{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# The Quantum Mechanical Finite Square Well: Bound State solutions\n", "## Width = $a$, depth = $V_0$\n", "Paul Nakroshis
\n", "Dept. of Physics, University of Southern Maine
\n", "pauln at maine dot edu
\n", "12 Feb 2019" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy import signal\n", "from pylab import rcParams\n", "rcParams['figure.figsize'] = 10,8\n", "from scipy.signal import argrelextrema as findpeaks\n", "import seaborn as sns # makes pretty plots\n", "%matplotlib inline\n", "#sns.set_style(\"darkgrid\", {\"grid.linewidth\": .5, \"axes.facecolor\": \".9\"})\n", "#sns.set_context(\"notebook\", font_scale=1.5, rc={\"lines.linewidth\": 2.5})\n", "#sns.set_context(\"paper\")\n", "#sns.set_context(\"talk\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, I look at the bound state solutions to the energy eigenvalues for a finite square well with width $a$ and depth $V_0$ as shown in the figure below: \n", "To find the solutions, we write down Schrodinger's equation\n", "$$- \\frac{\\hbar^2}{2m}\\frac{d^2\\psi}{dx^2} + V(x)\\phi = E\\psi$$\n", "for the regions $x<0$, $0a$, and impose continuity of $\\phi$ and its derivative at $x=0$ and $x=a$. When one works through this process (see any introductory quantum text) ones finds that allowed bound state soltutions satisfy the transcendental equation which I write as
\n", "$$\\pm(2\\epsilon -1)\\tan\\left(\\sqrt{\\frac{2 m c^2 a^2 V_0}{(\\hbar c)^2}} \\sqrt{\\epsilon}\\right) = 2\\sqrt{\\epsilon(1-\\epsilon)}\\;\\;\\;\\;\\;\\;\\;\\;(eq.1)$$\n", "\n", "where $\\epsilon = E/V_0$ is the dimensionless energy which we want to find, and the positive sign corresponds to symmetric solutions and the negative to antisymmetric solutions (with respect to the center of the well).\n", "The standard way to find the allowed energy levels is to find the solutions to eq. 1 above by plotting the left side and the right side of the equations, and look for intersections; to do so, I'll define the left (symmetric and antisymmetric cases determined by a boolean; True = symmetric) and right sides here, and define the well as containing (by default) an electron and with a default width as 2 Bohr radii:\n", "\n", "To solve this for a specific case, we define a function for each side of the equation" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def leftSide(ϵ, S = True, V = 50, a=2*0.052917721092, mc2=0.510998928e6):\n", " \"\"\"\n", " DESCRIPTION: \n", " Calculates the left hand side of equation 1 above;\n", " note that the argument of the tangent function contains\n", " all the relevant features of the well. This function defaults\n", " to \n", " symmetry : S = True for symmetric solutions; S = False for antisymmetric\n", " depth : V = 50 eV\n", " width : a = 2*0.0529177 nm = 2 Bohr radii\n", " particle rest energy: mc2 = 0.51099e+6 eV = electron rest energy\n", " \n", " USAGE: This means, of course, that the user may call this function by\n", " \n", " leftSide(ϵ) # will use default well params\n", " \n", " or\n", " \n", " leftSide(ϵ, False, 20,0.20.5109989) # will find Anti-symmetric soltions for \n", " # V=20 eV, and a = 0.2 nm, and default mass energy\n", "\n", " \"\"\"\n", " #define needed constants for the well:\n", " c = 299792458.0 # in m/s\n", " hbar_c = 197.3269718 # in eV-nm\n", " \n", " #now calculate the left hand side:\n", " value = np.sqrt(2*mc2*V*a**2)/hbar_c\n", " return (-1)**(S+1)*(2.*ϵ - 1.0)*np.tan(value*np.sqrt(ϵ))\n", " \n", "\n", "def rightSide(ϵ):\n", " #\n", " #calculates the right hand side of equation 1 above\n", " #\n", " return 2*np.sqrt(ϵ *(1.0-ϵ))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Standard Solution method: find intersection of curves" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First, note that equation 1 is likely different than seen in standard texts in that I have placed the term $(2\\epsilon -1)$ on the left hand side---whereas in many texts you'll see that term in the denominator of the right hand side. I've done so, because this term makes the right hand side pathalogical when $\\epsilon\\rightarrow\\frac{1}{2}$, so by placing it on the left hand side, this issue is avoided. \n", "\n", "The standard method for solving this is to plot both sides of equation 1 and look for the intersection points.\n", "In the next cell, I enter the parameters that describe the well, as well as an array of $N$ $\\epsilon$ values evenly spaced from 0 to N. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "N = 4000\n", "V = 80.0 # set well depth in eV\n", "#a = 2*0.0529177 # set well width in nm\n", "a = 0.4\n", "mc2 = 0.510998928e6 # set particle rest energy in eV\n", "\n", "ϵ = np.linspace(0,1.0,N) # create array of ϵ values to search" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1EAAAINCAYAAADfvvWSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XdYU2f7B/BvCCCIDNkiuADrQsGqoJZWa/uiddRVtS2tYrVqi61WX/fPah0oLW7FBUpVin3Vqq+CuMCBiJYtgqggskGGBBAw4/cHL6ccA5iQE0L0/lyXl+Tk5HluMg7PnWfxJBKJBIQQQgghhBBCZKKh6gAIIYQQQgghRJ1QEkUIIYQQQgghcqAkihBCCCGEEELkQEkUIYQQQgghhMiBkihCCCGEEEIIkYOmqgNoLolEgmfPnqGqqgpisVjV4RBCCCGEkDeEhoYGNDU1YWBgAD09PVWHQ1ohnjoucS6RSJCVlYXnz5+Dz+dDQ4M61AghhBBCCDckEglEIhEAwNDQEFZWVtTeJCxq2RP17NkzPH/+HPr6+vTtACGEEEII4ZxEIkF5eTlKS0uhp6eH9u3bqzok0oqoZUpdVVUFPp9PCRQhhBBCCFEKHo+Hdu3agc/no7y8XNXhkFZGLZMosVhMXaqEEEIIIUSpeDweNDQ0aP49kUKZCCGEEEIIIYTIgZIoQgghhBBCCJEDJVGEEEIIIYQQIgdKogghhBBCCCFEDpREEaJi0dHRSE5OVqiMy5cvcxQNqe/EiROqDoEQQgghrZBa7hNFyJsiOjoakZGR8PT0bHYZpaWlOHXqFH7++WcOI1M/ERERnJdpY2OD/fv349tvv+W8bEIIIYSoL0qiCFGRvLw8+Pv7Y+vWrQqVEx8fj759+2LPnj0cRUbqODs74/bt27hx4wZcXV1VHQ4hhBBCWgkazkeIimzYsAHffPMNtLW1FSonPj4e/fr14ygq8qpZs2Zh7969KCoqUnUohBBCCGklKIkiRAVCQ0Ohra2N/v37K1xWYmIi+vbty0FUsouOjsbs2bPx7bff4tixY2pbhyz09PTw2WefYdeuXSqLgRBCCCGtCyVRhLQwkUiEgwcP4osvvlC4rMrKSkgkEujp6XEQmew6deoEX19f7Nu3D7du3UJFRYVa1iGrTz75BDExMbh//77KYiCEEEJI60FJFCEtLCwsDNra2nj33XcVLisxMRF9+vThICr5mJmZQVNTEzweD5qamuDz+WpZh6y0tbUxbtw4HDlyRGUxEEKIsrx48QJRUVGqDoMQtUILSxDSwk6dOoURI0ZwUpaq50NFRUXB2toaOjo6al2HLNzc3HD48GFkZWXB2tpapbEQQgiX7ty5gxUrVqg6jFZBGSu9kjcTJVGEtKCCggIkJCRg0aJFnJSXkJCAzz77jHWsuroaP//8M54+fQotLS0YGxtj8eLF6NixIyd11snLy8OxY8ewefNmALXfZLq5uSE0NBS6urrMeampqVi4cCECAwNhaGioUB2qZG1tjW7duuHixYuYOXOmqsMhhBDOREdH4+rVq2jTpo2qQyFEbdBwPkJaUFhYGAwNDWFra6twWTU1NRAIBGjfvr3UfRMmTEBgYCACAgIwdOhQbNq0SeH66quursbGjRuxZMkSJmHS1dWFpaUl0tPTWedu374ds2bNkjuBaqgOVRs4cCCuXLmi6jAIIYQzYrEYQqGQEihC5EQ9UYS0oNjYWPTs2ZOTspKTkxssq02bNnB2dmZu9+7dG3/88Qdz+8CBA8jMzERVVRXS09Nha2uLmTNn4sCBA3jy5AkcHBywevVqAEBVVRX8/f1x584dCIVCGBsbY8eOHQgODkZGRgaTnK1atQqWlpawtbVFWloaevXqBQC4cuUKysvLMW7cuEZ/j5SUFOzYsQNVVVUoLy/HqFGj4OHh0WgdqtSvXz/88ccfePbsGUxNTVUaCyGEcCEpKQm9e/dWdRiEqB1KoghpQYmJiRg/fjwnZcXHx8PR0fG15504cYK1UeyDBw+goaGBdevWQUNDA+PHj8d//vMfbNiwARKJBOPGjWOShNWrV8PGxgZ+fn7g8/koLCwEUNvTNWHCBKm67OzskJaWBqC2J8nX1xerVq1iFoXw8fHBo0eP4OzsjBkzZgAArKyssGPHDmhqaqK6uhoTJ07EpEmTGq1Dlezt7QHUPvdczWsjhBBVunXrFqZMmaLqMAhRO5REEdJCCgsLUVpaCisrK07Ki4+Px+LFi5s85/fff0dmZiZ27NjBHHvw4AF27drFDN0QiUSYNWsWtLW1IRKJIBKJoKenh7i4OGRlZcHLy4tJgszMzJqsz9bWFqdPnwYABAYGok+fPkyil5ycDA0NDfj6+mLZsmUoKiqCiYkJoqKicObMGQgEAkgkEggEAmhpaTX7eXnVkSNHcP78eWRmZjbr8fUnGVtaWkJXVxcPHz5UKIkSCoX4/fffMW3aNLRt27bZ5ZCm+fn5YcqUKdDX11d1KIRwLiwsDJcuXUJKSgpKSkpgYWGBDz74AF9//bVc216UlJQ0OCycENI0SqKIlC1btiAvLw/e3t4AuLtQc62goABHjx5FSkoKHj16hOrqapw4cQIdOnRgnRcUFITg4GAcPnwYGhrsaYDXr19HTk4Opk2bpvR4s7OzAYCTIWlisRj5+flSv2t9gYGBCA8Px/bt25mV7QoKCiAWi9G5c2cAQE5ODvT19WFhYQEAyMjIgIWFBXR1dZGcnAwHBwe5lhav64kqLCzEyZMncejQIea++/fvM5sLOzo64sGDBwCA48ePY9OmTTA1NUV0dDR8fHw4nQN19epVHDhwgLOGtLm5OfNaNodIJMKKFStgZWX11iVQubm5CA4OxieffNLke/dVERER2LhxI/z9/Zn3qiwsLS0xd+5c7N69G0ZGRs0JmZBWKzAwEJaWlpgzZw7Mzc2RmpoKf39/xMTEYN++fVJ/7xqSlZUFGxsbheJ4tc0g69/mltZUW4CQ5qB3EWHJysrCmTNn4OHhwRwLDAwEn8/HnDlzsGXLFkyYMAGnT5/GggULIBaLVRrr1atXoa+v3+Qy3xMmTEBJSQlCQkKk7rt+/TqCgoKUGSYjLy8PADiZS/Po0SPY2dk1en9QUBAuX76Mbdu2sZKHBw8eoEePHszt5ORk1u2UlBTmtpmZGdLS0iAUCgHUflspEomajKtjx46orKzEpk2bMGXKFFbPVXl5OZN0t23bFuXl5UhJSYG9vT1MTU1RUlKC3bt3czZnrO73s7a25rQnwtTUlHktm+Po0aPIzc3Fjz/+yFlM6iI3Nxf+/v7Izc2V63F6enqwsLCAtra2XI8bPXo0evXqBS8vL7keR4g68Pb2xrp16+Dm5gYnJydMnToVCxYswP379xEbGytTGTdv3sR7773X7BgaajPI+re5pTXVFiCkOagnirD8+eefsLOzYzVkvb29WV39Tk5OMDAwwPr16xEbG8vJprHN4ejoiHPnzgEAzp49izt37jR4Xps2bTBy5EgEBgZi9OjRLRkiS3l5OQBwst9RXFxco/OhCgoKsHPnTlhZWWH+/PkAAD6fD39/f1aSBEDqdv0ka/jw4YiJiYG7uzvatGkDY2NjbN26tcm4eDweunXrhszMTKmGa7t27ZjnoLKyEqamphg1ahSWLVuGr7/+Gra2tujQoQMrHkVduHABI0eO5Kw8oLZB/+zZs2Y9VigU4o8//oCnpyd4PB6ncb3JHB0d4e/v36zHfvHFF3B3d0daWhq6devGcWSEqE5DQ/Dq/nbXzV99nadPnyo0EqOhNoOsf5tbWmtpC5A3ByVRhFFTU4OLFy8yE/7ryHOhzs7OxqFDh3D37l2UlpaiXbt26Nq1K7Zt2wZNTW7fbvJ0x3/00UcIDAxEYmIiHBwcAADr169nvpEaOnQogNrhPydPnkRWVhb8/f2RkJCAoqIimJqaYtCgQZgzZw4MDAyYcv38/ODv74+goCBs374dcXFxMDAwwJgxYzBjxgxWjC9evADATRIVHx+PWbNmNXifubl5o5sFzp49m3X7+++/Z91euHAh8zOfz8eSJUvkjm3//v0NHu/VqxcuXLiAYcOGIS4uDv/6179gbGyMgIAAueuQhVAoRHR0NJNIvqq571VtbW3mtZRXdHQ0BAIBnJycpO578uQJdu7cySRo+vr6cHNzw4cffoi5c+ciLS0NJiYmcHZ2xsqVK5Gfn48lS5YgPT0ddnZ28PDwwMGDB/Ho0SNMnz4dL1++xN27d1FSUoKvvvoKkydPRkBAAK5du4bS0lJ8+eWXmDRpEgDgxo0bzX5snWvXruHw4cN48eIFhEIhXFxcMG/ePKb38eTJkzh+/DgAYNOmTdDV1YWOjg7c3d1ZdYtEIsTExDALkLi6uiIwMBBPnjzBihUrWI2fiIgI+Pv7o6KiAlpaWjAxMcHIkSNZiXPXrl1hYmKCK1euUBJF3nh1PVB1Q7aB2uHfBw8ehIODAwYPHswcLysra7KX/nXXyMbaDKocKve6mBtqCxDSXJREEUZSUhIEAoFM3e8NXagFAgHmzZuHXr16YfHixdDX14dAIEBhYSHnCZS87O3toaenh9u3bzMXzhkzZqC0tBTJycnMZq51w4WePXsGMzMz/Pjjj9DX10d2djaOHDmCxYsXN5gkLF++HKNHj8bUqVMREREBPz8/WFhYsBp8dcPiZHkuUlNTUVJSwlqqvL6MjAx06dJFrudA1Xr27Ing4GDMmzcPgwYNgrGxMWdlP378GPfv38fYsWOZY5GRkRg0aFCDz7ci71U+n8+8lvKKiYkBn89vcG7AkiVL8MknnzANkpMnT+Lw4cMYO3Ysjhw5gqlTp6Jr165YuXIlAMDCwgLr16/H2rVrcfDgQQCAq6srhg4diosXL8LLywvff/89zpw5A29vb+Tl5cHNzQ3Tp0/HX3/9BR8fHwwcOBCdOnWCq6trsx8LAJcvX8aaNWuwdu1ajBgxAhUVFfjpp5+wfPlybN++HTweD5MmTULXrl0xf/58LFu2jJkfVz/u4OBgrF69GvPmzUN4eDguXLiA0aNHo3///pg8eTLr+QoLC8PPP/+M9evX4/3334dYLMbu3buxdetWqd7HTp06ITo6WupLBELeJIWFhTh48CAGDBjA6hm6c+cO7t27h2fPnrGSqMjISNbt+mS5RsrTZmgJssTcUFuAkOaiJIowkpKSwOPxmpxrAzR+oU5MTERRURFGjBiBgQMHQlNTU+XJUx0NDQ3Y2toiKSmJOWZtbQ0jIyNoaWmhT58+rPMdHR1Zw+X69OkDa2trfPfdd0hNTUX37t1Z53/++edMwjRw4EBER0fj0qVLrCSqrgeqpqam0QU5RCIRjh07Bj8/PwwePLjBJCojIwM2NjZqORxs0aJFnJd569