Extending the GloSAT land surface temperature record

Michael Taylor* / michael.a.taylor@uea.ac.uk

with thanks to many colleagues:

Tim Osborn¹, Kevin Cowtan², Emily Wallis¹, Phil Jones¹, David Lister¹, Ian Harris¹, Colin Morice³, Ed Hawkins⁴ and the GloSAT team⁵, Trevor Davies⁶, John Pomeroy⁷, and the Norwich field artist Gennadiy V Ivanov

¹ University of East Anglia, ² University of York,
³ UK Met Office Hadley Centre, ⁴ University of Reading, ⁵ NOC, Southampton,
⁶ Tyndall Centre (UEA), ⁷ University of Sastkatchewan

Blue Hill Observatory, MA, USA, 1897 (elev. 193m)

On 4 Aug 1894 the world's 1st atmospheric sounding was performed using a weather kite carrying a thermograph to 619m above sea level.

RMetS Data Rescue meeting 11 Oct 2023 Geological Society, Burlington House, London

GloSAT LAT_sdb (global land air temperature station database)

I am helping to update the global station database * of monthly mean land air temperatures at the Climatic Research Unit (CRU) @UEA for the GloSAT project (www.glosat.org).

The database comprises 11865 stations 1658-2023 (Aug).

Some of the longer "extreme" station records:

Oldest datum is from CET (Feb 1658) and is the longest series: <u>1658-2023</u> Hottest = 42.6°C (July 2021), Death Valley (36.5°N, 116.9°W): <u>1895-2021</u> Coldest = -75.3°C (Aug 1987) at Vostok (78.5°S, 106.9°E): <u>1958-2021</u> Highest = 4700m at Bange, Tibet (31°N, 90°E): <u>1956-2017</u> Remotest is Mataveri Isla de Pas, Chile (27.2°S, 109.4°W): <u>1942-2021</u> Northernmost is Svalbard Lufthavn (78.3°N, 15.5°E): <u>1898-2015</u> Southernmost is Amundsen-Scott (90°S, 0°E): <u>1957-2021</u>

The 1850-2023 5°x5° land product is CRUTEM5 **. The 1850-2023 5°x5° ocean product is HadSST4. The Met Office blends CRUTEM5 with HadSST4 to produce the global dataset HadCRUT5.

* GloSAT LAT_sdb is a collaborative product of CRU / UKMO-HC & UYork ** CRUTEM5 is a collaborative product of CRU / UKMO-HC & NCAS

Data Rescue: CRUTEM growing ecology of sources

University of East Anglia

Recovery (of historical data) **Repair** (of erroneous data) **Release** (of constrained data) CRUTEM's approach is to QC all available source data and merge it in with that provided by NMS's

Data Rescue: extending CRUTEM new GloSAT developments

- Back-extension of CRUTEM from 1850 to 1781
- First Reliable Year (FRY) per station
- NMS HOMxx level per station
- New updating composite series (e.g. Blue Hill Observatory, 1786-2023+)
- Exposure bias adjustments for stations transitioning from non-standard thermometer enclosures to Stevenson screens

Wallis et al., 2023, IJoC (in review)

Rescue of old & new short temperature anomaly series by updating 1961-1990 station reference data

Taylor et al, 2023, Geoscience Data, (in prep)

Data Rescue: extending CRUTEM with Kriging

Many (3430) stations have insufficient data in 1961-1990 to compute the baseline averages needed to convert from absolute temperatures to anomalies.

We infer missing data from neighbouring stations using local expectation Kriging (LEK) *

<u>Gains</u>: 1742 new conversions to anomalies and 3568 updated station anomaly series. <u>Still</u> <u>missing</u>: 731 stations without anomalies *

* or Ordinary Kriging with station hold-out (code dev by Prof Kevin Cowtan at the University of York)

Data Rescue: homogenising CRUTEM with Kriging

HOM00	homogeneity not assessed or unknown
HOM01	homogeneity not assessed but data from reliable source (NMS or WWR)
HOM02	homogeneity assessed and inhomogeneities corrected at source but method unkown
HOM03	homogeneity assessed and inhomogeneities corrected at source via documented methods
HOM04	homogeneity assessed and inhomogeneities corrected by CRU via documented methods

We have found that 58% of the global station database is potentially in need of homogenisation.

