialOrd`

58

Comparisons with the > operator do not work for all types, but only for types that implement the
trait std ::cmp ::PartialOrd (as the compiler suggests).

10.2.4 Trait Bounds

The types that can be used for a generic type parameter can be constrained using a trait bound.
The type parameter (<T>) is supplied with a trait name (<T: Trait>), so that the function is only
appliable to types satisfying the given trait. It’s also possible to constrain a type using multiple
traits by separating those traits with a +, such as <T: Trait1 + Trait2>.

The largest function fromabove can bemade towork by constraining the type parameter T to the
traits PartialOrd (for the > comparison) and Copy (so that the items from the list are copied and
not moved out of the list):

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item
}

}

largest
}

An alternate syntax using the where clause helps keeping the function signature short:

fn largest<T>(list: &[T]) -> T
where

T: PartialOrd + Copy,
{

let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item
}

}

largest
}

The difference is more striking if multiple type parameters are involved:

59

fn set<K: Display + Copy, V: PartialOrd + Copy>(key: K, value: V) {
// ...

}

Compared to:

fn set<K, V>(key: K, value: V)
where

K: Display + Copy,
V: PartialOrd + Copy,

{
// ...

}

10.2.5 Generic Methods

To implementamethod forall possible typesonastructwitha typeparameter, the typeparameter
must also be declared for the impl block:

struct Point<T> {
x: T,
y: T,

}

impl<T> Point<T> {
fn x(&self) -> &T {

&self.x
}
fn y(&self) -> &T {

&self.y
}

}

It is also possible to implement certain methods only for specific types, say, floating point num-
bers, which support additional mathematical operations (e.g. square roots) compared to inte-
gers:

impl Point<f32> {
fn distance_from_origin(&self) -> f32 {

(self.x.powi(2) + self.y.powi(2)).sqrt()
}
fn distance_from(&self, other: &Point<f32>) -> f32 {

((self.x - other.x).powi(2) + (self.y - other.y).powi(2)).sqrt()
}

60

}

fn main() {
let p = Point { x: 3.75, y: 2.12 };
let q = Point { x: 1.5, y: 8.95 };

println!("distance p to (0, 0): {}", p.distance_from_origin());
println!("distance q to (0, 0): {}", q.distance_from_origin());
println!("distance p to q: {}", p.distance_from(&q));
println!("distance q to p: {}", q.distance_from(&p));

}

Themethods can be called on any Point using f32 values. However, if a point uses integer values,
the methods above are not available:

fn main() {
let a = Point { x: 1, y: 2 };
println!("distance a to (0, 0): {}", a.distance_from_origin())

}

Output:

error[E0599]: no method named `distance_from_origin` found for type `Point<{integer}>` in the current scope
--> src/main.rs:17:44
|

1 | struct Point<T> {
| --------------- method `distance_from_origin` not found for this

...
17 | println!("distance a to (0, 0): {}", a.distance_from_origin())

| ^^^^^^^^^^^^^^^^^^^^

The type parameters of a method parameter are not restricted to the type parameters of the impl
block. Starting from this struct definition with different types for x and y:

struct Point<T, U> {
x: T,
y: U,

}

Amethod can be implemented that works on a Pointwith certain type parameters, while accept-
ing Point parameters that use (possibly) different type parameters:

impl<T, U> Point<T, U> {
fn mixup<V, W>(self, other: Point<V, W>) -> Point<T, W> {

Point {

61

x: self.x, // T
y: other.y, // W

}
}

}

fn main() {
let a = Point { x: 1, y: 2.5 };
let b = Point { x: 3.99, y: 8 };
let p = a.mixup(b);
println!("p=({},{})", p.x, p.y); // Output: p=(1,8)

}

The type parameters T and U are the types of the callee (self), whereas V and W are the types of the
method parameter (other). The method mixup produces a new point with mixed-up type param-
eters. For this purpose, type parameters from both the impl block and the method signature can
be used.

10.2.6 Conditionally Implement Methods

Methods can be implemented conditionally for types that satisfy specific traits. The cmp_display
method can only be invoked on a Pair<T> whose T implements both the Display and the Par-
tialOrd trait:

use std ::fmt ::Display;

struct Pair<T> {
x: T,
y: T,

}

impl<T: Display + PartialOrd> Pair<T> {
fn cmp_display(&self) {

if self.x >= self.y {
// PartialOrd
println!("The largest member is x={}", self.x); // Display

} else {
println!("The largest member is y={}", self.y); // Display

}
}

}

fn main() {
let p = Pair { x: 3, y: 7 };

62

p.cmp_display();
}

Since integer types satisfy both traits, the code above compiles, and the cmp_displaymethod can
be called on the Pair p.

It is also possible to implement a trait for any type that implements another trait. Let’s say that
themethod identify should implemented for all the types that satisfy the Display trait:

use std ::fmt ::Display;

trait Subject {
fn identify(&self);

}

impl<T: Display> Subject for T {
fn identify(&self) {

println!("I am {}.", self);
}

}

fn main() {
let pi = 3.14;
pi.identify(); // I am 3.14.

}

The identify()method is now available for all other types satisfying Display, without providing
any futher implementations. Such implementations are called blanket implementations. They are
documented in the “Implementors” section to each trait.

10.2.7 Compilation and Performance

The Rust compiler turns generic code into codewith specific types upon compilation (_monomor-
phization). If a struct Point<T> is used with the specific types i32 and f32, the compiler will fill
in the types and produce two implementations: Point_i32 and Point_f32. For any usage of some
Point<T>, the type parameter will be inferred, and the code will be compiled using the specific
types.

This comes at some cost: Not only is the compilation process more complicated and therefore
slower, but also is the resulting code gets bigger. However, handling generics at compile time
ensures that there are no runtime costs; and because a programm is usually compiled once and
runmany times, the additional compilation time canbe seen as a investment rather than a cost.

63

10.3 Lifetimes

Every reference in Rust has a lifetime. This is a scope for which that reference is valid. As soon as
the end of that scope is reached, the lifetime expires, and the reference becomes invalid.

10.3.1 Dangling References

Areference toavalue thatwentoutof scope is calledadangling reference. Sucha reference is invalid
andmust not be used any longer, which is enforced by the Rust compiler. The following program
won’t compile:

fn main() {
let r;
{

let x = 5;
r = &x;

} // here, x goes out of scope
println!("r: {}", r);

}

Error message:

Compiling tmp v0.1.0 (/home/paedu/learning-rust/code/tmp)
error[E0597]: `x` does not live long enough
--> src/main.rs:5:9
|

5 | r = &x;
| ^^^^^^ borrowed value does not live long enough

6 | }
| - `x` dropped here while still borrowed

7 | println!("r: {}", r);
| - borrow later used here

The borrow checker compares the scopes involved and notices that the subject of the reference (x)
does not live as long as the reference (r).

A simplified version of the programwithout the inner scope will compile:

fn main() {
let x = 5;
let r = &x;
println!("r: {}", r);

}

The reference r and the subject x have the same scope and, hence, the same lifetime.

64

10.3.2 Lifetimes in Functions

Consider this program that figures out which of two strings is the longer one:

fn main() {
let a = String ::from("foobar");
let b = String ::from("qux");

let result = longest(a.as_str(), b.as_str());
println!("The longest string is '{}'", result);

}

It uses the longest function to do the actual work:

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

x
} else {

y
}

}

This code doesn’t compile:

error[E0106]: missing lifetime specifier
--> src/main.rs:9:33
|

9 | fn longest(x: &str, y: &str) -> &str {
| ^ expected lifetime parameter
|
= help: this function's return type contains a borrowed value, but the

signature does not say whether it is borrowed from `x` or `y`

Thecompiler cannotknowif the referencebeing returned fromthe functionwill beborrowed from
x or from y. This is an issue, because the borrow checker is unable to figure out the valid scope for
the returned reference, since x and y could have different lifetimes,

Lifetime annotations describe the relationships of the lifetimes of multiple references. They are
just a hint to the borrow checker, and do not change the lifetime or scope of any reference.

The syntax of lifetime annotations looks as follows:

&i32 // a reference without an annotated lifetime
&'a i32 // a reference with the explicit lifetime a
&'b mut i32 // a mutable reference with the explicit lifetime b

65

The lifetime parameter also needs to be declared in angle brackets after the function name. The
following version of the longest function annotates both function parameters and the returned
reference with the same lifetime:

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {

x
} else {

y
}

}

The method signature can be read as: “The function longest has a lifetime parameter a; the pa-
rameters x and y are both references with the same lifetime a, and the reference returned has also
the same lifetime a.”