YthISE4Nq1axgyZAhMTEwAACEhIVLfkNZR5L1aVVXV7N7EoqIi6OvrS31TW1paiuzsbNbKjWPHjsXz58+Z225ubggICMDz58+ZjYtDQkLg5uYmVY+9vT2zHPuwYcPg7e2N7Oxs5tjw4cPx22+/IS4ujkmEmvtYiUSCPXv2wMHBgVmxUE9PDx4eHli0aBFiY2NZCVNT7OzsmHOHDh3a6NBOiUSCnTt3wsnJCe+//z6A2s/4N9980+BmyEZGRsxCJqR1E4rEKCh/qeowlMa8nRY0+dz31FRWVmLp0qXg8/nMFy11XFxcYGxsjIULF0IsFjPXn3v37uGjjz5qsDxZrpGythlaiiwxN9QWIKS5WkcLV4n0li6FTkAAqqZPR8X/ehtUWU5rjQmo7X3R09Nrcnnppi7UPXv2hI2NDdasWQMAMDAwaHIC5927d7FgwYLXxuXk5IRdu3bJ9ks0wcjISOZlrl++fInAwEBcuHABeXl5qKmpYe57+vSpVBI1ZMgQ1u1u3bohNTWVdayu4V1dXd1ovY8fP0bv3r3RvXt3JCQkQCKRSCVL8fHxreabv9ZgyJAhGDBgAO7cuYNLly5h2rRpKCsrQ0FBgdTrVEfe92p91dXVzV49sKSkhFlavj5DQ0N07doV3t7eePjwIT7++GN0794dM2fOZM5xc3ODn58frly5gokTJ0IikeDq1avYu3evVHnW1tbMz3XDT+sfq0vCioqKFH7s06dPkZ+fL9UYqxs6J08SVb93VUtLq9GVLOvq/Pjjj1nH27ZtyyyxX5+2tjaKi4tlioGojlAkxuRDCcgqbfwaqe6sjdrghEdfThOp6upqLF26FDk5Odi9ezfMzc2lzunevTt0dHSQmJiIfv36QSgUQkNDo9HVV2W5RsrSZpAVF+0BWa/r8rQFCGnKG59E6QQEgCcSQScgQKFEg6tyWmtMQG0PSVMXw9ddqKuqquDi4oKpU6fCzs4O7dq1a7I+BwcHBAYGvjauhhqdzdGmTZsmE5j69u7dixMnTsDDwwMODg5o27YtCgoKsGLFigbLeHVcuZaWFivxAsD0kJSUlDTaOKxr9I8ZMwbe3t5IT0+XmscRHx8vNbTpbaetrY1hw4bh4sWLmDZtGq5cudLkPk7yvlfrEwgEzd5Thc/nQyKRSB3n8XjYtWsXjh49iuDgYAQGBqJLly6YO3cus1Fyx44d0bdvX4SEhGDixImIjY1F586dG1y6u35PWV0S3tCxhlbXlPexpaWlAIDQ0FBERUWxyjI2NkZVVVWjz8erZE1O6+qsPz+xKRKJRK6l+glRF0KhECtXrkRycjK2bdsGW1vbRs997733cOPGDfTr1w+xsbFNbtYuyzXydW0GeXDRHpD1ui5PW4CQprzxSVTV9OlMb01rKKe1xgTUNkgEAkGD973uQl1RUQFPT08sXLhQ5uVSdXR0WHOqlE0gEMi8V8zly5cxcuRI1nCwyspKherv2LEjAMi0slvdH7e4uDipJOrhw4eN9rAA/yyS8aZ7dfEMNzc3nDt3Dk+ePMHFixexfv36Bh/XnPdqfXl5ec1eErh9+/aN/vE2MjKCp6cn5s6di8jISOzfvx8rV67EkSNHmM+Jm5sbfv31Vzx9+lQpKw82R91n6tNPP2X1nLVEnY1dr15VVVXF6Rw8ohyafA2c8OhLw/lkJBaLsXbtWkRHR+PXX3+VGpb+KldXV/z222/w9PREVFQUa1ny+mS9RjbVZpCXou0Bea7r8rQFCGnKG59EVWzezEkvDVflcFkWlzEBtYtECIVCFBQUsHqZZLlQx8XFIS8vT2p+RWuSk5ODXr16sY5pa2s32Kitrq6WGksdHBysUP0dO3YEn8+XaaPWzp07o3379oiPj8fEiROZ4wUFBTAxMWnyW/XGVuZTpejoaOzduxc8Hg8ffPABvvzyS87rcHJygoWFBQ4ePAg9PT2m5+9VirxXa2pqUFxc3OzNKc3NzSEQCCAUClnvr5KSEgQEBGDBggXQ1NSEq6srzM3NMXPmTKSnpzONixEjRmD79u04e/YsoqOjsXjx4mbFwaVOnTrBwsICjx49krpvz549cHZ2ZrZBqPud63rj4uLiYGVl1eDwI1nqTElJYR0vKyvDokWLsGXLFlbvcHFxsdx1ENXQ5GvAypCb0QdvOh8fH1y9ehXTp0+Hjo4O7t27x9xnbm4u9Z53dHREaWkpnjx5ghcvXjQ6N1fWa2RjbQZVkOe63lBbgJDmoM12CaOu9+P+/fus43UX6s8//5y5UNf9KygoAPDPN8Pr1q1DWFgYYmJiEBoaio0bNyo15rCwMISFhTGTxm/fvo2wsDCpjQYFAgEyMzOl5hJ16dIFZWVl+Ouvv5CcnIzHjx8DAJydnRESEoJTp04hKioK3t7eSExMVChWHR0d2NnZIT09Xabz+/Xrh7i4ONYxdZ0P1alTJ/j6+mLfvn24desWKioqOK+Dx+Ph448/RlhYWJM9NIq8VzMyMiCRSNC7d+9mxeji4gKxWCw1Hr+qqgqnT59mNYISEhKgq6vL+mOvr6+PIUOG4M8//4SLi4vcm88qA4/Hw/z58xEREcFK4C9fvozLly/jnXfeYY516NABPB4PhYWFEIlE+OWXX5CTk9PsOmNiYnDz5k0Atb3le/fuRceOHVkJlEQiQUZGhtS8RULU3e3btwEAAQEBmDNnDuvff//7X6nzNTU14eLigsOHDzc57E/Wa2RjbQZA9r/NXJE15sbaAoQ0xxvfE0Vk16FDB/Tq1QsREREYNmwYc7z+hfrVPX1mzpyJb775Br1798bq1atx/PhxbNy4ESKRCB06dJCa+M21VatWsW7/9ttvAKQnn966dQtaWlr44IMPWOePHTsWSUlJ2LdvHwQCAbNP1MKFCyGRSJjlzF1cXLB27dpG92aSVd++faUSo8Y4OjoiPDwcWVlZzMT+uLg4pT+nymBmZsb8rKmpqbT5KW5ubjh9+jQzj6ghirxXk5OToa2t3ewNgXv16gVLS0vcvn0bXbt2ZY4bGxvD3d2def+KRCIYGhrit99+k/qGd+TIkQgPD8eoUaNYx+Pi4pjNkE+fPo3S0lKMHz8ev/zyS5PHMjMzMX78+GY/ds2aNRg+fDi0tLTg7++Pbdu2oV27dujYsSN27NjBmpdgZmaGGTNmYP/+/Thy5AhcXFwAANP/NyT59OnTuH79Ory9vWFhYQEAOH/+PDNXws/PD0lJSViyZAlT56FDh7Bz505oa2ujf//+WLZsGet5SUhIQEVFBYYPHy7/C0ZIK3by5Em5H+Pq6orVq1fju+++a/QcWa+RjbUZANn/NnNF1pgbawsQ0hw8SUOznFu5jIwMVFVVNTpchzTf+fPnmeFCXGwK21osWrQIhoaGWL16tUrjiI6OxoIFCxASEvLaxQxSU1Ph4eHB2mB05syZ8PX15WyxjYasWrUKU6ZMQd++fbFhwwaEhobCysoKZmZm2Llz52sfL5FI8N1332HVqlXMPLA6UVFRuH79Ov79738rK3wkJCSgb9++Sinby8sLz549g4+PT7PLCA0Nha+vL44fP96s1zEvLw8LFixAUFBQs2N4m/z000+wsbFhbSRNyNuqbg+3ffv2cVKeurUZmtsWKCoqavF53KT1o+F8hGXkyJEwMzPDqVOnVB0KZ1JTUxETE9Nik96b4uTkBGNjY9y4ceO159rZ2UFfX5/puSorK4OOjo5SE6jk5GSUlZUxScioUaPQo0cPBAUFyZRAAbVDraZOnQo/Pz/W8by8PBw7dgyenp6cx12fshIoiUSCyMjIRvdVkZWbmxtGjhyJFStWQCQSyf348PDwBveGItL27NkDPp+v9PccIepCT08Pv/76K2flqVOboTW1BcibgZIowsLn87F8+XK1+EZJVsXFxVixYgVrrxtV0dDQwJgxY2RapEJDQwMODg6Ij48HUDsfSlkJQp2zZ8+yhj+kpqbC0NAQ69atg7u7O6ZPn478/Hzm/qqqKuzZswczZsyAu7s7fvjhBwC1S+lGRUUxKzdVV1dj48aNWLJkSbP3WFK1pKQkVFZWMpu7KmLu3LmYOHEihEKhTOcfO3YMYWFhEAqFCA4OZm3iTBrXs2dPbN68mbNlmAl5E8i6NYAs1KnN0JraAuTNQHOiiJQ+ffq8dqlUdVI376K1+Oyzz3D8+HHk5uaiQ4cOTZ7r6OiIW7duobCwEPHx8cwqZ8ry999/47PPPmNuP3z4EOXl5fj555/Rrl07LF68GDdv3sSkSZMAAKtXr4aNjQ38/PzA5/NRWFgIoHbeU7du3ZCQkIChQ4ciODgYGRkZ2LRpE4DaIYON7ZXVWp0/fx6ffvppoytayUuepejbtm0LHx8f+Pn5YeLEiSpfCUtd0DwoQpRPXdoMra0tQNQfJVGEtDAjIyNMmjQJp06dwvfff9/kuXUrCMXHxyMxMbHRfT24UlhYyNpI9uHDh/D09GTmb7Vp0waGhoYAahcyyMrKgpeXF7NQRP0FJExMTJjVGydMmIAJEyYoNXZlEggECA8Pl1pYpaWo+/NHCCGEvGloOB8hKjBjxgzcvHkTRUVFTZ7Xo0cP6OrqIjIyEmKxmLNekMbo6Ogw+2bV1NQgMzMTDg4OzP31N/pNTk6Gg4NDoyvtVVdXK3X+VksKDAzE5MmTqQeIEEIIIQAoiSJEJXR1dfHDDz/A19e3yfM0NTXRu3dvXLp0qdl7E8nD1tYWGRkZAIC0tDRYWVkxc5gEAgHKysqYjWbNzMyQlpbGzOspKSlhLZSQkZEBOzs7pcesbPn5+YiKioK7u7uqQyGEEEJIK0FJFCEqMnjwYJiYmCA8PLzJ8xwdHSESiVpkc8Bhw4Yx+4Klpqay9kNKTU2Fvb09eDwegNr5Jvb29syCE7/88gvTK5WTkwOxWAx7e3ulx6xMEokEO3bswOrVq9+YXjVCCCGEKI72iSJEhcRiMXx8fDB9+vRGh4rFxsbC09MT586dY81XUobKykrMnj0bBw4cQNu2bZtdzu7du2FjY4Nx48ZxGF3LCwgIQO/evTFgwABVh0IIIURFaJ8o0hD+mjVr1qg6CHk9f/4cQqFQoUYeIa0Bj8eDs7MzKisrG91819jYGEDtsuHKpqWlhc6dO+Ply5dMvc2RkZGB8ePHM71W6srY2Bg9e/ZUdRiEEEJU6MWLF9DU1ISRkZGqQyGtCPVEEUIIIYQQ0gjqiSINoTlRhBBCCCGEECIHSqIIIYQQQgghRA6URBFCCCGEEEKIHCiJIoQQQgghhBA5UBJFCCGEEEIIIXKgJIoQQgghhBBC5EBJFCGEEEIIIYTIgZIoQgghhBBCCJEDJVGEEEIIIYQQIgdKogghhBBCCCFEDpREEUIIIYQQQogcKIkiRA1FR0cjOTlZ4XIuX77MQTTkVSdOnFB1CIQQQghRIp5EIpGoOgh5ZWRkoKqqCiYmJqoOhZAWFx0djcjISHh6eipUTmlpKUaPHs1RVOopIiJCKeVGRUUhPj4e3377rVLKJ4QQ0nKKioqgo6ODzp07qzoU0opoqjoAQojs8vLy4O/vj61btypcVnx8PL766ivMnTuXg8hIfc7Ozrh9+zZu3LgBV1dXVYdDCCGEEI7RcD5C1MiGDRvwzTffQFtbW+Gy4uPj0a9fPw6iIg2ZNWsW9u7di6KiIlWHQgghhBCOURJFiJoIDQ2FtrY2+vfvz0l5iYmJ6Nu3LydlySI6OhpcN1CgAAAgAElEQVSzZ8/Gt99+i2PHjql9Pa+jp6eHzz77DLt27VJZDIQQQghRDkqiCFEDIpEIBw8exBdffMFJeZWVlZBIJNDT0+OkPFl06tQJvr6+2LdvH27duoWKigq1rkcWn3zyCWJiYnD//n2VxUAIIYQQ7lESRYgaCAsLg7a2Nt59911OyktMTESfPn04KUtWZmZm0NTUBI/Hg6amJvh8vlrXIwttbW2MGzcOR44cUVkMhBBCCOEeJVGEqIFTp05hxIgRnJWnyvlQUVFRsLa2ho6OzhtRz+u4ubnh5s2byMrKUmkchBBCCOEOJVGEtHIFBQVISEjABx98wFmZCQkJcHR0ZG5XV1dj2bJl+OKLLzB9+nQsXLgQ2dnZnNVXJy8vD8eOHWOWZ3/x4gXef/99vHjxgnVeamoqRo8ejefPn3NSjypZW1ujW7duuHjxoqpDIYQQQghHKIkipJULCwuDoaEhbG1tOSmvpqYGAoEA7du3Zx2fMGECAgMDERAQgKFDh2LTpk2c1FenuroaGzduxJIlS6CrqwsA0NXVhaWlJdLT01nnbt++HbNmzYKhoSEn9ajawIEDceXKFVWHQQghhBCO0D5RhLRysbGx6NmzJ2flJScnS5XXpk0bODs7M7d79+6NP/74g7l94MABZGZmoqqqCunp6bC1tcXMmTNx4MABPHnyBA4ODli9ejUAoKqqCv7+/rhz5w6EQiGMjY2xY8cOBAcHIyMjg0nOVq1aBUtLS9ja2iItLQ29evUCAFy5cgXl5eUYN25co79DSkoKduzYgaqqKpSXl2PUqFHw8PAAgEbrUaV+/frhjz/+wLNnz2BqaqrSWAghhBCiOEqiCGnlEhMTMX78eM7Ki4+PZw3la8iJEydYm8Q+ePAAGhoaWLduHTQ0NDB+/Hj85z//wYYNGyCRSDBu3DgmQVi9ejVsbGzg5+cHPp+PwsJCALU9XRMmTJCqy87ODmlpaQBqe5F8fX2xatUqZkEIHx8fPHr0CM7OzpgxYwYAwMrKCjt27ICmpiaqq6sxceJETJo0CQYGBo3Wo0r29vYAap97Lue2EUIIIUQ1KIkipBUrLCxEaWkprKysOCszPj4eixcvbvT+33//HZmZmdixYwdz7MGDB9i1axfatGkDoHbJ9VmzZkFbWxsikQgikQh6enqIi4tDVlYWvLy8mCTIzMysyXhsbW1x+vRpAEBgYCD69OnDJHnJycnQ0NCAr68vli1bhqKiIpiYmCAqKgpnzpyBQCCARCKBQCCAlpaWQs9LfUeOHMH58+eRmZnZ7DIiIiKYny0tLaGrq4uHDx8qlEQJhUL8/vvvmDZtGtq2bdvscoh68fPzw5QpU6Cvr6/qUAghhPwPJVGEE1u2bEFeXh68vb0B1M7juXTpElJSUlBSUgILCwt88MEH+Prrr1t0b6KGFBQU4OjRo0hJScGjR49QXV2NEydOoEOHDqzzgoKCEBwcjMOHD0ND45/pg9evX0dOTg6mTZum9FjrFnfgajiaWCxGfn6+1O9aJzAwEOHh4di+fTuzql1BQQHEYjE6d+4MAMjJyYG+vj4sLCwAABkZGbCwsICuri6Sk5Ph4OAg17LidT1RhYWFOHnyJA4dOsTcd//+fWZzYUdHRzx48AAAcPz4cWzatAmmpqaIjo6Gj48Pp/Ofrl69igMHDnDaaDU3N1dosQ6RSIQVK1bAyspKaQlUbm4ugoOD8cknn7DeIxEREdi4cSP8/f2Z1/1t1tjz9DrNfR4tLS0xd+5c7N69G0ZGRs0JmRBCCMdoYQmisKysLJw5c4aZkwLUNsb5fD7mzJmDLVu2YMKECTh9+jQWLFgAsViswmhr47169Sr09fWbXOZ7woQJKCkpQUhICOv49evXERQUpOwwAdSuMgeAs3k0jx49gp2dXYP3BQUF4fLly9i2bRsreXjw4AF69OjB3E5OTmbdTklJYW6bmZkhLS0NQqEQAFBSUgKRSNRkTB07dkRlZSU2bdqEKVOmsHquysvLmaS7bdu2KC8vR0pKCuzt7WFqaoqSkhLs3r2b8zlj1tbWnH/rb2pqyryezXH06FHk5ubixx9/5DAqttzcXPj7+yM3N5d1XE9PDxYWFtDW1lZa3eqksefpdZr7PI4ePRq9evWCl5eXXI8jhBCiPNQTRRT2559/ws7OjtWQ9fb2Zq3+5uTkBAMDA6xfvx6xsbGcbRrbHI6Ojjh37hwA4OzZs7hz506D57Vp0wYjR45EYGAgRo8e3ZIhMsrLywGAs72O4uLiGpwPVVBQgJ07d8LKygrz588HAPD5fPj7+7OSJABSt+snWcOHD0dMTAzc3d3Rpk0bGBsbY+vWrU3GxOPx0K1bN2RmZko1Etu1a8c8B5WVlTA1NcWoUaOwbNkyfP3117C1tUWHDh1Y8SjqwoULGDlyJGfl1dHT08OzZ8+a9VihUIg//vgDnp6e4PF4HEf2eo6OjvD392/xet80ijyPX3zxBdzd3ZGWloZu3bpxHBkhhBB5URJFFFJTU4OLFy8yE/7rvLp8NgAmyapbaKBOdnY2Dh06hLt376K0tBTt2rVD165dsW3bNmhqcv8WrT8073U++ugjBAYGIjExEQ4ODli/fj3TMzV06FAAtUNtTp48iaysLPj7+yMhIQFFRUUwNTXFoEGDMGfOHBgYGDBl+vn5wd/fH0FBQdi+fTvi4uJgYGCAMWPGYMaMGaz46vZP4iqJio+Px6xZs6SOm5ubs+bw1Dd79mzW7e+//551e+HChczPfD4fS5YskTuu/fv3N3i8V69euHDhAoYNG4a4uDj861//grGxMQICAuSuQxZCoRDR0dFMIvkqRd6r2traUvthySo6OhoCgQBOTk5Sx48fP47CwkKIxWJoa2vDw8MDQ4YMYc65ceMGDh48iEePHmH69OkQCoX4+++/UVxcjFGjRmHOnDkAgJMnT+L48eMAgE2bNkFXVxc6OjoYN24cAgMD8eTJE6xYseK1Xyg8efIEO3fuZBJGfX19uLm54cMPP8TcuXORlpYGExMTODs7Y+XKlcjPz8eSJUuQnp4OOzs7eHh4sOJ9+fIl7t69i5KSEnz11VeYPHkyAgICcO3aNZSWluLLL7/EpEmTGvxd5XlsnWvXruHw4cN48eIFhEIhXFxcMG/ePKZHtLHnyd3dnVW3SCRCTEwMsyiKq6tro89jREQE/P39UVFRAS0tLZiYmGDkyJGsZL5r164wMTHBlStXKIkihJBWgJIoopCkpCQIBIImh8XViY2NBQBmbg0ACAQCzJs3D7169cLixYuhr68PgUCAwsJCpSRQ8rK3t4eenh5u374NBwcHzJgxA6WlpUhOTsbmzZsBgBma8+zZM5iZmeHHH3+Evr4+srOzceTIESxevLjBJGH58uUYPXo0pk6dioiICPj5+cHCwoLVuKobFifrc5GamoqSkhLWcuX1ZWRkoEuXLvI8BSrVs2dPBAcHY968eRg0aBCMjY05K/vx48e4f/8+xo4dyxyLjIzEoEGDGny+FX2v8vl85vWUV0xMDPh8vtT8mytXrsDW1habN28Gj8dDYmIifvzxR9YQR1dXV7i6umLo0KEIDQ3Fhg0b8N133yEqKgo//fQTHB0d4ezsjEmTJqFr166YP38+li1bxsxFA4D+/ftj8uTJMsW6ZMkSfPLJJ8wXKydPnsThw4cxduxYHDlyBFOnTkXXrl2xcuVKAICFhQXWr1+PtWvX4uDBg0zMQ4cOxcWLF+Hl5YXvv/8eZ86cgbe3N/Ly8uDm5obp06fjr7/+go+PDwYOHIhOnTqxfld5HwsAly9fxpo1a7B27VqMGDECFRUV+Omnn7B8+XJs374dPB6vyeepru7g4GCsXr0a8+bNQ3h4OC5cuIDRo0c3+DyGhYXh559/xvr16/H+++9DLBZj9+7d2Lp1q1SPaKdOnRAdHS31xQYhhJCWp/pWKlFrSUlJ4PF4jc6zqVNYWIiDBw9iwIABrGF/iYmJKCoqwogRIzBw4EBoamq2iuSpjoaGBmxtbZGUlAQAsLa2hpGREbS0tNCnTx/WuY6Ojqyhcn369IG1tTW+++47pKamonv37qzzP//8cyZhGjhwIKKjo3Hp0iVWElXXA1VTU9PkghwikQjHjh2Dn58fBg8e3GASlZGRARsbG5UMB1PEokWLOC/z1q1bCAkJwbVr1zBkyBCYmJgAAEJCQqR6Veso+l6tqqpqdo9iUVER9PX1pXpRv/76a7Rv3555TR0cHGBra4tz5841OE/M3t6eGfro7OwMXV1dxMbGNpp0y6u0tBTZ2dms1STHjh2L58+fM7fd3NwQEBCA58+fM5sph4SEwM3NrcF465aHHzZsGLy9vZGdnc0cGz58OH777TfExcUxiVBzHyuRSLBnzx44