Learning Rust

Personal Notes
Patrick Bucher
2019-08-25

Contents

1 Getting Started
1.1 Setup e e e e e e
1.2 Hello World (manually)
1.3 Hello World (using Cargo)« o v v v v it et e e e e e

2 Guessing Game
2.1 UserInput e e e e
2.2 Random Numbers e
2.3 Compare Numbers e
2.4 Loopsand UserInput

3 Common Programming Concepts
3.1 Variablesand Constants
3.2 DataTypes e e e e e e e e e e
3.2.1 Primitive Types« . e e e e e e e e
3.2.2 Compound Types o i i i v it e e e e e e
3.3 Functions e e e e e
3.4 Comments e e e e e e e e e e e e e
3.5 Control Flow e e e e e
3.5.1 Conditional Execution,
3.5.2 Loops e e e e e e e e e

4 Ownership
4.1 Stackand Heap e e e e
4.2 MOVING o o e
4.2.1 Move on FunctionCall
4.3 Borrowing with References00
4.3.1 DataRaces e e e e e e e
4.3.2 Dangling Pointers e
4.4 String Slices e e e e e

5 Structs
5.1 Tuple Structs e e e
5.2 DebugOutput e e e e

5.3 Methods

6 Enumerations and Pattern Matching
6.1 The Option<T> Enumeration
6.2 Pattern Matching L

7 Modules
7.1 Hierarchy: Logical and Physical
7.2 Visibility: Private and Public o000
7.3 Using External Cratesand Modules

8 Common Collections
8.1 Vector e e e e e e e e e e e e e e
8.2 String e e e e e e e e
8.3 Hash Map e e e e e e e e

9 Error Handling
9.1 Unrecoverable Errors: panic!
9.2 Recoverable Errors: Result<T, E>
9.2.1 unwrapand expect e
9.2.2 Error Propagation e
9.3 Validation Types e e e e e e e e
9.4 Using panic! or Result<T, E>?

10 Traits, Generics and Lifetimes
10.1Traits o e e e e e e e e e e e e e
10.1.1Default Implementations
10.2GenEeriCsS e e e e e e e e e e e e e e e e
10.2.1Generic Structs e e e
10.2.2Generic Enums e e e e
10.2.3Generic Functions
10.2.4Trait Bounds e e
10.2.5Generic Methods e
10.2.6Conditionally Implement Methods
10.2.7Compilation and Performance
10.3Lifetimes e e e
10.3.1Dangling References
10.3.2Lifetimes in Functions
10.3.3Lifetime Annotationsin Structs
10.3.4Lifetime Elision e
10.3.5Static Lifetimeo oo
10.3.6Generics, Traits, and Lifetimes Combined

11 Writing Automated Tests
11.1Assertions L e e e e e e e e e e
11.2Custom Failure Messages e e
11.3Testing for Panics e
11.4Test Execution e e e e
11.4.1Arguments oL e e e e e e e e e e e
11.4.2Parallel Execution oo

11.4.30utput e e 68

11.4.4Test Selection e 69
11.4.5Ignoring Tests e e e e e 70
11.5Test Organization e 71
11.5.1Unit Tests e e e e e e 71
11.5.2Integration Testso 72
11.5.3Binary Crates e e e e e e 73

12 An I/O Project: Building a Command Line Program 74
12.1Command Line Arguments 75
12.1.1Extracting the Parsing Logic 75
12.2Reading and Processinga File 76
12.3Error Handling e 77
12.3.1User-Friendly Error Messages o v v v o .. 77
12.3.2Error Message Instead of Panic 77
12.4Refactoring 78
12.5Test-Driven Development 80
12.5.1Failing Test Case 0 v i v i it e 80
12.5.2Dummy Implementation. 81
12.5.3Real Implementation 81
12.6 Environment Variable for Case Insensitive Search 82
12.6.1Additional Option 83
12.6.2Printing to Standard Error oL L. 85

13 Functional Language Features 85
13.1Closures e e e e e e e e e e 86
13.1.1Closure Syntax e e e e e e 86
13.1.2Closure Semantics Lo 87
13.1.3Use-Case: Memoization 0o 88
13.1.4Fixing the Cache UsingaMap 90
13.2Tterators oL e e e e e e e e e e e e 91
13.2.1The Iterator Trait and the next Method 91
13.2.2Consuming Adaptors 92
13.2.3Iterator Adaptors 92
13.2.4Filtering e e e e e e 93
13.2.5Implementing an Iterator 93
13.3Improvements tominigrepo s 94
13.3.10wning Iterator instead of clone 94
13.3.2Iterator vs. ExplicitLoop, 96

14 Cargo and Crates.io 97
14.1Customizing Builds 97
14.2Publishing Crates e 98
14.2.1The mememo Crate i v i v v i v 98
14.2.2Documentation Commentso 99
14.2.3Re-exports e e e e e 100
14.2.4Crate Metadatao 101
14.2.5PublishingtheCrate 102
14.2.6Un-publishing Versions 102

14.3Workspaces e e e e e e e 103
14.3.1Example: mean workspaceo 0o e e 103
14.4Cargo Binaries e e e e e e e e e e e 106

This document is a personal summary of the book The Rust Programming Language by
Steve Klabnik and Carol Nichols (No Starch Press, 2018). The structure of the original
book has been kept on the chapter level, but may vary within the chapters.

Some of the example code I made up on my own, the rest I took from the book. The
formatting tool rustfmt has been applied for most of the example code, so the code
looks different in the book and in my notes on some places.

1 Getting Started

1.1 Setup

Setup using rustup (make sure to have a C linker and compiler installed):
$ curl https://sh.rustup.rs -sSf | sh

Proceed with default options to get the latest stable release.

To update the environment variables, either log out and in again, or update them man-
ually:

$ source $HOME/.cargo/env
Check the version of the Rust compiler (rustc) and documentation (rustdoc):

$ rustc --version

rustc 1.31.0 (abe02cefd 2018-12-04)

$ rustdoc --version

rustdoc 1.31.0 (abeO2cefd 2018-12-04)

Open the local documentation in a browser:

$ rustup doc

Update Rust once in a while:

$ rustup update

Uninstall Rust and rustup when no longer needed:

$ rustup self uninstall

Consider adding rustfmt for code formatting (since version 1.31):

$ rustup component add rustfmt

1.2 Hello World (manually)

Create a file hello.rs:

fn main() {

}

println!("Hello, world!");

fn is the keyword to create a function.

main is the name of the function that gets executed first when the program is
started.