This code compiles, and now the borrow checker knows how to enforce the lifetimes of the refer-
ences passed into this function.

fn main() {
let result: &str;
let a = String ::from("foobar");
{

let b = String ::from("qux");
result = longest(a.as_str(), b.as_str());

}
println!("The longest string is '{}'", result);

}

Error message:

error[E0597]: `b` does not live long enough
--> src/main.rs:6:38
|

6 | result = longest(a.as_str(), b.as_str());
| ^ borrowed value does not live long enough

7 | }
| - `b` dropped here while still borrowed

8 | println!("The longest string is '{}'", result);
| ------ borrow later used here

The borrow checker sees that a, b and result are supposed to have the same lifetime, but also no-
tices that bhas a shorter scope than theother references. Not considering the actual valuesbehind
a and b, the compiler does not know that resultwill be referring to a in this specific example, so
potentially a dangling pointer could result from this code. The compilation therefore fails.

66

Consider a slightly modified version of the above client code:

fn main() {
let result: &str;
let a = String ::from("foobar");
{

let b = String ::from("qux");
result = longest(a.as_str(), b.as_str());
println!("The longest string is '{}'", result);

}
}

This code compiles, even though the three variables involved have a different scope. This is be-
cause the generic lifetime 'a will be the smaller lifetime of the two parameters x and y, and all
references are used within that smaller scope.

10.3.3 Lifetime Annotations in Structs

Structs can hold references:

struct Excerpt {
part: &str,

}

fn main() {
let text = String ::from("This is important. Or maybe not...");
let first_sentence = text.split('.').next().expect("no . found");
let excerpt = Excerpt {

part: first_sentence,
};
println!("{}", excerpt.part);

}

However, this code does not compile, because the reference has no lifetime specified:

error[E0106]: missing lifetime specifier
--> src/main.rs:2:11
|

2 | part: &str,
| ^ expected lifetime parameter

This is an issue, because the struct as a whole could outlive the reference it’s holding, leading to a
dangling pointer. A lifetime stating that both the struct and its field have the same lifetime fixes
the problem:

67

struct Excerpt<'a> {
part: &'a str,

}

10.3.4 Lifetime Elision

Not every function returning a reference to one of its parameters needs lifetime annotations. Con-
sider this function, which returns the first word of a given string as a reference:

fn first_word(s: &str) -> &str {
let bytes = s.as_bytes();
for (i, &item) in bytes.iter().enumerate() {

if item == b' ' {
return &s[0..i]; // return part up to first space

}
}
&s[..] // no spaces: s is a single word

}

fn main() {
let text = String ::from("Rust kicks derrieres").to_string();
let word = first_word(&text);
println!("{}", word); // Rust

}

This code compiles, even though there are no lifetimes specified. The compiler has a set of rules
called lifetime elision rules. If those apply to the code in question, i.e. to the parameter’s input life-
times and to the resulting references output lifetimes, the lifetimes can be inferred from the context.
Those rules are:

1. Every input parameter gets its own lifetime parameter.
2. If there is one input lifetimeparameter, the output lifetimeparameter is assigned this input

lifetime parameter.
3. If there are multiple input lifetime parameters, but one of them is &self or &mut self (the

function is a method), the lifetime of self is assigned to all output lifetime parameters.

10.3.5 Static Lifetime

There is one special lifetime parameter: the 'static lifetime. This donates that a value is in scope
for the entire lifetime of the program. String literals, which are stored in the binary upon compi-
lation, have the 'static lifetime.

This code is valid, because the string literal lives long enough (for the whole runtime of the pro-
gram that is).

68

let s: &'static str = "This is a question.";
println!("{}", s);

However, this code does not compile:

let j = 123;
let i: &'static i32 = &j;
println!("{}", i);

j only lives as long as the enclosing scope, and i, the reference to it, is supposed to live for the
duration of the whole program:

error[E0597]: `j` does not live long enough
--> src/main.rs:6:27
|

6 | let i: &'static i32 = &j;
| ------------ ^^ borrowed value does not live long enough
| |
| type annotation requires that `j` is borrowed for `'static`

7 | println!("{}", i);
8 | }

| - `j` dropped here while still borrowed

10.3.6 Generics, Traits, and Lifetimes Combined

The function longest_print uses all the concepts covered in this chapter: generics, traits and life-
times:

use std ::fmt ::Display;

fn longest_print<'a, T>(x: &'a str, y: &'a str, caller: T) -> &'a str
where

T: Display,
{

println!("longest_print called from {}", caller);
if x.len() > y.len() {

x
} else {

y
}

}

fn main() {
let a = &String ::from("hello");

69

let b = &String ::from("Rust");
let r = longest_print(&a, &b, "main");
println!("longest: '{}'", r);

}

• The generic type parameter T for the function parameter caller.
• The trait Display to constrain the parameter T, whichmust be printable.
• The lifetime 'a to ensure that the resulting reference does not outlive the parameter refer-
ences.

11 Writing Automated Tests

Rust has built-in support for automated tests. A test module and a test function is automatically
generated for every new library crate:

$ cargo new maths --lib

The generated code:

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

assert_eq!(2 + 2, 4);
}

}

The testmodule is annotatedwith [#cfg(test)], and the test functionwith [#test]. The function
body tests if 2 + 2 equals 4, which always holds true, so the test case passeswhen run using cargo
test (excerpt of the output):

$ cargo test

running 1 test
test tests ::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

A test fails if a test function (or one of the function it calls) panics:

70

#[cfg(test)]
mod tests {

#[test]
fn it_panics() {

panic!("nothing works yet");
}

}

Output of cargo test (excerpt):

running 1 test
test tests ::it_panics ... FAILED

failures:

---- tests ::it_panics stdout ----
thread 'tests ::it_panics' panicked at 'nothing works yet', src/lib.rs:5:9
note: Run with `RUST_BACKTRACE=1` environment variable to display a backtrace.

failures:
tests ::it_panics

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out

11.1 Assertions

The assert! macro ensures that an expression evaluates to true. If the expression evaluates to
false, the panic! macro is called and the test case fails.

This test case checks the return value of the add function. The test module needs to import the
function from its super module:

pub fn add(a: i32, b: i32) -> i32 {
a + b

}

#[cfg(test)]
mod tests {

use super ::add;

#[test]
fn test_add() {

// arrange

71

let a = 7;
let b = 3;
let expected_sum = 10;

// act
let actual_sum = add(a, b);

// assert
assert!(actual_sum == expected_sum);

}
}

The test function is built up using the “AAA” pattern, which stands for:

1. Arrange: set up the test data
2. Act: run the code to be tested
3. Assert: check the outcomes against the expectations

Themacros assert_eq! is especially helpful for comparisons. It takes two parameters, called left
and right, checks them for equality.

This broken implementation of the subtract function shows the difference between assert! and
assert_eq!:

pub fn sub(a: i32, b: i32) -> i32 {
b - a // broken: must be a - b

}

#[cfg(test)]
mod tests {

use super ::sub;

#[test]
fn test_subtract1() {

assert!(7 == sub(10, 3))
}

#[test]
fn test_subtract2() {

assert_eq!(7, sub(10, 3))
}

}

Output of cargo test:

72

running 2 tests
test tests ::test_subtract1 ... FAILED
test tests ::test_subtract2 ... FAILED

failures:

---- tests ::test_subtract1 stdout ----
thread 'tests ::test_subtract1' panicked at 'assertion failed: 7 == sub(10, 3)', src/lib.rs:30:9
note: Run with `RUST_BACKTRACE=1` environment variable to display a backtrace.

---- tests ::test_subtract2 stdout ----
thread 'tests ::test_subtract2' panicked at 'assertion failed: `(left == right)`

left: `7`,
right: `-7`', src/lib.rs:35:9

failures:
tests ::test_subtract1
tests ::test_subtract2

test result: FAILED. 0 passed; 2 failed; 0 ignored; 0 measured; 0 filtered out

In subtract1, using the assert! macro, the unevaluated expression is shown. In subtract2, using
the assert_eq! macro, the evaluated left and right expressions are shown, making error detec-
tion arguably easier.

The assert_ne! macro ensures that the left and right expression are not equals. Sometimes, it is
not possible to saywhat the outcome of an operation should be, but it’s well possible to saywhat
the outcomemust not be.

11.2 Custom Failure Messages

Themacros assert!, assert_eq! and assert_ne! take an optional third parameter: a custom error
message that is printed in case the assertion fails:

pub fn add(a: i32, b: i32) -> i32 {
a + b // correct

}

pub fn sub(a: i32, b: i32) -> i32 {
b - a // broken

}

73

#[cfg(test)]
mod tests {

use super ::add;
use super ::sub;

#[test]
fn test_add() {

assert_eq!(10, add(7, 3), "adding 3 to 7 failed")
}

#[test]
fn test_subtract() {

assert_eq!(7, sub(10, 3), "subtracting 3 from 10 failed")
}

}

Output (excerpt):

running 2 tests
test tests ::test_add ... ok
test tests ::test_subtract ... FAILED

failures:

---- tests ::test_subtract stdout ----
thread 'tests ::test_subtract' panicked at 'assertion failed: `(left == right)`

left: `7`,
right: `-7`: subtracting 3 from 10 failed', src/lib.rs:21:9

note: Run with `RUST_BACKTRACE=1` environment variable to display a backtrace.

failures:
tests ::test_subtract

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out

error: test failed, to rerun pass '--lib'

The custom error message of the failing test_subtract case is shown in the output.