ODgwKyjq6enBw8MDixYtQmxsLCthaoqdnR1z7tChQxsdbiqRSLBz5044OTnh/fffB1B7zfnmm28a3JzZyMiIWVyFEEKIarWe1qqSLL22FAFJAZjeezo2f7BZ5eW01pgA4O7du1iwYMFrz3NycsKuXbsA1Pa+6OnpNbm8dGVlJZYuXQo+n898+1ynZ8+esLGxwZo1awAABgYGUgs5KBqjooyMjGRa6vrly5cIDAzEhQsXkJeXh5qaGua+p0+fSiVR9YdcAUC3bt2QmprKOlbX6K6urm6y7sePH6N3797o3r07EhISIJFIpJKl+Ph4mXoM3wZDhgzBgAEDcOfOHVy6dAnTpk1DWVkZCgoKpF6nOvK+V19VXV3d7BUES0pKmOXl69PV1cX+/fsRGxsLoVAIHo+H7OxstGvXrsFybGxsWLcNDAxQUlLSrJgaYmhoiK5du8Lb2xsPHz7Exx9/jO7du2PmzJnMOW5ubvDz88OVK1cwceJESCQSXL16FXv37pUqz9ramhXrq8fqkrCioiKFH/v06VPk5+fjo48+YpVTN3ROniSqfm+vlpZWo6tr1tX58ccfs463bduWWfa/Pm1tbRQXF8sUAyGEEOV645OogKQAiCQiBCQFKJRocFVOa40JqP0WOzAw8LXn1W/M1dTUNJlAVVdXY+nSpcjJycHu3bthbm7Our+qqgouLi6YOnUq7OzsGm38KRKjotq0afPaJAYA9u7dixMnTsDDwwMODg5o27YtCgoKsGLFigYf/+rqb1paWqzECwDTQ1JSUtLkMud1Df8xY8bA29sb6enpUvMm4uPjZR6S9TbQ1tbGsGHDcPHiRUybNg1Xrlxpcg8ned+rrxIIBA3OFZQFn8+HRCJhHROLxViyZAnKy8uxdetW5rPl6emJly9fNljOqz1hPB7vtasnNiQ5ORmbNm1ibvfo0QPLly8Hj8fDrl27cPToUQQHByMwMBBdunTB3Llzmc2bO3bsiL59+yIkJAQTJ05EbGwsOnfu3ODS3fXjrftSoKFjDa34Ke9jS0tLAQChoaGIiopilWVsbIyqqqrXPi91ZE2W6+qsP2eyKRKJRK7tAwghhCjPG59ETe89nemtaQ3ltNaYgNoGRv35SrIwMDCAQCBo8D6hUIiVK1ciOTkZ27Ztg62tLev+iooKeHp6YuHChXjvvfeUFqOiBAKBTHuzXL58GSNHjmQNB6usrFSo7o4dOwKAzKu61Q0njIuLk0qiHj582GgvS90iGW+6VxfPcHNzw7lz5/DkyRNcvHgR69evb/BxzXmvviovL6/Zj23fvr1UIp6VlYV79+5h/vz5Ul9OKFvPnj0bXdzDyMgInp6emDt3LiIjI7F//36sXLkSR44cYT67bm5u+PXXX/H06VOlrYYor7rP+KeffsrqOWuJOhu7hr6qqqqK03mBhBBCmu+NT6I2f7CZk14arsrhsiwuY2quzp07QygUoqCggNWQE4vFWLt2LaKjo/Hrr79KzR8Cahv6eXl5UnMZWpucnBz06tWLua2trd1gz1J1dbXUHJng4GCF6u7YsSP4fL7Mm7R27twZ7du3R3x8PCZOnMgcLygogImJSaPfYje2Mp8qRUdHY+/eveDxePjggw/w5Zdfcl6Hk5MTLCwscPDgQejp6TE9f69S9L1aU1OD4uJiqeF0sjI3N4dAIIBQKGTeY431NhUVFTX6e7xOXdl1vV5xcXGs+U2vU1JSgoCAACxYsACamppwdXWFubk5Zs6cifT0dCaJGjFiBLZv346zZ88iOjoaixcvbla8XOrUqRMsLCzw6NEjqfv27NkDZ2dnZmuGxp4neZPZujpTUlJYx8vKyrBo0SJs2bKF1WNdXFzc4gkzIYSQhtFmu0QhdT0f9+/fZx338fHB1atX8fnnn0NHRwf37t1j/hUUFAD451vYdevWISwsDDExMQgNDcXGjRuVHndYWBjCwsKYSdq3b99GWFgYs4JgHYFAgMzMTNZcoi5duqCsrAx//fUXkpOT8fjxYwC1E/VDQkJw6tQpREVFwdvbG4mJiQrFqaOjAzs7O6Snp8v8mH79+iEuLo51TB3nQ3Xq1Am+vr7Yt28fbt26hYqKCs7r4PF4+PjjjxEWFtZkb4ii79WMjAxIJBL07t27WXG6uLhALBaz5uZ17twZVlZWCA4ORllZGQDg6tWrePr0abPqAIAOHTqAx+OhsLAQIpEIv/zyC3JycmR+fFVVFU6fPo179+4xxxISEqCrq8v6IkJfXx9DhgzBn3/+CRcXl1axiS+Px8P8+fMRERHB+lLh8uXLuHz5Mt555x3mmKLP06t1xsTE4ObNmwBqe/D37t2Ljh07shIoiUSCjIwMqbmUhBBCVIO/pm6WtBp5/vw5hEIh2rZtq+pQ3nr6+vq4ffs2BAIBs7oUAGzZsgXl5eWIj4/HuXPnWP/09PTQv39/mJubw9raGomJiTh//jxCQ0ORlpYmtcqdMri7u+Pq1avMN8C3bt3C1atXkZubi08++YQ5Lzw8HJGRkVi2bBkzn6Jbt27IycnBmTNncOLECURGRmLq1KlwcnJCdnY2zp49i/DwcFhYWMDT0xNnz56Fq6srM5QuNjYWsbGx8PDwYK22dv36deTl5WHq1KmsWNPT05GUlITx48fL9LsVFxfj6tWrcHNzY+ZanDp1CkOHDm1yXlVro6enBw0NDfB4PFy8eBH/+te/lLJyo4mJCS5duoRly5Y1Wr6i79WIiAjcvXsXCxcubNacFjMzMwQHB8PAwAAODg4AaldxGzBgAGJjY+Hv749bt25BKBRCKBTi8ePHuHLlCsaMGYPExEQsXboUxcXFyMjIQG5uLhwcHPDtt98iJycHubm5uHv3LkaNGgU9PT2IxWIEBQXh3LlzGDBgAHR0dODj44PS0lKkpqYiIyOj0eGfdclQUFAQTp8+jZMnTyIvLw/Lli2TGs6rra2NS5cuYeHChazelbi4OKl4LSwssHDhwiaPpaamwsjIqNmPHTZsGLp27Qp7e3scOnQIR48eRUhICIqLi/F///d/MDU1ZWJs6HmytbVl1R0aGoohQ4Ywc+fOnz/f4PNYv87AwECcO3cO1tbWWLhwIev9mJCQgDNnzmDp0qVyz8cjhCjmxYsX0NTUlGloP3l78CSvzlZWAxkZGaiqqmr2kBXCrfPnzzNDc7jaFLa1WLRoEQwNDbF69WqVxRAdHY0FCxYgJCREpsZTamoqPDw8WBt6zpw5E76+vpwuuFHfqlWrMGXKFPTt2xcAsGHDBoSGhsLKygpmZmbYuXPna8uQSCT47rvvsGrVKmYuGABERUXh+vXr+Pe//62U2IHaBmpd7Mrg5eWFZ8+ewcfHp9llhIaGwtfXF8ePH1fa69iS8vLysGDBAgQFBak6FLXw008/wcbGhrW5NSGkZRQVFalkTjZp3Wg4H1HYyJEjYWZmhlOnTqk6FE6lpqYiJiamxSaZN8bJyQnGxsa4ceOGTOfb2dlBX1+fGdJXVlYGHR0dpTW8k5OTUVZWxkpCRo0ahR49eiAoKEimBAqoHdo0depU+Pn5Mcfy8vJw7NgxeHp6ch53fcpMoCQSCSIjI6WWzpaXm5sbRo4ciRUrVjRrRb3WJjw8vMG9oYi0PXv2gM/nK/1zQAghRHaURBGF8fl8LF++/I3rhSouLsaKFStYe8uogoaGBsaMGSPzIhUaGhpwcHBAfHw8gNr5UMpMEs6ePSu1z01qaioMDQ2xbt06uLu7Y/r06cjPzwdQO29mz549mDFjBtzd3fHDDz8wj3vvvfcQFRUFgUCA6upqbNy4EUuWLGn2/kqtQVJSEiorK1nDXZtr7ty5mDhxIoRCIQeRtbxjx44hLCwMQqEQwcHBrI2lSeN69uyJzZs3N7mdBCGEkJb1xq/OR1pGnz59GlyBT525uLioOgTGZ599huPHjyM3NxcdOnR47fmOjo64desWCgsLER8fz6wqpgx///03PvvsM9axhw8fory8HD///DPatWuHxYsX4+bNm5g0aRJWr14NGxsb+Pn5gc/no7CwkHmcpqYmunXrhoSEBBQUFCAjI4PZj2jVqlVqNaerzvnz5/Hpp59CT0+Pk/LUeTn6tm3bwsfHB35+fpg4cSKtNCej4cOHqzoEQgghr6AkihA1YGRkhEmTJuHUqVP4/vvvX3t+3Up88fHxSExMhIeHh9JiKywslNpE9uHDh/D09GTmcLVp0waGhoaIi4tDVlYWvLy8mAUWzMzMWI81MTFBQUEBJkyYgAkTJigt7pYgEAgQHh7e6J5Kb5s34TUlhBBCABrOR4jamDFjBm7evImioqLXntujRw/o6uoiMjISYrGYs16Qhujo6LD2zaqpqUFmZiazihzwz0a/ycnJcHBwaHKFuurq6jdi4QQACAwMxOTJk6nHhRBCCHnDUBJFiJrQ1dXFDz/8AF9f39eeq6mpid69e+PSpUvN3ptIVra2tsjIyGBup6WlwcrKipnHJBAIUFZWBhsbG5iZmSEtLY2Z01NSUiK1SEJGRgbs7OyUGnNLyM/PR1RUFNzd3VUdCiGEEEI4RkkUIWpk8ODBMDExQXh4+GvPdXR0hEgkUvomu8OGDcPt27eZ26mpqejRowfrtr29PXg8HoYPHw57e3tmsYlffvmF1SuVk5MDsVgMe3t7pcasbBKJBDt27MDq1avfmF41QgghhPyD9okiRM2IxWL4+Phg+vTpTQ4Ti42NhaenJ86dOyc1Z4lLlZWVmD17Ng4cOKDwBti7d++GjY0Nxo0bx1F0qhEQEIDevXtjwIABqg6FEEKIgmifKNIQ/po1a9aoOgh5PX/+HEKhUOEGGyHqiMfjwdnZGZWVlU1uvmtsbAygdtlwZdLS0kLnzp3x8uVLps7mysjIwPjx48Hj8TiKTjWMjY3Rs2dPVYdBCCGEAy9evICmpiaMjIxUHQppRagnihBCCCGEkEZQTxRpCM2JIoQQQgghhBA5UBJFCCGEEEIIIXKgJIoQQgghhBBC5EBJFCGEEEIIIYTIgZIoQgghhBBCCJGDWiZRGhoaEIvFqg6DEEIIIYS8wSQSCcRiMTQ01LLJTJRILd8ROjo6EIlEqKioUHUohBBCCCHkDSSRSFBeXg6RSNTkvozk7aSp6gCaw9TUFFVVVXj+/DkqKyvp2wFCCCGEEMIZiUQCkUgEADAyMoKhoaGKIyKtjVputgvUvrmfPXuGqqoqGtpHCCGEEEI4o6GhAU1NTRgaGqJt27aqDoe0QmqbRBFCCCGEEEKIKtA4OEIIIYQQQgiRg1rOiSKEEEIIIeRNk5en6gjeDpaWipdBSRQhhBBCCCGtBE31Vy6u1qOj4XyEEEIIIYQQIgdKogghhBBCCCFEDmo7nE8ikUAVCwvyeDym/jcBr6oKqKkBtLUh0dFRdTivVVZTxvxsoG2glDoaeo3V7Xkir/emfZbfJvJ8Hpt6nVviekKUTxmfZV5ZGXgAJAAkBvTekJUyP1OqvGbzeDymfkLqqHUSlZ+f3+L1GhsbAwCKi4tbvG5lsLSxAU8kgoTPR35mpqrDea3lN5fjaPJRuPd0h9d7Xkqpo6HXWN2eJ/J6b9pn+W0iz+exqde5Ja4nRPmU8Vk2HT4cmg8eQPjOO3gWFsZZuW86q/1WzM853+ZwWrYqr9kWFhYqS6KWL5+D6OgIGBoaw8VlGBYt+gUA8OTJI3h4jIav73/Qo0dfAMCffx7CmTOBaNNGB56eK9C//+Amy964cQn+/vsmBg8ejn//ewNiYiJx4MAWpKQk4M8/r8HMTLbVFzZvXo6oqGtMOVz6889DePfdwbC17QGg9vfeunUNEhLuYseOY3BwGMBpffKg4XxvuUp3d0j4fFS6u6s6FJl4veeFzNmZLd7gUbfnqTVafnM5bA7YYPnN5aoOhag5rj6PqrqekNZP89Ej8P73P5EdDzzW/0RxXl770K/fIHTpYs8kUAAQG3sbABAdHckcmzLFA05OLvjll52vTaAAYMUKb7z77hDmdv/+g7Fq1W9yx7h0qRerHC795z+HkJb2gLndpYsdtmw5rJS65EVJ1FuuzMsLeZmZKPNSj0aEqhri6vY8tUZHk49CJBHhaPJRzso0WL4cljY2MFhOidnbhKvPIyX2pDFCOztI/vc/kd3Xvb5mfqbPFXf693fBvXvRePmyhjkWGxuFfv0GISYmknVudvYTWFt3aeEI306URCkB1w07+kP/D2U0xEnLcO/pDj6PD/ee3PXmtT16FDyRCG2P0vuByI+uJ6Qx1BPVPHW9uhJIEHA/QMXRvDmcnFxQVfUCSUlxAACxWIznz4sxYsQY3LsXg5qaagBAfn4OLC2tWY+NirqGefMmY/78z+HpOQ2nTx/jJKbDh3di2rThWLDgK/j6boZYLD1XLTT0NL79dgJ+/PFLeHpOw7Vrocx9//73TIwZ8y527dqAdet+gqfnNHz55UcICTnJnLNgwVd4/rwYR4/uxYIFX2Hr1jWs8p8+TceaNT/gm2/GYdmy2RAInnPyu8mKkigl4Lphp8w/9Or2Tb4yGuKyULfnqTVSxtApGmZJFKGq6zZUb+sAACAASURBVAlp3QyWLwdEIkh4PLq2kFahe/c+aNfOgBnC9/DhfdjZ9UT//i6oqalGYmIMACAmJhJOTs7M49LTH2LNmh+xaNF67Nz5BzZs8EVQ0EGEhp5WKJ5Ll87g5MnfsW3bEWzbdgTvvfcRbt26yjrnzp3r2LPHCxs2+GL79mNYufJXbN68DPHxdwEAv/7qj65du+PSpbOYPfsn7NoVhGXLNuHXX1ciJSUBALBt2xEYGhrD3X0utm07goUL17DquH07HP/3f1uxf/9fKC4uwl9//dNOLizMw7RpHyI4+IRCv2tTKIlSAq4bdsr8Q69u3+Srag6Duj1PrZEyelRpmCVRBM2JIg1pe/Ro7YweDQ26tjQDzYvinoaGBhwd/xm6FxMTif79B6Njx86wsLBCTMwtALXzpJyc/pkLFRi4D46OzrCzq12UwdCwPVxdP8bp04q1ZU6dqk2c6nq9HBzeRbdu3VnnHDniiw8/HM0sTtGhgw3efXcIK9EBgCFDPqxXzgC8804fnDolW3zDho0Cn88Hn89Hnz798ehRCnOfSCTEixcVTC+dMlASpQRcN+yU+Yde3b7JV9XQRnV7nlojGjpFuMJVzzANlSYNoflQiunevjvrf8KN/v0HIyUlES9eVCA+/i769RsEoHaoX11y9exZAczMLJjHpKWl4tGj+1iw4CvmX1zcHQiFQoViych4DEvLjqxj5uYdWLfT01Nx5851Vt3Z2U+lkhoLCyvWbSurTnj69LFMcZiYmDM/6+npobKynLltaWmNM2eiMH78lzKV1Rxqu8S5Kv148UccjD34RiyLW+blpVbftNVviLfkc69uz1Nr5N7TnVlOmhBF1O8ZVuRzqarrCWndaD6UYh6UPGD9T7jh5OQCofAloqMjUVNThXbt9P933BkXL57GvXsx6NSp2yuPkqB//yFYvnyz0uNraAn4jz4aBw+PH+QqRyKRyLycPJ/P7gtq6T3EqCeqGQ7GHqRv1FWE5kSpL2X0qNLr8nbiqmeY5kSRhlBPFGmNunSxg4mJGY4d24eePR2Z4/37D4ZYLIa//3apZc27dXsHmZnprGMZGY/h779NoVg6d7ZFbm4W61hBQS7rdteu3aXqjo+/i1OnjrCO5eez9xPLzc2Ejc0/yaCGxj+pyosXFSrZbLkxlEQ1wyynWfSH9y1Dc6IUp4yhU/S6vJ24GjJNc6JIQ6gnSjE0J0p5nJxckJKSwEqWTE0tYGPTFfHxd+DoOIh1/hdfzMHDh/dx584NALXzhPz9t8PCgj0UT14TJ36FiIgryMurTaSSkmLx4ME91jlfffUdbt26ysxTqqp6gQMHfKR6y/7+OwJ5edkAgMTEv/HgwT1MnPhP+9rIyBhlZbWr7s2ZM1HmOU4FBbmYOnUYa7U/rvHXrFmzRmmlK5FEIkFFRUWL16urq4tRtqMwr9c8fNTpoxapc/nN5fAI9UDhi0LO6zRYvhztPTygUViI6o9a5vdRhEeoB0QSEe49u4ef3v1JKXXo6uoCAF68eMEc0ygshNa9e6h0d1eL56k1UsZrp8jr0tDrTN48Tb3Oyry2kpbD9WdZ57//hUZREYTdu6NyxgxOynybnEs7h6KqIrzT/h3M6D2Ds3JVec1u166dzEPMFFVeDjTW2VJRIcCdOzewcOHP4PP/mZGTkfEYIpEIkydPZ53fvr0JevRwgJ/fVpw//ycuXTqLd98dggkTapOUjRuXIDo6AtnZT5GV9QQ6OjrYtm0tnj3LR1JSHLp0sZOa6wQAtrY98PJlDXbt2oAbNy6jqKgQ5uYdEBMTiadPH2Po0BHMohd7927GxYtncOXKfzF27FS4uv6LKSck5CQGDx6O27ev4fhxP1y8eAZz5y7F4MHDmXMMDAzxxx8HcOXKOQwd+hFsbLpi1arvkZ+fg4cPk9GpUzdcv34R58//iby8bKSlPcD777tBIHiO06ePoW/fAejRw4EVP48HtGsn90sjhSdpTf1ichCLxcjPz2/xeo2NjQEAxcXFLVanzQEbiCQi8Hl8ZM7O5LRsSxsb8EQiSPh85GVyW7YyLL+5nJlXo6xvj1XxGr8NWuK1kwe9zm+Hpl5nZV5bScvh+rOsbn8XW5u6zxUATO81nbPrvSqv2RYWFqxhZcqUlweIxS1SlcrNn/85Bg1yxVdffdei9WpoAJaWHJSjeBFE2ZQ5bl/dVp1T1fAbmnujOBo6RVobmhNFGkJzohRT//NEG+6SNxklUWpAmY1PddpnR5XLEdPcG8Up4/Wj5JYo4v/ZO+/wqKqtD79TMukdSAKEGggJIEWkeFFAKbHglSIECE2KgnBBuArxU7FhbFxBEFukhiLSpCgCCggCghQpCQmhhkAC6T2Z9v0xZEwkIW3KmWS/z5NnJqfuOfucffbaa63fjugZYVSNFDLngmJETlTNiOgZIfKiBBXyyivPc+VKHD/+uJHlyz+zdnGqhTCizIDo2JkHa84zZGseOylijvoTxm3dxJRtrJi/TPBPhCeq5oi5ogQV8fHHy9ix4wTr1v1aZRl0qSCMKDNgSx07WzL4rBl6Y0seO6lijvoTxm3dxJRtrAjpE/wT4YmqOWKuKEFdQBhRZsCUHTtzh7DZksFnzZwaWzI2pYo56k8Yt3UTU7axIldPUBK38HDQatHLZGJwRiAQ3BdhRJkBU3bszB1qYksj+SInyraxZv0JahembGPFfSkoiVNUlCGLRy4XgzMCqyGXiz9z/pkKZcWbCKxJcdKzuUJNsiIibOZFUdKgtPSocV5YGE5RUTZhbEoVa9afQFAe4r4UlEQTEIAyNlbkQ9UQGTL06IWwRDUwhfS2wDIIT5TEEaEmfyNyF2wbc9SfCLMU1BTRrghKIvKhTMOY4DHG78LLK6itCCOqjiM6oZVDhPPVHHMMCIh6qZuYst0SA1WCkghlPtNQ/Dzp0Yu5ogS1FmFE1XFsqRMqJM5tG3Pknoh6qZuYst0SOVGCkghPlEAgqCyVNqKysrKYPXs2gYGB3Lhxw5xlEpTA3C94W+qEColz28YcRrCol7qJKdstMU+UoCTCE2U6xIS7gtpOpYyoQ4cOMWjQIGJjq673n5yczMsvv8yAAQMICQlh8uTJXL58ucrHqauY+wVvS51Qa4fdiNDHmiFyTwSmwpTtlrgvBSURnijTISbcFdR2KmVELV26lMWLFzNgwIAqHTwnJ4ewsDAUCgU7d+7kp59+omXLlowaNYqkpKRqFbiuIV7wf2PtsBtbCn0UCAQCQdURnijTISbcNR2XLl1i9OjRjBgxgmeffZavv/661PqYmBiGDx/OiBEjePHFF0lPTy/3WBkZGbz44ouMGDGCYcOGcf78+VLrt23bxuDBgxk8eDAffPABer2+0vtWh5dffpmgoCBCQkI4duyYcfn27dvp06cPgwcPJiMjo8bnMQeVMqJWrVpFcHBwlQ++YsUKEhMTmTt3LkqlEplMxsyZM1Gr1Xz++edVPl5dxNzeF1vyrlg77MaWQh+liDnqz5buX4E0sXa7IpAWyrg4gycqLs7aRREIjMyZM4fOnTuzbt06