() is an empty parameter list, because main doesn’t expect any parameters.

{ starts the function body.

println! is a macro that prints a line of text to the standard output.

- Macros end with a !, which helps to distinguish them from functions.

"Hello, world!" is a string literal to be printed.
; is needed at the end of every statement.
} ends the function body.

Compile and run the program:

$ rustc hello.rs
$./hello
Hello, world!

1.3 Hello World (using Cargo)

Check if cargo has been installed properly:

$ cargo --version
cargo 1.31.0 (339d9f9c8 2018-11-16)

Create a new binary project using cargo (as opposed to a library, which would take the
parameter - -1lib instead of --bin):

$ cargo new hello world --bin

A directory hello world has been created with the following contents:

src/: the folder containing the source code for the project

src/main.rs: the source code file containing the main function

.git and .gitignore: files for Git (define another version control system using the
- -vcs parameter)

Cargo.toml: the file containing the project configuration:

[packagel]

name = "hello world"

version = "0.1.0"

authors ["Patrick Bucher <patrick.bucher@stud.hslu.ch>"]
edition "2018"

[dependencies]

TOML stands for «Tom’s Obvious, Minimal Language». The authors information is taken
from the local Git configuration. The project doesn’t have any dependencies yet.

Build and execute (for testing):

$ cargo build
$./target/debug/hello world
Hello, world!

Build and execute (for release with optimized binary):

$ cargo build --release
$./target/release/hello world
Hello, world!

A new file Cargo.lock is created to keep track of the dependencies versions.

Build and run in one step:

$ cargo run
Hello, world!

Only check the source code without creating a binary (faster):

$ cargo check

2 Guessing Game

2.1 User Input

Bring the standard input/output library into scope:
use std::io;

Create a new String and bind it to a mutable variable:
let mut s = String::new();

Read a line of user input into a String, fail with an error message if it didn’t work; print
the input otherwise:

let mut input = String::new();
io::stdin()
.read line(&mut input)
.expect("reading string failed");
printtn!("{}", input);

Convert a the String from above into a number (unsigned 32-bit integer), fail with an
error message if it didn’t work; print the converted number otherwise:

let input: u32 = guess.trim().parse().expect("not a number");
printtn! ("{}", input);

The second variable input shadows the first variable with the same name.

2.2 Random Numbers

In order to generate random numbers, the rand crate needs to be added as a dependency
in Cargo.toml:

[dependencies]
rand = "0.3.14"

The version indicator "0.3.14" is shorthand for "~0.3.14" and means: any version with
a public API compatible to version 0.3.14.

As soon as the project is built (using cargo build), all the dependencies are resolved
(libc as a dependency from rand, for example), and the working version configuration is
written to a file Cargo. lock. This version configuration is used for the next build, unless
the dependencies in the Cargo.toml file are updated, or the command cargo update is
executed. The latter option will update the rand dependency.

Build and view the documentation of all the project’s dependencies, including the rand
crate, in the web browser:

$ cargo doc --open

Make the rand crate available in the project:

extern crate rand;

Import the Rng trait, which is needed to create random numbers within a certain range:
use rand: :Rng;

Create a random number within a range (lower bound inclusive, upper bound exclu-
sive):

let min 1;

let max = 101;

let number = rand::thread rng().gen range(min, max);
println! ("Random number 1..100: {}", number);

https://crates.io/crates/rand

2.3 Compare Numbers

Make the Ordering enum available, which covers all the possible results of a compari-
son:

use std::cmp::0rdering;
Compare two numbers which one another using pattern matching:

let a = 3;

let b = 5;

match a.cmp(&b) {
Ordering::Less => println!("a<b"),
Ordering::Greater => println!("a>b"),
Ordering::Equal => println!("a=b"),

2.4 Loops and User Input

Request user input until a number is entered using a infinite loop:

loop {
let mut input = String::new();
println!("enter a number");
match io::stdin().read line(&mut input) {
Result::0k() => (), // do nothing
Result::Err(_) => continue, // once again
}
let input: u32 = match input.trim().parse() {
Ok(num) => num, // parsed input as the match expression's result
Err() => {
println!("not a number");
continue; // once again
}
b
// do something sensible with the number entered
break;

3 Common Programming Concepts

Rust offers the common features of structured programming languages, but implements
some in a special way.

3.1 Variables and Constants

Variables are immutable by default:

let x = 3;
x = 5; // error: cannot assign twice to immutable variable 'x°

Only the values of variables declared as mutable can be changed:

let mut x = 3;
x =5; // 0K

Variables can be redeclared, even their type can be changed:

let x 3;

let x = x * x;

let x = x + 1;
println!("{}", x); // 10

let x = "10110";
let x = x.len();
println!("{}", x); // 5

In the examples above, five immutable variables called x have been declared; no variable
was ever changed. This technique is called shadowing: the second x shadows the first
x, the third x shadows the second x, etc.

Constants are a lot like immutable variables, but:

cannot be declared as mutable

are declared using the const keyword (as apposed to let)
can be declared in any scope

can only be assigned to expressions known at compile time
use the ALL UPPERCASE naming convention

require a type annotation

2R

const SPEED OF LIGHT: u32 = 299 792 458; // in meters per second (vacuum)

The (underscore) is for optical groupings of three and has no special meaning.

3.2 Data Types

Rust is statically typed. The types of variables must be known at compile time. In
many cases, the type can be inferred from the context, in other cases, the type must be
annotated:

let foo
let bar

"test"; // string inferred
10 000; // integer inferred

let qux: u32 = "42".parse().expect("can't parse to u32");

Without the annotation for qux, the compiler wouldn’t know to which type parse() has
to convert the given string.

3.2.1 Primitive Types

Rust offers four basic types of scalar (single values): integers, floating point numbers,
booleans and characters.

3.2.1.1 Integers Integers exist as signed and unsigned variants:

Size Signed Unsigned
8-bit i8 u8

16-bit il6 uleé
32-bit 132 u32
64-bit i64 ued
Architecture isize usize
Range -(2”[n-11)..2"[n-1]1-1 0..2"n-1

In general, 132 works fastest, even on 64-bit platforms.

The type names can be used as suffixes in literals:

let a: u8 = 255;
let a = 255u8;

let b: 18 = -128;
let b = -1281i8;

Integer literals can be written in binary, octal, decimal (default) and hexadecimal nota-
tion:

let base? 0b01100100; // binary: prefix 0Ob

let base8 = 0755; // octal: prefix 0

let basel® = 1234567890; // decimal: no prefix

let basel6: u32 = Oxdeadbeef; // hexadecimal: prefix 0Ox

The hexadecimal number needs a type annotation, because the signed 32-bit integer
(132) inferred is too small for it.