74

11.3 Testing for Panics

As stated in the chapter about error handling, a panic is a valid response to a public interface that
is used the wrong way. The #[should_panic] annotation helps testing such cases: The test case
passes if a panic is caused upon execution, and fails otherwise.

This div function panics if the given divisor is equal to zero, and the panic is expected in the test
function:

pub fn div(a: i32, b: i32) -> f32 {
if b == 0 {

panic!("division by zero");
}
a as f32 / b as f32

}

#[cfg(test)]
mod tests {

use super ::div;

#[test]
#[should_panic]
fn test_divide_by_zero() {

div(3, 0);
}

}

The test passes, but it would also pass if the panic happened for a different reason. For such cases,
the optional expected parameter of the should_panic annotation helps to ensure that the under-
lying code panics for the right reason by checking if the expected parameter is a substring of the
actual panic message:

#[test]
#[should_panic(expected="division by zero")]
fn test_divide_by_zero() {

div(3, 0);
}

This approach is somewhat shaky, because panicmessages can change as timegoes. The expected
parameter therefore must be chosen to be neither too specific (danger of breaking with changes)
nor too general (danger of accepting wrong panic messages).

75

11.4 Test Execution

11.4.1 Arguments

The command cargo test compiles the project in test mode and runs the resulting test binary.
Command line parameters can be indicated both for cargo and the test binary. For the latter case,
parameters following the -- separator are sent to the test binary:

cargo test --foo # send parameter --foo to cargo
cargo test -- --bar # send parameter --bar to the test binary
cargo test --foo -- --bar # send --foo to cargo, --bar to the test binary

11.4.2 Parallel Execution

By default, multiple tests run in multiple threads: one test per thread, that is. The order of test
execution is not deterministic, and therefore tests should not depend on one another. However,
the number of threads can be defined using the --test-threads parameter, which can be set to 1
for sequential execution.

cargo test -- --test-threads=1

The standard output of passing tests won’t be shown in the test result. Consider this two test
cases:

#[cfg(test)]
mod tests {

#[test]
fn passing_test() {

println!("is 2 + 2 = 4?");
assert_eq!(2 + 2, 4);

}

#[test]
fn failing_test() {

println!("is 2 + 2 = 5?");
assert_eq!(2 + 2, 5);

}
}

76

11.4.3 Output

When run with cargo test, only the println! output of the failing test is shown in the stdout
section of the test output:

---- tests ::failing_test stdout ----
is 2 + 2 = 5?
thread 'tests ::failing_test' panicked at 'assertion failed: `(left == right)`

left: `4`,
right: `5`', src/lib.rs:12:9

note: Run with `RUST_BACKTRACE=1` environment variable to display a backtrace.

When runwith cargo test -- --nocapture instead, also the output of the passing test is shown:

running 2 tests
is 2 + 2 = 5?
is 2 + 2 = 4?
test tests ::passing_test ... ok
test tests ::failing_test ... FAILED

To avoid that the test output and test results are interleaved, restricting the test execution to one
thread serializes the test execution and hence the output:

$ cargo test -- --nocapture --test-threads=1

running 2 tests
test tests ::failing_test ... is 2 + 2 = 5?
FAILED
test tests ::passing_test ... is 2 + 2 = 4?
ok

11.4.4 Test Selection

A subset of the available test cases can be run by indicating an expression to be matched by the
names of the test functions to be executed. Given this module:

pub fn add(a: i32, b: i32) -> i32 {
a + b

}

#[cfg(test)]
mod tests {

77

use super ::add;

#[test]
fn add_positive_to_positive() {

assert_eq!(7, add(3, 4))
}

#[test]
fn add_negative_to_positive() {

assert_eq!(2, add(-4, 6))
}

#[test]
fn add_negative_to_negative() {

assert_eq!(-9, add(-2, -7))
}

}

The expression addwill match all three test functions:

$ cargo test add

running 3 tests
test tests ::add_negative_to_negative ... ok
test tests ::add_positive_to_positive ... ok
test tests ::add_negative_to_positive ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Whereas the expression add_negwill onlymatch two of the three test cases, filtering out the third
one:

$ cargo test add_neg

running 2 tests
test tests ::add_negative_to_negative ... ok
test tests ::add_negative_to_positive ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 1 filtered out

11.4.5 Ignoring Tests

A test case annotated with the #[ignore] attribute won’t be run by default:

78

#[test]
#[ignore]
fn add_big_to_big() {

assert_eq!(1000000, add(999999, 1))
}

$ cargo test

running 4 tests
test tests ::add_big_to_big ... ignored
test tests ::add_negative_to_negative ... ok
test tests ::add_positive_to_positive ... ok
test tests ::add_negative_to_positive ... ok

test result: ok. 3 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out

Ignored tests can be run separately by setting the --ignored flag:

$ cargo test -- --ignored

running 1 test
test tests ::add_big_to_big ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 3 filtered out

11.5 Test Organization

11.5.1 Unit Tests

Unit tests in Rust are written in a sub-module called tests and only test their super-module, not
code of any other modules. The privacy rules of Rust allow a sub-module to call the private func-
tions of its super-module, and hence, in contrast to many other test frameworks and program-
ming languages, unit tests in Rust can also cover the private functions of amodule. For unit tests,
the testmodule must be annotated with #[cfg(test)].

This module contains public functions for addition and multiplication, and a tests sub-module
testing both the public and private functions (calc/src/lib.rs):

pub fn add(a: i32, b: i32) -> i32 {
a + b

}

pub fn multiply(a: i32, b: i32) -> i32 {

79

add_multiple_times(a, b)
}

fn add_multiple_times(a: i32, n: i32) -> i32 {
let mut product = 0;
for _i in 0..n {

product += a;
}
product

}

#[cfg(test)]
mod tests {

use super ::*;

#[test]
fn test_add() {

assert_eq!(add(2, 3), 5);
}

#[test]
fn test_multiply() {

assert_eq!(multiply(3, 4), 12);
}

#[test]
fn test_add_multuple_times() {

assert_eq!(add_multiple_times(3, 2), 6);
}

}

The multiplication is implemented as a repeated addition, and the unit test is able to cover both
the public and private API.

11.5.2 Integration Tests

Integration tests in Rust only cover the public interface of the module to be tested. The test code
is organized in a folder called tests, located next to the src folder. Since the integration test is
neither part of the module to be tested, nor a sub-module thereof, the module to be tested must
be integrated as an external crate (calc/tests/calc_test.rs):

extern crate calc;

#[test]

80

fn test_add() {
assert_eq!(calc ::add(2, 3), 5);

}

#[test]
fn test_multiply() {

assert_eq!(calc ::multiply(3, 4), 12);
}

The #[cfg(test)] annotation is not needed here. The integration test only covers the public API
and thus simulates the usage of themodule by another project.

Integration tests can be executed separately from unit tests by indicating the test files (without
.rs suffix) to be executed:

$ cargo test --test calc_test

Each file in the tests folder is compiled as its own separate crate. Common functionality can be
extracted and put into amodule, for example called common.

This test sub-module sets up a test case for the addition test (tests/common.rs):

pub struct AdditionTest {
pub a: i32,
pub b: i32,
pub expected: i32,

}

pub fn get_add_test_case() -> AdditionTest {
AdditionTest {

a: 3,
b: 5,
expected: 8,

}
}

It can be used like this (tests/calc_test.rs):

extern crate calc;

mod common;

#[test]
fn test_add() {

let test_case = common ::get_add_test_case();

81

assert_eq!(calc ::add(test_case.a, test_case.b), test_case.expected);
}

If the module is defined in tests/common.rs, the module will be treated as an additional
integration test (just without any test methods), but not so if the module is defined in
tests/common/mod.rs.

11.5.3 Binary Crates

The functions in the src/main.rs file (of a binary crate) cannot be covered by integration tests.
However, functions living in src/lib.rs can be both used by the code in src/main.rs and covered
by unit and integration tests. Therefore, the code in src/main.rs should be kept small, moving as
much of it to modules at possible, so that it can be automatically tested.

For example, the main function of the calculator binary crate only calls the add function from
src/lib.rs:

extern crate calculator;

fn main() {
println!("3 + 2 is {}", calculator ::add(3, 2));

}

The file src/lib.rs contains both the add function and a test case for it:

pub fn add(a: i32, b: i32) -> i32 {
return a + b;

}

#[cfg(test)]
mod tests {

use super ::add;

#[test]
fn test_add() {

assert_eq!(add(2, 3), 5);
}

}

The add function can also be tested using an integration test (test/integration_tests.rs):

extern crate calculator;

#[test]
fn test_add() {

82

assert_eq!(calculator ::add(2, 3), 5);
}

12 An I/O Project: Building a Command Line Program

Rust is fast, safe, works on different platforms, compiles to a single binary ‒ and therefore is a
good fit for command line tools.

The example application minigrep searches for a string in a file:

$ minigrep string file.txt

It is created as a binary crate:

$ cargo new --bin minigrep

In the Rust community, binary programs are structured as follows:

• The program is split up between main.rs and lib.rs.
• main.rs contains the command line parsing and some other configuration logic, as long as
that logic is small.

• lib.rs contains the program’s main logic, which is offered as a function called run.
• The main function calls run and deals with possible errors returned from there.

12.1 Command Line Arguments

The standard library contains an iterator std ::env ::args over strings, containing the command
line arguments as passed to the program. (Alternatively, std ::env ::args_os provides an iterator
of OsString for dealing with invalid unicode input.)

use std ::env;

fn main() {
let args: Vec<String> = env ::args().collect();
println!("{:?}", args);

}

Including the parent std ::env and referring to the iterator as env ::args is a good compromise
between concise and readable code.

The iterator’s collect()method turns the elements of the iterator into a collection, which must
be specified using a type annotation.

The first command line argument is always the path to the binary being invoked:

83

$ cargo run query file.txt
["target/debug/minigrep", "query", "file.txt"]

The arguments of interest can be stored in variables for later use:

use std ::env;

fn main() {
let args: Vec<String> = env ::args().collect();

let query = &args[1];
let filename = &args[2];

println!("Searching for {}", query);
println!("In file {}", filename);

}

$ cargo run query file.txt
Searching for query
In file file.txt

12.1.1 Extracting the Parsing Logic

The parsing logic is better split up, especially as it grows with further configuration parameters.
A good approach is to extract these parts from main:

• a struct, containing all the configuration field
• a function, parsing the initial arguments into such a struct

The latter function can be implemented as a constructor of the struct:

use std ::env;

fn main() {
let args: Vec<String> = env ::args().collect();
let config = Config ::new(&args);
println!("Searching for {}", config.query);
println!("In file {}", config.filename);

}

struct Config {
query: String,
filename: String,

}

84

impl Config {
fn new(args: &[String]) -> Config {

let query = args[1].clone();
let filename = args[2].clone();

Config { query, filename }
}

}

Cloning strings, as in the constructor of Config, is not very efficient, but easy to implement. If only
few objects are cloned, and only at the start of the program like in the example above, cloningwill
not undermine the program’s performance in a critical manner.

12.2 Reading and Processing a File

The content of a text file can be read into a string variable using the std ::io ::File class and the
traits from std ::io ::predlude:

use std ::fs ::File;
use std ::io ::prelude ::*;

fn main() {
let filename = &args[2]; // as above

let mut f = File ::open(filename).expect("file not found");
let mut contents = String ::new();
f.read_to_string(&mut contents).expect("error reading file");

println!("content:\n{}", contents)
}

12.3 Error Handling

This constructor from above causes a panic if too few arguments are provided:

impl Config {
fn new(args: &[String]) -> Config {

let query = args[1].clone();
let filename = args[2].clone();

Config { query, filename }
}

}

85

If only one argument is provided, args has no element at index 2:

$ cargo run query
thread 'main' panicked at 'index out of bounds: the len is 2 but the index is 2'

12.3.1 User‐Friendly Error Messages

This error message is intended for programmers, not for users. This panic message is a bit more
user-friendly:

impl Config {
fn new(args: &[String]) -> Config {

if args.len() < 3 {
panic!("not enough arguments");

}
// omitted

}
}

$ cargo run query
thread 'main' panicked at 'not enough arguments'

12.3.2 Error Message Instead of Panic

It is better, though, to let the main function decidewhat to do in case of an error, than to shutdown
the programwith a panic right away. This version of the constructor returns a Resultwith either
the parsed Config, or an error message if the parsing logic fails:

impl Config {
fn new(args: &[String]) -> Result<Config, &'static str> {

if args.len() < 3 {
return Err("not enough arguments");

}

let query = args[1].clone();
let filename = args[2].clone();

Ok(Config { query, filename })
}

}

86

The actual result as to be wrapped in the Ok or the Err variant, respectively. At the caller’s side,
the Result can be handled using the match keyword ‒ or by the unwrap_or_elsemethod of Result,
which accepts a closure for the error message:

use std ::env;
use std ::process;

fn main() {
let args: Vec<String> = env ::args().collect();

let config = Config ::new(&args).unwrap_or_else(|err| {
println!("Problem parsing arguments: {}", err);
process ::exit(1);

});
}

The program is terminated with exit code 1 in case of a failure using the process ::exit function.
The error message is sent to the standard output:

$ cargo run query
Problem parsing arguments: not enough arguments

12.4 Refactoring

Once the command line parameters are wrapped up in a handy config object, the program logic
can be extracted from the main function and put into a run function:

fn main() {
let args: Vec<String> = env ::args().collect();

let config = Config ::new(&args).unwrap_or_else(|err| {
println!("Problem parsing arguments: {}", err);
process ::exit(1);

});

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

run(config);
}

fn run(config: Config) {
let mut f = File ::open(config.filename).expect("file not found");
let mut contents = String ::new();

87

f.read_to_string(&mut contents).expect("error reading file");
println!("content:\n{}", contents)

}

The run function causes panics, which takes away control from the main function. To give that
control back, this run implementation returns a result, wrapping possible errors up in a Box. In-
stead of calling except on the expressions that return a Result by themselves, the ? operator can
be used:

use std ::error ::Error;

fn run(config: Config) -> Result<(), Box<Error >> {
let mut f = File ::open(config.filename)?;
let mut contents = String ::new();
f.read_to_string(&mut contents)?;
println!("content:\n{}", contents);
Ok(())

}

The Ok variant onlywraps the unit value (). In main, the errormessage can be used accordingly:

fn main() {
// omitted

if let Err(e) = run(config) {
println!("Application error: {}", e);
process ::exit(1);

}
}

Unlike Config ::new, run does not a value that can be unwrapped. So here the if let construct is
used to handle possible errors.

The extracted parts ‒ the run function and the Config struct with its new method ‒ can now be
moved into a separated library crate, whichmakes it easier to reuse and test that code:

use std ::error ::Error;
use std ::fs ::File;
use std ::io ::prelude ::*;

pub struct Config {
pub query: String,
pub filename: String,

}

impl Config {

88

// omitted
}

pub fn run(config: Config) -> Result<(), Box<Error >> {
// omitted

}

The Config struct, its fields, its newmethod, and the run function need to be public, so that they
can be used from the stripped-down main.rs:

extern crate minigrep;

use std ::env;
use std ::process;

use minigrep ::Config;

fn main() {
let args: Vec<String> = env ::args().collect();

let config = Config ::new(&args).unwrap_or_else(|err| {
println!("Problem parsing arguments: {}", err);
process ::exit(1);

});

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

if let Err(e) = minigrep ::run(config) {
println!("Application error: {}", e);
process ::exit(1);

}
}

The extracted functionality now has to be included as an extern crate minigrep.

12.5 Test‐Driven Development

Theprogramwill befinished fromhere inaprocess calledTest-DrivenDevelopment (TDD),which
works as follows:

1. Write test that fails for the expected reason.
2. Make the test compile and then pass.
3. Refactor the code without breaking the test.

89

4. Repeat from step 1 for the next part.

12.5.1 Failing Test Case

First, a (failing) test case ‒ one_result ‒ is added to lib.rs:

#[cfg(test)]
mod test {

use super ::*;

#[test]
fn one_result() {

let query = "duct";
let contents = "\

Rust:
safe, fast, productive.
Pick three.";

assert_eq!(vec!["safe, fast, productive."], search(query, contents));
}

}

12.5.2 Dummy Implementation

This code does not even compile, because the search function is missing. A dummy implementa-
tion, returning an empty vector, makes the code compile, but still lets the test fail:

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
vec![]

}

The search function needs to annotate a lifetime: The strings in the resulting vectors are pulled
out of the contents parameter, and therefore must life as long as that underlying string object.

12.5.3 Real Implementation

With this implementation of search, the test will pass:

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
let mut results = Vec ::new();

for line in contents.lines() {
if line.contains(query) {

90

results.push(line);
}

}

results
}

The text is analyzed line by line using the lines method of the contents string. The contains
method returns true, if the given substring query is part of the string (the current line, that is).
Matching lines are added to the results vector, which is returned from the function.

The test is now passing, but the program does not make use of search yet, which can be done as
such:

pub fn run(config: Config) -> Result<(), Box<Error >> {
let mut f = File ::open(config.filename)?;
let mut contents = String ::new();
f.read_to_string(&mut contents)?;
for line in search(&config.query, &contents) {

println!("{}", line);
}
Ok(())

}

The program now yields only thematching lines:

$ cargo run nobody poem.txt
Searching for nobody
In file poem.txt
I'm nobody! Who are you?
Are you nobody, too?

12.6 Environment Variable for Case Insensitive Search

minigrepneeds an option to search throughfiles in a case-insensitivemanner. Tomake it possible
for the user to make that option permanent instead of providing it with every invocation of the
program, an environment variable should be introduced instead of a command line argument.