li9fTmRkJL/99hsARUVFTJ06lZdffpl169YRHBzMvHnzyj3W22+/TXBwMOvWrWPWrFlMnTqVoqIiAOLi4vjwww+JjIxk48aNnD9/nrVr11Zq3+ry6aef0qVLF7p27UrXrl2NywcOHEibNm1Ys2YNHh4eNTqHuaiUEaVUVm86qZ9++olWrVpRr1494zJ7e3s6d+7Mrl27Slm3tQlb6tjZknfF2l45Wwp9lCLmqD9bun8F0sTa7YpAYhT3S2pp/0Rgm8THx9OxY0cAPD09adq0KTExMQD89ttvyOVyunfvDsBzzz3Hnj17SEtLu+c4GRkZ7Nq1i6FDhwLQvXt37Ozs2LdvHwAbN27k0UcfxcvLC7lczpAhQ1i/fn2l9q0JISEh7N69G41GY1yWmpqKs7Mzjo6ONT6+uTDbZLuFhYVcvnyZvn373rOuSZMmHDhwgMTERBo3blyt48tkMry8vGpazCpjZ2cHcN9zq0p07JRffWWpolUL7cSJKCIj0U6caJXrWRUcHByMn+Ysa3l1rJgxw3ittIsWme38tZWvnvmKr54x7fNQk/u3Ms+ytSjS6MgqUJOZryGrQE1WvobMAjXZ+Rry1VoK1Lq7n1ry1bq7n4blaq0OrV6PTsfdTz1avR6tzvCnB5RyGQq5DIXs7meJP6Vchr1SjpNKgaOdAgc7hfG7o50cR5UCF3slbo52uDsqcXeww93RDlcHJQq5+RPIq/ocVlTPlmpXBObDlM+yPjgYoqPRBweL+6GGFE+4C/D2n2+zqH/N3pvWbLNlMuuKY/Tq1Yt9+/bRp08fEhISiI+PZ9asWQCcPXuWFi1aGLf18/PDwcGB8+fP88gjj5Q6TnR0NCqVioYNGxqXBQQEcO7cOQYMGMDZs2d57LHHSq27ePEiBQUFFe5bEampqcybN4/09HS0Wi0TJ0402gghISHMnz+fo0eP0rNnTwB27dpV5TQiS2M2IyojIwOdToeLi8s965ydnQFIS0urthElZUp27KSOdtEimzEIIk9FotVriTwVWePGuDooIiORabWGurWRayYVZuyeQeSpSCZ2mmjSurOl+ze7QMPt7ELu5BSSklNESnYhKblFpOQUcSeniJScQtJy1WQXqMlX66xd3Cojk4HrXePKw9GO+i4q6rmoqOdiT31XFfVd7KnnoqK+qz31XVQ42CmqdR5TP4fWblcE0kIWG2vQkquGkJagNJM7T+ark4aBM/F81Yz58+czZcoU+vbtS2ZmJnPnzqVHjx6AwThxc3Mrtb2rqyupqan3HCclJQVXV9dSy1xcXIzb/vNYrq6u6PV60tPTK9y3Il555RU6dOjAjBkzuH37tjFcr3Hjxnh7e9OlSxd+/PFHoxF18OBBFkn8/W42I6oy1MSy1+v1ZboqzU3xCMh9zz1vnuHPsGGNzhd+KJyomCjCgsLq/GSQYUFhxmthzrovr47dwsJwiooiLyyMLCvce7ZMyY7qvC7lx2pbkko9y5VEr9eTkqvmVlYRydlFJBX/ZRk+k7OLyC2qvmGkUshwtVfgYq/AyU6BvZ0cB+XdPzs59kqD98heKUelkCGXGf4Ucu5+N3if5DIZMhl3PVOg1enRGb1UoLn7vVCju+vt0lGoMXzma3QU3l2WW6Qlq1CDtsRP0ushq0BDVoGGG+n5Ff4mD0clvq4qw5/b359+d7+72ivKfEdU9TmsqJ4t1a4IzIepnmW38HBUWi16mUy08yZgXpd57L+yn9j0WAI8AmpcP6Zss6uKj4+PVb1R06dPp1OnTqxevZpbt24xfvx42rVrR9u2bU1y/IrSa+63vjKpOcnJyfz++++8++67ADRo0IDOnTuzc+dOXnjhBQCeeOIJPv30U95++23S09Nxc3PD3t6+Cr/C8pjNiPLw8EAul5OTk3PPutzcXMAQ1ym4PyWTns1hRLmFh//dIZF4rk9EzwirGpJZERGSv0ZSpWRH1ZRY8v7V6/VkFmhJyCjgenohCRkFJGQUkpBeyI3Mwkp7j2QYDAgvJyXeznZ4OdkZv3s4KnGzV+Jqr8DVQXH3U4mDUnrzouv1evLUOrILDAZVdoGWrAIN2YVaMvI1pOVpSM1Tk5qrNn6WNCQz8jVk5Gu4cDuvzOO72ito4mmPv4cDTT3t8fd0oImHPY3feQ9HE9a1tdsVgXRwiopCBujlctHWmwih0FdzLl26xOHDh/nkk08AQ7jev/71L5YtW8aCBQvw9vYmOjq61D7Z2dllhj16e3vf0y/Pyckh4K4apZeXF1lZWaWOU5w+U9G+96NYkXvOnDlGYzQ9PZ3Wrf+Wvx8wYADvvvsuv//+OwkJCZIP5QMzGlH29vY0b96chISEe9YlJCTg5uZGo0aNzHX6WoO5Op/FlEzMl/pLw9peOVsyOOsK5rp/swo0XErN53JKgeEzNZ/LqQVkF2or3NfdQYFPSe+Kq8rwv6uK+i52eDraoVTY/uSTMpkMZ5UCZ5UCX1SV2qdArSMtT82dXLXBY5dVxK2s0p67Ao3B0Mou1HI+KY/zSfcaWQ1c7Gjq6UDLeo4E1HOkpbcjzbwdqmVsWrtdEUgHTUAAythYIW8ukBRqtRooLfKmVCrJzs4GoH379uzcudO47tatWxQUFNCuXbt7jhUcHExhYSG3bt3Cz88PMIhWDBo0yHisK1euGLePj4+nVatWODg4VLjv/fD19QXgs88+Mxp3hYWFpYQkvLy86Nq1Kz/++COZmZksXry4ElfHupjMiCoqKiI3N7eUd+mJJ57gyy+/JDU1FW9vb+N2J0+eZMCAAVZP1LMFzD1KmlciNEbqmNsrVxG2ZHBKDXPVXU3vX51Oz9W0AmJv5xF7J4/LqQVcSsknJVd93/28nJQ08XCgsYe90Vvi72GPn5sKJ1X1cn3qAg52chq629PQvewQDb1eT0a+hltZRdzINHj5rmcUkJBeyLWMAvLuerJu56i5naPmeEK2cV+5DBq729OynqPRuApq4ISnp/6+7xprtysC6SAm2hVIkRYtWuDj48OOHTsYNWoUOTk5/Prrr4wYMQKARx99lPnz53Ps2DG6du3Kpk2b6Nevn9FY+eabb5DL5UyYMAFPT09CQkLYtGkT06ZN49ixY6jVanr37g0YlP2ef/550tPTcXd3Z8uWLYSGhgJUuO/98PHxoWfPnvzwww+MHz8egHnz5tG/f/9SQhZPPPEEH3zwASEhIahUlRucsyYmM6KmTJnC8ePH+fHHH41iEePHj+eHH37gww8/JCIiArlczsKFC1EqlUybNs1UpxbUAFsKUTO3V64ibMnglBrmqruq3L86vZ4bGYVcuJ3HheQ8LqVf5vytbHLv413yc1PR0tuRFt4OtPB2pKmnwVhytheGkjmQyWR4Otnh6WRHsK9zqXV6vZ60PA3X74ZTXkk1eAkvpeSTnq9Bp4frGYVczyhkX/zfEzPWc4mjfUM3Wnra0cbHiSAfJ7yc7Izrrd2uCKSD8ESZnmKFPhli0Ly6qFQqPv/8cz744AN27txJXl4effv2ZcyYMaXWv/3228jlctzd3Yko8V5MSkoqNZA0b9485s6dy4gRI9DpdCxdutSYe9S6dWteffVVJkyYgEwm46GHHmLkyJGV2rciPvroI95++2327NkDGIy/kgYUQP/+/XnnnXdsIpQPQKavREbYkiVL2LNnDykpKaSkpNCyZUvs7Oz46KOPCAwMBAxxjkeOHGHz5s2l5oVKSkrigw8+ICYmBplMhr+/P3PnzqVly5Y1KrhOpyM5OblGx6gO1kxsrMtYMuSmXGEJEc5nU+QWajmXlMuZmzmcuZVLTHJuueIOLioFrRv8HRrWwtuR5t4OOAuvkuQo6zlMy1UTf9egunTXm3g5NZ8ibdmvNx8Xg0HV3s+FDg1dWH1xPmtjV4uQPhvFVO9lX39/ZFoteoWCpDJSEQRVp8/3fYhNjyXQM5B9z9VsPiFrC0vI5dLLTRVYl0oZUVKkrhhRljAebME48P/GH61ei0KmIGGSeV9u5dWxeMFWH3Pex27h4ThGRRE/djKHw14yGk2XUvIpq3FzUslp08CJjk28adfQlcbOOhq52yMX4cU2QWWfQ41Wz+W0fK5nyzh3M4vTCWnEp+SXUhQsRk8hhfI4iuQX+ObJubTzc8bNwaritYIqYKr3cr0+fQyeqMBAUkwwgajg73c3wNjgsTVq/4URJZAawoiqIpV9iE1lmFjCeLAF40B4omwbc9zHydlF/JmQTfTC5Rzxb88tt/r3bCOXQUA9R9r7udDez5kgHycaexgMJuFVtk2q+hyWrOdCjY74lHwuJOdxPjmXMzdzScwsvGcfGdDc24HOjV3p4u9K58YuuNoLo0qqmMwT1agRMr0evUxGUmKiKYpW5wk/FM7K6JXG/29OvlntYwkjSiA1hBFVRSr7EJvKMBGeKMsjOtemxxT3cVqempM3cvgzIZsTCdncKKPz66SS087XmQf8XGjf0Jm2vs7lhuSJeq4bVFTPKblq5v76FUevp9BQ1ZO8fC/+GQUol0FgfSe6+BuMqgcauuBgJzpUUsFkRlTDhgaJcyDpZvU7+4LSNPy6ofG7MKIEtQkxtGYmTCVCYIk5TGxBXEIKMsTC2LQsGq2eM7dyOHI1i6PXsohPuXcCV2eVnM6NXXmwsSudGrvQ0tsRhVyE5QkqTz1nO35O+hCtnZZMviVuylWik/I4nZjDnzeyOXcrF41OT8ztPGJu57H6RDJ2ChntfJ3p1tSNfzVzo2U9R6E2WwvQBAYaw/kEAoGgIoQnqop4eXkxY/cMIk9F1pokZFswDkROlG1T2fq7nVPE0atZHLmaxfGErHuEIOyVMjo2dOFBf4Ph1LqBE8pqGk3CE1U3qEw932+QJl+t5a+bufyZkMWJhBxib+fdk2tX38WOh5u50aOZO138XYUgiYURwhLSRniiBLUV4YmqBpGnImvVvCK2MP+RFGSIhcR59Smv/vR6PTHJefx2OYPDV7K4WIa3qVV9Rx5u5ka3pm609XFG9Y8JVW1hEEBgOixd3452Cro3daN7UzcAMgs0nLqRzbHr2Ry5mkVSdhF3ctT8cC6VH86lopTL6NTIhR7N3HikhQeNPSon/yuwPkLi3DwImXNBbUUYUdVgYqeJRk+UubFEGJswDgSWRKPVcyoxm98uZ/LbpQxu55Se2NZFpeChJq483Myd7s3cqOdsV86RDNjCIIDAdJijvqsy4a67g5LeAZ70DvBErzdM1nz4ahZHrmZy+mYOGp2e4wnZHE/I5rODiQTUc6R3Sw96tXQXYX8SR0y2ax5ae7YmNj2W1p6trV0UgcCkiHC+KmJpd7Ilw9ikjAjns22afN0SO20HnLUP46vsR/Y/Jrht6mnPoy08eLi5O+18nVEqKt/RrK5nQoTz2SY1UecrD1MNVuUWajmekMXhq1n8fiWTtDxNqfWN3O3p1dKd3gEetPV1FrL6JsIUz7JbeDhOK1eCTEbemDFiQMaEiHA+QW1FeKIkjhTC2KSAFK6D8NhVDbVWx9FrWeyNS8e/cB06naG5ydYaDKhgHyd6tfTg0ZYeNPNyqPZ5bEEYRWA6pFzfzvYKo5dKp9dz7lYu+y9l8NulDBIzi0jMLGTtydusPXmbes52PNbKg36tvWjr6yQ8VFbGadUqozKfVO8vW6U4nA8MAxa1IQ3CnCQlWbsEtR9fX9McR3iiqkhtHL22hZwSKcwTJagYrU7PyRvZ7I1LZ198RimPkx4tnq4pTHiwC4+2cKeBq8qKJRX1XFeoTD2b29Ot1+uJT8nnwKUM9sdncCm1oNT6Ru4q+rb2pF9rL1rWczT5+Ws7pniWhby5+TDVXFF1xROVlAS6MiYFF5gGudx0RpTwTQpK5RhIlZI5C9bELTwcX39/3MLDrVoOKaHX6zmflMv/9ifwzLdn+c+WeLadTyW7UIsMeLCxK+mqJdxwCOOcdjJDO9Q3qQEl6kRQU8KCwlDIFGbzdMtkMlrVd2Ji94ZEhQWzYWwwUx5uSMBdgykxs4iVx5MJWxPDqKhoVhxL4mYZ86AJzIcmMBD93U+BaRGeJ0FtRRhRZsJUHbvwQ+H4f+NP+CHzdRDzwsLQKxSSDlMzdyenstiCwWkp7uQUsfrPJEasjmbid7F8/9cdYw5IOz9nXu7VmG0T27NkSCsGtfdBJs8zS/2JOqlb1Aaj2d/DgTEP+bJ6VBBrwoIY95AvjdwNAwuXUwv46shNhqw4z9SNceyMTiWvSFvBEQU1RYhKCASCqiKMKDNhqo6dJTwwWRERJCUkSDaUT0rYgsFpTgo1OvbGpTNrazzPLjvH0t9vci3dMGLe0tuBKQ83ZPP4tnwzLJBhHRsYlfUiekaQMCnBLCOSdb1O6hrmMJqt6elu4e3ICw835PuxbYkcHsiwjvXxdjLkD55KzOG9PdcYGHmW9/Zc43RiDjYagS95NAEBBk+UkDc3C8Xy5kLmvOqEh79A//7teO65R1mw4E3j8qtX4+nTJ5ALF84Yl23YsJxRo/rx/PMDOXnySIXHfv/9Vxk8+GE+/vj/ADh58ghTpjxHnz6B3LljuuSs6OjThIb2Qa0uKnP96dPHyjzvjz9u5K+/jhv/z8rKYObM0fTv3449e34wWfmqizCizISpOnaW8MDYwsiuVML56iqxt/P4eN91Bkae5Y2frnDkWhY6PXg4KhnWsT4rR7YhKiyYMQ/54udWel4cc3tTxSBA3cIcRrMUPN0ymYy2vs683MufHya059NnA+jb2hOVQkaeWsfO6FSmbIxj2MpoVhy7RXJ22Z0RQfVQxsUZPFFxcdYuSq2kWN5cyJxXnYiIr+jQoSvNmrVi9ux3jMtPnToKwIkTfxtLw4aNp1On7rzzzmI6d+5R4bFfe+0jHnzwYeP/nTv34PXXPzFh6Q04OjrTuHEzFIqy9ew6duxa5nl/+mkTZ878bUS5uXmwcOFq3N29TF7G6iDU+cyEqRSkInpGmD2e2Bbm2ZGCOh/YxrUyFQVqg9dpy9k7RCfnGZcrZPBwc3eeDPLmX83dsFPcfyymKnPwCAQVIWV1PlOhkMuME/xmFWjYE5vOzuhUYm7ncSOzkK+O3OKbo7f4V3N3BrWvR7embkIuvaYUe/iEp88sxKbHlvoUVI3OnbuzatVS1Ooi7OwMob+nTv1Bhw5dOXnyCKNGvWDcNjHxKo0bN7NSScumefNWfPLJcmsXw+QIT5RAhENVgbpwra6m5fPpAYNIxPy914wGVHMvB/7zSCO2TWjPRwNb0jvAo0IDCsw/ym8LnlSBtJGyp9vNQcmQDvVZNqINUaOCGNG5AZ6OSnR6OHg5k1k/XGLYyvNE/ZlEep664gMKykQISwikTKdO3SkoyOf8+dOAQaE6MzONxx9/mnPnTlJUZAirT06+ia9v41L7/vHHAaZMWNiXSQAAIABJREFUGcr06SOYNi2UrVvX1Kgs27d/x7PPdmfIkJ4sWTIfgIyMNB5/PJiUFINq9oYNy3nuuUd44YXBxMScYcaMMPr0CeTs2T+Nx7l27RIvvTScCRMGMnfuJGJizpQ6zzvvvMyVK3H8+ONGZs4czZtvTiu1Pi0thfnz/8uLLw5h2rRQkpISa/S7qoMwogQ2EQ4l5U5ObUCj1bM3Lo2pG+MYsTqGDafvkF2oxU4hY0CgJ18Obc2asCBGdPbB626ek1QQwhJ1C3MYzVII56sMLes58p9HGvPDhHa8+0RzHmzsAhjU/T7//Sb/XnaOebuu8JfInaoyQljCvJTMhTKnUFZtpXXrdri4uBlD+C5ejCYgIIjOnbtTVFTI2bMnAUNOU6dO3Yz7XblykbfemsHs2e+xePE65s//gvXrI/n5563VLsvAgcN59tlR1KvXgGnTDLlUR48eQKfTcuTIfsAQVujv34JFi9YQFPQA//vfilLH0Gq1vPHGVIKCHuDbb7czf/4XHDq0p9Q2b775Kc2bt+bJJ4eycOFq3nlnSan1v/22m9mz3+XLLzfh4eHFqlWfG9cVFOQzbtxTrFxZeh9TI4woiWMJdT5bQCqdnNrWYc/M17DyeBKDV5zjjZ+ucioxB4BG7va81LMRPzzfjrdCmtOhkUu1JwM1twFcF7yDgr+pbc9gdbBTyOnb2pMlQ1qzbnQwwzrWx0WlQK3Vszs2nRc3xjF23QV+jElFrRUTzlSEW3g4aLXoZTLRjpiJMcFjjN9LzhklqBxyuZyOHbsaxSJOnjxC5849aNSoKT4+DTl58jBgyJPq1OnvXKi1a7+iY8duBAS0AcDd3ZNHHunH1q01az979OjNxYvRpKbeBuDo0f08/HAfjh7dB0BmZhqOjo44OJQ9793x44dISLjK0KHjAFAolDz55HNVKsPDDz9mPP4DDzxEfPwF4zq9XkdBQR6FhQXl7W4ShBElcSzhgRHhUJWntnTYr6bl8+Ev1/n3srN8efgmd3LUyGXQq6U7i54NYMPYYMIe9MHTqeZeJ3MbwLbgSRWYDnM8g7bs6W7m5cDLvfzZPrE9r/VtQlADJwAu3snn3d3XGLTsHMuP3SIjX2PlkkoXp1WrjH4S0Y6YB5EPW3M6d+7BhQtnyc/P5a+/jtOhQ1fAEOpXbFylpNymfn0f4z6XL8cRHx/NzJmjjX+nTx9Do6lZe9C6dTs8Petx9OgB1OoicnNzCAkZwokTRygsLODIkQN069ar3P2vX7+EXK6gQQM/4zIfn4ZVKoO3dwPjd2dnF/Lycoz/Ozo6s379PiZP/m+VjllVhLCExLGEoIItiCUIcYKao9frOXoti+9O3+GPa1nG5S4qBQPbefNch/r3KOvZAm7h4ThFRZEXFibZ+1dgOswhLCEV4Zqa4GAnZ2DbegxsW4/zSbl8d+o2v15MJzVPw9dHbrHiWBIhbbwY3qkBLbzLHh2uswhRCYEN0KlTdzQaNSdOHKGoqAAXF9e7y7uxe/dWzp07SZMmLf6xl57OnR8mPPxDk5ZFJpPRrdujHDmyjwYN/OjQ4SG6dHkYnU7HyZNHOXp0Py+9VP7AfFnhxlUNdlH8IyfbGiHMwhMlccw5v04xtuBdEeF81Uej1fNTTCpha2KY9cMlowHV2N2eWb0bs3VCO/7zSGOzGVDmHuW3xToRSIuInhFGQ6o2hE639XXmnSeas2l8O8Ie9MHVXkGRVs+286mMioph5tZ4TiRki7ypuwhRCYEt0KxZAN7e9Vmz5iuCgjoal3fu3AOdTseyZYvukTVv0SKQhIQrpZZdu3aJZcsW1rg8PXr04cSJIxw4sIsePXrj6OhMhw5dOXhwN+npqdSv71vuvk2bBqDTabl9+6ZxWXLyrXu2k8v/NlMKCvLRaqU18bgwosyELYXI2UI4lCWMycpgCwZnMQVqHd//dZvnVp7nnd3XuJxqiA1+sLErHw9syXdjg3muQwOcVQqzlsPcBrAt1YlAuthySF95+LiqeKlnI7Y+347Zvf3x9zAMlPxxLYtpmy8yaUMsv13KQFfHjSkhKiGwFTp16s6FC2dKGUv16vng79+cv/46RseOXUttP3LkC1y8GM2xYwcB0Go1LFu2CB+fRjUuS5cuD6PVqjl16igtWxpyrrp378Xu3T/QocND9933oYd64u/fjI0bV94tl5Zt29bds52HhzdZWZkA/N//TSEx8VqlylZQkM+YMSFCWMJWsaXRcakbfFIS17AFgzOrQMPyY7cYtPwc/9t/g6TsIuQy6Nfak5Uj27BkSCt6tnCvNfPK2EKdCEyHudqrAI+AUp+1CSeVgqEd6rN+TDAfDWzBA37OAJxPymPOjsuMXhPDrgupaHR105jSBAQYPFEBta/upUSxQl9JpT5B1ejcuQd2dirat+98z/KWLYNwc/Motbx581bMn/8F3377KS++OISZM0cTHNyBp54yiDi8//6rnDhxmKNHD7BgwZucPHmE994z5BG99dYMzp8/VW5Zij1PXbr0NC7r0aMPWq2GHj36GJfFx8cwa9Y4AD777D0OHtyDQqHgnXc+JybmDM8/b5A479r1UeN5i6XQhwwZw7Fjv/Gf/4zE17cRfn6NmTlzNJmZaURFfcmvv/7I3r3b+e67SFJSkpk1ayxgEJYoLCwwu7CETG+j/nydTkdycrLFz+vlZZglOS0t7b7bmSJPI/xQuDFO35weGF9/f2RaLXqFgqSEBLOdp7r4f+OPVq9FIVOQMMn85btfHUs5/yYtV83aU8lsOZNCntqgyGWnkPFUkDejHvShsYd18p0sXX+VpbLPskBaVLW9qmw9S/U+NRenE3NYdTyJIyXyI/3cVIzq7MPTbb2xV9rOGGtNn2XfRo2Q6fXoZTKSEi0/10xdIfxQOCujVyJDxpjgMVXu11izzfbx8SkVWmZOkpJAJ0Q1zYZcDr7lRxpW7VimOYzgn5hidNxS4SVSD4eSSj4USNPDmJanZvHBGwxecY41J26Tp9bhpJIT9qAPm8e3Y87jTaxmQIH5R/il7kkVmBZztVdSamcsQcdGLvzv2QBWjGjD4608kAG3sor4ZH8CQ1ecZ+NfdyjS1JGenBCWsAjFRpMevZA5F9QKhBElYSz1UhfhUJVHSgZnRr6Gzw8lMmT5edaevE2hRo+bg4IXevix9fl2vNSzEfUkMDFufEZ8qU9TI0XDVmA+RHtlWgIbOPHeky34bkwwz7T1RimXkZKrZsH+BJ5beZ7NZ+7U+rmmhLCEQCCoDsKIkjCWFFOQ8mh+bUz4rgkZ+RqW/p7I4OXniDqRTIFGh6u9ghd6NGTz+HaM6+qHq710Zi8QwhICW6CutzP+ng6E923KhrHB/LtdPRRyuJ2j5uN9CQxbGc22cylotLXTUyOEJQQCQXUQRpQAkPZovpTCbKx5nXILtXx95CZDlp9j9Z/J5KsNxtPkHn5sGd+OcV19za60J0WEZ6JuIYQlzIufmz1zH2/ChjFteTrYG4UMkrKLiPjlOsNXnWdndCraWiZAIYQlBAJBdRBGlISxpCqdGM2vHNa4TkUaHRtO32boyvMsP5ZEnlqHi0rBxO5+bB7fjvFd/XC2l67xZIkRfil7UgWmxVwDGeYOO7U1Grrb83/9mrJ+TFueDPJCLoObWUW8t+caY9bGcOhyZq2YZ8otPBxlbKzwRAkEgiojjCgJY8nwEimP5tfVMBudXs/PF9IYsTqaTw/cICNfg4NSzriHfNn8fFsmdPPDRcLGUzGW8CRK2ZMqMC1CWMKyNPaw543+zVg3Opj+gZ4AXE4t4JXtl5i66SLnbuVauYQ1wykqChmgBzGIKJAMcrn4M9efKZFO4oTgHsKCwowS53WZAI8AYtNjJRFmU7Kzbi6DU6/X88f1bJb+nsjFO/kAKGTwTLt6PN/NTxJiEVIjLyzMKD0vqN1kRURIcrCnttPE04G3Q5ozsrMPXxy+yR/XsjidmMOkDbH0CfDghYcb0tTTwdrFrDKagACUsbFoAgPFfWUBZMjQY/Bghh8Kt0jOt61hKvltgfkR80RVEUvOE2VJpFzeujRPVHxKPot+u8GfCdnGZY+18uCFHg1pYoMdFJDu/Dtinqi6gZgnyjwcv57F578nEnv774GegW3rMamHH15Olh3oqcmzLOaIsizFc0UVc3PyzUrvW1fmiRLYDuKOMBO2Fl4k5fJKKcwmKyLC6PUwZf5Nep6aj369zti1MUYDqnNjFyKHBzL/yRY2a0CBtOpPICgPISxRNR5q4say0Da8E9KMRu4qtHrYei6FYSvPs/Zksu3Ioos5oiyK8DwJahPCiDITtibUYGvltSamNDjVWh3rTiYzbGU0W86moNNDE097PnmmJUsGt6Ktr7MJSmw9wg+FG0NSzfnyFMISdQNz1rMQlqg6cpmMfoFerBsdzKxejXFzUJBbpGPxwURGRdmG+ISYI0ogEFQXEc5XRSzpTrZUB1TqSCmcD0wT0qfX6/n9ShaLD97gekYhAK72CiZ082PIA/VRKmTVK7zEsFTd+fr7I9Nq0SsUJCVU7jwinM/2MGc9i/a25mQWaPj26C02n7lD8ZRS3Zq4MuPRxjT3djTbeUU4n23R8OuGxu8inE9gy4g7oorM2D0D5w+dLSI7bklVOimP5Ne2cLDr6QW8/MMlXtl+iesZhShkMOSB+mwY25bhnRrUGgMKLBciJTypdQNRz9LG3UHJrN7+rBoVRNcmrgD8cT2b0Wti+N/+BLIKNFYuYRmIcD6BQFBNhBFVRSJPRVrMsLGk8SDlnCipUd1rVaDR8fWRm4StieGPa1kAdG3iyqpRQfy3jz8ejrVPLNNSIVJSlugXmA5z1nNdnUrBHLTwdmThswF8NLAFjd3t0erh+7/uELoqmp9iUiUV4ifC+SyPDFmpT4HAVhFGVBWZ2GmixQybiJ4RJExKsEhoiZRHeKXWuanOtTp8JZNRq6NZfiwJtVaPn5uKjwa2YOGzAbQwY5iLtbHUQICUPakC26D4HtXpdRaJNKjtyGQyHmnhwZqwIF7q2QgnOznp+Rre2X2NaZsvcjUt39pFFBPtWokxwWOM38WzVjkKCwuZO3cuw4YNY/DgwRw6dKjCfdRqNf369WPx4sWllt+4cYPRo0czcuRIRo8eTcI/QqOXLVvG4MGDGTx4MJGRkSb9HbUNYURVkUX9F5E7J7fWxcxLeSTflsP5krKKmLvjErO3XeJmVhFKuYxxD/myNiyYR1p4IJOJkThTIDypdQNzGssRPSNQyBTo0UtmwKY2oFLKCXvQh3Wjg+kT4AHAyRs5jF5zgS9+T6RAbT0VPzHRrnUo7j/p0ZeSOxeUz+LFi9Hr9WzYsIEFCxYwa9YsUlJS7rvPhg0byswfmz17Ns8++yxr167l2Wef5eWXXzau++2339iwYQPr1q1j3bp1bNy4kf3795v659QahBElYcIPheP/jb9FRmrESH7lqUyHXaPTE3UimRGrozlwKROALv6urB4VxAsPN8TBrm48epbyIkrZkyowHeY2loXMuflo4Kri/ada8L9/t6SRuwqNTs+qP5MZGRXNocuZVimTJiDAGMonxQFEgQAMQmrff/89Q4cOBaB58+YEBQWxbdu2cvfJzc3lp59+ok+fPqWWX7hwgejoaAYOHAjAwIEDiYuL49y5cwB89913PP3009jb22Nvb8/AgQNZv369mX6Z7VM3enJWwBRGiSXD2KQ8km9r4Xyxt/OYsP4Cnx9KpECjw9tJyTshzfhsUADNvGx3vqfqYKlOqZQ9qQLTYW5jWcicm58ezdyJCgtmfFdf7BQybmUV8cr2S7y28zJpuWqLlkUZF2cI5YuLs+h5BYKqkJCQQEZGBi1atDAuCwgIMBo+ZbF8+XLCwsJQKkvnWp89exZ/f39UKhUAKpWKpk2bGo919uzZKp2nmKKiIkaPHk1gYCBr1qxh0qRJ9O3blz179gBw5swZ/v3vf/PYY48RGRlJaGgoQ4cO5caNG7z55psMHDiQOXPmVP6iSARhRJkJUxgllgxjk/JIvq2E8xVodCz9PZEJ6y8QdycfGfBch/qsH9OWfoFedTJ0z1KdUuFJrRuY21i2lbbG1nFQypncoyFRo4J4yN+g4rcvPoPQ1dH8aEnhCaHMJ7ABisP2XF1djctcXFxITU0tc/u0tDSOHz9OSEhImcdyc3MrtazksVJTU0utd3V1Lfc8JVGpVKxevRqAvLw8vvnmG2bNmsUnn3wCwAMPPMBrr73G7du36dKlC+vXr6dBgwb85z//4ZVXXmHTpk389ttvnD59usJzSQlhRJkJUxgllhSWkOpIvhTnbinLQD6dmMPYNTGs/jMZrR6aeTnw1bDWzOrtj4u9woqltS6W6pRK2ZMqEAjKpomnA4sGBfB6v6a42ivILtTy7u5rzPrhEklZRWY/v1DmE9gy5Q02LF26lBdffNEkx6oOjzzyCACBgYEk/mPuNWdnZzp27AhAq1ataNSoEa6urqhUKpo1a3aPyIXUEUaUmZCqUVIeUh3Jl1ooH5SIow8IILdQy8e/XmfKxjjDnE9yGN/Vl5Uj2tDez8XaRa0zSNmTKjAd5m6npNje1HZkMhlPBXuXEp44ei2LUVHRbPrrDjozeolEOJ/AFvD29gYgOzvbuCwnJ8e4vCQJCQncuHGDHj16lHusrKysUstKHsvLy6vU+uzsbOMkx5XFxcXQ97G3t0etLh2i6+zsbPyuVCrv+f+f20sdYURJGEsKS0h1JF+K4TXK+HhkwB9FToyKimbzWYOrPaiBEytC2zC5R0NUSvFogeU6pbY2aCGoHkJYovbi7WzH+0+1IOKp5ng5KclT6/hkfwIvbbzIjYxC85xUhPNZjZJzRAmZ8/vTpEkTPDw8uHLlinFZfHw87du3v2fbY8eOcfv2bUaPHs3o0aM5ePAgW7ZsMUqZt2/fnhs3blBUZPD0FhUVcf36deOx2rdvX6nzCAyInp6EseSoqBjJrzypYWN5q+8LhA17l+QcNfZKGdMfacTXwwMJqO9k7eJJCkt1SqXqSRWYFiEsUfvpHeDJ2tHBPBVkGP0+fTOHMWtj2Ho2xeS5UiKcz3qUnCtKyJzfH7lcznPPPcemTZsAuHr1KhcuXDAq7F26dImxY8ei1WoZMmQImzdvZvXq1axevZpHHnmEQYMGsXr1avz9/QkKCiIoKIidO3cCsHPnTgICAmjXrh0AoaGh7Ny5k8LCQgoLC9mxYwehoaHW+eE2gDCiJIwUvTCWRmrhNeeTchlarx8rHjQ0Xu18nVk1MoiRnX1QyuuecERFWKpTKlVPqsC0mNvjKDxR0sDdQcnr/Zvx6bMB1HexI1+t48NfrzP7h0ukmFDBT4TzWQ+p5DjbCtOnT0ev1zNs2DBmzZrFggULqF+/PmAIubt8+TIajca4fbFaXrEnatq0acZ1CxYsYMuWLYwcOZLNmzezcOFC47pHH32UoUOHMmLECEaMGMGQIUPo3bt3pcr4/PPPAzBr1iyys7OZNWuWcXl8fDzvv/8+d+7c4c033+SXX35hy5YtHDx4kLVr17JkyRJiYmL4+uuvOXLkSE0vl8WQ6SsxtFNYWMjixYvZs2cPKpUKlUrF9OnTK3Vhd+/ezbJly8jJyQEMsZITJ06kb9++NSq4TqcjOTm5RseoDsWxoWVNYGbL+Pr7I9Nq0SsUJEkosa/P932ITY8l0DOQfc/ts8g5y6pjtVbH8mNJrDqehFYPdlo1Mw6v598b/ieMp/tgKWEQt/BwnKKiyAsLq3QHu7Y+y7UZc9ez/zf+aPVaFDIFCZOk0w7WZbIKNCzYn8Du2HQA3BwUvPpYEx5v5WncprrPsm/DhsbJdpNu3jRVkQWVpOHXDY3fb06u+Ppbs8328fFBLhd+B0FpKnVHvPLKK+zfv5/169ezfft2pk6dytSpUzlw4MB999u7dy/Tp08nJCSEHTt2sGPHDkJCQpg2bVqF+9o6thZeJNVwPimE11xJzWfShliWHzMYUK3UmWyNeoXxrRyEAXUfpKisKLBtRE5U3cPNQcnbIc1594nmuDkoyCrQ8vqPV5i36wpZBZqKD1Dece++m/UyGXljx5qquAKBoA5RoRF17Ngxfv75Z6ZPn46np2Hk5/HHH6dHjx68//779913x44duLi4MG7cOOOycePG4ezsfN+ZlmsDpnjZW1JYQqqJ+dYMadTr9Ww+c4dx6y4Qe9sw71PYgz5EzuxFswH/wikqymaMZGsgJosWmBqRE1V36dvakzVhwTzczDCHze7YdEavieFUYnYFe5aN06pVRmkDqb33BAKBbVChEfXTTz8B3COX2KNHD65evUp0dHS5+yoUCnQ6HTqdzris+H+tVlvdMtsEpnjZW7ITamueM3OTkacmfOdlPt6XQJFWT0M3FV8Mbc1LPRuhUspFp70SWHJUX6qeVIFpscRkuwA6vU4ohkmQes52fPJMS+Y+3gRHOzm3c9RM23SRxfsuodHqKj5ASYQyn9URCn0CW6fCnKjQ0FCuXLnCH3/8UWr57t27mT59OhEREQwePLjMfc+fP8+4ceMYNWqUMaltyZIlfPvttyxbtoyHHnqo2gWvCzlRlgyHkmpOlDVyFC5lyfjvpnMkZRlkdfu19uTVx5qUmjS3OrkZdQ2p55eInKi6QVXrWer3rcBAQnoBb+y6QuztfAC6NPXg9ccb4+OqqtT+9fr0QRkbiyYwkJR9lsm3FZQm/FB4KWW+ivKi6kpOVFKSRU4jqCa+vn9/V1a0cXp6eqnJsIopnkzrfjdz27Zt+fbbb/m///s/Vq1adffkvkRFRdGhQ4eqlrsUMpmsyhOAmQI7OzsAi5z7q2e+4qtnvjL7eQC0EyeiiIxEO3GiVa5reUzsNJHIU5FM7GT+cmm0Or747QpLD1xBpwdHOzlvPtWGQR39kMlK5z4pHBwAsHdwkNT1khKB3oFEp0QT6B1o9mukmDHDeP9qFy2q1D6WfJYFpsES9WzJ+1ZQfby8YOMLvizYG8+KI9f581oGY9flMP/fwfQLalDh/iWV+UQ9W4evnvmqlBFVUT1Ys83+Zx/A3Oiq6FgVWIZ/2tHVNquLHVj3u7H27t3L6NGjGTJkCMeOHePYsWMMGzaMF154gePHj1f31AIzoF20iKLc3Ep3TGobtzILGLPiJEv2Gwyotg3d2PxiNwZ3aljmPa6IjESm1aKIjLRCaW2D2NTYUp/mRNRH3cAS9WzJ+1ZQM1RKOeEhrfl27IN4OdmRma9h2vozvLXjAgXqClIGRDifQCCoIRV6ojw9PUvNXlxMbm6ucX15zJs3j4CAgHuEJbZv386cOXP49ddfq1FkA3q93iouXUu5k62hbCbFELXIU5Fo9VoiT0Uyr8s8s5zjj2tZzNt1hcwCw0t3XI8mzO4bQE5WBmlphWXuUy8gwBAKEhAgwsHKISwozHgPm/sauYWF/X3vVvJcIpzP9rBEPQd4BBCbHkuAh3i2bYWeLbzYOqU7L393mhM3sll3/AZ/Xkll/lPN8fdwKHOfEhE5op4lQkX1YO1wPkt7owTSp0JPVJs2bcjIyCA7u7QCTsLdvJk2bdqUuV9KSgopKSk0b978nnXNmjUjMTFRNFz3wRqTzEpRLMGc4gQ6vZ5v/7jFy1vjySzQ4uag4JNnWhIe0hqV8v6PhjI+3hAKEi9UvKSAVNUlBabFEvUsFPpsEx83exYNCuCFHg1RyOBiSj7Pr4vlt0sZZW6vCQxEf/dTIJAyt24lMHPmaPr3b09o6GPMnDmaqVOHMWZMCF9++RGFhQUmOc/GjSuIj48ptezChTMMG9aLoqKyB5T/yZw5E3n66S6sWLG42uUo6/dOmxZKWFh/3nxzOnfumC5pLD4+ho0bV1R7/wqNqCeeeALgnhmEjxw5QrNmzQgODgYMsyOnp6cb17u6uqJSqbhZxgR2N2/exM7OrsxcK4EBa0h7S1HhzFwdmox8DbN+uETk0VvogSAfJ1aMaMO/mrtXan8pXiupYemBAKEwWfuxRB2LuaJsF4Vcxriuvnw2uBVeTkpyirTM2XGZpYcS0ej+DttzCw9HGRsrBsIENoGfnz8LF67Gy6s+ISGDWLhwNUuXbuD9979k+/b1fPHFhyY5z8aNq+4xopycnPH3b45CUWHgGgAffhhJQEBQjcpR1u9dsmQ9X321matX43j33Vk1On5JDEbUqmrvX6ER1a1bNwYMGMDixYvJyDCM6Ozbt4/Dhw/z2muvGbebMmUKvXr14saNGwDY29sTGhrKiRMn2LFjh3G7HTt2cPLkSUJDQ7G3t692waVOTV/2ET0jSJiUYNFJSqU4mm8OY/J8Ui7j1sbwx7UsAIY8UJ8vh7bGz6323o/WwNKdUSl6UgWmxRJ1LDxRtk/nxq6sHBlEx4YGAazVJ5KZseUiablq4O59BOhBDIRZGSFzXn0aN25Gp07dOXBgl9nO0aRJSxYsWIFCoah4YzPj7OxC9+59OHv2BHl5OdYuDlCJnCiAjz/+mM8++4zhw4ejUqmws7Pj888/p1evXsZt6tWrh4eHBw4Of8cfz507l4CAAJYtW8YXX3yBXq/HwcGBt956i2HDhpn+10iIki97KRkl90NqOVGmzgszTJ6bwsLfbqDR6XFQypn7eBMGtKm60o8t1q+lsXRnNK9EvoygdmKJOi6ZEyWwXeo527F4cCu+OJzI2pO3OXkjh7HrLvDeE83/zmkNDBTtt5UZEzzGqNC3MnqlRQeOawMajQal0qBamJOTxeefR3D16kXs7R3R6bRMmjSb9u0fBGDjxpVs27aOoqIixo//D/v2/ciFC2fo3r03t2/fIi3tDmvXfs2uXVvw92/OoEGj+Oyz9/jrr2N8+ukqOnbsBkBaWgpLlszn+vXLODk5I5PJGDJkLI8+2r/ccm7YsJzdu7fi7OwK6Bk7dhqdO/cod/v7/V4oLWqXmHiNzz57l6ysTJRKJQFCtWbWAAAgAElEQVQBQUye/F8cHZ0A2Lt3Oxs3rsDR0YmioiI6duzGpEmz2L17K2vXfk1a2h1mzhwNwKRJs2jbtlOly1MpI8re3p5XXnmFV155pdxtPvzwXneiQqFg+PDhDB8+vNIFqi3U9GVvDWEJqRkGJcPBanoNijQ6Pt6XwI7oVACaetoT8VQLmns7Vut4osNeMaIzKjA1WRERZm+bhCeq9qBUyJj+SGPa+znz7p5rpOSqeWlzHPOcAhhNLMq4OGsXsc4T0TOilMy5oPKcPfsnJ08eZsSIyQCkpd3h2rVLLF68DqXSjjNn/uT116eyZs0eXFzcGDp0LC4urixc+DZ5eTl88MHXREf/xa5dm/jf/1YSGvoYI0dOJiTk77lfFy5cTZ8+pfMG33xzGk2btiQy8gfAYJxt3ry6XCNq587v2bZtHV988T2uru7Exp5l+vSRfPvtNvz979VNKI+kpEQOHvyZxx9/GkdHQzqQWl3Eq69OZOjQsQwaFIZWq+Xtt2fy6adv8dprH5GSkkxExBxWr/6Zhg39ychIY+zYJ5g0aRb9+z+LTqdjxYolLFy4ukrXvhjLzBxWB6lpaJw1hCWkludjqnAww4vzotGAeqyVB9+Gtqm2ASWoHJbujIpwPoEpEDlRtY/eAZ4sD21DC28HtDp4s/8UXhvwEkUy64coCQRVYdeuLcycOZqXXhpOZORCpk4NZ8yYlwBDLtF77y01eqYeeKALSqUd0dF/lTqGVqvl6acN0WDBwR2YNeudSp//1KmjnD9/iuHDJxiXPfXUc3Tr9ki5+6xe/QVPPjkUV1dDznlgYHtatGjNtm3rK/17x417ijFjQhgxYjKvvfaxcf0vv+wgLS2FZ54ZARicN088MYS9e7eRk5NFenoqOp2WpCRDqpGHhxcREV9X+vdWROUyxQQWp6Q8dF3FFJ3w6KRc5u68zJ0cNTJgco+GjH2o5lKlUvPaSRFLe6KEd7B2Y6lwY+GJqp008XTgm2GBvLv7GvsvZbCu4xPEe/vzVp4aLyc7axdPIKgUISGDGDduepnrFAole/du5/ff9wIgk8nJzs4kLS2l1Haent7Y2amqdf4rVy4ik8lo1KiJcZmjo5PRG/ZP8vJySE5OZPfurRw7dtC4PD8/j/z8vArPV/x7tVoN7733XzZsWM4TTwwxhupdvhyHXq9j9uxxxn3U6iIaNGhISsptAgKC6Nfv3/z3v+Pp2LErffo8Rd++A6v128tCGFESJaJnhMVjg6VmGNTUkNx1IZWIvdcp0upxUsl5a0AzHmnhYZKyaUrMEyUoG0t3Ri0R6iWwHpZqn0QYau3FSaVg/lPN+W7KB3wWNIDj/u2YsD6WDwe2oHV9J2sXTyCoERs2LCMq6guWLv2eJk1aABAa+hgGCZW/kcur74HVV3Ny6qFDxxm9X9VBoVAydWo4o0Y9zvbt6xk27HljeVxd3e4bjvfaax8xYsQkfv55M99++ynfffctX365ERcXt2qXpxgRzicwIrVwvuqi1elZfPAGb/98jSKtnsbu9nw7PNBkBhSIeaIqIvxQOFq9Fhkyi3lThcR57cZS7VOx0R+bHivUwmohcpmMl7cv4cst83Eqyicpu4jJG2L55WJ6xTsLzI545qrPmTN/0rJlkNGAAtBoiiq9v1z+d4ROfn5umQZTixat0ev1JCZeNy7Ly8thw4blZR7TyckFH59GJCRcKbX84ME97NmzrdJlA6hf34fHHx/Ixo0r0WoNAhMtWwaSlpZKTk6WcTudTkdExByKigq5cyeZ8+dP0bx5K158cQ7Ll+8kNfU2J04Ypm2Syf42g7RaTZXn3BJGlEQJPxSO/zf+Fm1QpCZxXp28sLwiLa9uv8Tak7cB