
An Accelerometer-Based Intake-Balance Method for Assessing
Energy Intake in Time Restricted Eating Trials

Paul R. Hibbing

This vignette will walk you through sample code to execute our accelerometer-based intake balance method.
It’s interspersed with commentary that will hopefully make it easier to digest. You can also view a web-based
analog of this vignette where there are further instructions for getting help etc.

Prerequisites

Before moving forward with any other code, you need to (once only) take care of the following to get set up:

1. Install R (required) and RStudio (optional)

2. Windows users, install Rtools

3. Make sure you have the necessary R packages installed. To do that, open up R, paste the following
code into the console, and hit enter to execute. Fair warning, this could take awhile to finish running
if you’re using R for the first time or otherwise don’t have all of these packages installed.

dependencies <- c(
"data.table", "dplyr", "equivalence", "ggplot2", "gsignal",
"lazyeval", "lubridate", "magrittr", "PhysicalActivity", "R.utils",
"Rcpp", "remotes", "reshape2", "rlang", "tools", "zoo"

)

sapply(
dependencies,
function(x) if (!x %in% installed.packages()) install.packages(x)

)

if (!"read.gt3x" %in% installed.packages()) remotes::install_github(
"THLfi/read.gt3x", dependencies = FALSE

)

if (!"agcounts" %in% installed.packages()) remotes::install_github(
"paulhibbing/agcounts", dependencies = FALSE

)

if (!"PAutilities" %in% installed.packages()) remotes::install_github(
"paulhibbing/PAutilities", dependencies = FALSE

)

1

https://paulhibbing.github.io/TREaccel/
https://paulhibbing.github.io/TREaccel/
https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://cran.r-project.org/bin/windows/Rtools/rtools42/rtools.html

Now that you’re set up

The rest of this vignette provides step-by-step code to implement the method. It is designed to let you follow
along with the example of processing one file. In practice, you would likely want to set this up for batch
processing multiple files. That’s beyond our scope here, but not by much. The main thing you would have
to do in that case is move this code into a function or a for loop, depending on your preference. For some
helpful starting points, check out some information on list.files, for loops, and saveRDS.

Step 1: Reading in your data

The first step of the method requires you to read in some data, in both “raw acceleration” and “activity
count” format. Below, we’ll use a built in sample file (part of the read.gt3x package) to show how this can
be done.

Attach the magrittr package to gain
access to `%>%` and similar operators
suppressPackageStartupMessages(library(magrittr))

This will retrieve the existing sample file
sample_file <- system.file(

"extdata/TAS1H30182785_2019-09-17.gt3x",
package = "read.gt3x"

)

Your own file might look like this:
my_file <- "C:/users/myusername/Desktop/myfile.gt3x"

Read the raw acceleration data (30+ Hz) and make sure timestamps
are in UTC timezone -- Store this in an object called `accel`
accel <-

read.gt3x::read.gt3x(sample_file, FALSE, TRUE, TRUE) %>%
dplyr::mutate(time = lubridate::force_tz(time, "UTC"))

Convert to activity counts (60-s epochs) and make sure timestamps
are in UTC timezone; store this in a separate object called `AG`
(The call to `slice` is needed because `calculate_counts` adds zeroes to the
end of the file based on when the monitor was downlodaed, whereas `read.gt3x`
does not)
AG <-

agcounts::calculate_counts(accel, 60, tz = "UTC") %>%
dplyr::slice(which(time <= dplyr::last(accel$time))) %>%
dplyr::mutate(filename = basename(sample_file)) %>%
dplyr::relocate(filename)

Step 2: Calculate minute-by-minute energy expenditure

This step breaks down into the following:

1. Calculate Euclidian Norm Minus One (ENMO) for each raw acceleration sample, rounding values < 0
up to 0

2. Calculate mean ENMO each second

2

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/list.files
https://www.w3schools.com/r/r_for_loop.asp
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/readRDS
https://github.com/THLfi/read.gt3x

3. Apply the Hildebrand non-linear oxygen consumption (VO2) equation presented by Ellingson et
al. (2017)

4. Calculate the mean VO2 each minute
5. Convert the VO2 estimates (ml/kg/min) to caloric expenditure (kcal/kg/min)

Here’s how we can accomplish all that:

accel %<>%
Calculate ENMO, in milli-G

dplyr::mutate(
ENMO = {sqrt(Xˆ2 + Yˆ2 + Zˆ2) - 1} %>% pmax(0) %>% {. * 1000}

) %>%
Average each second

dplyr::group_by(time = lubridate::floor_date(time, "1 second")) %>%
dplyr::summarise(dplyr::across(.fns = mean), .groups = "drop") %>%