There is a special byte prefix to convert ASCII characters into numbers:
let ascii capital a = b'A"; // 65
Arithmetic operators can be applied both to variables and literals:

let sum =3 + 5; // 8

let difference = sum - 5 // 3

let product = difference * sum; // 24
let quotient = product / 2; // 12

let remainder = quotient * 5; // 2

10

3.2.1.2 Floating Point Numbers Rust supports floating point numbers according to
the IEEE-754 standard with single precision (f32) and double precision (f64). A lot of
the integer notations and conventions can be used for floating point numbers, too:

let a = 13.2;

let b: 32 = 3.41;
let c = 5.324f64;
let d = 123 456.789;

3.2.1.3 Boolean The bool type knows two values: true and false:

let right = true; // type inferred
let wrong: bool = false; // with type annotation

3.2.1.4 Character Characters in Rust are UTF-8 encoded, and therefore not the same
thing as a single byte:

let latin_lower c = 'c'; // 99 (requires one byte)
let cyrillic upper d = '0°"; // 1044 (requires two bytes)

3.2.2 Compound Types

Rust has two compound types: tuples and arrays.

3.2.2.1 Tuples A tuple groups together values of (possibly) different types. A tuple’s
elements can be accessed using dot-notation (using a zero-based index) or through the
means of destructuring:

let t: (132, f64, u8) = (123, 4.56, 78);

// dot-notation

let a = t.0;
let b = t.1;
let c = t.2;

// destructuring
let (a, b, c) = t;

3.2.2.2 Arrays Rust’s arrays have a fixed size, so elements can be neither added nor
removed, but replaced if the array is declared as mutable. Unlike tupels, all elements
of an array must be of the same type.

let mut a = [1, 2, 3, 4, 5];

alo] = 5;

al4] = 1;

printin! ("[{},{},{}, {},{}]", alo], alll, al2], al3], al4l); // [5,2,3,4,1]

11

The usage of out-of-bounds indices either causes a runtime panic (if the index value is
computed at runtime) or doesn’t even compile (if the index value can be computed at
compile time).

3.3 Functions

Function names should follow the snake case convention, i.e. all letters are in lowercase,
and the words are separated by an underscore .

The order of the function’s declarations doesn’t matter; function calls are possible for-
wards and backwards.

The parameter and return types of a function are not inferred and must be declared
explicitly. The parameter’s types are annotated as for variables; the return type is indi-
cated after an arrow (->):

fn sum up(a: 132, b: i32) -> 132 {
a+b

}

A function can either end in an expression (as above), which is used as the function’s
return value, or an expression can be returned explicitly using the return statement:

fn sum up(a: i32, b: i32) -> 132 {
return a + b;

}
Any block can return a value:
let y = {
let x = 3;
X + 5
b

Because statements do not return values, this code doesn’t compile:

let ¢ = (let b = (let c = 1));

3.4 Comments

Single-line comments start with // and end at the line’s end.

Multi-line comments start with /* and end with */.

12

3.5 Control Flow
3.5.1 Conditional Execution

Only bool expressions are allowed for if conditions:

if x < 4 {
println!("low");

} else if x < 7 {
println!("medium");

} else {
println!("high");

}

if is an expression, not a statement, and therefore can return a value:

let max = if a > b {
a

} else {
b

};

It’s important that the expressions of both arms are of the same data type!

3.5.2 Loops

loop runs infinitely, unless ended with break:

let numbers

= [1I 2' 3’ 4! 5];
let mut i = 0;

loop {
printtn!("{}", numbers[il]);
if i >= 4 {
break;
} else {
1+=1;
}
}

while checks a condition on every iteration before the its block is executed:

let numbers = [1, 2, 3, 4, 5];
while i < 5 {
printtn!("{}", numbers[il]);
i+4=1;

}

for iterates over the items of a collection, e.g. an array:

13

let numbers = [1, 2, 3, 4, 5];

for i in numbers.iter() {
printtn! ("{}", 1);

}

The for loop is by far the most commonly used in Rust.

continue leaves the loop’s block and moved forward to the next iteration:

let numbers = [1, 2, 3, 4, 5];
for i in numbers.iter() {
if i %2 ==0 {
continue;

}
printtn!("{}", 1);

4 Ownership

Rust neither has garbage collection nor requires manual memory management. It uses
a third approach: Memory is managed through a system of rules enforced by the com-
piler—the ownership model. The rules are:

1. Each value has a variable that’s called its owner.
2. There can be only one owner at a time.
3. When the owner goes out of scope, the value is dropped.

Rust calls the drop () function for every variable at the end of its scope to free the mem-
ory. The owner variable will be no longer valid from this point.

4.1 Stack and Heap

Variables of primitive types (integers, floats, booleans, characters and tuples solely con-
sisting of primitive types) are stored entirely on the stack. If a variable is assigned to a
variable of a primitive type, the whole stack content is copied:

let a = 3;
let b a;

Types with sizes unknown at compile time, like strings, are stored on the heap:

let sl
let s2

String::from("hello");
sl;

Copying the content of s1 would be expensive in terms of runtime performance. There-
fore, only the pointer to the string’s heap memory location is copied, i.e. the variable’s
stack content is (just like for primitives), but here the stack content is a pointer to the
heap. (Note: This is not what actually happens; see below!)

The content of a heap variable can be created using the clone() method:

14

let sl = String::from("hello");
let s2 sl.clone();

4.2 Moving

The different handling of stack and heap objects has consequences in regard to memory
management. The automatic drop() on primitive variables at the end of a scope is
unproblematic:

// before: a and b out of scope

{
let a = 3;
let b = a;
}

// after: a and b out of scope

The value of a was copied, and only the stack memory of a and b is freed. The behaviour
is different for objects on the heap:

// before: sl and s2 out of scope

{
let sl = String::from("hello");
let s2 = s1;
// call drop() on sl and s2

}

// after: sl and s2 out of scope

Freeing the same memory twice corrupts the memory, could cause a program to crash
and might cause a security vulnerability. To prevent such problems, the assignment s2
= sl in the program above does not create a shallow copy (and also not a deep copy, as
already mentioned). The value is instead moved from s1 to s2, and s2 becomes the new
owner. The variable s1 cannot be used any longer from that point:

let s1 = String::from("hello");

let s2 = sl1; // value of sl moves to s2
println!("s1={}", sl); // invalid, value moved to s2
println! ("s2={}", s2); // valid, s2 is the new owner