Continuing the test-driven approach from before, an additional (failing) test is added to the test
module of lib.rs:

#[test]
fn case_insensitive() {

let query = "rUsT";
let contents = "\

91

Rust:
safe, fast, productive.
Pick three.
Trust me.";

assert_eq!(
vec!["Rust:", "Trust me."],
search_case_insensitive(query, contents)

);
}

For the implementation, both the query and every line to be tested are converted to lowercase:

pub fn search_case_insensitive<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
let query = query.to_lowercase();
let mut results = Vec ::new();

for line in contents.lines() {
if line.to_lowercase().contains(&query) {

results.push(line);
}

}

results
}

The slice query is converted to a Stringby the to_lowercasemethod. Therefore, it has to be passed
as &query into the containsmethod.

Both test cases now run successfully.

12.6.1 Additional Option

The new case insensitive option will be held by the Config struct:

pub struct Config {
pub query: String,
pub filename: String,
pub case_sensitive: bool,

}

Dependingon its value, either the search (case sensitive)or the search_case_insensitive function
will be called from run:

92

pub fn run(config: Config) -> Result<(), Box<Error >> {
let mut f = File ::open(config.filename)?;
let mut contents = String ::new();
f.read_to_string(&mut contents)?;

let results = if config.case_sensitive {
search(&config.query, &contents)

} else {
search_case_insensitive(&config.query, &contents)

};

for line in results {
println!("{}", line);

}
Ok(())

}

If the environment variable CASE_INSENSITIVE is set (to any value), the according option should
be set to true. The var function of the env module retrieves the value of the given environment
variable and returns a Result. This logic belongs to the constructor of Config:

use std ::env;

impl Config {
pub fn new(args: &[String]) -> Result<Config, &'static str> {

if args.len() < 3 {
return Err("not enough arguments");

}

let query = args[1].clone();
let filename = args[2].clone();

let case_sensitive = env ::var("CASE_INSENSITIVE").is_err();

Ok(Config {
query,
filename,
case_sensitive,

})
}

}

The is_errmethod returns true if the environment variable CASE_INSENSITIVE is not set, in which
case a case-sensitive search has to be performed. In all other cases, a case-insensitive search was
chosen by the user.

93

The behaviour of the program now can be changed by setting the CASE_INSENSITIVE environment
variable:

$ cargo run To poem.txt
Searching for To
In file poem.txt
To tell your name the livelong day
To an admiring bog!

$ CASE_INSENSITIVE=1 cargo run To poem.txt
Searching for To
In file poem.txt
Are you nobody, too?
How dreary to be somebody!
To tell your name the livelong day
To an admiring bog!

The second invocation yields two additional lines, whichmatches the specified behaviour.

12.6.2 Printing to Standard Error

The programprints debug and errormessages to standard output (stdout), just like thematching
lines. In order to process the desired output – thematching lines – furtherwith an other program,
or to store it in a file, the debug and error messages should be sent to standard error (stderr) in-
stead.

The eprintln! macro works just like the println! macro, but it prints to stderr instead of stdout.
Since only the main function prints debug and error messages, it is the only place due for refactor-
ing:

fn main() {
let args: Vec<String> = env ::args().collect();

let config = Config ::new(&args).unwrap_or_else(|err| {
eprintln!("Problem parsing arguments: {}", err);
process ::exit(1);

});

eprintln!("Searching for {}", config.query);
eprintln!("In file {}", config.filename);

if let Err(e) = minigrep ::run(config) {
eprintln!("Application error: {}", e);
process ::exit(1);

94

}
}

The debug and error messages can now be disposed of by forwarding them do /dev/null, for ex-
ample:

$ cargo run To poem.txt 2> /dev/null
To tell your name the livelong day
To an admiring bog!

$ CASE_INSENSITIVE=1 cargo run To poem.txt 2> /dev/null
Are you nobody, too?
How dreary to be somebody!
To tell your name the livelong day
To an admiring bog!

13 Functional Language Features

Rust is heavily influenced by functional programming, which involves using functions as values.

13.1 Closures

A closure is a function-like construct that can be stored in a variable. Those are anonymous func-
tions that areable to capturevalues fromthe surroundingscope. Onecommonusecaseof closures
is to abstract behaviour.

13.1.1 Closure Syntax

The following closure, bound to the name add, adds up two numbers and returns the result:

fn main() {
let a = 3;
let b = 5;
let add = |x, y| x + y;
let c = add(a, b);
println!("{}", c);

}

Expressed as a function, add could be implemented as follows:

95

fn main() {
let a = 3;
let b = 5;
fn add(x: u32, y: u32) -> u32 {

x + y
};
let c = add(a, b);
println!("{}", c);

}

Thus, the syntactical differences between a function and a closure are:

1. A function isdeclaredusing the fnkeyword (expression),whereasa closure isusuallybound
to a name using the let keyword (statement).

2. A function’s parameter list is surrounded by parentheses; closures use a pair of pipes (|) to
surround the parameter list.

3. A function needs explicit type annotations for both the parameters and the return values.
For closures, which usually are only relevant in a very limited scope, the compiler is able to
figure out those types.

4. A functionbodyneeds tobesurroundedbycurlybraces. Foraclosurewithabodyconsisting
of only a single expression, the curly braces can be left away.

The following declarations demostrate those differences:

fn add1 (x: u32) -> u32 { x + 1 } // 1. fn keyword, parentheses
let add2 = |x: u32| -> u32 { x + 1 }; // 2. let keyword, pipes
let add3 = |x| { x + 1 }; // 3. no type annotations
let add4 = |x| x + 1 ; // 4. no curly braces

13.1.2 Closure Semantics

Closures are useful to store some code to be executed later, possibly in a different context. This
program declares the four basic arithmetic operations as closures and invokes them:

fn main() {
let a = 16;
let b = 4;

let add = |x, y| x + y;
let sub = |x, y| x - y;
let mul = |x, y| x * y;
let div = |x, y| x / y;

println!("{}", add(a, b));

96

println!("{}", sub(a, b));
println!("{}", mul(a, b));
println!("{}", div(a, b));

}

As opposed to a function, a closure can capture variables from its environment:

fn main() {
let a = 7;
let add = |x| a + x; // capture binding a

let z = 3;
println!("{}", add(z)); // 7 + 3 = 10

}

The compiler infers the types of a closure the first time it is used. Therefore, the same closure
cannot be used twice with different types:

fn main() {
let take_and_give = |value| value;

let s = take_and_give(String ::from("hello"));
let n = take_and_give(5);

}

For the first call of take_and_give, the type String is inferred for the type of the value parameter.
The second call, which uses an integer instead of a String, is therefore illegal:

error[E0308]: mismatched types
--> src/main.rs:5:27
|

5 | let n = take_and_give(5);
| ^
| |
| expected struct `std ::string ::String`, found integer
| help: try using a conversion method: `5.to_string()`
|
= note: expected type `std ::string ::String`

found type `{integer}`

13.1.3 Use‐Case: Memoization

For expansive calculations, caching the results of an operation can safe a lot of execution time.
This closure computes the nth fibonacci number iteratively, because closures cannot call them-
selves:

97

fn main() {
let fib = |n| {

if n < 2 {
1

} else {
let mut prev1 = 0;
let mut prev2 = 1;
for _i in 0..n {

let tmp = prev1 + prev2;
prev1 = prev2;
prev2 = tmp;

}
prev2

}
};
for i in 0..10 {

println!("fib({})={}", i, fib(i));
}

}

Even though the recursive approach would be much heavier than this iterative implementation,
caching the results in the program still illustrates the point.

First, a struct shall be defined, which holds both the closure and the calculated value:

struct Cache<T>
where

T: Fn(u32) -> u32,
{

operation: T,
value: Option<u32>,

}

The struct Cache has a type parameter that is satisfied by any Fnmapping a u32 to another u32 ‒
exactly what the fib closure does.

Fn is a trait provided by the standard library, which indicates that the function or closure at hand
borrows values from its environment immutably. (The trait FnMut borrows values mutably; the
trait FnOnce consumes values, and therefore can only be called once.)

The valuefield is declared as an Option, indicating that a valuemight alreadyhave been calculated
‒ or not.

The operation and value fields are not public, for the client should not access them directly, but
through a constructor and an additional method:

98

mpl<T> Cache<T>
where

T: Fn(u32) -> u32,
{

fn new(operation: T) -> Cache<T> {
Cache {

operation,
value: None,

}
}

fn value(&mut self, arg: u32) -> u32 {
match self.value {

Some(v) => v,
None => {

let v = (self.operation)(arg);
self.value = Some(v);
v

}
}

}
}

The new function (the constructor) creates a new Cachewith the given operation andno value. The
valuemethod checks if there is already a value, and returns it, if so. If not, operation is executed,
and its result stored in the value field and returned to the caller.