Calculate VO2
dplyr::mutate(VO2 = {ENMO ˆ .534} %>% {0.901 * .} %>% pmax(3, .)) %>%

Average each minute
dplyr::group_by(time = lubridate::floor_date(time, "1 minute")) %>%
dplyr::summarise(dplyr::across(.fns = mean), .groups = "drop") %>%

Convert to kcal/kg/min
dplyr::mutate(

kcal_kg_min =
(VO2 / 1000) *
PAutilities::get_kcal_vo2_conversion(RER = 0.85, kcal_table = "Lusk")

) %>%
Retain only the relevant variables

dplyr::select(time, kcal_kg_min)

Step 3: Calculate minute-by-minute non-wear

This is where the previously-calculated activity count data come into play. Here’s how we calculate non-wear
using the PhysicalActivity package (Choi et al. non-wear method).

AG %<>%
PhysicalActivity::wearingMarking(

TS = "time", cts = "Axis1", perMinuteCts = 1, tz = "UTC"
) %>%
dplyr::mutate(is_nonwear = !wearing %in% "w") %>%
dplyr::select(-c(wearing, weekday, days))

Step 4: Combine the energy expenditure and non-wear data

This step can be accomplished with a pretty straightforward merge.

AG %<>% merge(accel)
rm(accel)

Step 5: Calculate daily totals

Now it is time to calculate total energy expenditure (and acceleration metrics) for each day of data. When
summing these variables, it’s crucial to exclude data from non-wear periods. To do that, we can replace the

3

https://iopscience.iop.org/article/10.1088/1361-6579/aa6d00
https://iopscience.iop.org/article/10.1088/1361-6579/aa6d00
https://journals.lww.com/acsm-msse/Fulltext/2011/02000/Validation_of_Accelerometer_Wear_and_Nonwear_Time.22.aspx

values with 0 during non-wear, so that the sum comes out correctly. We will also summarize the total number
of non-wear minutes, both for screening purposes (e.g., throwing out days with 14+ hours of non-wear) and
for imputation of basal metabolic rate for all the non-wear minutes.

AG %<>%
dplyr::group_by(filename, time = as.Date(time)) %>%
dplyr::mutate(dplyr::across(

!dplyr::all_of("is_nonwear"),
.fns = ~ ifelse(is_nonwear | is.na(.x), 0, .x)

)) %>%
dplyr::summarise(

dplyr::across(.fns = sum),
total_mins = dplyr::n(),
.groups = "drop"

) %>%
dplyr::rename(nonwear_mins = is_nonwear, date = time, kcal_kg = kcal_kg_min) %>%
dplyr::relocate(filename, date, total_mins, nonwear_mins)

Step 6: Apply compliance checks and filter out non-compliant data

In accelerometry, a rule of thumb for assessing compliance is to filter out any day with < 10 hours of wear
time, and to filter out any participant who does not have at least four days meeting that criterion. However,
these decisions are study-specific, and for this illustration we are only dealing with a small amount of data.
So, here we will require at least one day of data with < 10 minutes of non-wear. The code will produce an
empty result for non-compliant participants. For batch processing, you would want to check if the result is
empty and, if so, cut off the processing from there (e.g., by return(AG) inside a function, or next inside
a for loop).

maximum_nonwear_mins <- 10
minimum_days <- 1

AG %<>%
dplyr::group_by(filename) %>%
dplyr::mutate(

day_compliant = nonwear_mins < maximum_nonwear_mins,
participant_compliant = sum(day_compliant) >= minimum_days

) %>%
dplyr::filter(day_compliant & participant_compliant)

Step 7: Determine total daily energy expenditure

Here we need to incorporate the participant’s body mass (to convert kcal/kg to kcal), along with other
anthropometric/demographic variables to determine estimated basal metabolic rate (BMR) from Schofield’s
equations. Then we need to impute energy expenditure for non-wear periods. This can all be done as follows:

Suppose demographic information is available in a data frame like this
demo <- data.frame(

filename = basename(sample_file), sex = "M",
ht_m = 1.80, wt_kg = 75, age = 30

)

