michael.taylor@reading.ac.uk patternizer.github.io

L1C ENSEMBLE FCDR

Progress update

HARMONISE → ENSEMBLE

- 3 IR channels (3.7 μm, 11 & 12 μm)
- 3 (or 4) harmonisation coefficients (without WV) per channel per sensor → 27 (or 36) coefficients per channel
- We know the uncertainty on each coefficient
- We know their correlation matrices [27 x 27] or [36 x 36]

Measurement Equation for Ch3B (3.7 μm)

L = a0 + ((Lict * (0.985140 + a1)) / (Cict - Cs)) * (Ce - Cs) + a2 * Tinst + a3 * f(WV) L = a0 + ((Lict * (0.985140 + a1)) / (Cict - Cs) + a2 * (Ce - Cict)) * (Ce - Cs) + a3 * Tinst +a4 * f(WV)

Measurement Equation for Ch4 (11 μm) & Ch5 (12 μm)

<u>Q1</u>: Can we generate another 10 FCDRs within the range of uncertainty but having a similar inter-sensor correlation structure to the best-case? <u>Q2</u>: Why bother?

'best-case' harmonised AVHRR Easy FCDR

THE BEST CASE

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

MONTE CARLO: 2D CHECK

Blue = 10000 draws from bi-normal X~N(μ =[0,0], σ =[1,1])

Red = 100 random draws with numpy.random.multinormal_norm al(mean(X), cov(X), 100))

MONTE CARLO: 27D (& 36D)

METHOD #1: CDF NORM

Index [min(Norm)] → ensemble

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

ENSEMBLE STATS

We would like the sorted ensemble to pass through (5,0) and present a CDF-shaped spread – it more or less does

ENSEMBLE CORRELATIONS

ENSEMBLE RADIANCE

Using L1B counts and temperatures from an orbit from MetOp-A, I calculated the radiance for each ensemble member and then used LUTs from the L1C Easy FCDR (thanks James!) to convert to BTs:

https://github.com/FIDUCEO/MMD_HARM

University of **Reading ORBITAL ENSEMBLE DELTAS**

BT-BT(ens[5])

-0.1 BT-BT(ens[0])

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

BT-BT(ens[10])

METHOD #2: PCA-MC CHECK

Suppose there are n-samples of p-variables \rightarrow [n × p] matrix

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

$$z_{1} = l_{11}x_{1} + l_{12}x_{2} + \dots + l_{1p}x_{p}$$

$$z_{2} = l_{21}x_{1} + l_{22}x_{2} + \dots + l_{2p}x_{p}$$

$$\dots$$

$$z_{m} = l_{m1}x_{1} + l_{m2}x_{2} + \dots + l_{mp}x_{p}$$

$$l_{1}^{2} + \dots + l_{ip}^{2} = 1$$

z_m = PCs x_p = vectors in X

PCA

<u>Q</u>: Can we sample from the eigenvectors to generate the ensemble directly (rather than looping over all draws and then using the norm with respect to CDF deciles)?

THANKS!

I've put the python code here for re-use / revision: https://github.com/patternizer/ENSEMBLE_SST

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT