Abell 39 – Forty years on

The perfect photoionisation benchmark for stellar evolution

Michael Taylor michael@damir.iem.csic.es

http://damir.iem.csic.es/~michael

OVERVIEW

WHY A39?

AN OBSERVATIONAL ANALYSIS OF A39

CLASSIFYING A39

3D DUST-RT MODELLING WITH MoCaSsIN

Why study nebulae (apart from their beauty)?

- Nebulae (HII regions, PNs and SNRs) are important probes of:
 - 1) the end states of stars Pagel (1997)
 - 2) the chemical evolution of the universe Pagel (1997)
 - 3) cosmological distances using PNLFs Jacoby (1992)

Why study such a simple nebula such as A39?

- It is 99.6% Spherical → perfect for photoionisation modelling!
- PN-ISM interaction ≈ 0 & no knots \rightarrow ideal to test:
 - 1) the values of the primordial abundances
 - 2) atomic / molecular physics in vivo
 - 3) dust-RT
 - 4) Stellar atmosphere theory and the mass loss stage of PNs
- It is relatively unstudied (only 1 dedicated publication!)
- Ideal case to assess our progress in astrophysics after 40 years

AN OBSERVATIONAL ANALYSIS OF A39

Observations of A39 thirty years apart (and colour optics)

1.2m (48") Schmidt - Oschin, Palomar

3.5m (138") WIYN, Kitt Peak

Observations of A39 at Kitt Peak in 1997 Jacoby et al (2001)

The central star is moving ≈ 1km/s! Why?

- The central star offset $\approx 2^{\prime\prime} = 0.02 \text{ pc}$ (at 2.1kpc) = 6.3x10¹¹km
- The derived nebular age (from $v_{expansion}$) \approx 23,000 years = 7.26x10¹¹s

The drift velocity = 0.86 kms⁻¹

DILEMMA! The rim FURTHEST from the star is brighter!

Opposite of what's expected if there is ISM interaction
Perhaps due to asymmetric mass loss → higher density
→ higher brightness at left rim? Jacoby et al (2001)
Conservation of momentum ΔM ≈ 0.05 Mo → 0.9 kms⁻¹
But! The star also has a redshift of 40kms⁻¹ Napiwotzki(1999)
→ Is is orbiting another invisible body?!
(Link with "variability of central star" identified by Abell?)

Orientating A39 in the Milky Way

The line emission spectra in visible (WIYN) and UV (HST)

So how does 30 years improve imaging?

		ABELL (1966)	2006
Number of observations		7	10
Nebula observed diameter	(arcsec)	174	154.8
Nebula rim thickness	(arcsec)	Ν/Δ	10 1
Nebula halo thickness	(arcsec)	N/A	15
Nebular electron density	(cm^{-3})	/8	30
Nebular electron temperature	(K)		15 000
Nebular mass	(rel to Sun)	0.2	15,000
Nebula derived distance	(nc)	918	2100
	(kmc ⁻¹)	N/A	2100
			22 000
Nebula derived age	(years)		23,000
Central star classification		variable WD	DO
Central star offset	(pc)	N/A	0.02
Central star photoelectric magnitude	V(550nm)	15.6	15.6
(further reddening estimate)	B(440nm)-V	-0.33	-0.33
· · · · · · · · · · · · · · · · · · ·	U(365nm)-B	-1.23	N/A
Central star temperature	Т(К)	45,709	150,000
	logT(K)	4.66	5.176
Central star luminosity	(W)	5.66 x 10 ²⁷	9.4 x 10 ²⁷
Central star luminosity	(rel to Sun)	14.79	15.6
	log(L/Lo)	1.17	1.196
Central star abs magnitude	(M _V)	5.79	3.9
Central star bol magnitude		1.825	1.76
Central star radius	(rel to Sun)	0.062	0.00073
Central star mass	(rel to Sun)	0.2	0.61
Reddening (log extinction at H(β) (≡5%↓)	cH(β)	N/A	0.049
Reddening from H I col density past A39	c[E(B-V=0.06]	N/A	0.08

.

CLASSIFYING A39

WD classification

.

Stellar atmosphere theory I: The WD radius

Stellar atmosphere theory II: The WD progenitor mass

Stellar atmosphere theory III: Progenitor-remnant history

Stellar atmosphere theory IV: A39 on the HR diagram

3D DUST-RT MODELLING WITH MOCASSIN

MOCASSIN is evolving rapidly...

= 3D Monte-Carlo radiative-transfer(RT) gas code

To enable modelling of arbitrary geometries,

inhomogeneous regions or multiple sources

+ Addition of dust grain radiative transfer

→ WD2001 - Model Weingarter-Draine(2001)

+ Inclusion of molecular lines for PDRs and PNs

→ To enable object-ISM coupling studies

+ Extension of high energy atomic transitions to X-ray

→ To model very high energy regions & AGNs

For example...

Benchmarking 3D gas RT and 1D & 2D dust-RT

3D Gas code V1.0

benchmarked successfully based on Lexington 2000 standards for:

Standard HII region (T_{*} = 40000 K)
 Low excitation HII region (T_{*} = 20000 K)
 High excitation planetary nebula (T_{*} = 150000 K)
 Optically thin planetary nebula (T_{*} = 75000 K)

 Table 3. Deviation (per cent) of the Monte Carlo method from the formal solution for the prediction of some significant line fluxes in the benchmark models.

 Ercolano (2003a)

			•	
Line	HII40	HII20	PN150	PN75
Нβ	2.7	9.5	5.8	2.8
He 1 5876 Å	5.2	6.3	0.96	4.5
[N II] 6584 Å	7.6	4.9	8.5	4.8
[О п] 5007 Å	3.1	12.0	4.0	1.1
[S ш] 9532 Å	5.8	5.0	2.0	2.0
	< 00/		1.00	1000

3D gas + dust code V2.01

benchmarked successfully for 1D dust clouds and 2D dust disks:

1) 1D pure dust clouds lvezic (1997)
 2) 2D pure dust disks Pascucci (2004)

07

Spherically symmetric, homogeneous benchmark model

Modelling A39 with MOCASSIN coming soon....

REFERENCES

Ercolano et al (2003a), MNRAS 340, 1136 Ercolano et al(2003) MNRAS 340, 1153 Pascucci et al 2004, A&A 417, 793 Ivezic 1997, MNRAS 291, 121 Kwok and Volk 1997, ApJ 477, 722 Jacoby et al (2001) ApJ 560, 272