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1 Linear Regression

1.1 One Variable

Prediction:

y = h(x) = θ0 + θ1x = θTx

Cost Function (Squared Error):

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2

Gradient Descent:

θ = θ − α
1

m

m∑
i=1

(hθ(x
(i))− y(i))x(i)

1.2 Multiple Variables

Prediction:

y = h(x) = θ0 + θ1x1 = + · · ·+ θnxn = θTx

Cost Function:

J(θj) =
1

2m

m∑
i=1

(hθ(x
(i)
j )− y

(i)
j )2

Gradient Descent:

θj = θj − α
1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j , j := 0 . . . n

An additional feature x0 = 1 is introduced, so that the vector x becomes n + 1 dimensional,
which simplifies the matrix calculations.

Normal Equation:
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θ = (XTX)−1XT y

Octave (Complexity with n features: O(n3)):

theta = pinv(X'*X)*X'*y

1.3 Normalization

xi =
xi − µi

si

Octave:

X = (X - mean(X)) ./ std(X)

2 Classification
Binary Classification: y ∈ {0, 1}, where 0 signifies negative or absent, and 1 signifies positive
or present.

2.1 Logistic Regression

0 ≤ hθ(x) ≤ 1

Sigmoid Activation Function g (with asymptotes at y 0 and 1, to be interpreted as probabilities):

hθ = g(θTx), g(z) =
1

1 + e−z

hθ(x) =
1

1 + e−θT x

Cost Function: −log(hθ(x)) for y = 1 and −log(1− hθ(x)) for y = 0, combined:

C(hθ(x), y) = −y · log(hθ(x))− (1− y) · log(1− hθ(x))

J(θ) =
1

m

m∑
i=1

C(hθ(x
(i)), y(i))

With maximum likelihood estimation:

J(θ) =
1

m

[
m∑
i=1

y(i) · log(hθ(x(i))) + (1− y(i)) · log(1− hθ(x
(i)))

]
Prediction:

hθ(x) =
1

1 + e−θT x
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Gradient Descent (for each j in θ):

θj := θj −
α

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j

Vectorized:

θ := θ − α

m

m∑
i=1

[
(hθ(x

(i))− y(i))x(i)

]

θ := θ − α

m
XT (g(Xθ)− y⃗)

2.1.1 Regularization (Gradient Descent)

Regularization mitigates the problem of overfitting for higher-order polynomials.
Regularization term (only regularize θj for j ≥ 1, but not θ0):

λ
m∑
j=1

θ2j

Regularized Cost Function:

J(θ) =
1

m

[
m∑
i=1

y(i) · log(hθ(x(i))) + (1− y(i)) · log(1− hθ(x
(i)))

]
+

λ

2m

n∑
j=1

θ2j

Regularized Gradient Descent (for θj with j ≥ 1):

θ0 := θ0 − α

[
1

m

m∑
i=1

(hθ(x
(i))− y(i))x

(i)
j

]

θj := θj − α

[
1

m

m∑
i=1

(
(hθ(x

(i))− y(i))x
(i)
j

)
+

λ

m
θj

]

2.1.2 Regularization (Normal Equation)

To regularize using the normal equation, (n + 1)(n + 1) matrix L with i rows and j columns
and the values 1 (for i = j ∧ i ≥ 1 ∧ j ≥ 1) and 0 (all the other indices), respectively, has to be
created. (This is an identity matrix of size n+ 1 with the value at (0, 0) set to 0.)

θ = (XTX + λL)−1XT y

With regularization, the matrix is always inversible.

4



3 Neural Networks
Definitions:

• x0: bias unit

• a
(j)
i : activation unit i of layer j

• Θ(j): weight matrix between layer j and j + 1

Given layer j with sj units, and layer j + 1 with sj+1 units, the matrix Θ(j) has the dimensions
sj+1 × (sj + 1).

