

Outputs

How a synergy of GOCART, MODIS and AERONET data can be used to train neural networks for producing global aerosol volume size distributions from space

> Michael Taylor National Observatory of Athens, Greece mtaylor@noa.gr

2nd Gregory G. Leptoukh Online Giovanni Workshop: November 13th, 2014 (Day 3): 10:00-11:00 (UTC/GMT-5)

- Rationale to train neural networks (NNs) to invert satellite measurements to retrieve <u>daily</u> aerosol size distributions and associated microphysics globally at 1x1 degree
- **Prototype** a NN model trained and tested for Saharan dust aerosol in Northern Africa
- **Global aerosol model** a 3-step approach:
- STEP 1) application of *cluster analysis* to mean global GOCART aerosol optical depth data (per aerosol type) and identification of the composition & spatial distribution of aerosol mixtures at 1x1 degree
- STEP 2) train a NN to invert satellite measurements for each aerosol mixture/region to produce global maps of size distributions
- STEP 3) multimodal fitting & analysis of size distributions for determination of characteristic aerosol size & volume information
- Case study quasi-realtime monitor (4-day average) of the Karthala volcanic eruption 12-23 January, 2007

A challenging experiment *conducted on a single 16Gb RAM, quad-core PC with MATLAB*:

From GIOVANNI 3 @NASA/GES-DISC: http://gdata1.sci.gsfc.nasa.gov

- Aqua/MODIS (Level 3 Collection 5 daily global 1x1 gridded values): 16 parameters x 360 degrees x 180 degrees x 3575 days [34.4Gb]
- Aura/OMI (Level 3 daily global 1x1 gridded values): 4 parameters x 360 degrees x 180 degrees x 3362 days [9.7Gb]

From GIOVANNI 4 @NASA/GES-DISC: <u>http://giovanni.gsfc.nasa.gov/giovanni/</u>

• GOCART (Version 4): 5 parameters x 2.5 x 2 gridded values (interpolated to 1x1) x 7 years x 12 months

From AERONET: <u>http://aeronet.gsfc.nasa.gov</u>

 160 aerosol optical & microphysical parameters (Levels 1.5 and 2.0/Version 2 Inversion Products) x 715,288 records (969 sites) [7.2Gb]

...which <u>would not have been possible</u> without the generous provision of open data by NASA/GES-DISC and the pioneering efforts of Gregory G. Leptoukh and co-workers to advance data interfacing, accessibility & visualization.

RATIONALE

CONTEXT: There is a need to reduce uncertainty in aerosol climate forcing

Slide 3

CONTEXT: Reducing uncertainty requires better aerosol characterization

Slide 4

CONTEXT: Aerosol volume size distribution (AVSD) – AERONET method

Source: Taylor, Kazadzis & Gerasopoulos (2014) *Proceedings of the 12th International Conference on Meteorology, Climatology & Atmospheric Physics (COMECAP)*, Heraklion, Crete, 28-31 May, Vol. 3, 191-196.

CHALLENGE: AERONET stations have inhomogeneous spatial coverage

Aerosol inversion products date back to 27 May, 1993 @GSFC

Now >1000 sites... ... occupying only 343 pixels of the global grid (1x1 degree):

= 343/(360*180)

=0.54% membership of surface pixels

AERONET sites in Greece providing (Level 1.5) inversions during August 2007

Source: http://earthobservatory.nasa.gov

Source: http://aeronet.gsfc.nasa.gov

Satellite inputs (gridded 1x1 degree)

Function Approximator

H2O	(to cloud)
AOD	(470nm)
AOD	(550nm)
AOD	(660nm)
AOD	(380nm)
AOD	(500nm)
AAOD	(500nm)
	H2O AOD AOD AOD AOD AOD

Neural Network (NN)

From: Giovanni 3

- H2O=Precipitble water vapour
- AOD=Aerosol optical depth
- AAOD=Absorption AOD
- AVSD=Aerosol volume size distribution
- CRI-R=Complex refractive index (real part)
- CRI-R=Complex refractive index (imaginary part)
- SSA=Single scattering albedo
- ASYM=asymmetry factor

AVSD (22 radial bins) CRI-R (440, 675, 870, 1020nm) CRI-I (440, 675, 870, 1020nm) SSA (440, 675, 870, 1020nm) ASYM (440, 675, 870, 1020nm)

From: AERONET

PROTOTYPE:

A NN model for retrieval of Saharan Dust size distributions in Northern Africa

	SITE	Ν	GOCART Mean AOD & aerosol composition					
			< AOD $>$	$\% \mathrm{SO}_2$	% OC	% BC	% Sea Salt	% Dust
TRAINING	Tamanrasset INM	407	0.793	4.54%	1.39%	0.63 %	0.13%	93.44 %
	Agoufou	1028	0.973	3.70%	2.47%	0.82%	0.10%	92.91 %
	Banizoumbou	2283	0.920	4.57%	3.48%	1.09%	0.11%	90.76%
	DMN Maine Soroa	680	0.967	5.27%	3.52%	1.14%	0.10%	90.07 %
	IER Cinzana	1469	0.823	4.86%	4.62 %	1.22%	0.12%	89.19%
	Ouagadougou	966	0.776	6.06%	7.47%	1.93 %	0.13 %	84.41 %
SIMULATION	Dakar	1583	0.705	7.38%	5.53%	1.42 %	0.71 %	84.82 %

Source: Taylor, M., Kazadzis, S., Tsekeri, A., Gkikas, A., Amiridis, V. (2014) *Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak*. Atmospheric Measurement Techniques 7, 3151-3175.

NN MODEL: Scheme for objectivizing the NN architecture

A grid of 100 NNs were trained:

- Training fraction (t%) = [40%:5%:90%]
- Tanh hidden neurons = [4:2:24]
- Minimum mean squared error \rightarrow Optimal NN

PCA = Principal Components Analysis (98% variance)

Source: Taylor et al (2014) AMT 7, 3151-3175

NN SIMULATION (Dakar): AVSD (181 co-located daily averages)

GLOBAL AEROSOL MODEL

STEP 1: Use GOCART to partition by <u>mean</u> aerosol type mixture

CLUSTER ANALYSIS: of GOCARTAOD (BB=BC+OC, SU, DU, SS)

Add clusters (10 random seeds each time) until cluster centers do not change by > 10%

CLUSTER ANALYSIS: Composition of 10 aerosol mixtures

CLUSTER ANALYSIS: Colour-mixed global mean aerosol partitions

STEP 2: Use co-located Satellite/AERONET data to train a NN for each cluster

IERSD - NOA

RESULTS: The biomass burning cluster 5 ("Sulfurous SMOKE")

Slide 16

AERONET versus NN: mean AVSD for cluster 5=Sulphurous SMOKE

STEP 3: *Multimodal fitting* & *analysis* → *additional size* & *volume info*

Desert dust

Biomass burning

Source: Taylor, Kazadzis, Gerasopoulos (2014) *Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases.* Atmospheric Measurement Techniques 7, 839-858AMT 7, 839-858

CASE STUDY:

Quasi-real time monitoring of the Karthala Volcano Eruption (12-23 January, 2007)

GOCART DATA: Composite maps (BB, SU, DU and SS)

Karthala (Grande Comore Island) Shield volcano eruption (VEI=2): 12-23 January, 2007

GOCART daily-averaged composite AOD (BB=green, SU=white, DU=orange, SS=blue)

4-DAY AVERAGE: Quasi-realtime 1x1 degree grid of microphysics

12-15 Jan 2007

16-19 Jan 2007

20-23 Jan 2007

V(c)

0.04

0.02

V(c)

Michael Taylor: mtaylor@noa.gr

V(c)

SUMMARY:

Prototype model \rightarrow it is possible to train NNs to invert satellite measurements to provide daily retrievals of the aerosol volume size distribution at 1x1 degree resolution

Global aerosol model \rightarrow 1) Mean global GOCART AOD (per type) can be used to identify 10 clearly defined aerosol mixtures/partitions, 2) partitions allow extraction of co-located Satellite/AERONET data for training of aerosol mixture/region-dependent NNs, 3) Multimodal fitting & analysis of AVSDs can provide detailed size & volume information

Case study \rightarrow quasi-realtime 1x1 degree maps of size distribution-derived microphysics can be produced at the 4-day timescale

Many thanks to:

@NOA: Stelios Kazadzis, Vangelis Gerasopoulos, Alexandra Tsekeri, Vasilis Amiridis and
@BSC/Earth Science: Antonis Gikas (for their co-authorship of articles)
@AERONET: PIs (for maintenance & provision of HQ open data inversion products)
@NASA/GES-DISC: Giovanni 3 & 4 PIs (for maintenance & provision of HQ open data from MODIS/Aqua, OMI/Aura and GOCART 4)

@ADNET SYSTEMS INC: Jennifer Brennan & Jim Acker for kindly organizing this workshop