The Cache can then be used as follows:

fn main() {
let fib = |n| {

println!("called fib closure");
if n < 2 {

1
} else {

let mut prev1 = 0;
let mut prev2 = 1;
for _i in 0..n {

let tmp = prev1 + prev2;
prev1 = prev2;
prev2 = tmp;

}
prev2

}
};

99

let mut cache = Cache ::new(fib);
println!("{}", cache.value(9));
println!("{}", cache.value(9));

}

The fib closure was slightly modified to print a message when it is invoked. The 9th fibonacci
number is requested two times, but the program only prints that additional message once, be-
cause the result of the second request was retrieved from the cache, and not calculated:

$ cargo run
called fib closure
55
55

13.1.4 Fixing the Cache Using a Map

This cache only works if it is used with the same parameter repeatedly. A useful implementation
would not only store one result, but map the input parameter to cached results:

use std ::collections ::HashMap;

struct Cache<T>
where

T: Fn(u32) -> u32,
{

operation: T,
values: HashMap<u32, u32>,

}

impl<T> Cache<T>
where

T: Fn(u32) -> u32,
{

fn new(operation: T) -> Cache<T> {
Cache {

operation,
values: HashMap ::new(),

}
}

fn value(&mut self, arg: u32) -> u32 {
match self.values.get(&arg) {

Some(v) => *v,

100

None => {
let v = (self.operation)(arg);
self.values.insert(arg, v);
v

}
}

}
}

The following client code nowworks as expected:

let mut cache = Cache ::new(fib);
println!("{}", cache.value(9));
println!("{}", cache.value(10));
println!("{}", cache.value(9));
println!("{}", cache.value(10));

The fib closure is only called for the first time a parameter is used:

$ cargo run
called fib closure
55
called fib closure
89
55
89

13.2 Iterators

An iterator allows to process its underlying items one by one. The iterator takes care of the logic
of iterating over the items, and determines when the sequence has reached its end.

An iterator can be retrieved by calling the itermethod on a collection:

let v = vec![1, 2, 3];
let i = v.iter();

The iterator’s elements then can be iterated over using a for/in loop:

for e in i {
println!("{}", e);

}

101

13.2.1 The Iterator Trait and the nextMethod

An iterator must implement the Iterator trait, which is defined as follows:

pub trait Iterator {
type Item;
fn next(&mut self) -> Option<Self ::Item>;
// additional methods

}

The declaration type Item and the Options type Self ::Item define a associated type. Implementing
an iterator also requires defining an Item type.

The nextmethod is the only method that implementors need to define. It moves on to the next
item, and returns it wrapped up in a Option. The self reference is mutable, because calling next
modifies the iterator’s underlying state ‒ the current position in the iterator.

An iterator can not only be processed using a for/in loop, but also directly using the nextmethod.
When doing so, the iterator reference has to be mutable explicitly. (The for/in loop makes the
iterator mutable in the background.)

let v = vec![1, 2, 3];
let mut i = v.iter();
println!("{:?}", i.next());
println!("{:?}", i.next());
println!("{:?}", i.next());
println!("{:?}", i.next());

Output:

Some(1)
Some(2)
Some(3)
None

13.2.2 Consuming Adaptors

Methods that call the nextmethod use up the iterator, and therefore are called _consuming adap-
tors. Thesum`method is an example for this:

let v = vec![1, 2, 3];
let i = v.iter();
let total: i32 = i.sum();
println!("{}", total); // 6

102

The iterator imust not be used after calling the summethod. A value used after move compiler
error would be the consequence of doing so nonetheless.

13.2.3 Iterator Adaptors

Methods that turn an iterator into another iterator are called iterator adaptors. Iterators are lazu
evaluated: A consuming adaptor has to be applied in order to get the result of calling an iterator
adaptor. For example, the mapmethod does not really create a new iterator:

let v = vec![1, 2, 3];
v.iter().map(|x| x + 1);

Calling the collect method ‒ a consuming adaptor ‒ will produce a new collection with the
mapped elements (here: added one to them):

let v = vec![1, 2, 3];
let plus_one: Vec<_> = v.iter().map(|x| x + 1).collect();
println!("{:?}", plus_one); // [2, 3, 4]

13.2.4 Filtering

The filtermethod takes a closure returning aboolean that is called for eachof the iterator’s items
in turn. If the closure returns true, the item is included in the newly produces iterator; otherwise
not.

let v = vec![1, 2, 3, 4, 5];
let even: Vec<_> = v.into_iter().filter(|x| x % 2 == 0).collect();
println!("{:?}", even); // [2, 4]

Notice that here the into_itermethod is called, which takes ownership of the underlying collec-
tion. (Calling iter_mutwould borrow the underlying elements mutably.)

13.2.5 Implementing an Iterator

To implement an own iterator, only the nextmethod has to be implemented. A counter that runs
from 0 to an arbitrary limit is defined as follows:

struct Counter {
count: u32,
limit: u32,

}

impl Counter {

103

fn new(limit: u32) -> Counter {
Counter {

count: 0,
limit: limit,

}
}

}

The iterator trait can be implemented as follows:

impl Iterator for Counter {
type Item = u32;

fn next(&mut self) -> Option<Self ::Item> {
self.count += 1;

if self.count <= self.limit {
Some(self.count)

} else {
None

}
}

}

The elements type is defined as u32 using a type association. The nextmethod increases its inter-
nal counter by one. If the counter is stillwithin the limit, it is returnedwrapped in the Some variant
as an Option. Otherwise, the None variant is returned.

The counter can be used as follows:

let c = Counter ::new(3);
for e in c {

println!("{}", e);
}

This counter now offers different useful iterator methods by default:

let c1to5 = Counter ::new(5); // [1, 2, 3, 4, 5]
let c1to7 = Counter ::new(7); // [1, 2, 3, 4, 5, 6, 7]
let sum: u32 = c1to5

.zip(c1to7.skip(2)) // [(1, 3), (2, 4), (3, 5), (4, 6), (5, 7)]

.map(|(a, b)| a * b) // [3, 8, 15, 24, 35]

.filter(|x| x % 3 == 0) // [3, 15, 24]

.sum();
println!("{}", sum); // 42

104

13.3 Improvements to minigrep

With knowledge about iterators, the code of the minigrep program from the last chapter can be
improved.

13.3.1 Owning Iterator instead of clone

The new associated function of Config expects borrows the command line arguments in a slice of
strings and clones them:

impl Config {
pub fn new(args: &[String]) -> Result<Config, &'static str> {

if args.len() < 3 {
return Err("not enough arguments");

}

let query = args[1].clone();
let filename = args[2].clone();

let case_sensitive = env ::var("CASE_INSENSITIVE").is_err();

Ok(Config { query, filename, case_sensitive })
}

}

At themoment, env ::args, which is already an iterator, is converted to a vector in main.rs:

fn main() {
let args: Vec<String> = env ::args().collect();

let config = Config ::new(&args).unwrap_or_else(|err| {
eprintln!("Problem parsing arguments: {}", err);
process ::exit(1);

});

// ...
}

This conversion using the collectmethod can be omitted, and env ::args passed directly to the
Config ::new function:

fn main() {
let config = Config ::new(env ::args()).unwrap_or_else(|err| {

eprintln!("Problem parsing arguments: {}", err);

105

process ::exit(1);
});

// ...
}

This won’t compile, because Config ::new still expects a slice of strings. The parameter can be
changed as follows, in order to expect the arguments as a mutable arguments iterator (see the
documentation of env ::arg):

impl Config {
pub fn new(mut args: std ::env ::Args) -> Result<Config, &'static str> {

// ...
}

}

The logic to read the arguments is now rewritten in terms of iterators, i.e. the arguments are ac-
cessed one by one, handling the returned Option entries using the match keyword:

impl Config {
pub fn new(mut args: std ::env ::Args) -> Result<Config, &'static str> {

args.next();

let query = match args.next() {
Some(arg) => arg,
None => return Err("Didn't get a query string"),

};
let filename = match args.next() {

Some(arg) => arg,
None => return Err("Didn't get a file name"),

};

// ...
}

}

The first argument ‒ the path to the executable ‒ is passed. The next two arguments are inter-
preted as the query string and the filename parameters.

13.3.2 Iterator vs. Explicit Loop

The explicit loop over the content’s lines in the search function uses an intermediary vector to
hold the results:

106

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
let mut results = Vec ::new();

for line in contents.lines() {
if line.contains(query) {

results.push(line);
}

}

results
}

Iterators make it possible to write this code in amore concise way:

pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
contents

.lines()

.filter(|line| line.contains(query))

.collect()
}

The search_case_insensitive function can be refactored using iterators, too:

pub fn search_case_insensitive<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
let query = query.to_lowercase();
contents

.lines()

.filter(|line| line.to_lowercase().contains(&query))

.collect()
}

This code is more concise and focues on the function’s logic instead of on the technical details ‒
thewhat is emphasized, rather than the how.

Iterators are an example of Rust’s zero-cost abstractions. This means, the more convenient iterator
syntax is guaranteed toproduce codewithout anyoverhead compared to the approach containing
explicit loops and intermediary stores.

14 Cargo and Crates.io

The Cargo toolchain and the crate repository Crates.io form a strong ecosystem around the pro-
gramming language. Cargo’s documentation covers all the details.