3.1 Activation

Neural network with three units in the one hidden layer:

a
(2)
1 = g(Θ

(1)
10 x0 +Θ

(1)
11 x1 + . . . )

a
(2)
2 = g(Θ

(2)
20 x0 +Θ

(2)
21 x1 + . . . )

a
(2)
3 = g(Θ

(3)
30 x0 +Θ

(3)
31 x1 + . . . )

hΘ(x) = a31 = g(Θ
(2)
10 a

(2)
0 +Θ

(2)
11 a

(2)
1 + . . . )

3.1.1 Vectorization

With (forward propagation):

a
(2)
1 = g(Θ

(1)
10 x0 +Θ

(1)
11 x1 +Θ

(1)
12 x2 +Θ

(1)
13 x3)

And:

z
(2)
1 = Θ

(1)
10 x0 +Θ

(1)
11 x1 +Θ

(1)
12 x2 +Θ

(1)
13 x3

Follows:

a
(2)
1 = g(z

(2)
1 )

So that:

z(2) = Θ(1)x = Θ(1)a(1)

Output layer:

hΘ = a(3) = g(z(3))
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3.2 Cost Function

J(Θ) = − 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log(hΘ(x

(i)))k+(1−y
(i)
k )log(1−(hΘ(x

(i)))k

]
+

λ

2m

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(Θ
(l)
ji )

2

With (hΘ(x))i being the ith output. Note that regularization is not added to the bias unit, i.e.
only for j ≥ 1.

3.3 Forward Propagation

With a single training example (x, y). The first activation is the input (a bias unit a(1)0 = 1 must
be added before):

a(1) = x

The second activation is computed using Θ and the sigmoid function g(z):

z(2) = Θ(2)a(2)

a(2) = g(z(2))

The bias unit a(2)0 = 1 must be added again, then the further activations (l) are computed:

z(l) = Θ(l)a(l)

a(l) = g(z(l))

Finally, the output (layer L) is computed:

z(L) = Θ(L)a(L)

a(L) = g(z(L)) = hΘ(x)

3.4 Backpropagation

The δ for the rightmost layer L is computed as:

δL = a(L) − y

The further δ values are computed from right to left, down to l = 2 (no δ for the input layer):

δ(l) = δ(l+1)Θ(l)g′(z(l))

With (bias unit included in a(l)):

g′(z(l)) = a(l)(1− a(l))

The∆ values are computed as (a(l) without bias unit):

6



∆(l) = (δ(l+1))Ta(l)

Finally, the gradients D for j ≥ 1 are computed as follows:

D
(l)
ij =

1

m
(∆

(l)
ij + λΘ

(l)
ij )

And without regularization for j = 0, respectively:

D
(l)
ij =

1

m
(∆

(l)
ij

Which is the partial derivative of the cost function:

∂

∂Θ
(l)
ij

J(Θ) = D
(l)
ij

3.5 Gradient Checking

Estimate the derivative of J(Θ) with ε ≈ 10−4 (two-sided difference):

d

dΘ
J(Θ) ≈ J(Θ + ε)− J(Θ− ε)

2ε

The result should only deviate from theD values by a rounding margin.

3.6 Random initialization

When working with neural networks, Θ must be initialized to a random value symmetrically
around 0. A (10× 11) matrix is initialized as follows (Octave):

init_epsilon = 0.1;
Theta = rand(10,11) * (2 * init_epsilon) - init_epsilon;

4 Error Metrics
Confusion Matrix:

actual
1 0

pr
ed
ic
tio

n 1 true
positive

false
positive

0 false
negative

true
negative

Precision (0 ≤ P ≤ 1):
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P =
tp

tp+ fp

Recall (0 ≤ R ≤ 1):

R =
tp

tp+ fn

F1 Score (0 ≤ F1 ≤ 1):

F1 = 2
PR

P +R

Some rules of thumb:

• A higher classification threshold leads to a higher precision and a lower recall.

• A lower classification threshold leads to a lower precision and a higher recall.

• Many features can help to lower the bias.

• Many training examples can help to lower the variance.

• If a human expert can predict y based on x, more training data can help.