4

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/function
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/Control

Then we can predict BMR like this:
demo$basal_kcal_day <- PAutilities::get_ree(

df = demo, method = "schofield_wt_ht", sex = "sex", age_yr = "age",
wt_kg = "wt_kg", ht_m = "ht_m", output = "kcal_day", RER = 0.85,
kcal_table = "Lusk"

)

Now we can pull all the pieces together into
a final estimate of energy expenditure
EE <-

Start by merging the demographic and accelerometer data
merge(demo, AG) %>%
Then determine how many kcal to impute during non-wear minutes
(NB: The number of minutes in a full day is 24*60 = 1440)
dplyr::mutate(

basal_kcal_day = round(basal_kcal_day),
nonwear_kcal = basal_kcal_day*(nonwear_mins / 1440),
wear_kcal = kcal_kg * wt_kg,
total_kcal = nonwear_kcal + wear_kcal,
kcal_kg = NULL

) %>%
Remove the activity count totals for simplicity
dplyr::select(!dplyr::matches("ˆ[AV][xe]")) %>%
Reorder the variables
dplyr::relocate(participant_compliant, day_compliant, .after = basal_kcal_day)

Step 8: Calculate energy intake

For this final step, we will need to determine the average daily energy expenditure, then cross-reference it
against daily change in energy storage to determine energy intake. The energy storage data will likely come
from repeated dual-energy X-ray absorptiometry scans. For the purpose of this vignette, we will assume
those data have already been processed to determine daily change in energy storage.

Suppose the energy storage (ES) data look like this
(reflecting a 100 kcal/day surplus):
ES <- data.frame(filename = basename(sample_file), ES = 100)

Then we can calculate energy intake (EI) like so:
intake <-

merge(EE, ES) %>%
dplyr::rename(EE = total_kcal) %>%
dplyr::mutate(

ES = round(ES),
EE = round(EE),
EI = ES + EE

) %>%
dplyr::select(

dplyr::all_of(names(demo)),
total_mins, nonwear_mins, ES, EE, EI

)

5

Print the output:
print(intake)

filename sex ht_m wt_kg age basal_kcal_day total_mins
1 TAS1H30182785_2019-09-17.gt3x M 1.8 75 30 1817 41
nonwear_mins ES EE EI
1 5 100 69 169

With this example, it’s important to remember we aren’t looking at a full day of data. Furthermore, we have
simulated some data that may not be physiologically realistic. But all that aside, let’s look at the output
and see what it’s telling us. The output shows that the participant burned an estimated 69 kcal during the
41 minutes in question, and that their energy storage increased by 100 kcal. Thus, the participant would
have needed to consume 169 kcal in the same time period to achieve the observed outcome.

Conclusion

This accelerometer-based method entails a long but highly programmable process. With a few tweaks to
the code above, users can potentially process data from many participants with a single keystroke. This is
a major advantage compared to the labor- and cost-intensiveness of doubly labeled water. However, there
is a learning curve associated with using this R-based method, and accelerometry itself is not yet a gold
standard method for free-living assessments. Furthermore, there are other methods (such as the NIDDK
Body Weight Planner) that should also be considered. Thus, study-specific decisions are necessary when
selecting an assessment method, based on the strengths and weaknesses of each method and how they relate
to the research question being asked. The accelerometer-based method outlined above is meant to show
proof-of-concept for a technique that presents many opportunities for refinement going forward. Future
studies are needed to assess the criterion validity of accelerometer-based methods, as well as to calibrate
new predictive models with improved group-level and individual-level accuracy. The code above provides an
important first step in that process. Please let us know if there is anything we can clarify. Thanks for your
interest, and good luck in your research!

6

https://www.niddk.nih.gov/bwp
https://www.niddk.nih.gov/bwp
https://github.com/paulhibbing/TREaccel/issues/new

	Prerequisites
	Now that you're set up
	Step 1: Reading in your data
	Step 2: Calculate minute-by-minute energy expenditure
	Step 3: Calculate minute-by-minute non-wear
	Step 4: Combine the energy expenditure and non-wear data
	Step 5: Calculate daily totals
	Step 6: Apply compliance checks and filter out non-compliant data
	Step 7: Determine total daily energy expenditure
	Step 8: Calculate energy intake
	Conclusion