107

https://crates.io
https://doc.rust-lang.org/cargo/

14.1 Customizing Builds

A release profile is a set of configuration for code compilation. By default, there’s a dev and a re-
lease profile. The dev profile is used when cargo build is invoked without any special flag. The
release profile can be usedwhen setting the --release flag. The profile usedwill be shown in the
output:

$ cargo build
Finished dev [unoptimized + debuginfo] target(s) in 0.00s

$ cargo build --release
Finished release [optimized] target(s) in 0.00s

The details for every profile can be defined in Cargo.toml, by defining a section for the profile of
interest:

[profile.dev]
opt-level = 1

[profile.release]
opt-level = 2

This configuration sets the optimization level of the dev profile to 1 (as opposed to the default of
0) and for the release profile to 2 (default: 3), just for the sake of demonstration.

Having the lowest optimization level for dev and the highest for release is a sensible configura-
tion, for during development the build should be fast, but the execution time of the binary hardly
matters, whereas in production the compilation time is hardly an issue, while execution speed of
the resulting binary is critical.

14.2 Publishing Crates

Crates.io is not only a one-way channel to retrieve code from. It is also a place where developers
can share their own code. In order to be useful to other developers, the code must provide useful
documentation, accurate metadata, a useful API, and a comprehensive test-suite.

Those requirements are best demonstrated using an example: The library crate mememo, which is
short for mean, median, and mode`, implements trivial implementations for the statistical con-
cepts it is named after.

108

https://crates.io

14.2.1 The mememo Crate

The mememo crate provides three public functions, which all expect a vector of integers (i32):

1. mean: Calculates the mean, i.e. sums up the elements of the vectors and divides the sum by
the number of elements.

2. median: Returns the value of themiddle element of the given vector.
3. mode: Returns the item that has the most occurrences in the given vector.

mean returns a f64, because a division of a sum is not to be expected being a discrete number. mode
returns an integer, because the result of this operation is taken from the input vector. For median,
there are two possible outcomes:

• If the number of elements in the input vector is odd, themiddle element of the vector is the
result, and thus the return type is the same as the input vector’s element type: i32.

• If the number of elements in the input vector is even, the median is calculated as the mean
of the twomiddle elements. In this case, the result is a f64.

These possible outcomes can be expressed using an enumwith two variants:

pub enum Median {
MiddleSingle(i32),
MiddleTwoMean(f64),

}

The function headers of the three functions look as follows:

pub fn mean(numbers: &Vec<i32>) -> f64 {
// ...

}

pub fn median(numbers: &Vec<i32>) -> Median {
// ...

}

pub fn mode(numbers: &Vec<i32>) -> i32 {
// ...

}

The implementations are omitted and can be seen in the file code/mememo/src/lib.rs.

109

14.2.2 Documentation Comments

Whereas ordinary comments clarify details on specific sections of code, documentation comments
are intended for the user of the public API rather than for a maintainer of the code.

Rust code is commented using two slashes (//), and those comments can occur anywhere in the
code. Documentation comments start with three slashes (///) and must be located just before
the element they’re documenting. Those comments should indicate how to use the public item
at hand. For this purpose, Markdown syntax can be used, as well as code examples.

Here’s the documentation comment of the mean function discussed above:

/// Calculates the mean of the elements in the given vector.
///
/// # Example
///
/// ```
/// let numbers = vec![1, 2, 3, 4];
/// assert_eq!(2.5, mememo ::mean(&numbers));
/// ```
pub fn mean(numbers: &Vec<i32>) -> f64 {

// ...
}

The cargo doc tool generates HTML documentation based on these comments and puts it into
the target/doc folder. The documentation can be generated an opened in a browser by invoking
cargo doc --open.

It is important that the code examples used in documentation comments do actually compile ‒
and pass the assertions used. Broken example code is annoying, and cargo testmakes sure, the
example code is working code, by executing the code as Doc-tests:

$ cargo test

...

Doc-tests mememo
test src/lib.rs - mean (line 11) ... ok
test src/lib.rs - mode (line 65) ... ok
test src/lib.rs - median (line 33) ... ok
test src/lib.rs - median (line 44) ... ok

test result: ok. 4 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

Having an Example section is common for Rust crates. Other sections commonly provided are:

110

• Panics: scenarios in which the code will panic (to be avoided by the caller)
• Errors: kinds of errors being returned and their underlying conditions
• Safety: invariants the caller needs to hold up when invoking unsafe code

In order to document the item that contains the comment, the comment style //! can be used.
For example, the entire mememo crate (src/lib.rs) can be documented as follows:

//! # mememo
//!
//! The crate _mememo_ provides trivial implementations of the operations
//! _mean_, _median_, and _mode_. This crate is not intended for productive
//! use, but only to demonstrate the use of crates and other Rust features.

use std ::collections ::HashMap;

/// Calculates the mean of the ...

There’s no code following this comment (the import section only starts after an empty line).
There’s another documentation comment below, which belongs to the mean function further
down the file.

These kinds of comments appear on the front page of the crate’s documentation.

14.2.3 Re‐exports

The internal structure of the code often does not provide the most convenient API possible. The
code examples of the median function serve as good example for the verbosity an API user is fac-
ing:

let numbers = vec![1, 2, 3, 4, 5];
match mememo ::median(&numbers) {

mememo ::Median ::MiddleSingle(got) => assert_eq!(3, got), // verbose!
_ => panic!("wrong median calculation"),

}
let numbers = vec![1, 2, 3, 4];
match mememo ::median(&numbers) {

mememo ::Median ::MiddleTwoMean(got) => assert_eq!(2.5, got), // verbose!
_ => panic!("wrong median calculation"),

};

It would be much more convenient if the client could write mememo ::MiddleSingle or
mememo ::MiddleTwoMean instead of always having to add the Median in between.

Rust allows to re-export such items under a more convenient name using the pub use notation.
The internal structure of the code is preserved, but the client has it much easier to deal with the
exposed API.

111

The enum’s variants can be re-exported as follows:

pub use Median ::MiddleSingle;
pub use Median ::MiddleTwoMean;

These re-exports are now displayed in an additional section (Re-exports) in the documentation.
The API can now be used as follows:

let numbers = vec![1, 2, 3, 4, 5];
match mememo ::median(&numbers) {

mememo ::MiddleSingle(got) => assert_eq!(3, got), // less verbose!
_ => panic!("wrong median calculation"),

}
let numbers = vec![1, 2, 3, 4];
match mememo ::median(&numbers) {

mememo ::MiddleTwoMean(got) => assert_eq!(2.5, got), // less verbose!
_ => panic!("wrong median calculation"),

};

14.2.4 Crate Metadata

Whenanewcrate is created using cargo new, somemetadata is automatically put into Cargo.toml,
such as the crate’s name, the initial version, and the author’s details (which are obtained from
the git config). In order to publish a crate on Crates.io, at least two additional fields need to be
defined:

1. description: a short description (one or two sentences) about the crate. This description
will be displayed in the search results on Crates.io.

2. license: a license identifier value specifying the license the code is released under. Those
identifiers can be obtained from the Linux Foundation’s Software Package Data Exchange
(SPDX) under spdx.org/licenses. Multiple licenses can be listed separated by OR.

For example, Cargo.toml of mememowith an added description and dual licensing (MIT andGPLv3
or later) looks as follows:

[package]
name = "mememo"
version = "0.1.0"
description = "mememo stands for Mean, Median, Mode. It provides trivial..."
authors = ["Patrick Bucher <patrick.bucher@stud.hslu.ch>"]
edition = "2018"
license = "MIT OR GPL-3.0-or-later"

[dependencies]

112

https://crates.io
https://spdx.org/licenses/

14.2.5 Publishing the Crate

In order to publish a crate, an account on Crates.io is needed, which currently requires a GitHub
account. After the account is created, a new API key can be generated and obtained under
crates.io/me. This key can be used to login to Crates.io from the local computer:

$ cargo login abcdefghijklmnopqrstuvwxyz012345

This key is stored locally under ~/.cargo/credentials and is considered a secret, thusmust not be
shared with others. To logout, simply delete the key from the credentials file.

Before publishing code, it is import to consider that a publish is permanent. Existing code can
be neither deleted nor owerwritten. It is only possible to publish additional code with a higher
version number.

When the crate is ready for publishing ‒ with a sufficient code-quality, without known critical
bugs, with a useful and well-documented public API, a test-suite, and the necessary metadata ‒
the crate can be published:

$ cargo publish

To publish a new (higher) version of an existing crate, simply increase the versionmetadata field
in Cargo.toml according to the rules of Semantic Versioning (semver.org) and then call cargo pub-
lish again. It is a good idea to also tag the version in the SCM system, e.g. using git tag v0.1.1
to add the version tag v0.1.1 to current committed state of the repository.

14.2.6 Un‐publishing Versions

Even though it is not possible to remove crates or specific versions thereof from Crates.io, it is
possible to prevent future use of specific versions of the crate using the cargo yan command.