5 Support Vector Machines
The prediction yields 0 and 1 rather than probabilities. Cost Functions with Safety Margins
(Large Margin Classifier):

cost0(θTx(i)) : 1 if θTx ≤ −1, else 0

cost1(θTx(i)) : 1 if θTx ≥ +1, else 0

Minimize θ (C = 1
λ ):

min
θ

C

m∑
i=1

[
y(i)cost1(θTx(i)) + (1− y(i))cost0(θTx(i))

]
+

1

2

n∑
i=1

θ2j

5.1 Kernels

Calculate features depending on proximity (similarity function) using landmarks (l(i) = x(i))
with the Gaussian kernel (squared euclidian distance ||x− l(i)||2):

f1 = sim(x, l(i)) = exp

(
− ||x− l(i)||2

2σ2

)
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5.2 Choice of Parameters

• C

– large C: low bias, high variance (small λ)

– small C: high bias, low variance (large λ)

• σ2

– large σ2: high bias, low variance (flat gaussian curve)

– small σ2: low bias, high variance (abrupt gaussian curve)

6 K-Means
Input: Training Set (x(i), x(2), . . . , x(m), x ∈ Rn), number of clusters (K); Algorithm:

1. initialize centroids µ1, µ2, . . . , µK ∈ Rn (pick random training examples)

2. for i = 1..m: set c(i) by proximity to µ (min
k

||x(i)−µk||) (assign index of closest centroid)

3. for j = 1..k: move µj to mean of xs with c = k

4. repeat steps 1 to 3

Repeat the algorithm with different random initializations in order to find a global rather than
just a local minimum of the cost function (”Distortion of K-Means Algorithm”):

J(c(1), c(2), . . . , c(m), µ1, µ2, . . . , µK) =
1

m

m∑
i=1

||x(i) − µc(i) ||
2

7 Principal Component Analysis
Idea: Reduce input matrix x ∈ Rn to z ∈ Rk with k < n to reduce amount of features while
retaining as much variance as possible to save storage, memory, processing power and for easier
visualization. Algorithm:

1. preprocess data: mean normalization and feature scaling: xj :=
xj−µj

σ

2. compute covariancematrixΣ = 1
m

∑n
i=1(x

(i))(x(i))T (Octave: Sigma=(1/m)*X'*X;)

3. compute eigenvectors of Σ (Octave: [U,S,V]=svd(Sigma);)

4. take first k vector (i.e. columns) of U (Octave: Ureduce=U(:,1:k);)

5. compute z = UT
reducex

(i) ∈ Rk (Compression, Octave: z=Ureduce'*X;)

6. reconstructxapprox ∈ Rn from z ∈ Rk: xapprox = Ureducez ≈ x (Octave: Xapprox=Ureduce*z)

The bias unit x0 = 1 is omitted.
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7.1 Choosing the Number of Principal Components

Squared Projection Error:

1

m

m∑
i=1

||x(i) − x
(i)
approx||2

Total variation in the data:

1

m

m∑
i=1

||x(i)||2

In order to retain 99% of the variance, choose k = 1..(n− 1) to be the smallest value, so that:

1
m

∑m
i=1 ||x(i) − x

(i)
approx||2

1
m

∑m
i=1 ||x(i)||2

≤ 0.01

Algorithm (for k = 1..(n− 1)):

1. compute Ureduce, z
(1), . . . , z(m), x

(i)
approx, . . . , x

(m)
approx

2. compute variance thus retained (see formula above)

3. finish if variance ≤ threshold

In Octave, the S in [U,S,V]=svd(Sigma) is a diagonal matrix that can be used to compute
the variance retained:

1−
∑k

i=1 Sii∑n
i=1 Sii

≤ 0.01 or
∑k

i=1 Sii∑n
i=1 Sii

≥ 0.99

PCA should not be used to address the issue of overfitting; use regularization instead. PCA
should only be introduced if really needed.

8 Anomaly Detection
Given a dataset {x(1), x(2), . . . , x(m)}, xtest is anomalous if:

p(xtest) < ε

or not anomalous (i.e. normal) if:

p(xtest) ≥ ε

With x ∼ N (µ, σ2) (Gaussian):

p(x;µ, σ2) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
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The parameters µ and σ2 can be guessed from the dataset:

µj =
1

m

m∑
i=1

x
(i)
j σ2

j =
1

m

m∑
i=1

(x
(i)
j − µj)

2

Given an unlabeled traning set x ∈ Rn, x ∼ N (µ, σ2):

p(x) = p(x1;µ1, σ
2
1)p(x2;µ2, σ

2
2) . . . p(xn;µn, σ

2
n) =

n∏
j=1

p(xi;µi, σ
2
i ) =

n∏
j=1

e
−

(xj−µj)
2

2σ2
j

√
2πσj

Algorithm:

1. choose indicative features

2. fit parameters µ1, µ2, . . . , µn and σ2
1, σ

2
2, . . . , σ

2
n

3. calculate p(x)

4. mark as anomaly if p(x) < ε

For the evaluation using labeled training data, move all anomalous (y = 1) examples to the cross
validation and test set; only retain normal examples (y = 0) in the training set (split usually
60/20/20). Evaluate using precision, recall and F1 Score (accuracy is not indicative due to the
skewed distribution of y). Consider finding parameter ε using cross validation (usually 0.05 or
0.01).
The features being used should be normal distributed (plot with Octave: hist(x, nBins)).
Consider deriving new (x3 = x1

x2
) or transforming existing features (xi = log(xi + C)) in order

to get normally distributed features.