4.2.1 Move on Function Call

A function call behaves a lot like an assignment in terms of ownership of the parameters.
A function expecting a String will take ownership of that value, but a integer value will
just be copied:

fn move or copy(str: String, nbr: i32

) {
printtn!("str={}, nbr={}", str, nbr)

’

}

fn main() {

15

let s String::from("abc");

let i = 42;

move or _copy(s, 1); // move s, copy 1
println!("s={}", s); // invalid: s was moved
printin!("i={}", 1i); // valid: i was copied

}
The ownership of s can be moved back by returning it from the function:

fn move or copy(str: String, nbr: i32) -> String {
printtn!("str={}, nbr={}", str, nbr);
str // return

}

fn main() {
let s = String::from("abc");
let 1 = 42;
let s2 = move or copy(s, 1); // take the ownership of the object back
println!("s2={}", s2); // valid now!
println!("i={}", 1i);

4.3 Borrowing with References

Obtaining the ownership of a variable and giving it back is tedious. A variable can be
borrowed instead by using a reference. A reference is denoted by an ampersand in front
of the type (&String) and value (&s):

fn borrow(str: &String) { // &String: reference to String
println!("str={}", str);
}

fn main() {
let s = String::from("abc");
borrow(&s); // &s is a reference to s
println!("s={}", s); // valid: s was only borrowed, not owned

}

The value of a reference can only be modified if the reference is mutable. Mutable
references are denoted by the token &mut in front of the type (&mut String) and value
(&mut s). Mutable references can only be acquired from mutable variables:

fn manipulate(str: &mut String) { // &mut String: mutable reference to String
str.push _str("...xyz"); // allows for manipulation

}

fn main() {
let mut s = String::from("abc"); // mutable variable
manipulate(&mut s); // mutable reference

16

println!("s={}", s); // valid: s was only borrowed, not owned

4.3.1 Data Races

Having multiple references to a memory object allows for data races: The values is
updated through one reference, and the other references are not aware of that. Rust
eliminates data races by enforcing a very strict set of rules:

One can only have:

1) either one mutable reference
2) or multiple immutable references

to the same value in the same scope.
One mutable reference is ok:

let mut s = String::from("hello");
let r1 = &mut s;
printtn! ("{}", rl);

Two mutable references are not ok:

let mut s = String::from("hello");

let r1 = &mut s;

let r2 = &mut s; // error, only one mutable reference allowed
printtn! ("{}", rl);

printtn! ("{}", r2);

However, two mutable references in different scopes are ok:

let mut s = String::from("hello");
{
let rl1 = &mut s;
printtn! ("{}", rl);
} // rl1 goes out of scope
let r2 = &mut s;
printtn! ("{}", r2);

Multiple immutable references are ok:

let mut s = String::from("hello");
let rl1 = &s;

let r2 = &s;

printtn!("{}", rl);

printtn! ("{}", r2);

But only as long as there is no mutable reference:

17

let mut s = String::from("hello");

let r1 = &s;

let r2 = &s;

let r3 = &mut s; // error, one mutable or multiple immutable references allowed
printtn! ("{}", rl);

printtn! ("{}", r2);

printtn!("{}", r3);

4.3.2 Dangling Pointers

A function returning a pointer to a heap value that goes out of scope at the end of that
function is called a dangling pointer. Using dangling pointers can crash the program
and cause severe security problems. Rust doesn’t allow dangling pointers:

fn dangle() -> &String {

let s = String::from("hello");

&s // return a reference to an object owned by this function
} // s goes out of scope

fn main() {
printtn!("{}", dangle()); // invalid: dangling ponter
}

The function must hand over the ownership of the objects it created for further use:

fn dangle() -> String { // return the string (with ownership)
let s = String::from("hello");
s // move

}

fn main() {
printtn!("{}", dangle()); // valid: owned value
}

4.4 String Slices

A string slice is a reference to a part of a string. A slice stores the starting point within
the string and its length. The slice boundaries are stated with a inclusive lower and a
exclusive upper bound, so that upper-lower computes to the slice length:

let s = String::from("hello world");

let hello = &s[0..5];

let world = &s[6..111];

printtn!("{}, {}'", hello, world); // hello, world!

The lower and upper bound can be omitted, defaulting to zero resp. to the string length.
If both bounds are omitted, the slice spans over the whole string:

18

let s = String::from("hello world");

let hello = &s[..5]; // lower bound defaults to 0

let world = &s[6..1; // upper bound defaults to s.len()
printtn!("{}, {}'", hello, world); // hello, world!

let slice = &s[..]; // no bounds: span over whole string
println! ("{}", slice); // hello world

When using multi-byte/non-ASCII characters, the slice must neither start nor end in
between the UTF-8 character boundaries:

let privet = String::from("npuset");

let pri = &privet[..6]; // ok: "npn"

let vet = &privet[6..]; // ok: "ser"

printtn! ("{}{}", pri, vet);

let pri = &privet[..71; // wrong: "npu" + first byte of 'B'

A string cannot be modified when a slice is referring to it:

let mut s = String::from("abcdefg");
let abc = &s[..4];
s.push str("hijklmnop"); // invalid: already borrowed immutably

Moving the immutable reference into its own scope solves the problem:

let mut s = String::from("abcdefg");

{
let abc = &s/[..4];

}
s.push str("hijklmnop"); // valid: immutable borrow already dropped

String literals are string slices referring to a certain memory area within the binary
program. It’s a good practice to accept string slices (type &str) as function parameters,
because string literals already are string slices, and instances of String are cast to a
string slice by referring:

fn quote(s: &str) {
println! ("«{}»", s);
}

fn main() {
let s = String::from("Hello, World!");
quote(&s); // String object: cast by referring
quote("Hello, World!"); // string literal: already a slice
}

Slices can also be created on other sequences, such as integer arrays:

let fib = [1, 1, 2, 3, 5, 8, 13, 21];
let slice = &fib[2..7]1; // [2, 3, 5, 8, 13]

19

5 Structs

Structs name and group together multiple related values of possibly different types to
a new type. Unlike tuples, structs give names to the whole and its parts, and the order
of fields neither matters for initialization nor accessing values.