Let’s say the version 0.1.0 is buggy, and therefore a later version 0.1.1was released fixing those
bugs, future use of the version 0.1.0 can be prevented as follows:

$ cargo yank --vers 0.1.0

If anexistingproject alreadyuses thatversionandthushasanentry for it inCargo.lock, theproject
still builds, and the version 0.1.0 can still be used from that project. New projects, however, are
required to use the later version 0.1.1 as a dependency ‒ unless the the yank operation is undone,
allowing future use for the specified version again:

$ cargo yank --vers 0.1.0 --undo

113

https://crates.io
https://github.com
https://crates.io/me
https://crates.io
https://semver.org/
https://crates.io

14.3 Workspaces

Oftentimes, crates are not worked on in isolation, but together as a project. Cargo makes work-
ing onmultiple packages belonging togethermore comfortable usingworkspaces. Commands like
cargo fmt and cargo test are applied on all packages of theworkspace, saving the developer a lot
of typing andwork.

A workspace shares the binary output and the Cargo.lock file; with the latter it is ensured that all
packages belonging to the workspace use the same versions of the dependent crates.

Technically, a workspace is a folder containing a Cargo.toml file with a [workspace] section. Here,
the members are listed, i.e. the packages belonging to the workspace.

14.3.1 Example: mean workspace

For the sake of an example, the workspace mean for a trivial project should be created. It con-
tains two library crates sum and avg, and one binary crate mean; the latter depending on the former
two.

First, the workspace directory is created and entered:

$ mkdir mean
$ cd mean

Second, the library crates sum and avg, as well as the binary crate mean are created:

$ cargo new --lib sum
$ cargo new --lib avg
$ cargo new --bin mean

The directory structure now looks like this:

mean
├── Cargo.lock
├── Cargo.toml
├── avg
│ ├── Cargo.toml
│ └── src
│ └── lib.rs
├── mean
│ ├── Cargo.toml
│ └── src
│ └── main.rs

114

└── sum
├── Cargo.toml
└── src

└── lib.rs

Third, the Config.toml file is created, declaring the crates just created as members of the
workspace:

[workspace]

members = [
"sum", "avg", "mean"

]

Theworkspace can be build using cargo build, putting the resulting binaries in the shared target
directory, which helps avoiding unnecessary rebuilding operations.

For the two library crates sum and avg, one public function has to implemented for each.

The sum library needs a sum function, which sums up a vector of integers and returns that sum
(sum/src/lib.rs):

/// Sums up the given vector and returns the sum.
///
/// # Example
///
/// ```
/// let numbers = vec![1, 2, 3, 4];
/// assert_eq!(10, sum ::sum(numbers));
/// ```
pub fn sum(numbers: Vec<i32>) -> i32 {

let mut result = 0;
for n in numbers {

result += n;
}
result

}

The avg library needs a avg function, which calculates the average of a given vector of integers
(sum/src/lib.rs):

extern crate sum;

/// Calculates the average of the given vector and returns it.
///
/// # Example

115

///
/// ```
/// let numbers = vec![1, 2, 3, 4];
/// assert_eq!(2.5, avg ::avg(numbers));
/// ```
pub fn avg(numbers: Vec<i32>) -> f64 {

let n = numbers.len();
let sum = sum ::sum(numbers);
let average: f64 = (sum as f64) / (n as f64);
average

}

This implementation makes use of the sum crate implemented just before, which needs to be de-
clared as a dependency (avg/Cargo.toml):

[dependencies]

sum = { path = "../sum" }

The mean crate invokes the avg function and outputs both the input vector and result
(mean/src/main.rs):

extern crate avg;

fn main() {
let numbers = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
println!("numbers: {:?}", numbers);
let average = avg ::avg(numbers);
println!("mean thereof: {}", average);

}

Again, the external crate needs to referred as a dependency (mean/Cargo.toml):

[dependencies]
avg = { path = "../avg" }

The program can be invoked using cargo run. If a workspace contains multiple binary crates, the
crate to be run has to be specified using the -p flag:

$ cargo run -p mean
numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
mean thereof: 5.5

Builds, tests, formatters and the like can also be run for single workspace members using the -p
flag:

116

$ cargo build -p avg
$ cargo test -p sum
$ cargo fmt -p mean

Crateswithinaworkspaceall need tobepublished seperately. For versioncontrol, git submodules
might be a good fit for organizing a workspace.

14.4 Cargo Binaries

Crates.io is not only a place to share code, it can also be used to publish programs. Using the cargo
install command, the output of a binary crate can be installed locally. This command installs the
popular ripgrep command:

$ cargo install ripgrep

The ripgrep crate and its dependencies are downloaded, built, and the resulting binary ripgrep is
installed under ~/.cargo/bin/rg. If the parent folder ~/.cargo/bin is part of the $PATH variable, rg
can be invoked directly:

$ rg --version
ripgrep 11.0.2
-SIMD -AVX (compiled)
+SIMD +AVX (runtime)

Binaries in the ~/.cargo/bin folder named cargo-[something] are treated as cargo subcommands
and can be invoked as cargo [something]. The command cargo --list shows all installed sub-
commands. For example, cargo fmt invokes the program under ~/.cargo/bin/cargo-fmt.

Binary crates can be removed using cargo uninstall:

$ cargo uninstall ripgrep

117

https://crates.io

15 Smart Pointers

15.1 Box<T>: Store Data on the Heap

15.1.1 Recursive Types: Cons List

15.2 Deref Trait

15.2.1 Custom Smart Pointers

15.2.2 Deref Coercion

15.3 Drop Trait

15.3.1 Dropping Early

15.4 Rc<T>: Count References

15.4.1 Share Data

15.5 RefCell<T>

15.5.1 Interior Mutability Pattern

15.5.2 Multiple Mutable Owners

15.6 Referency Cycles and Memory Leaks

15.6.1 Weak<T>: Prevent Reference Cycles

118

	Getting Started
	Setup
	Hello World (manually)
	Hello World (using Cargo)

	Guessing Game
	User Input
	Random Numbers
	Compare Numbers
	Loops and User Input

	Common Programming Concepts
	Variables and Constants
	Data Types
	Primitive Types
	Compound Types

	Functions
	Comments
	Control Flow
	Conditional Execution
	Loops

	Ownership
	Stack and Heap
	Moving
	Move on Function Call

	Borrowing with References
	Data Races
	Dangling Pointers

	String Slices

	Structs
	Tuple Structs
	Debug Output
	Methods

	Enumerations and Pattern Matching
	The Option<T> Enumeration
	Pattern Matching

	Modules
	Hierarchy: Logical and Physical
	Visibility: Private and Public
	Using External Crates and Modules

	Common Collections
	Vector
	String
	Hash Map

	Error Handling
	Unrecoverable Errors: panic!
	Recoverable Errors: Result<T, E>
	unwrap and expect
	Error Propagation

	Validation Types
	Using panic! or Result<T, E>?

	Traits, Generics and Lifetimes
	Traits
	Default Implementations

	Generics
	Generic Structs
	Generic Enums
	Generic Functions
	Trait Bounds
	Generic Methods
	Conditionally Implement Methods
	Compilation and Performance

	Lifetimes
	Dangling References
	Lifetimes in Functions
	Lifetime Annotations in Structs
	Lifetime Elision
	Static Lifetime
	Generics, Traits, and Lifetimes Combined

	Writing Automated Tests
	Assertions
	Custom Failure Messages
	Testing for Panics
	Test Execution
	Arguments
	Parallel Execution
	Output
	Test Selection
	Ignoring Tests

	Test Organization
	Unit Tests
	Integration Tests
	Binary Crates

	An I/O Project: Building a Command Line Program
	Command Line Arguments
	Extracting the Parsing Logic

	Reading and Processing a File
	Error Handling
	User-Friendly Error Messages
	Error Message Instead of Panic

	Refactoring
	Test-Driven Development
	Failing Test Case
	Dummy Implementation
	Real Implementation

	Environment Variable for Case Insensitive Search
	Additional Option
	Printing to Standard Error

	Functional Language Features
	Closures
	Closure Syntax
	Closure Semantics
	Use-Case: Memoization
	Fixing the Cache Using a Map

	Iterators
	The Iterator Trait and the next Method
	Consuming Adaptors
	Iterator Adaptors
	Filtering
	Implementing an Iterator

	Improvements to minigrep
	Owning Iterator instead of clone
	Iterator vs. Explicit Loop

	Cargo and Crates.io
	Customizing Builds
	Publishing Crates
	The mememo Crate
	Documentation Comments
	Re-exports
	Crate Metadata
	Publishing the Crate
	Un-publishing Versions

	Workspaces
	Example: mean workspace

	Cargo Binaries

	Smart Pointers
	Box<T>: Store Data on the Heap
	Recursive Types: Cons List

	Deref Trait
	Custom Smart Pointers
	Deref Coercion

	Drop Trait
	Dropping Early

	Rc<T>: Count References
	Share Data

	RefCell<T>
	Interior Mutability Pattern
	Multiple Mutable Owners

	Referency Cycles and Memory Leaks
	Weak<T>: Prevent Reference Cycles