We are in the process of using breakpoint detection and LEK to homogenise these stations *

work with Profs Kevin Cowtan (UYork) and Tim Osborn (CRU)

Data Rescue: missing anomaly series rescued per decade

Data Rescue: changing spatiotemporal coverage

Data Rescue: Guy Callendar's spatially robust computation

Figure 1. Comparison of historical reconstructions of near-global land temperatures using CRUTEM4 (black: Jones *et al.*, 2012) with results of Callendar (1938) (red) and Callendar (1961) (blue), using a reference period of 1880–1935. The CRUTEM4 estimates are for 60°S–60°N (to accord with Callendar's series), with grey shading representing 95% uncertainty.

QJRMS @ 150 has Callendar's 1938 paper as one of its key 21 papers. His calculations **by hand** match modern CRUTEM data.

Callendar's calculation shows that <u>GMST is spatially robust</u>.

WWR 4th series (1941-1950) published in 1959

Data Rescue: GloSAT back-extension of CRUTEM *

* CRUTEM has no SH station data before 1856 \rightarrow a slightly later than 1850 global timeseries relative to HadCRUT5 which has SSTs

Data Rescue: application – contraining SSP ensembles

We constrain climate model ensemble members to past observations to eliminate unrealistic model simulations and refine SSP projections:

University of East Anglia

Data Rescue: application – climate mural *

* remit from Norwich City Council was to produce 6 panels:

65.5-2.58Ma / 2.58Ma-500CE / 501-1400 / 1401-1850 / 1851-2020 / 2021-2200

Data Rescue: (climate mural) from observations to art

* Prof Ed Hawkins, University of Reading. To help Gennadiy paint the stripes we used a different colour axis for each panel.

Data Rescue: (climate mural) outreach *

* each panel of the mural has an accompanying easel painting Containing social anthropological and geological elements

Data Rescue: (climate mural) a constant reminder

"Climate Mural for our Times" * Unveiling in Norwich City Hall Debating Chamber 25 Nov 2022 (Prof Trevor Davies pictured speaking next to Gennadiy)

* mural website: https://crudata.uea.ac.uk/cru/climate-mural/

1002

100

Data Rescue: (climate mural) app

Age of Mammals app to inspect the raw data is online * https://ncc-stripes-app-99ed067aff9e.herokuapp.com/_

* including HadCRUT5 up to and including July 2023

Data Rescue: (climate mural app) past climate analogues *

By 2200, SSP 3-7.0 will zoom past the interglacials (and the Anglian glaciation)

and at 600 ppmv CO₂ levels will be similar to the Eocene-Oligocene transitions (-33.5 Ma)

 * data rescue is increasing our capacity to predict the future so that we can learn from the past

Data Rescue: (climate mural app) 1873*-2023 & future choices

* 1873 chosen to celebrate 150 years of the QJ of the RMetS

Now that we have a way to include short anomaly series using LEK:

- We need to rescue data from stations (or install new ones) in regions where we don't have them.
- We need <u>digitization of more international historic data from regions where coverage is poor</u> (Africa, South America, Southern Asia, Antarctica) and <u>help countries improve visibility and accessibility of their archives</u>.
- We need to <u>accelerate decolonisation</u> to facilitate two-way benefits and extend series by merging newly digitised pre-independence records with post-independence records held by NMS's.
- We need <u>more funding</u> to support ingestion from large-scale digitisation efforts and cross-project collation of records made available by data rescue.

These data rescue steps will significantly improve regional climate understanding and the skill of forecasts.

Data Rescue: application – CMIP6 bias-adjustment

I am using 1961-1990 observations from the sister of CRUTEM (CRU-TS 1900-2023) to bias correct CMIP6 model climate indices for the CUSSH project *

Before bias adj of 23 climate models

University of East Angli

After bias adj of 23 climate models

* CUSSH = Complex Urban Systems for Sustainability & Health https://www.ucl.ac.uk/complex-urban-systems/cussh