A struct is defined using the keyword struct, a name (in capitals) and a list of fields
(name-type pairs) in curly braces:

struct Employee {
name: String,
position: String,
logins: ub4,
active: bool,

}

A new instance of a struct is created by defining its field in key-value notation. All fields
are mandatory and need to be initialized:

let dilbert = Employee {
name: String::from("Dilbert"),
position: String::from("Engineer"),
logins: 962,
active: true,

I
When marked as mutable, fields of a struct instance can be changed:

let mut dilbert = Employee {

name: String::from("Dilbert"),

position: String::from("Engineer"),

logins: 962,

active: true,
b
dilbert.name = String::from("Dilberto");
dilbert.position = String::from("Head of Engineering");
dilbert.logins += 1;
dilbert.active = false;

Only the struct instance as a whole can be marked as mutable, not single fields.

A struct without any fields is called a unit-like struct. It can be useful where a value is
needed formally, but doesn’t matter:

struct Empty{};
let container = Empty{};

Factory functions are helpful to create new struct instances, especially if they consist of
a mix of custom and default values:

20

fn create employee(name: String, position: String) -> Employee {
Employee {
name: name,
position: position,
logins: 0O,
active: true,

}

If the field and the variable assigned to it have the same name, the field init shorthand
syntax allows to only indicate the name once:

fn create employee(name: String, position: String) -> Employee {
Employee {
name,
position,
logins: 0O,
active: true,

}

This not only works for function parameters, but for any variables in scope:

let name = String::from("Catbert");
let position = String::from("Evil Genius");
let catbert = Employee {

name,

position,

logins: 0O,

active: true,

I
New instances can be created based on existing ones:

let wally = Employee {
name: String::from("Wally"),
position: dilbert.position,
logins: 312,
active: dilbert.active,

};

The struct update syntax allows to initialize the remaining fields based on the value of
an existing instance:

let wally = Employee {
name: String::from("Wally"),
logins: 312,
..dilbert // use Dilbert's values for fields not yet initialized

};

21

5.1 Tuple Structs

A tuple struct is a tuple with a name. The name belongs to the type definition, therefore
this two tuple structs are not compatible to each other:

struct RGB(u8, u8, u8);
struct Block(u8, u8, u8);

let red = RGB(255, 0, 0);
let cube = Block(1l, 1, 1);

A loose bunch of variables on one side and a struct on the other side can be seen as the
two extremes of a continuum:

1. loose variables can be grouped together to a tuple
2. a tuple can be named as a whole to get a named tuple
3. the fields of a named tuple can be named to get a struct

5.2 Debug Output

Struct instances can be printed out if they derive the trait std::fmt: :Debug:

#[derive(Debug)]

struct Employee {
name: String,
position: String,
logins: u64,
active: bool,

}

fn main() {
let dilbert = Employee {
name: String::from("Dilbert"),
position: String::from("Engineer"),
logins: 962,
active: true,
b
printtn!("{:?}", dilbert);
printtn!("{:#?}", dilbert);
}

The {:?} output format prints the struct on a single line, whereas the {:#?} output
format uses multiple lines and indents the fields:

Employee { name: "Dilbert", position: "Engineer", logins: 962, active: true }
Employee {

name: "Dilbert",

position: "Engineer",

logins: 962,

22

active: true

5.3 Methods

A method is a function defined in the context of a struct. The instance of the struct the
method is called on is automatically provided as the first parameter called self. The
methods of a struct must be declared within one or multiple impl blocks:

struct Rectangle {
width: u32,
height: u32,

}

impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height
}
}

The area method accepts a reference to a Rectangle (the type doesn’t need to be de-
clared, because it can be inferred). The method can be called using dot notation on the
struct instance (the reference operator & is optional):

fn main() {
let r = Rectangle {
width: 3,
height: 4,
b
println! ("{}", r.area()); // 12
println!("{}", &r.area()); // with optional reference operator

}

The self instance can be modified by accepting a mutable reference:

impl Rectangle {
fn stretch(&mut self, factor: u32) {
self.width *= factor;
self.height *= factor;

}

fn main() {
let mut r = Rectangle {
width: 3,
height: 4,
b
println!("{}", r.area()); // 3 * 4 = 12
r.stretch(2);

23

printtn! ("{}", r.area());

}

Methods that own the self parameter are rare. They’'re helpful when a new instance is
created based on an old one, and the old instance must no longer be used afterwards.
The old instance is consumed by the method:

impl Rectangle {
fn transform(self, factor: u32) -> Rectangle {
Rectangle {
width: self.width * factor,
height: self.height * factor,

}

fn main() {
let r = Rectangle {
width: 3,
height: 4,
b
let r = r.transform(2);
println!("{}", r.area());

}

Associated functions, similar to static methods in other programming languages, be-
long to a struct, but do not take a self parameter; they are often used as constructors:

impl Rectangle {
fn square(size: u32) -> Rectangle {
Rectangle {
width: size,
height: size,

}

An associated function can be called using double colon notation on the struct, as already
used for String::from() before:

fn main() {
let r = Rectangle::square(3);
printtn!("w: {}, h: {}", r.width, r.height);

6 Enumerations and Pattern Matching

Enumerations (short: enums) are types defined by enumerating its possible values and
encode meaning along with data. The enum'’s different values are called its variants.

24

A enum is defined using the enum keyword and a list of variants within curly braces:

enum ColorType {
RGBA,
CMYK,

}

The variants of an enum belong to the same type. They are namespaced under the
enum’s name and need to be qualified in order to be used:

ColorType: :RGBA;
ColorType: :CMYK;

let rgba
let cmyk

A function can accept values of either variant by annotating the enum’s name as the
expected type:

fn list colors(color_type: ColorType) {
/...
}

fn main() {
list colors(ColorType: :RGBA;);
list colors(ColorType: :CMYK);

}

Variants can hold their own data. The amount, structure and type of the associated
data can vary between different variants. It is possible to use single scalars, tuples,
anonymous structs and even other enums:

#[derive(Debug)]
enum ColorType {
Unspecified, // no data
Named (String), // single value
RGBA(u8, u8, u8, f32), // tuple
CMYK {
cyan: u8,
magenta: u8,
yellow: u8,
black: u8,
}, // anonymous struct

}

Even though the variants are made up of different types, they still belong to the same
enum type.