8.1 Multivariate Gaussian Distribution

If single variables do not qualify a training example as an outlier, but only a combination thereof,
using a multivariate Gaussian distribution can help to detect those correctly. With Σ being the
covariance matrix, |Σ| its determinant, and Σ−1 its inverse, the model is defined as:

p(x;µ,Σ) =
1

√
2π

n|Σ|
1
2

exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)
If the projection of a two-dimensional univariate Gaussian distribution from the top looks like a
circle, a multivariate Gaussian distribution enables to model correlations (elliptic shape denoting
the positive or negative correlation).
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9 Recommender Systems

9.1 Content-Based Recommenders

Given a table of movies with ratings by user and categorization:

Movie Alice Bob Carol Dan Romance Action
Titanic 4.5 3.5 5.0 3.0 4.5 3.0
Speed 2.0 4.0 2.5 4.5 2.5 5.0
Casablanca 5.0 3.5 4.5 2.5 5.0 2.0
Dawn of the Dead 1.0 5.0 2.0 4.5 1.5 5.0
The Outlaw Josey Wales 2.5 5.0 ? ? 2.5 4.5

The following matrices can be derived:

Y =


4.5 3.5 5.0 3.0
2.0 4.0 2.5 4.5
5.0 3.5 4.5 2.5
1.0 5.0 2.0 4.5
2.5 5.0 ? ?

 ∈ Rmmovies×nusers and X =


4.5 3.0
2.5 5.0
5.0 2.0
1.5 5.0
2.5 4.5

 ∈ Rmmovies×kgenres

The matrix R contains the information whether or not a user has rated a movie:

R =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 0 0

 ∈ Rmmovies×nusers and θ ∈ Rnusers×Kgenres

θ is randomly initialized and contains the user’s genre preferences to be learned.
For each user j and each genre k, learn θj :

θ
(j)
k := θ(j) − α

∑
i:R(i,j)=1

(
(θ(j))TX(i) − Y (i,j)

)
X

(i)
k + λθ

(i)
k

Cost Function (without regularization):

J =
1

2

nusers∑
j=1

∑
i:R(i,j)=1

(
(θ(j))TX(i) − Y (i,j)

)2
+

λ

2

nusers∑
j=1

K∑
k=1

(θ
(j)
k )2

Notice that only entries with R(i, j) = 1 must be considered for those calculations.
The missing ratings R(i, j) = 0 can be predicted as:

XθT
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9.2 Collaborative Filtering

If no categorization is available, the matrix X can be learned alongside θ. The matrices X and
θ must be initialized to small random values. The values need to be updated simultaneously, i.e.
use the last iteration’s value of X for computing the new value of θ:

x
(i)
k := x

(i)
k − α

( ∑
j:r(i,j)=1

(
(θ(j))Tx(i) − y(i,j)

)
θ
(j)
k + λx

(i)
k

)

θ
(j)
k := θ

(j)
k − α

( ∑
i:r(i,j)=1

(
(θ(j))Tx(i) − y(i,j)

)
x
(j)
k + λθ

(i)
k

)

For a user with parameters θ(j) and a movie with learned featuresX , predict a rating as follows:

(θ(j))T (x(i))

9.2.1 Similar Items

The similarity of the items i and j can be calculated using the learned parametersX . The smaller
the distance, the more similar the items are:

||x(i) − x(j)||

9.2.2 Additional Rows

A new row, i.e. a new user, must be initialized with some value. Otherwise all the predictions
will be equal to 0. A matrix µ the average of the items can be used. The average has to be
subtracted from the predictions (Y − µ) for learning, and added back for predictions:

(θ(j))Tx(i) + µ(i)
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