Enums can have methods attached to them in impl blocks:
impl ColorType {
fn print(&self) {
println! ("{:?}", self);
}

25

fn main() {
let none = ColorType::Unspecified;
let fuchsia = ColorType::Named(String::from("fuchsia"));
let red = ColorType::RGBA(255, 0, 0, 0.5);
let yellow = ColorType::CMYK {

cyan: 0,
magenta: 0,
yellow: 100,
black: 0,

};

none.print();

fuchsia.print();

red.print();

yellow.print();
}

Output:

Unspecified

Named (" fuchsia")

RGBA(255, 0, 0, 0.5)

CMYK { cyan: 0, magenta: 0, yellow: 100, black: 0 }

6.1 The Option<T> Enumeration

Unlike many other programming language, Rust has no null (or nil) references. The
absence (and presence) of a value is instead expressed by the Option<T>; an enum with
two variants and a type parameter T:

enum Option<T> {
Some(T),
None,

}

The variant Some holds a value of type T. The variant None is used to signify the absence
of a value and therefore does not hold any. The enum Option<T> and its variants Some(T)
and None are included in the prelude and hence are not required to be made available
first. They can be used without qualification:

let a number = Some(42);
let a_word = Some(String::from("whatever"));
let none: Option<i32> = None;

The type can be inferred in case of Some but must be annotated for None, for there is no
value to infer from.

A instance of Option<T> can not be treated like an instance of T:

26

let a: 132 = 3;
let b: Option<i32>
let c: Option<i32>

Some(4);
None;

let x
let y

a+b; // error
a+c; // error

The variable a is of type 132, while b and c are of type Option<i32>. Trying to handle
them alike causes a compilation error. This is exactly the point, because adding a only
possibly available value to a existing value cannot be guaranteed to work. The compiler
makes sure that a value is always there when needed.

Option<T> must be converted to T before it can be used. The enum offers methods for
that purpose, but the general approach is to use pattern matching.

6.2 Pattern Matching

The match control flow operator allows to compare a value against a series of patterns
and executes a branch of code for the matching pattern.

In the context of enums, match allows to execute different code for a value according to
its variant. Every variant has an expression, statement or block assigned with the =>
operator, called the variant’s arm:

enum Animal {
Blobfish,
Human,
Fox,
Octopus,
Centipede,

}

fn number of legs(animal: Animal) -> u8 {
match animal {

Animal::Blobfish => 0,

Animal: :Human => {
println!("not counting arms");
2

I

Animal::Fox => 4,

Animal::0ctopus => {
println!("arms or legs? legs!");
return §;

b
Animal::Centipede => 100,

}

fn main() {
let johnny = Animal::Human;

27

let legs = number of legs(johnny);
println!("{} legs", legs);
}

If one or many variants were missing, the program would not compile:

fn number of legs(animal: Animal) -> u8 {
match animal {
Animal::Blobfish => 0,
Animal::Fox => 4,
Animal::Centipede => 100,

match animal {
AMAAnn patterns “Human® and “Octopus™ not covered

Matches are said to be exhaustive; the compiler makes sure that all the possibilities
are handled. If one or many variants are not of interest, the pattern, which matches
to anything, can be used for the last arm. (If it were not the last arm, the subsequent
patterns could not possibly match, because already matched everything.)

fn number of legs(animal: Animal) -> u8 {
match animal {
Animal::Blobfish => 0,
Animal::Fox => 4,
Animal::Centipede => 100,
= 0,

}

If no code were to be executed for the default case, the unit value () can be used:

match animal {
Animal::Blobfish => println!("0"),
Animal::Fox => println!("4"),
Animal::Centipede => println!("100"),
=> (),

}

This only works if match is used as a statement as opposed to an expression; the latter
always needs to yield a value.

If only a single variant is of interest, the if let construct can be used to make the code
more concise. Consider this match expression:

let val = Some(42);

match val {
Some(42) => println!("correct"),
= (),

28

Which can be rewritten using the if let [pattern] = [value] pattern as follows:

let val = Some(42);
if let Some(42) = val {
println!("correct");

}

The resulting code is shorter, but the compiler no longer checks if all variants are being
handled.

One common use case for pattern matching is to extract a value of an enum’s variant.
Consider this enum with a enhanced Centipede definition, of which the value needs to
be extracted:

enum Animal {
Blobfish,
Human,
Fox,
Octopus,
Centipede(String),
}

fn number of legs(animal: Animal) -> u8 {
match animal {
Animal::Blobfish => 0,
Animal: :Human => 2,
Animal::Fox => 4,
Animal::0ctopus => 8,
Animal::Centipede(kind) => {

if kind == "Stone Centipede" {
30

} else if kind == "Giant Readhead Centipede" {
42

} else {
100

}

}

fn main() {
let centi = Animal::Centipede(String::from("Stone Centipede"));
let legs = number of legs(centi);
printtn! ("{} legs", legs);

}

The Animal::Centipede(kind) pattern is said to bind to a value. This technique is also
used to unpack the T instance of a Option<T>. Consider this safe division function, which
returns the resulting quotient wrapped in a Option<f32>—or None, if the division is un-
defined when the divisor is zero:

29

fn divide(dividend: i32, divisor: i32) -> Option<f32> {
if divisor == 0 {
return None;
}

Some(dividend as f32 / divisor as f32)

}

The result of the divide() function is handled with pattern matching, ensuring that
always a value present by mapping None to 0:

let a = 10;
let b = 3;
let c = 0;

let x = match divide(a, b) {

Some(q) => q,
None => 0.0,
b
let y = match divide(a, c) {
Some(q) => q,
None => 0.0,
b

printtn! ("x={}, y={}", X, y);

7 Modules

Just like lines of code can be organized as functions, entities like functions, enums,
structs and constants can be organized in a higher logical unit: modules.

The following examples are demonstrated using two different crates:
1. netlib: a library crate containing the modules
* src/lib.rs as the starting point
2. nettool: a binary crate using the modules

* src/main.rs as the starting point
The crates are created in the same directory using cargo:

$ cargo new netlib --1lib
$ cargo new nettool --bin

Modules are not restricted to the usage within library crates. The purpose of this struc-
ture is to demonstrate how a binary crate can make use of a library, and libraries offer
not only loose functions in general, but functions organized in a module structure.

A module is declared using the mod keyword, following the module name and the module
definition (its content) within curly braces (netlib/src/lib.rs):

30

mod network {
fn connect() {}

}

The functions of a module are said to live in the module’s namespace, which is expressed
by the reference network: :connect for the above example.

Multiple modules can be declared alongside in the same file:

mod network {

fn connect() {}
}
mod database {

fn connect() {}

}

The code compiles, even though two functions called “connect” are declared in the same
file, because the functions are in two different modules and hence in different names-
paces.

7.1 Hierarchy: Logical and Physical

Modules can be nested to represent hierarchic module structures:

mod server {
fn serve() {}
mod producer {
fn produce() {}
}
}
mod client {
fn consume() {}
}
mod database {
fn backup() {}

}

A file containing multiple and/or nested modules tends to become big (many definitions)
and hard to read (deeper indentation levels). It makes sense to not only organize mod-
ules logically, but also physically in terms of files.

A module’s declaration and definition can be taken apart. In case of the module database,
the definition remains in the file src/lib.rs:

mod server {
mod producer {}

}
mod client {}

mod database;

31

The definition (consisting of a single function) is then expected to be in a file named
after the module (src/database.rs):

mod database {
fn backup() {}
}

During the compilation process, lib.rs (library crate) or main.rs (binary crate), re-
spectively, are considered for declarations. The module declaration points the compiler
forward to another file; the module database is looked for in the file database.rs in the
src/ folder.

Extracting a nested module (server) with one or many child modules (producer) of its
own requires another organization:

1. The parent module server must reside in a subfolder named after the module
src/server/ in a file called mod. rs.

2. The child module producer must reside in the folder of its parent module
src/server/ in a file named after the child module producer.rs.

The root file 1ib. rs, with the definition of server extracted, looks like this:

mod server;
mod client {
fn consume() {}

}

mod database;

The file server/mod. rs only contains the server module’s definitions, not the declaration
line mod server itself, which is already implied by the context:

mod producer;
fn serve() {}

The submodule server: :producer must reside in the file server/producer.rs:

mod producer {
fn produce() {}
}

In summary, the module structure looks like this:

netlib
server
producer
database

While the file system structure looks like this:

32

src/
lib.rs
server/
mod. rs
producer.rs
database.rs

7.2 Visibility: Private and Public

Functions and other items are private to the enclosing module by default, and hence
cannot be accessed from the outside. The pub keyword makes them public, so that they
can be used from the outside, too.

A public function or module is only accessible from the outside if all the enclosing mod-
ules are declared public as well:

mod parent {
pub mod bazzer {
pub mod open {
pub fn baz() {}
}
}
pub mod quxer {
mod locked { // private module
pub fn qux() {}
}

}

fn main() {
parent::bazzer::open::baz(); // works: whole path is public
parent::quxer::locked::qux(); // doesn't work: private module in path

}

Private items—modules, functions, etc.—can only be accessed from:

1. its immediate parent module
2. the parent’s child modules (siblings)

* the parent module can be referred to using the super keyword in the module
path

mod parent {
mod first { // private module
pub fn one() {} // public function
}
fn zero() {
first::one(); // 1. immediate parent module

}

mod second {

33

fn two() {
super::first::one(); // 2. parent's child module (sibling)

}
}

Private functions that aren’t used within their visible context cause a compiler warning,
because they aren’t needed and therefore be better deleted. Public functions—whether
used locally or not—do not cause such a warning, because they are intended for external
use; and the external context is not known during compilation. (A library doesn’t know
from where and how it is going to be used.)

7.3 Using External Crates and Modules

Library crates are only useful when they are eventually used by some binary. Let’s as-
sume the following crates are created within the same parent directory, a house (library)
serving its resident (binary):

$ cargo new house --1lib
$ cargo new resident --bin

The library consists of a module with multiple submodules in house/src/lib.rs:

pub mod basement {
pub mod freezer {
pub mod door {

pub fn open() {
println!("open the door of the freezer in the basement");

}

pub fn close() {
println!("close the door of the freezer in the basement");

}

}

If the resident binary wants to make use of the house library, it must declare that de-
pendency in resident/Cargo.toml:

[package]

name = "resident"

version = "0.1.0"

authors ["patrickbucher <patrick.bucher@stud.hslu.ch>"]
edition "2018"

[dependencies]
house = { path = "../house", version = "*" }

34

The path is indicated relatively (. ./house), and any version can be used (*).

In order to use the external house crate from the library, it must also be declared in the
code (resident/src/main.rs):

extern crate house;

fn main() {
house: :basement: :freezer::door::open();
house: :basement: :freezer::door::close();

}

Libraries with a deep module hierarchy are painful to use if every path had to be qualified
absolutely. The use keyword brings a module’s content into scope, so that its content
can be used without further qualification.

extern crate house;
use house: :basement::freezer: :door;

fn main() {
door::open();
door::close();

}

The use keyword can be applied at any level. Consider this additional enum defined in
house/src/1lib.rs:

pub enum FrozenFoodType {
IceCreanm,
Meat,
Vegetables,
IceRocks,

}
It’s possible to import just the enum:

extern crate house;
use house: :FrozenFoodType;

fn main() {
let icecream = FrozenFoodType::IceCream;

}

Or, one level deeper, directly the variants:

use house::FrozenFoodType::IceCream;

Multiple variants (or items in general) can also be imported as a list:

use house::FrozenFoodType::{IceCream, Meat};

35

It’s also possible to import all items of an entity, which should be used sparingly in order
to not pollute the namespace:

use house::FrozenFoodType: :*;

8 Common Collections

Rust has different kinds of collections, which allow to store multiple elements of the
same type. The elements are stored on the heap, and therefore, unlike arrays, the
number of items is flexible.

8.1 Vector

The type Vec<T> describes a vector, which stores a list of items in a continuous memory
area. A vector can be created using its associated new() function:

let v: Vec<i32> = Vec::new();

A type annotation (within angle brackets) is needed, because there are no elements yet
to infer the type from. If a vector is to be created from existing items, the vec! macro
(included in the prelude) is more convenient:

let v = vec![1, 2, 3];
Elements can be added to a mutable vector using the push() method:

let mut v = vec![1, 2, 31;
v.push(4);
v.push(5);
v.push(6)

There are two ways of reading the elements of a vector v:

1. Using indexing syntax &v[i], which panics if an invalid index is used.
2. Using the v.get (i) method, which returns an Option<T> with either a value Some(T)
for valid indices or the None variant for invalid indices.

let v = vec![1, 2, 3];

let first = &v[0]; // 1: 132
let second = v.get(l); // Some(2): Option<i32>
let fourth = &vI[3]; // panic!

let fifth = v.get(4); // None: Option<i32>

Storing a reference of a vector item is borrowing from the vector. As long as a borrow
is held (and used), the vector cannot be modified by adding items to it:

let mut v = vec![1, 2, 31;

let one = &vI[0]; // immutable borrow

v.push(4); // error: cannot borrow as mutable
println! ("{}", one); // use immutable borrow later

36

The reason for this restriction is the way the memory of a vector is organized: If the
vector no longer fits into its current memory area after an additional item is added, the
whole vector needs to be moved to a bigger continuous memory area, and thus rendering
the existing references obsolete.

The items of a vector can be iterated over using the for/in loop:

let v = vec![1, 2, 31;
for i in v {

println! ("{}", i);
}

The items of a mutable vector can be modified in an iteration, if the vector is borrowed
mutably for the operation, and the item is dereferenced upon modification:

let mut v = vec![1, 2, 31;
for i in &mut v {
*i k= 2

}

The pop () method returns the last item of a vector wrapped in an Option<T> and removes
the item from the vector:

let mut v = vec![1, 2, 3, 42],;
if let Some(i) = v.pop() {
println!("last: {}", i);
}
println!("rest: {} {} {}", vI[0l, vI[1], v[2]);

Vectors can store different variants of an enum, for they belong to the same type:

enum DivisionResult {

Integer(i32),
FloatingPoint(f64),
Undefined,

}

let results = vec!|[
DivisionResult::Integer(3), // 6/2
DivisionResult::FloatingPoint(3.5), // 7/2
DivisionResult: :Undefined, // 3/0

1;

for r in results {
match r {
DivisionResult::Integer(i) => println!("{}", 1),
DivisionResult::FloatingPoint(f) => println!("{}", f),
DivisionResult::Undefined => (),

37

8.2 String

The String type is a collection of bytes which are interpreted as UTF-8 encoded text.
Unlike the string slice type str (or the reference to it &str), String is not part of the
core language, but implemented in the standard library.

A string can be created using the associated new() function, based on a string literal
using the associated from() function, or using the to string() method on an existing
object implementing the Display trait:

let mut sl = String::new();
let mut s2 String::from("hello");
let mut s3 = "world".to string();

Strings can be concatenated by using either the method push str() (for adding a string
slice) os push () (for a single character) on a mutable string:

let mut s = String::new();
s.push str("hello");
s.push(' ");

(

s.push str("world");

Two existing strings can be combined to a third string using the + operator.

let foo = String::from("foo");
let bar = String::from("bar");
let qux foo + &bar;
printtn! ("{}", qux);

(
println! ("{}", foo); // error: foo was consumed!
println!("{}", bar); // ok: bar was not consumed

Internally, a method with the signature add(self, s: &str) -> String is called, which
consumes the operand on the left, but doesn’t own the operand on the right. No strings
are copied; ownership of the first operand is taken and returned as the result of the
concatenation.

Because chained concatenations are hard to read, the format! macro offers a more
convenient interface, which also doesn’t take ownership of any of the parameters:

let sl "hello".to string();

let s2 = ", ".to string();

let s3 = "world".to string();

let message = format! ("{}{}{}", sl, s2, s3);

Technically, the String type is a wraper over Vec<u8>. The len() method returns the
number of bytes in the string, not characters:

let hello = String::from("hello");
let privet = String::from("npuset");
println!("{}", hello.len()); // 5
println!("{}", privet.len()); // 12

38

The first string "hello" consists only of ASCII characters, which all can be encoded with
a single byte in UTF-8. The cyrillic characters of the second string "npuset", however,
require two bytes in UTF-8.

Strings cannot be indexed in Rust, because a index might only be refering to some
part of a encoded character, and the compiler prevents such error-prone operations. An
indexing operation on the characters of a UTF-8 string would not be possible in constant
time 0(1), because a byte might only be part of a character, and the surrounding bytes
needed to considered, too.

Slicing strings, however, is legal, but causes a panic if a slice starts or ends between
two bytes belonging to the same character:

let privet = String::from("npuset");

let pri = &privet[0..6]; // first three characters: npu

let vet = &privet[6..12]; // last three characters: Ber

printtn! ("{}{}", pri, vet); // npuser

let pri = &privet[0..7]; // panic: index 7 not a char boundary!

It’s possible to iterate either over the bytes or the characters of a string:

let privet = String::from("npuset");
for ¢ in privet.chars() {
print!("{}", c); // npuser
}
println!();
for b in privet.bytes() {
print!("{} ", b); // 208 191 209 128 208 184 208 178 208 181 209 130

}

8.3 Hash Map

A HashMap<K, V> stores a mapping of keys of type K to values of type V using a crypto-
graphically safe hashing function for placement and lookup. Unlike a vector, the items
cannot be retrieved by index, but by their unique key.

The type HashMap<K, V> is not part of the prelude and hence needs to be made available
with use. A new hash map can be created using the associated new() method. Items can
be added using the insert(k, v) method, which accepts a key and a value:

use std::collections: :HashMap;

let mut points = HashMap::new();
points.insert(String::from("Myers"), 125);
points.insert(String::from("Roberts"), 99);

Keys and values can be of different types, like String and 132 in the above example, but
all keys and all values must be of the same type.

A common use case is to build up a hash map based on a list of keys and another list
of values. This can be achieved by getting an iterator on each vector using the iter()

39

method, zipping those iterators together using the zip() method and calling the col-
lect () method on the result:

use std::collections: :HashMap;

let names vec!["Myers".to string(), "Roberts".to string()];
let score = vec![125, 99];
let mut points: HashMap< , > = names.iter().zip(score.iter()).collect();

The compiler needs a type annotation for HashMap, but can infer the key and value
types.

Keys and values are owned by the hash map upon insertion:

let mut map = HashMap: :new();

let key = String::from("Miller");

let val = 42;

map.insert(key, val);

println! ("{}", key); // fail: key moved to map

Values of a HashMap<K, V> can be accessed using the get () method with a key, returning
an Option<&V> containing a reference to the value found.

let mut results = HashMap::new();
results.insert("Peter".to string(), 7.83);
results.insert("Michael".to _string(), 6.92);
results.insert("Paul".to string(), 8.41);

if let Some(x) = results.get("Peter") {
println!("Peter: {}", X);
}

An iteration over a hash map yields key-value tuples:

let mut results = HashMap: :new();
results.insert("Peter".to string(), 7.83);
results.insert("Michael".to _string(), 6.92);
results.insert("Paul".to string(), 8.41);

for (key, value) in &results {
printtn!("{}: {}", key, value);
}

There can only be stored one value per key, so calling insert(key, value) with a key
already contained in the map overwrites that value.

let mut results = HashMap::new();
results.insert("Peter".to string(), 7.83);
results.insert("Peter".to string(), 6.92); // overwrite!

if let Some(x) = results.get("Peter") {

pr