6NbElW9DA2nmZdr8p9picJqL4jqTy+RWEUYR1D4s1T6VNPotmZMqsCB6PSFxR9i0+r/4uako1Oh5/ccrRB69We2RdkH1KSlzLkQmqk/Tpi25evWiMXwvOvr0PaF898PDw5usrEwApkx5joKCe8PtOnXqTtu2nfjuu2+NyzZtWsWtWwnlHnf06Cns2fODMS8pKyuDZcsW0aJF60qXrZhhw54nJSWZX3/dCcDjjz+Nr28joqK+NG6zdesa1OoiVCp7EhOv8vXXnxiNLr1eh16vp1GjpgB4enqRk5OFXq/nwIGfWb58UZXKo3jrrbfeqvKvkAB6vZ7c3FyLn3fuwbkM3TiUO/l36Nuk7323dQsPx3P8eOR37lDY9/7b/pPxP49Hq9dyLuUcsx403cRi96Mm5TUH2y9vJ7UgldaerRnXdlyF29/OKeI/W+L566bhvhjRqQH/178ZjnZVc107OhoMrvz8/HK3sf/lF+zOnEH9wAOSuFZSo6p1Zwrkd+5gd+4ceWFhlaqTytSzQDpUt32qaj33bdKXHZd3WPz+FVSfqtaxy4IFyIB6eZn865v5xCTnciuriFOJOSRmFvFwMzcU8prlzQoqT0p+Cn/d+Vv8YPaDs8vczppttouLS41zqStLTg6UtOVv3UrgjTemcf36ZRITr3Po0F569uyHSlV6bsugoA5cu3aJFSs+48SJI6SlpZCUlEhs7FkcHZ2IjT3H+vWR3LmTxIkTR2jQwA8/P3/j/u7unqxb9w2//LKD7t17Ua+eD2+//TLJyYnEx8fg7u5Js2YBdO/em8OHf2XVqqX88st2FAoFL730GkqlkjlzJhIbe47r16+QmZlG5849aN26LQqFgqVLP+CXX3awf/8uxo6dxgMPdCnz9//z9544cdiYx+Tp6U1MzF/8/PMWTp8+Rv/+z9K9e292797KmjVfceDAT6jVRcyYMQ+VSoVKZc/Fi9GsWfMVe/fu4OeftzB27DS6dXsUgAYN/Dh79k+2bFlNXNx5nn9+Bm5u5UctyWTg4lLif72NDrvodDqSk5Mtfl7/b/zR6rUoZAoSJpVveQP4+vsj02rRKxQkJdx/239iDYnzmpTXHFTlWsfdyeO/2y5xJ0eNQgb/7dOEZ9vXq9Z5vbwM80alpaWVu43UrpXUqErdmYqqCg9Upp4F0qG6z1x16tka96+g+lSljt3Cw3FauRJkMvLGjCErIgKNVs/H+66z7bxBwbVjIxc+eLoF7g4ibdxSNPy6ofH7zck3y9zGmm22j48PcrllgreSkkCns8ipBFVELgdf3xL/W68otsnEThNRyBSVyvOoSchXRM8IEiYlWFRcQmohamFBYZW61oevZPLi93HcyVHjpJLzyb8Dqm1AVZa8sDBDqqZOJ3JwysAaMtEinK92Y8n2Scic116cVq0yBo8VD7YoFTLmPt6EFx82dORPJ+YweUMsNzIKrVRKgUBgCwgjqoos6r+I3Dm5lTJupJZjVBvZ9NcdXtl+iXy1Dh8XO756LpDuTWuuuFIRWRERoFAg0+tFp70MrCETLbVBAIFpsWR7KmTOazHFwTf/CMKRyWSMfciXd59ohkoh43p6IZM2xHL2Vo4VCikQCGwBYURJFGsIS0htJP9+whI6vZ7PDt7gk/0J6PTQpoETkaFtCKhnuQl0Rae9fMRIvsDUWFJ9Udy/dZe+rb34bHAr3B0UZORrmLbpolDuswAlxSWEQp/AVhBGlESpjjJdTZGaUVBeR0aj1fPu7musu6vA92gLd5YObUU9ZzFholSwxki+1AYBBKbFkvUbmx5b6lNQe9AEBqK/+1keHRq68M3wQPw97CnS6nnjxyts/OuO5QpZBxkTPMb4XSj0CWwFYURJlMrmA5kSqYUfltURz1dreWX7JXZdMCSWDmpfj/efalFlBT5TIDrt5WONkXypDQIITIsl67d4VLzk6LigdqCMizPM8RcXd9/t/D0c+GZYIO39nNEDC/Yn8M0RIYFuLiyZ/22L3LqVwMyZo+nfvz2hoY8xc+boUn/9+7e3dhHrJEJ6RqJE9IyweKNSVXUzcxMWFGZUKATIzNcwe1s855MMcxdM7ObH8918LSY7+k80AQEoY2PRBIiQn39iDU9UVkSEJO5bgXmwZP229mxNbHosrT2rPo+JQOKUkxNVFu6OSj4b1Ir/+/Eyh69msexYEml5Gv7bx19IoAssip+fPwsXriY09DFCQgYxbtz0UutDQx+zUsnqNsITZUYsGcNvCqTsWUnKKuKF72M5n5SHDHiljz8TuvtZzYACUMbHG0Y040Xy+T+xhifK1p43QdWwZP0KYQlBMQ52cj58uiVPBhnktbeeS+GNn65QqBEa1ALpMHfuB9YuQp1EGFFmpCZGiTWEJaQWDlWcF7b+/AEmfx/LtfRC7BQy5j/ZnMEP1Ld28dAEBBhi64Un6h5ETpTA1Fiyfou93zq9TiS5C1AqZLzerykjOzcAYF98BrN/iCe3UGvlkgnqOklJN5g5czQdO3bl+vXLzJw5mj59AtmxYwNvvfUfJkx4hldfnUBWVkap/fbs2cbkyYOYMWMU06aFsm/fj8Z1H34YzuDB/+L991/lm28WMHv2OPr3b8euXZsB2LFjAyNHPs60aaG8++5sPvvsXZ5+ugtz5kxk/fpIBg58iCFDerJ0qcGwO3BgF2PGDCAsrD/nz5+y3MWxAMKIMiM1MUqsISyRFRFBXlgYTlFRVh/NDz8UjlavRaULoLF6AXdy1Dir5Cx8NoA+rTytWrZihCeqfEROlMDUWLJ+i0Op9ehFknstovi9ppfJyBs7tkr7ymQypj/SmJd6NgLgxI0cXtocR0a+xuTlFAiqQ5MmLVi4cDUAR478yhtv/I+vv95CVlYGmzatMm534sRhFi9+j3ff/ZxFi9bw+usLWLDgDU6ePALAnDkRdO36CIcP/8qjjw5gwYIVTJjwMgqFkvPnT/Hpp/N4441PWbJkPc8/P4M9e7YREBDEhx9GEho6kaFDx+Ls7MLUqXMB6NUrhDZtOvDmm5/Stm0nUlKSGTHiMbZv/87yF8nECCPKjNREqMEawhIgndH8qJgo7LVt8Cmcj0Zrj6ejks+HtKZzY1erlqskotNePiIcSmBqLC18I8Qlah9lTbRbVcIe9OH1fk1RyCD2dj4vbYojNVdtukLWYYTMeeXYtWuLUVDinXdmlblNr14hKBRKFAoF7dt3IT4+xrhu9eov6N07BB8fw+TSvr6N6NLlX2zduqbUMQICgggMbAfA8OET6NfvGTZvjqJt204EBT0AQKNGTejRo3ep/QYMGMSNG1c5e/YEALm5Ody8eZ3WrdsCoNPpyM/PQ60uqvnFsDL/z969x0VZ5/3jf10zw3BGQAREUTxiZCc7GG6b0cm0g2m6motaux5WW3W3XSu6t/y23Ult3W3mVj+NSoy73OxklqXVot2WZgcrCwXxBIonBOQwHGeu3x8X1zAzDMxcM9fhc13zfj4ePkCYYT5wMcP1vt6HDwVRjMq/Jh+V8ytVHy7BSmBw64A/I7ntcZgQjaToMLw4bSQyk6M0XRPxj5hF5MCpehGAlQsARBlq97yJQyVouISBSBgq0Ztbs/rivycNhcXE4fC5Fix+uwxnGvR/Qqg1GnPun1tumYLnnnsdzz33Oh599Fmvt+nbN8X5flRUNGy2rk2jjxwpw7fffuk23a+i4gja2lrdvkZycmq3r1tRcQipqQM9bpfm9v/U1AG47LKrsWXL2wCAzz//EDk5k1xu3x/vv78bU6fO9vM7ZhcFUcQNC2POdx09j33lv4YJkQi3NuGlaSORkRih2Xp6Qift3oklqCbOpOpFAFYuABBlqP18o72iSG+uGx6Pp24bCquZQ0VdKxa9XYaq862+70h6RGPOpUtNHegs4XNlNned3nMc1+26wfXX3+YMxJ577nW8+upmPPnky263MZm6bx3jbcS/t/leEyfehR07PkFzcxM+/3wzbrzxdj+/I32hIIpRWgyWALSfcLa9vBYPbD4MB29GO3cCR01LMTA+XJO1+EKDJbzToh8KYKunj8hP7SCZyvmMx5+NdqUYN6QPnrljGCIsJlTVt2HR22WoqG2R5WsTIsWuXdvR3Nzk122HDBmJysojbh/bt+9bvP32Op/3HTx4OE6erHT72OnTJ7vd7tprb4bZbMGrrz6PxMR+6NOHjV52uVEQpaBgAhItBksA2mZXtpXW4G9bjqDDwYOznMSp8AcxJDFe9XX4iwZLeKdlPxRlB4lcqJzPePzdaFeKKwfF4bk7hyPKasKZxnYsfrsMh881y/b1CfHHv//9Cs6fr/XrtrNnL8bu3dtRVvYLAKC1tQUFBf9EevoQn/edOjUXJSU/YP/+nwAImwB/991X3W5ntYbj+usn4e2312HixKlun6uuPo2ZM3Pw4Ydv+bVellEQpaBgTui0GiyhVUnUp6U1eGzrUdh5IDM5EifClsPB1TE9mIAyUd5plYkCqKTPyKicjwRNpp4oT5cMiMHzU0YgNtyMc7YO3PfOQQqkAkTDJbyrqqrE4sW/QU3NGXz00UYsXvwbt38HD/6Cs2dP409/EvqM/vWvlfj++114++1CfPLJeygv34+///3PAIDLL8/GAw+sxFNPPYT77puBv/71XkyceBfGjh0PAHj++cexZ8//Yc+e/8Of/jTbbTz6hRdehvvv/zsef/zPWLLkbrz++ku4/vpbYbFYuq15woQp6NcvFVdccY3bxx0OB1pamrv1YOlR9++ayEYsLQrkhC7/mvyQqQ/+/GAtHtt6FA4euCA5CqumDscdH6SgtLZOkxNxf1EmyjuazEeUEMzraSA4cODBUzmfQShd4nthajT+ddcILH33IOqaO/DHdw7ixWkjkJEYqejjGs2crDnOoRKFJYUhcx7kS1paOl580XfmxrM/asyYbEyb1n2c/w033IYbbrjN69dYuvQRLF36iNfPdXS0Y/z4Cbj11unOjz3zzCNITR3Q7bbV1Wdwyy1TYDK552vEwRJGQJkoBQUzpEGrnii1r/ZuL6/Fio+PODNQz00Zjthwiy5OxCnr4Z2WmSgq5zMutYfeUDmfsYjjzXlA8h5R/hrZLwqrp45AXIQZtZ2BFPVISUNBE9sqK4/gb3+7D3a7sNH02bOn8eWXnzkHR9TV1Tj3f/roo7cwceJdmq1VDRREMUqrnig1A4MvDtXhb50B1Ih+kVg1ZQTiIoTkqJYn4v6iQQbeldWWub1VEwW2xqX20BvxAk5pbSmVFRmBSwmfkoH4iH5R3Ur7KusokCLGkJjYDwkJfbF48XQsW5aLFSuWYPHiPFx66VgAgN3egXXrVmPBgikYPXoM+vdP13jFyqIgilFa9USpZefh8/ivLUdgdwDD+kbg+Skj0Ceiq7pUD5kogDIf3vDg3d4SIge1n2uur71qX8wi8pN7Ml9vMpOj8NydwxFtNaG6qR1L3jlI48+JIfTpk4AVK57DmjXvYtWqIrz44lu46aY7nJ/v2zcZ77yzE2vXvofZsxdruFJ1UBDFKK0221XjRGXX0fN4eMthdDh4DO0bgdVTRyA+0r09Ty9BJA2X6C4zIdPtrZooqDUutbOM+dfkO3+HWc6IE/8oMZmvN1mp0XjuzhGIsppwurEd971zECfrKZAixEgoiFKQ1nsuBULpE5UfTzQi76PDaLfzyEiMwOopI5AQFabIY6mBhkt0p2UWkcr5jEuLjcBpQp+BKDSZrzej+0fj2cnDERlmwqmGNix9txznmtpVe3wjoFJawjIKohQU6FVxrYZKKK3srA1//eAQWjt4DOhjxeqpI5AY7T2A0qonTCrKRLnL25kHO28HB475LCLRD60uSNGGuyRYl6TF4H8mD0O4hcPx86340/vlaGjt0HpZTHN9vomT+kKNyUT/WPznieN5FS/LyMjhcOD06dOqP25iYiIAoKamxudt4/LynCN5pVw9TX85HXbeDjNnRuX8St93kFFqejo4ux282YxTlfI9dkVtC/6wsQy1zR1Iig7DmukjkdYn3Ott83bmobCkEBw4zMmao3pJo5RjrNTPS6+0/N0FpB0PKceZaCuY51kwxzlnYw5Ka0uRmZCJ4unFku9P1OHPMU5NS3NO5ztVVaXOwlx8deQ8HvjwEOwO4KL+0Vg1ZTgiw8yqr0MPxHMAUdUC4Xhp+ZqdkpLSbVQ3IfQboaBAy0+07AdSohzqdEMblr57ELXNHYiLMGPVlOE9BlBAVxO3iTMxP+6UMlHutJ6qSMfDmLQq06RyPiKXcUP64NGbM8AB2HeyCQ9/dATtdofWy2IS63/3CRFREMUgrYZKAPL3HdTY2rH0vYM43diOqDAT/jl5OIb27X3zQa1PxKWgnih3Wo43B+h4EEK6E8tAeY5TbI8of9ycmYi/5ggjn3cfq8fftx2D3aHLYiBCCCiIYpKWPVFy9h40tdpx/6ZyVNS2wmrm8I/bhyErNdrn/fQy3hygzIcnrceb02AJY9Jq6iL1RBmDuNEuoOweUf6YenE/LMxOAwB8VlaLp4srodOuCkJCHgVRDNJyqIJcJyvtdgce3nIYpWeaYeaA/540BJenx/p1X8pE6ZeW482JcWkVHM/JmuN832iDfkKKBpP5ejP3yhTcPSYZALDp52q8+vUpjVfEHtcLF/TcI6yiIIpBeu+J4nke+Z9XYE9FAwAg78bB+PXQeL/vT5ko/dL62NE+UUROYkk1Dz5kp4QR+XEchyXXDMCkC4RBCQVfn8TmX6o1XhVbXC9g0HOPsIqCKImWbVuG6Kei/boyEmhpnJY9UXJYu/skPt4vTM+Zf3V/3JrVV9L99bLRLkCZKE9aZxGpnM+YKDgmRsNxHPJuGIyrBgkVGk99XoHdx+o1XhU79Hr+Q0ILBVESFewt8LvUTo9/+INd8/v7qrFuj1CaMHl0X9x7Vaqcy2MOnbS703qwRH1+Pmy5uYgqKtLVJtekd1o+z6gviijFYuawctJQjOgXCTsP/NdHh1F6xqb1sgiDHnroIcyePdvtX1NTk/PzPM+joKAAo0eP9nr/V199FVOnTsXUqVNRUFDg9rmffvoJs2fPxsyZMzFt2jT89NNP3b7uzJkzMXnyZCxfvhw2W9fv6KFDhzB79mzcfffduPPOO7F27doev4fevlZHRwcKCwsxe/Zs5ObmYsaMGdi1a5fb/Tdu3IjJkyfjt7/9LWbOnIkff/zR/x9gD2bOnInMzExMnjwZhw8fdn78tddew7hx4zB79uxe709BlETzLpvnd5Yk0D/8Wg6WCOZkZefh83i6uAIAMC4jDn/NGQSOk37ioZeNdgE6afek9WAJQJ8XL0jv5J4aKsXIhJFub4m+sP66HB1uxv/cMQypsVbY2h34y6ZynKxv1XpZhEGvv/6627/o6K5BXQ8++CAaGhrQ3t7e7X5ffPEF3nrrLbz55pt488038fbbb2P79u0AgPPnz2P+/PlYsmQJNmzYgAULFuAPf/iDM0DbtGkT3nvvPbz22mt4//330dTUhH/84x9ujztmzBi8+eabeO2111BQUIAvvvjC6/p7+1qnTp1CYWEhXnzxRRQVFWHp0qVYvHixcz/YsrIyrFixAs8++yz+93//F9OmTcN9990X9FCWDRs2YMCAAbj11lsxdOhQ58fvvfdejBo1Cq+//nqv96cgSqJVN69C04NNfqWaA/3Dr2UQEWhQsP90Ex75+AgcPHBBchQenzgEFlNgV261LgmTik7au7AwWIL61IxHzqmhUtFeUfoWVVTk3GRXy/HmvekXY8X/TB6G2HAzztk6cP+mQzjf0qH1soiO3H///Zg+fbrXz/373//GbbfdhvDwcISHh+P222/Hhg0bAADbt29HbGwsrrrqKgDATTfdBLvdjs8//xwA8P7772PSpEmIjIwEx3GYNm0aNm3ahLa2NgBAeXk5Lr30UgBAQkICBg8ejP3793tdR29fKzo6GkuXLkVsrFDe+qtf/QpWqxXff/89ACHjFRsbi2HDhgEALrvsMpw9exZnz54N+md3yy23YMuWLW4f+/nnn5GVleXzvhREMUjrniCpQcGZhjY8sPkwWjocGNDHimfuGIYoa+A7sWs9nEAqOmkX5O3Mc55oannsqE/NeOhCBQmU8/U5M1Pz8ea9Gdo3Ek/eNhRhZg5Ha1rwXx8dQYedjWmCWqEJfe4effRRzJo1C/PmzcPu3bvdPpea2nPrxL59+9yyLMOHD8fPP/8MADh9+jQSEhKcn+M4Dn379nUGQp6fT0pKgs1mw7FjxwAA48ePR3FxMQCgsrIS5eXluPjii72uo7evlZCQgDvvvNP5OZ7n0d7ejsREYfjKmDFj4HA4nEHVf/7zHwwYMAB9+/rXc19RUYHf/e53yM3NxaxZs5xfBwAmTpyI/fv348iRI86PbdmyBZMmTfL5dSmIYpDWgyWklPQ1t9uxfPMhVDe1I8ZqxjN3DEdidFhQj6+3TBSdtAtcM6daDgWhPjXjoWNKAmUpKxNen8u06dOUYszAWPztpsEAgO+ON+B/tof2HlI0oa/L0KFDMW3aNLzxxhtYunQpFi1a1GPGx9O5c+cQFxfn/H9sbCzOnTsHQAi+zpw54/wcz/M4d+4c6uvrnZ8XS+oAODM/58+fBwA88cQTOHLkCG688UZMnToVDz30ELKzs72uw9fXcrVnzx4MGDAAV155JQAgJSUFzz//PJYuXYoJEybg3XffxSuvvAKz2fcFe7vdjoULF2LSpEkoKirCo48+ikWLFqGxsREAcNFFFyE9Pd0tG3XgwAHKRGkt0BIULXuipHDwPP6+9RjKzgp7QT0xaQgyEiOC/rqUidInMejNTMikyUrEMOhquM4xtkeULzdnJuJ3nQOZ3v+5Gm//GHy5kl7R35EuCxYscGZ4Lr74YowfP95ZkheM66+/Hi0tLfj4448BCCV3jY2NCA8PBwBMmTIFmzdvRk1NDdra2vDWW28BgPPzS5YswWWXXYbPPvsMH3zwAV577TX88ssvXh/L19cStba24p///CdWrlwJk0kIUw4dOoT7778fBQUF2Lp1K+699148+uijsNvtPr/HH374AZWVlZg8eRkUTp4AACAASURBVDIAYNSoUUhJSXH2hQFCSZ/4M/jxxx9x0UUX+fXzoyBKQYGWoGg9WMHfdb+86yS2H6oDAPx5fDquGhzX6+39RZkofdJ6Mp+ISr+MR8tj6no1XA/Dboj+/f7q/sgZLuyt+NwXx2n0Oemmf//+qKqq8uu2iYmJzswSADQ0NDjL5GJiYlBYWIj33nsPM2fOxMGDB3H11VcjLS0NAHDHHXfg97//Pf74xz9i/vz5mDBhAgBgwIABOHToEL766ivM7ew17N+/P371q1/h1Vdf9bqO3r6WiOd5PPLII5g7d65bIPPuu+9i9OjRGDVqFABg+vTp+OWXX7pN8PNGzH797ne/c042bGtrQ0NDg/M2EydOxMGDB3Hw4EF8/PHHmDhxos+vC1AQpahAS1C07onyZ91bD9Rg3TfCKPO7Lu6Huy7pJ9vjUyZKn1iYzAdQ6ZcRaXlM86/Jdw5K0cuFHaJvJo7DozdnYFRyFBw88MiWIzha06z1soiGXn75Zbf/nzt3DsnJyX7d96KLLnLr9ykvL3cLUEaNGoW1a9diw4YNeOCBB3Ds2DFcffXVzs//9re/xRtvvIHCwkIMGjQII0eORGJionMSoMVicd7WYrG4BSeeevpaoqeeegoXX3wxJk6ciLa2Nmeg2N7e7vY4HMf5fCxRamoqwsLC3CYbvvvuu5gyZYrzNhdeeCEGDx6Mjz76CAcPHnQGa75QEKWgQKfzad0T5cu+k41Y+ZnQVHhleiz+NH6gbF87b2ce7LwdHDhdbLYLUCZKxMJkPkKUQBP6iNoiwkx46vahSIoOQ2ObHX/94DDON9PEvlC1bt06Zx9TZWUlPv/8c2d5mi8zZ87ERx99hNbWVrS2tuLDDz/EzJkzAQBtbW2477774HA4AAjlfBkZGc79prZs2YJ33nnHeds1a9Zg0aJFAIQ+rZSUFHz44YcAgMbGRvznP/9xBmA1NTWYNWsW6urqfH4tAFi7di06OjowZcoUNDU1oaKiwnn7cePG4ZtvvnH2b+3YsQOtra3OyYC9ueSSS9C/f39s27YNgLAn1X333YejR4+63e6WW27B+vXrcckll/j1cwUAjtdp16LD4XBrUFOLGDHX1NSo/thqSU1PB2e3gzebcaqy0u1z1U3tuOeN/Thn68CghHC8/JtMxEVYevhK0qW/nA47b4eZM6NyfqXvOyhA6jFOysmBpbQUHZmZqO6cUhOKBqwdAB48OHA4seCEZuvo7ffXVSg8l43C32PqjRzHOW1tmvP9qgX+ldAQ9fR0jOPy8hBVWOgccX7Kz/InlpScasKit8vQZudx+cBYPDdleMDbh+iR+HcFABaOWYhVN6/S5DU7JSXF2Z+jhVdeeQWffvopLBYLbDYb5syZ4zbN7qWXXkJxcTF+/PFHXHXVVbjtttswY8YM5+dfffVVZ7AzadIkzJs3D4AQUCxcuBDV1dWIjIzEkCFD8PDDDztHje/ZswePP/44YmJi4HA4MHXqVLevu2/fPjz55JPgeR42mw3Z2dn4y1/+AovFgpMnT2LKlCl4//33kZqa2uvXOnLkCG655ZZu3/cf//hHLFmyBIAQSL7//vuIiopCa2srlixZguuuu86vn19FRQUee+wxtLa2Oh972rRpbrc5cOAAJk+ejA8//BAjRozw6+tSECWRGideeTvzULS/CLkX5GqSjYrLy0NUURFsubluWbR2uwP3vXMQ+042IcZqxiszMzEoIfhBEq5yNuagtLYUmQmZKJ6uTUAi9RgHc4JnJKycaPob1FIQpR89vSb5g4Io4+vpGKcOGACO5517RLE84rw3n5XV4JGPjwIAfnt5Mv54jXzVH6zL25nnNpmv5aGWkAyiCJv8+o1obW3FM888gwkTJuD222/HXXfd5TbVojd2ux1FRUWYMWMGpkyZgpycHEyfPh2bN28OZt2GpvVgiZ4898Vx7Dsp7GK9YkKG7AEUoL9+KIB6okSslPNReaWxBBNAkRDnco1Yz787N45MxG8vF/pf/ve7M/j8YK3GK1IPq20NhAB+BlHLly/H9u3bsWHDBmzevBmLFy/G4sWLsWPHDp/3feihh/Dtt9/ilVdewXvvvYdPPvkEiYmJ3TYKM6pAxpxrPVjC2ySsj0rO4d2fqgEAvx+bimuG9lHksfU2mQ+gk3aAnY12AQpqjYamLRIC/GHcAFw+UCixeuLTYzh8jgZNEKI1n0HUnj17sHXrVixZssS50/ANN9yA7OxsrFy5stf7btu2DTt27MDKlSsRExMDQJgHv2LFCtx9990yLJ99gZwAaD1YwnMS1oHTNvzjPxUAgF8NicPvxvZX7LEpE6VPrGy0C1BQazQsTFukvaKI1iwmDo9PzEBKTBia2x146MPDaGz1vUcOIUQ5PoMocfMpzx2Is7OzcfToUZSUlPR43w0bNuDqq69GVFSU28fT0tKckz+MLpATAJY22621tSPvo8Nos/NIjw/HigkZMHHKNbXqOhNVWip5Y2WjYGmjXRZOuomx0F5RhAUJUWHIv20orGYOlXWt+Pu2o3Dos61dEteLGMu2LdNwJYS48zlYYubMmThy5Ai+/vprt49v27YNS5YsQX5+PqZOndrtfg6HA5dffjlmzpyJpKQkbNmyBY2NjUhOTsbdd9+NSZMmBbVwnufR1tYW1NcIRFhYGAA45+MrIfqpaOeEuqYHmxR7nJ5Yo6PB2e3osIRh7os78OWhGkRZzXhr/pUYkRyj6GNr/b0D0o+xedkymNesESZAmc1oa9Jm3VqKfDLSOZmv+SFty0zMy5bBXFAA+7x5sK9a1ePt1Hguk+CJr0eBPrfkOs5jCsagpLoEWUlZ+H7e90F9LSKvno5x2Jgx4EpKwGdlof174xyzt78/gf/atB8AsOz6oVg8fqjGK1LWsm3LsOb7Nc7/tzzUovoarFYrOAUvIBN98pmJqq2tRXR0dLePi+V5PU1Jqaurg81mw4YNG3Dw4EG8/vrr+OijjzBx4kT8+c9/xmuvvRbk0o1r3mXzYObMmHfZPE0e3z5vHnizGS8szseXh4Tj+8TkLMUDKADI7Jvp9lYP7KtWgc/KAg+Az9TPuuXEyka7AGAuKABnt8NcUKD1UogMxNcj+zxtXg9FJdUlbm8J28zLloErKQEHgCs11v5e08YMwIwrBgAAVhcfxtdHjD1hdNXNPV8MI0RLAW/wIyaweorMxSwRx3F45JFHnCV9s2bNwpYtW/D888/j7rvvRkREYBPeeJ7XZMylGmORV1yxAiuuWKH44/QkrqUFPw28EKsihIDgrov74eq0MFXWUnqu1PlWq9HTgRzj1NJSoeCgVLt1s0Lr7z8uNxdRhYWAw4GOhQt7nMpFI871Ia6lBVEAWltaUB/AsVLiONPvDFu8HePUtWud+0PZcnMD+t1h2eKx/fBDRQ1KzzTj/o37UDhrFBKjwrReliq0GnFOmSjiyWcmKiEhAU1eSijEj4nDJjyJ2auMjIxumazRo0fDZrPh4MGDkhdsdCz0Q9ne3Yxlt/4FDo5DZnIklvx6gGqPrfVkwkCF+nAJVsabA52jjM1mcDxPE90MgKbzkYAYZLx5T6wWEx6fOARRVhOqm9rx962h0R9FCEt8BlGjRo1CXV0dGhoa3D5e2bmp6KhRo7zeLzY2FsnJyXA4HN0+ZzabAXRls4xM6ohzrfeIcvA8lv3+HzgT2xcxrTb885d3EG6hDeZ8CfWJcGW1ZW5vtRbqQa2R0KAQQrxLj49A3g2DAQBfVzTg9W9Pa7wiQkKLz7PjiRMnAgB27drl9vFdu3YhIyMDWVlZAITyvdpa9w3gbrjhBhw7dgw2m83t4wcOHEBkZCRGjBgR1OL1QOpVVK0zMeu/OYWvwlMBAE9+8jwuKFzj4x7y0jqIDFSon7Sz1BMFUFBL5EdjzgmLbhyZgDtHJwEAXt5VhR9PNGq8ImW4Pv9yNuZouBJCuvgMosaOHYsJEyZg9erVqKurAwAUFxfjq6++wsMPP+y83aJFizB+/HgcP37c7WMRERF49tlnnRmpTz/9FF9++SXuu+8+REZGyv39MEfqVVQt94jae6IBL+8+CQCYYSvHrQd3qXr1N29nHuy8HRw43ZXz0Uk7Wyh7YRyslPO5jjkvLCnUcCWEuFs2fiCGJ0XCzgOPfHIEdc0dWi9Jdq7PP3Fjd0K05led1tNPP41rr70WM2bMwO23347Vq1fjhRdewPjx4523SUpKQnx8vNugiJSUFLzxxhs4efIkbrzxRtx000146aWX8OSTT2L+/PnyfzcMqs/Px6nKSr9rsrXqiWpo7cBjnxyFgwdG9IvEg/U/qvr4ALC+ZL3zfa33GpIqlDNR4u8qBw5zs+ZqvBpiNKw8t/T2mkRCR4TFhP+eNASRYSacbWzHE58eM1y7BD3/CIt87hPFKofDgdOn1a//VXqiV/rL6c59kirnVyryGN48+vERfFpWi3ALh8JZF2DsxSOce7OcqlRnHWlr05zvVy2oUuUxvQloOl96uuo/L1YMWDvAuUfUiQUntF4OAP+OB03n04dgn1tyHmdWXqOIO89jHJeXh6jCQud0vlNVoXGsPjlwDo9tPQYAePD6QbjzoiSNVyQvLZ9/KSkpMJmoP5y4o98IxmjRE7X1QA0+LRP62ZZdOxCDEyI0KYdiacKbVKxcLdcCa/1QQGgfD6Oh0kwiVdT69V3jzeeGTnZ8QmYibhopTExe9cVxVNSqvymtksS+KNf+KEK0REGUwqRO51O7J+pkfSueLq4AAFwzpI+zQVUL5XXlbm/1xNkTVVrq97EmyqEeNUJCmMHHm/eE4zj8NScdKTFhaOlw4P9tPYoOOzsXt4K1YMwCmDmzW38UIVqiIEphrDRFe2N38Pj71mNoanMgIdKCvBsHOTeT02Ldw+OHu73VE1tuLngAHMDksVYSixlEykQZB6uvoTShj7AoLsKCR27OAAdg/2kbXtlzUuslyWbVzavQ9GAT9UcRZlAQpTCppShqDpYo+u40fqgSxqH+7abBbruda1FCo+dMVH1+PjoyM0PyxJ21PaIAykQZCUvlfK5lRDShj7Dq8vRYzLo8GYCwbcmPVcYce06I1iiIUpjU6Xxq7ZNUesaGl3cLjZl3XdwP44b0UfTx/KHnTBQQuifu1BNFQgWVERG9WHB1GkYkRcLBA3/fehRNrXatl0SI4VAQxRg1Bku02x14fNtR2B3A4IRw/PGaAd1uo0UJjZ4zUUBonrizWtIUqgGtEbFUzkdlREQvrBYT/t8tGbCaOVTVt2H1TjYmpxJiJBRESbRs2zJEPxWt2MmjGoMlXttzCofOtcDEAY/cnIGIsO6/BloEBJSJ0h/Xvb1Y2iNK7FGDw0GDPnQsLi8PsNvBcxwT5XyEffR87zK0byT+ME4YC77p52rsqajXeEWEGAsFURIV7C2QVG4ndTqf0j1RpWdsWP/NKQDAb8ek4MLUaK+30yIgoEyU/riW8LF0lb4+Px8wm8HxPBMZDBKYqKIioQvJZAqpKWskcKE63rwnv7k0GRf1F/7O539WgaY2KusjRC4UREk077J5ksrtpJaiKNkT1W534L8/PQY7D2QkRuD3V/fv8bZaNHPrPhNVWuoccx4qWJzMJwrFoNZoWBoqIXIdLsFqOWtIC9Hx5j0xmzj8102DYTVzONXQhheprI8Q2VAQJZHUEZtSTwKU7Ilat+cUyqubYeKEaXzhFrYOv94zUegcD+98GwJYnMwnCsXySqI81+ESNKGP6MHghAgs7Czre3dfNb6tbNB4RYQYA1tn0QYkdTqfUj1RpWdsKPxWKOOb1UsZn0jtZu68nXmw83Zw4BQdqqGkjpEjhczHyJFaL0U1LE7mE1EmSv9YGiohYqlslRB/zbg0GaM7/+6v/OwYbFTWR0jQKIhijBI9UR12Hk98esw5jW9eL2V8IrXLaMTyRRNn0u1JCmU+2ELHQ/8oECZS0FCJnrmW9Z2sb8OLX1ZpvSRCdI+CKMYo0RP17x/O4GB1MzgAf7spg7kyPkD//VAAnfCxho6H/lEgTKRwHSrRkclen6bWMhIjML/zIuq7P53FL6eaNF4RIfrG3tm0wUidzid3T9TJ+lYU7D4JALjrkn4Y3b/3Mj6R2mU0uu+HgssJX2lpSFwRZb2pnk7A9Y/FwRKEYS5DJaqLizVcCLtmjknBiKRI8ACe/LwCHXb2SrEJ0QsKohQmNRiRsyeK53k8U1yJlg4HkqLD8IfsNL/vq/Y+O0bIRIk/Mw5gqodDKa7ZUpb2iBJRJoooxXVCX87GHA1XQog0FhOHB28YBA5AeXUz/v3DGa2XRIhuURClMKlXUuXsifpPeR2+OipsrveX6wYiOtzs933V3mfHCJmo+vx8dGRmhsyJuxjwZiZkMtnHRpko/WNxsATgPqGvtDZ0tjQgxnBhajTuuqQfAKBg90mcrG/VeEWE6BMFUQqTOp1Prp6ohtYO/HN7JQDgmiF9MH5YvOSvoWYpjREyUUBonbizPN4coEyUEbB6DFm8aECIFAuz05AUHYaWDgeeKa4Ez1NZHyFSURDFGLl6ov6/L6twztaByDAT/nJdOjjG9y4yQiYKYPekTwksjzcHQiugNSo6hoQoIybcjPvHDwQAfHW0HsXldRqviBD9oSCKMXL0RJWcasJ7+6oBAPOv7o/UOGtAX0fNUhrDZKJKS53DJYi2QimgNSq9HEPWh6yEAvOyZVovQXeuGx6PXw2JAwD8c8dxNNHeUYRIQkGUwqRO5wu2J8rB8/if7ZXgAYxIisT0S5MD+jqAuicwrJeG+U3M+DGe+QsFlMXQP5aPoetwicKSQg1XQgDAvHatc7y5bS57g25YxHEc/nJdOsItHKqb2vHanpNaL4kQXaEgSmFSsznB9kRtKalByWkbAOD+69JhMQV+Mq/mCQzrpWH+6hg5Ugg8R47UeikhT+0Jk0RecXl5gN0OnuOYHHHuOlyCMMClp8ffHmQC9I8Lx9wrUwEA/957FsdqWzReESH6QUGUwqQOZwimJ6qx1Y4XvzwBALg5MwGXDoiR/DVcqTlYIjMh0+2tXoVKOZ8eypfEEymO5xFVSJkCvYkqKhJyPSYTkyfFNFyCGMWsMSlIi7Oiw8HjuR3HacgEIX6iIEphUqfzBdMTVbD7JGqbhWES910zQPL9tWSUwRKhUs63vmS9830W94hyCpHjYUS00S4h6gi3mLDsWmHIxO5j9dh55LzGKyJEHyiIYkgw/VCHzzXj7R+FTfPuuTIVyTGBDZNwpdZgibydebDzdnDggp5KqDXbnDnOgkQjl5C5ll2yfEWeyisJMT4aKhG8Xw/tg7GDhSETq744jtYOh8YrIoR9FEQxJNB+KJ7n8c8dx2HngfT4cMy8LPBhEq7UGiwhfr8mzsT0Cbk/1N6kmPSO5cEEpHesbrTrynW4RM7GHA1XEtpch0p0ZOq7JFwrHMfhT9cOhNkEnDjfhje/P6P1kghhHgVRCpMynS/QfqgvDp/Ht5UNAIA/XTsQVos8h1WtE1CjjDcX6WUscyigY6Ffejh2rsMlSmuN3QfJNJcenuriYg0Xom8ZiRH4TedE38JvTuFMY5vGKyKEbRREKUzK1dRA+qE67Dxe3CkMk8geHIdxQ/oEvFZPavUkGKYfqlOoDJfQA8pE6Zcejp3eM+eEePr9Vf2REGlBS4cDL++ikeeE9IaCKIVJCUQC6Yl6/+dqVNS1wsQBf/y1voZJiIyWiTL6MAM9TOYT6SGbQbyjY0eI+qLDzZh3dX8AwEcl51Be3azxighhFwVRCpMynU9qT1RTqx2vfi1cKbotqy+G9o0Maq2e1OpJMMxGu52MPsxAN5P5QFlBPdNDJsqTni4wENKTO0YnYXBCOHgAL3RWuhBCuqMgiiFSe6Je/+4Uaps7EGExYX52muzrUetKsFE22hUZ/cRdL5P5ABg+K2hkeslEuQ6XKCyh/cjUZuQpqFqxmDjnNim7j9VjT0W9xisihE0URKnA3+ESUnqiTjd0Tc/57eXJSIoOk2WtrtS6EmyUjXad6MSdGaEyct6I9JKJch0uQdQXtX49TeZTwDVD+uDSATEAgH/tPAEHbcBLSDcURKnA37I4KT1Ra3dVoc3Oo2+UBbPGpMi1VDc0WCIwRi/n0xMaOa9feslEMZ+NNTqazKcIjuOwpDMbdfBsMz45UKPxighhDwVRKvA3GPG3J6r8rA0f7xde0OZnpyHKapZtra7q8/Nhy81FVFGRolfxjTZYwujlfHqjl5Nx4k4vmShP1BdFjCIrNRo3jUwAAKz5qgottAEvIW4oiFKBv8Ml/O2Jenn3SfAABieE49asvjKutDs1hksYLRNF5XxsoaBWn/QU/FJfFDGqP4xLg8XE4UxjO97fV631cghhCgVRDPGnJ+qXU0344vB5AMCCbOHFTUlKn8jk7cyDnbeDAyd5k2FWGbkPR5dX2Smo1SU9ZaKoL0obRnt9ZVFan3BMHp0EAFj/zSnY2uwar4gQdlAQxRB/eqJe3lUFABjRLxLXDY9XfE1Kn8i4jss2Sm+BmHHkeB5Rhca6Kq2n8eYi6lHTn7i8PMBuB89xivdkysEor116Iw6VIMqae2UKrGYOtc0dePvHs1ovhxBmUBClAn+n8/nqidp7ogFfVzQAABZmp8GkwpV1pTNRRhtvbnS6Gm/eicr59CeqqEg4OTaZ/Npjj4QoXvz7AdgXLtR2LQbWL8aKuy7pBwAo+u40GlspG0UIQEGUKvztK+qtJ4rneaz9SthYd3RqNMZlxCmyVk9KZ6IMN95cRCVk7KBjoTt66ofyJmdjjtZLCDn2Vau0XoKhzb48BZFhJjS02rFh72mtl0MIEyiIUoG/0/l664n6uqIBP1Q1AgAWjksDp9IJodJjzg03VKITlZCxg46F/uipH0rkWt5aWktZT2IsCVFhmHFpMgDgzb1ncL65Q+MVEaI9CqJU4O90vp56oniex9rOXqjLB8bgivRYxdaqNqONNxdRCRk76Fjojx4zUXopbyUkULMuT0ZsuBm2NgeKvqNsFCEUREm0bNsyRD8VrciUsp56ovZUNGD/aRsAYV8oNSk94tyomSgjlpDptkTJgMfC6CxlZULgW1am9VICpstJljpCk/nUFxtuwd1jhGzUOz+dpWwUCXkURElUsLfArw1xXfk7WKKnnqh1e04BELJQl6TFSF90EJS+ImzUTJQRS8hcS5T0MpkPMPbIecPqHBjgfKsTrr2dtF+UssTJfDRUQl3TL0lGjNWM5nYH3vrhjNbLIURTFERJNO+yeX5tiOvK32yOt56ovSe6eqHmXpka2KKDoHRvQlltmdtbozB6CZmeSpeMPHLeqDoyM4WLEJn6GjhTPL1Y6yWEDpcAm4ZKqCcm3IxplwqT+jb+eBZNNKmPhDAKoiRadfMqND3YJOkk0t/hDN56ogo7s1CjU6M16YWiEecBcikdo+wHA6ikT1f0OFiCkFAx49JkRFiESX3v/ET7RpHQRUGUCvwdLOHZE1Vyqsm5L9Q9V6WqNpHPFY04D4xYQsYBivWTEf8ZsbzSyPQ4WMIb3fYREtKL+EgLplyUBADYsPcMWtodGq+IEG2oGkTNnDkTmZmZOH78uJoPqxuePVGF3whZqBH9IlXbF8oTjTgPTH1+fldJks5PBI3A6OWVRqPnTJTrBSEadU6M6u4xybCaOdQ2d+CDX6q1Xg4hmvAriGptbcUzzzyDCRMm4Pbbb8ddd92F7du3S3qgDz74AHv37g1kjSEhb2ceivYXIfeCXORfk4/y6mZ8cfg8AOCeK7XJQgFCMGDLzUVUUZHsZWl5O/Ng5+3gwEnqMdMLI5240xV1oiY9Z6KoL0p5STn0eqS1fjFW3JbVFwBQ9N1ptHVQNoqEHr+CqOXLl2P79u3YsGEDNm/ejMWLF2Px4sXYsWOHXw9is9nw7LPPIidEX/j8mc7nWcr3xvfCHgyDE8Jx3fB4VdbZE6XGnK8vWe98X0+DCkKRXifzOVFPlG7E5eV1XYDQYSbKE406l5/4+8EDsM3V4euRQeRekQKzCTjb2I5tpbVaL4cQ1fkMovbs2YOtW7diyZIlSEhIAADccMMNyM7OxsqVK/16kDVr1mDcuHG48MILg1utTvkThLiW8p1tbMOnnS9Is8akwKTxiZ9SV4UNO1RCZNATdz0GvNQTpR9RRUVdJ8gKlRGriUadK8tXrzFRTv+4cNw4QjgvfHPvafA625KAkGD5DKI+/vhjAEB2drbbx7Ozs3H06FGUlJT0ev/jx49j48aNuP/++4NYpr7501fkOt58449n0eHgkRBpwYRRiSqu1Dul+hOMOlRCRCfu7DBSaaXROS/aZGbq9gRZl9laQgJw95gUAMDhcy3Y0zkIi5BQYfF1g/379yM+Ph5xce6DDQYNGgQAOHDgALKysnq8/1NPPYV7770XSUlJQS7VHcdxSExUP8AICwsDAGmPvWYN2tasgQVAT/datm0ZCvYW4J6LF2LPz3cAAHKvHoT+yfL+3ALBZ2YCJSXgMzNl/Zm7DpXQ4lj2JKBj7IXriTtL31+wdPm9cJxzX5l+jz0G+6pVsh1nIi/XizZyHBstjvOaO9a4ZaDod0w+5mXL3P6fmJhIz2UNZScm4qqM09hztBZv76vBxMsyFHssLY+zVn3phG0+M1G1tbWIjo7u9vGYmBgAQE1NTY/33b17N0pLSzGXapZ9KthbADtvx8bvjqO+pQPhFhNmXTlQ62UBALjOYICT+Sp+Zt9Mt7eG4/Ki6/mHX0/GFIzReglBsy9Y4Bw5by4o0Ho5pBd851RLXmcb7fbGCM8hVpjXrnWWe/K9XMAl6vndOOGi+s5DNSg93ajxaghRj89MVE/E2teeonO73Y4nnngCDzzwAKxWa6AP0+vj9xbAKUW8AiLlsePy8hBVVARbbm6P5Sm5F+SiqOQN9OdmoQXAxFGJQGsjalrlWHVwkoYPh6W0FB3D7vuxzQAAIABJREFUh8v6M99fvd/5Votj2ZNAjrE3cXPmIKqw0HnifnbFChlWp76S6q6S3blZc5k6Vn5bsQJJ27e7/R7LdZyJvFL37wcHAPvleV3Q6jhnJmQ6B7KUVJfQ75lMUl36bk5/9hlAz2XNXZRkwqCEcFTUtmJNcRn+dnOGIo+j5XFOSUmhbBTpxmcmKiEhAU1NTd0+Ln5MHDbhacOGDUhKSsKNN94Y5BL1z5/BEvnX5GN9zg9oaRMyfDPHJKu1PJ+U6oky+mAJI+4VpcehEiLqi9IJ8SRZ503qNOqchAoTx2HmZcI5y9bSWlQ3tWu8IkLU4TOIGjVqFOrq6tDQ4N4wWFlZ6fy8N7t370ZVVRUmT57s/LdhwwYAwIIFCzB58mRs2bIl2PXrgj+DJfJ25uEvn3wIALhmSB8MTohQa3k+KbXhrtEHSwB04k6IVM4LDwYq5wNorzVibBMv6Iv4SAs6HDze+ems1sshRBU+g6iJEycCAHbt2uX28V27diEjI8M5VKKtrQ21tV37BKxevRpbt27Fpk2bnP9mzpwJAFi7di02bdqESZMmyfaNsKw+Px+nKit7nTT171/+D+EOYQT8by7tp9bSNOU6WIIQxRl05LzRWMrKhAsPZWVaLyVorheIXPdaI4GRe8N3Ip8Iiwl3XiQMwtq0rxrtdtp8lxifzyBq7NixmDBhAlavXo26ujoAQHFxMb766is8/PDDztstWrQI48ePx/Hjx5VbrYFdGiMMHoiKqMcV6bEar8adEpvt5u3Mg523gwOH3Av0vxeMURlpo1AaOa8TBinnA6ikT25R69eDLoGwa8roJJg5oLa5A8XldVovhxDF+QyiAODpp5/GtddeixkzZuD222/H6tWr8cILL2D8+PHO2yQlJSE+Ph4REd3L0D744AOv5XyNjaExxSUuLw+p6ek9XkVrbLWjtm4EAOAPY7OYa15UYrPd9SXrne/ruc/GJ51nP1yPk97LLqm0kn3iayTPcbAZcKorlfQFiRf7aGHI3w+9S4614tdD4wEA71JJHwkBHK/TLaYdDgdOnz6t+uMGMh0mNT0dnN0O3mzGqc5eMldv/XAG/9xxHA4049pLP8HT4x+Xbb1y8LX+QKStTXO+X7WgSpavKRc5JwAl5eQIE+EyM1FdrL+r0iwfJ6lSBwwAx/POEzDLmjUAaKIXS5zHiONw6sQJWb6m1pPbXJ9DgP6fR1pKTUtzjjc/VdX1c9T6GJMu31TUY+l7Qon+67NGYXi/KNm+ttbT+Uwmv/IOJITQb4QKehvMwPNdTZhN5u3YULZO5dX5pkQmKhSGSgCU/WCJbc4c515RUYWFvm5OtGCgUj7R3CzKmJDQcUV6LAYlhAMA3t1XrfFqCFEWBVEq6G2wxDeVDaioFTaDsoV9zGR/kBIjzstqy9zeGpZLGR81RWurt8EuhA1GnMznWa5spD5DNSXlUCmkHnAch6kXCcOxPjlQg6ZWu8YrIkQ5FERp7L2fhCs1fWLOot10TOPVeGfLzRV2cnI4ZAsEjL5HlIiyH4zReY+a0RlpMl9PCkvodSAQYlaf+qHYNykrEREWE5rbHdhy4JzWyyFEMRREqcTbcImapnb83xFhgs3htvWw83YU7ZdvAp5c6vPzAbMZHM/LNqEvVMr59Jz9MGITPE3oY5wBy/kAKumTm55fV0NBbLgFN2cmABDGneu09Z4QnyiIUom3MeGflNbA7gBiw82488IMmDkzk+V8gPx9USG1R5ROsx+u+9oY5SSQetTYZsRyPqB7SZ8RL1AQ4uqO0cKeUYfOtaD0TLPGqyFEGRREqcRzuATP89j8i5DmvjkzEf+49glUzq9kdty33H1Rw+OHu701MiNkP1j9vSTGYuRyvnhrvPN92niXGF1WShSG9hW2vNlcQgMmiDFREKUSz+ESv5yy4WhNCwDg9gv7Im9nHtJfTme26VjuTFTIDJYAZT8I8ZtBy/kAoOSeEq2XoFs0VEJ/OI7DbVl9AQCfltaipcOh8YoIkR8FURrZ/ItwZWZEv0hkJkehaH8Rsz1RgPyZqFAZLKFXrAbzQXMpqTQvW6bhQog3Ri3n84ZK+vxHQyX0acKoRJhNQEOrHV8cqtN6OYTIjoIolbgOlmhut+OzsloAQhYKAHIvyA2ZnijxBJ0DZ5hem17pcMy56wQxIx0j12mJ5s7Ndgkb4vLyurK2Mm6nwBIq6QseDZXQj8SoMFwzpA8A4MNfaEofMR4KolTiOljiPwfrYGt3wGrmcHOmsAN3/jX5IdMTtb5kvfN9Vr9fOel9zLmRjhGdgLErav36rmyDl43JjcCzpM+wGV9COt2WJQyY+LayASfrWzVeDSHyoiBKJa6DJbbsF67IXDssHn0iLAAQUj1RoVbKRyfuhPjBpQ8qVJ4ztGeUb3rJ3hPvrs6IQ98oC3gAW0pqtF4OIbKiIEol4mCJ8ocfw97jjQCAiaMSnZ8PpZ6oUNkjyo1Ox5wTopZQ6YcKqdc9GUQVFlI/lI5ZTBxuuUA419lWWkN7RhFDoSBKZZ+W1YIHEB9pwVWD4pwfD6WeqJDaI6qTnsacs5oNJcZm5PHmroqnF7v9n55v/guVDKXRiG0LFXWttGcUMRQKolQiDpb4vPhnAMD1I+JhMXdlJUKpJyqU9ogS6WnMuWuJkSGvmtOEPjYZeLx5b6ikjxjdiKRIZCQKe0ZtK6WSPmIcFESpJKqoCIfi+2N/WAKAriszAPv9UEBnTxcAOBxB16iH0h5Reud51dwIaEIf0ZqRJl4S4gvHcbg5Uzj3+bSsFnZHaF0oIcZFQZRKbLm5eP9CYV+Q1FgrLuof7fwc6/1QQGcZhdkMjucRVRTcOkNtsARhC5UEEa15VhxkrcvSaCVso012jeOmkcKF4+qmdvxwolHj1RAiDwqiVHJ+5Uq8d8tsAMDNmQkwuZQUsd4PJZKrLyqkB0uA7WlTLGdDiXGJzwme40JmeIDr619dG21E6g1tsmscA+PDcWFqFAAq6SPGQUGUSo6teAYnzrcBcC/l0xM5+qLyduY5N5kMpcESetkryvD9UIRJ4h5RQOhkCmnAhDSh8nthZOK5T3F5Hdo6HBqvhpDgURClks+ONAAAMs8exbCkSLfP6aGcD5AnE+X6PbKeeZOTHk8AjNgPRRgVokMlXNGACWJ0N4xIgIkDGlrt+LqiXuvlEBI0CqJUwPM8Prn0JgDAjRFN3T6vl3I+OTJR4kS+zIRMZicREkKIGmjARM9YLnsmgekbHYbLBsQAAHaUUwkr0T8KolRQdrYZJyzCIInsP0zr9nnWx5uL5MhE0WQ+wgSd9KgRY/N8zc/ZSIMURK6b7Bp9A+ZQMn54PADg/46cR4c9dDPPxBgoiJJo2bZliH4qWlL9+vbOKy7p8eEY2jei2+f1MOIckCcTRZP52BVKJ3B66VEjoUXsFyXuqouptNgoxg8Vgqj6Fjv2nmjQeDWEBIeCKIkK9hZI7l8qLq8FANy29X/R5+GHu30+lHqiQnIyn4jx7IfrCZzRy4z02KNGjMnzuRZKFzNI6EmOtTqn9G0/RCV9RN8oiJJo3mXzJPUvHa1pxrHaVgDALQe+9LrHUij1RIVyOZ+esh+sl5YSYhSezzXKRtH+UEZ33TAhG/XFofNwhPAwGaJ/FERJtOrmVWh6sMnvk8zizlK+VLsNF509DFsu24FSb+TIRIVyOR9lPwjpLhT3iPJk9MyvVK77Q1E/lPGM7wyiqpva8cup7sO2CNELCqIUtqMzXX3t5YNxurLS64m0Xsr55MhEhXQ5H9BV0udS2scCKiEiWgnFPaI8eV6Uy1qXpdFK2EP9UMaTnhCBYZ394cU0pY/oGAVRCjrb2IbSM80AgGs7mym90Us5H03nC17HyJHCz3DkSK2X4iaU+qGcXAJZKh/SEO0RBQCIt3b9jahroxNLYmxiNurLw+c1XgkhgaMgSkG7jgqbyUVbTbjmxXykpqd7HSiglxHnNJ0veGKZiqWU3b4H1n8P5WJfsMDZo8by8SChoeSeErf/h2o2isWhO0R+vxrSBwBQUdeKyroWjVdDSGAoiFLQV0eFKyxXDYpDn6LXwdntXgdL6GXEuS03Vwh9HI6A/tCJ3x8HLnSyHYRZ9lWrtF4CIW4oG9W1PxQxtlEpUUiItAAAdndecCZEbyiIUkhbhwPfVAh7IPxqSB8hADGbvQ6W0EtPVH1+PmA2g+N5r8GgL+tL1jvfD5Vshx6wHrwTEio8s1Gh/NzkgZAdNBIKTByH7Iw4AMCXFEQRnaIgSiE/VDXC1u4AAGQPjkN9fj5O9TBYQi89UUBwfVGhXsoHgMm9ogpLusath+zAD6IJVp4DrHJ9boaiUB00EiqyM4SSvr3HG9Dcbtd4NYRIR0GUQr46IlxZuSAlConRYYjLy9N9TxQQXF9UyE/mA/t7RRVPD91JWHRCrz5xMh9lHbp4vj6GUjaKBryElrGDY2HmgDY7j+8qG7VeDiGSURClkF2d/VDjOtPVUUVFuu+JAoLLRJXXlbu9DUV0ZZUxnZlBVoNaw3OZyEfPDYHnhYxQykbR/lChJTbcgovSYgB09ZAToicURCngxPlWVNS1AgDGdaarjdATBQSXiRoeP9ztLdGeHgJ3JYkT+ghhSShn60W0P1RoEC807zpaDz7Etzkg+kNBlALEgRJxEWaMSokCAOqJAu0RxSLXYR+hiCb0ERZ5ZqNCddw5Mb7swUIQdaqhDZWdF58J0QsKohTwbaXQD3X5wFiYOGMNaw0mE0WDJdjjeixo7Dwh7Ai1cefUkxiahiZFOkedf1vZoPFqCJGGgiiZOXge3x0XGiSvSI91+1xPwyX0VM4XTCaKBkt0x9KJgx4GmxDjYOl3n0We485zNhp76IK4PxT1Q4UWE8fh8s5zJQqiiN5QECWzQ9XNqGvuAABc6RFE9TRcQk/lfGLjr6W0VPJ9qZxP0JGZycSEvlDvh3JyyRbTdDD1uE7mo5Nm30prpb/m6hX1Q4WWywcK50rfH2+Ag/qiiI5QECUz8UpKSkwYBsaHu32up+ESehpx7jzhDKBMkcr5BKycIND+UALXsfOBXBwgAXI5WWLlOcEazxJbo2ajKCsZ2sSqnfMtdhw826zxagjxHwVRMhODqCvSY8F5BBrehkvoabw50HXCCUj7wyd+fxw46r1hUCjvD0WjtQmrPC+sGTUbJWYlSWga0MeK1FgrAOC741TSR/SDgigZddh5/HCisx9qUGy3z3vridJTPxTQecJpNoPjea97XvXEdQqcLjJuhBDCAM+LTnq54CYJL1Yp0KbLoYhz7YuqoCCK6AcFUTIqPWuDrd0BABgzsHsQ5a0nSk/9UKJAhktQKR9bDHkiJhMqLSIs8bzoZPTNdykzHJquSBc23f2hqhEddjpPIPpAQZSMfqoSslBpcVYkx1i7fd5bT5Su+qE6BTLmnCbzeXAp9dTipN3oJ2JSsTLsI1RQoCqN5+umkS6C0O8CAYDLBggXnpvbHThYbdN4NYT4h4IoGf3YGURdnBbj9fNG6IkCAstE0WQ+d67DDLQ+aaceNRpsoDbqgZHGs2fRSBdBxNHmJLSlxFqREhMGAPipqknj1RDiHwqiZMLzvPOJf0kPQZQReqKAwDJRVM7njqWSFT1lQYlBUA+MZEbP4tPvAhEvQP90slHjlRDiHwqiZFJZ14razv2hLkmL9nqbUO6JonI+dhh1TDLRJ5YuKLDMMxuVtS5Lo5Uoh34XQpsziKpqAk/7RREdsPhzo9bWVqxevRqffvoprFYrrFYrlixZguuuu67X++3atQsbN27EkSNH0NHRAbvdjnHjxmHRokXo27evHOtnhljKFxdhxuDECK+3seXmIqqoqNs+UXoTyIa7VM7HDtcxyRTUepeUk0MlfoQ58dZ41LXVAYDzrZ5RPxRxdXHnBejqpnacamhD/7hwH/cgRFt+ZaKWL1+O7du3Y8OGDdi8eTMWL16MxYsXY8eOHT3ep7W1Fffccw8SExPx1ltvYfPmzVi7di127NiB3/zmN2hsNFa6Vizlu7h/DEw9bETrrSdKj+V8UjfczduZR+V8jArl/aE82ebOpU13VUAnzoEruafE7f8ZBRnaLEQm1A9FXA3rG4koq3BaSn1RRA98BlF79uzB1q1bsWTJEiQkJAAAbrjhBmRnZ2PlypW93jc8PBzLly9HWJjQLDhw4EDMnz8fx48fx2effSbD8tnxk3OohPdSvp7ospxv5EihnG/kSL9u7xog0hAD7+jEUntUSqQOcagED2EqIpEm3hrvfL/N0abhSuRD/VAEAMwmDqNThXMo8ZyKEJb5DKI+/vhjAEB2drbbx7Ozs3H06FGUlJR4uxvCw8Px7bffIjzcPR2bkpICADh//nxAC2ZRfUsHKupaAQCj+/ccRHkbLBEKI86Hxwu9U5kJmbr6PpWmxVhtPU2B1BoFtgpx6XWgkknpPLNReu2N8nx+0UUMAgjVPACw7yRlogj7fPZE7d+/H/Hx8YiLi3P7+KBBgwAABw4cQFaW9xdxq7X7XklHjhwBAIwdO1byYl1xHIfExMSgvkYgxKya62OXHq7pXBNw9cgBiA73/mO1ugyWsKxZAwBYtm0ZCvYWYN5l87Dq5lUKr14efGYmUFICPjPTr2Pg2g+lxTGTytsxVoLjxx+BiK7+OTV+Nq6jkbOSsnRxPJTi9ThzHMDzzsBWfJ4SZajx+6fW81lNCREJqG2pBSD0Runxe7N6lPIF8z0Y8RiHqrEjHCj4+iQO17QgKrYPIsLMzs9peZw5P9sXSGjxmYmqra1FdHT37EpMjHC1oKamxu8Ha29vx8aNG3HnnXdi1KhREpbJtn0n6gEAw5KiewygAMA+bx54sxn2efOcHyvYWwA7b0fB3gLF1ykXrnOwBOdn3wj1Q7Hp+3nfa70E5tgXLKDfUsK8k3866fb/MQVjNFpJ8HgA9oULtV4GYcToNOGCvd3B48ApKukjbPNrOp834vhJKdH5c889B6vVikceeSTQh3V7fCkBnFzEKyCuj/390WoAwIik8N7XtGKF8E/4AgCEnqii/UXIvSBXk+8nEHG5uUL5mcOBjoULfZZhZCZkorS2FJkJmbr4Hr0dY6Wkuryv9ON5lvLp4VgoyetxXrECqS7Zp1D/GcktLi8PrvUJavx81Xw+a6WkukR335/ra9/ZFSucfxMDEQrHOJSkxlpxqqENX5efxKBou/PjWh7nlJQUykaRbnxmohISEtDU1L02VfyYOGzCl3Xr1uGLL77AK6+84sxiGcX+0zYAwAXJUb3ezltPlB7V5+cDZjM4nnfb86onNN6cDetL1mu9BN3R+3OVNeI0NhoqETzPIT162v+NnlekNxekCOdSBzrPrQhhlc8gatSoUairq0NDQ4PbxysrK52f9+XVV1/FBx98gPXr1xuuZrnWJuxnAAAXpPQ+mc/bZru6HHEOaRvuUjlfL1yubCXlKHsS5PrzpymJvqk58CMU0VCJ4HgO6XHd/411NNqc9GZU5wXpA2coiCJs8xlETZw4EYCwca6rXbt2ISMjwzlUoq2tDbW1td3u/9JLL+GTTz7BunXrnFmr4uJi/Otf/wp68SwQn+RmDhjeL7LX29pyc8GbzW6b7epxxDkgbcNdcUNX2ti1O9ucOZrsTURTEnsm7hdFCOv0nI0CaLQ58U4Moo7WtKC53e7j1oRox2cQNXbsWEyYMAGrV69GXZ2wQ3pxcTG++uorPPzww87bLVq0COPHj8fx48edH3vuuefw8ssv484770RxcTE2bdqETZs2obi42O12eiYGUUP7RiLC0vuP09tmu3occQ5A0oa7VM7XM7XG+tJoc//RqGVlUAmX/PSYjaLR5sSXzM5yPgcPlJ1p1ng1hPTMr8ESTz/9NJ5//nnMmDEDVqsVYWFheOGFFzB+/HjnbZKSkhAfH4+IzpHNVVVVeOmllwAAjz32WLevOWXKFDnWr7mDZ4Un+Egf/VCA8McjqqgIttxc5x+OvJ15zsESegqkOkaOhKW01K8Nd6mcT3vUDxW4pJwcKj2TAfVDKWNu1ly3rQtyNuageDq7v69Uykd86RNhQf84K07Wt+FgdTMuGWCsPnpiHH4FUeHh4Vi+fDmWL1/e422eeuopt/+npaWhVMXyJK0cqhaCqGF9I3zc0r0nSgyiXHui9BRE+bvhrpgB4cBhTtYcFVZGvKF+KGk6MjMllawSaSgolU/+NfluQZQeslEAlfKR3g3rG4mT9W3OcyxCWOSznI/0rKXDgePnWwEAw5J674cCjNUT5e9gCdcMiJ6CRK2oUfJEx8E3OskneuJ5YUQv5btUykd6MixJuDB96BwFUYRdFEQF4VhNCxydF/iH9/UdRBmpJ8rfq/RUyueHzr4ypabB6a3ZnEXUzxMc+vkpy/Pvh2tmiiVKTyAlxjGs85zq8Llm576khLCGgqgglHemmeMjLUiI8l0Z6blPVN7OPKS/nK6bq4Zu/BwsQZP5fBMn9CnFtbyHjoN0NOo8eFHr11MfjMI8n9ssXjwRL75RXxzxZWhnENXU5sDphnaNV0OIdxREBUFMMw/rG+HXTtae+0TpdY8oQBgswXe+7Q1N5vNNzZIWlhvOWUOjzmXEixlp6oNRiudzm/XeKCqZJb0ZnBABi0k4r6KSPsIqCqKCcPhcCwD/+qGA7j1Reu2HAvwfLEHlfESvPINbKkmTB/XBKIfl3igq5SNSWMwcBieEAxBK+ghhEQVRQRCnxgz1ox8K8N4TpVe23FwhLHI4ej25pHI+6eQ8WWexpEePqKQvcHTyrB6We6OolI9IJZ5b0YQ+wioKogLU1GpHdZNQp5uR6Hu8uci1L0rP5XxiIMjxfK8nl1TO55+OzEzwkP9knfqhgkMlfcGjk2d16eF5TqV8xB9DO7eOOVbbqvFKCPGOgqgAiaPNAWBQfLjf93Pti9JzOR8Av4ZLUDmff9Q4qaB+KOmopE9edPKsPM/neda6LI1W0oWeNyQQA+OFIKqyroUm9BEmURAVoMo6oR8qxmpGfKRfexYDcO+L0ut4c5Gv4RKuG+3SBq9E76ikj+hFvDXe+X5dW53mvVFRhYU0nZFIlt55gbqpzYHa5g6NV0NIdxREBaiyTshEpSeE+zWZT+TaF6XrEefwPVyCNtrVFvVDyYNK+gJH/VDaKLmnxO3/rPRG0XRGIkW6S5WPeM5FCEsoiApQRWeNbrqEUj7AOD1RANAxfLiQiRo+3OvnqZRPW9QPJQ8q6Qsc9UNpxzUbpSXPQNoIg5WIOqKsZiRFhwEAKqkvijCIgqgAHa8LLIgyUk+UeIJkKfW+HwlN5pPIJaMp94k69UPJg0r6Akf9UOryzEZp1RvlGkg74tkI7Ih+DOw8xxJbKAhhCQVRARKf0Onx/k/mA7rvFaVrPgZL0GQ+aWxz5sg2oU+vJaKsEqcnEv9RKZ/2PHujtHampMT3jQhxMcgZRFEmirCHgqgA1Nnacb7FDkB6Jsq1J0r35Xw+BktQOZ80cpa5sNIDYRSeWRQKEHwTMxBEO1pno6j0lQQrnYIowjAKogJQWdu18dvAIHqidF/O52OwBJXzsYEmI8rDER/vzBT2VMJKuqNhAtrSMhtFU/lIsMRzrBPnW2nMOWEOBVEBOHleKOWLspoQG26WdF/Xnii9jzi35eYKOSaHw+sVRyrnY4Nef79Y41mKRFfZe0bDBNihdTYKoECaBC41VgiimtsdqG+hMeeELRREBaCqM4hKjbVKGm8OuPdE6X3EuXhixPG81x4eKucLTqAn6Xr9fdITGjDRO5rKxy61slGer18USJNApMSGOd8XL2ATwgoKogIgPpFTYqyS72uknigAPodLEGnEAQbBnKRTP5RyaMCEdDSVT3ueJb1qZKOolI/IIT7SAqtZ+E2qoiCKMIaCqAA4g6hY6UGUkXqigJ6HS4jZEA4c9eRIIPcJJ/3s5eV5fJKztBkbzTIausGe/GvyNeuNomwkCQbHcUjtPNc6SWPOCWMoiApAVRBBlJF6ooCeh0usL1nvfF/P35/e0c9efq4DJkx12o+NZg2V8rHJszcqZ6Nywa5nKR9lI0kwxHMtykQR1lAQFQAxE5UaF+bjlt0ZqScKADqGDxdOloYPd/s49UPJQ2pflJInRkTgOWCCMi9d6ORZP0prlZswSaV8RE5iEEU9UYQ1FERJ1NpuR3VjG4DAMlFG64kSrzp7jnym8eZB6OwvC6QvyvXEiEr5lEfjzt3RyTPbPF8TlL6AR1P5iBxSKRNFGEVBlERnOgMoAOgXTT1RPQ2WoPHmgbPNmSNL/o5K+ZRjmzvX7RhRNsodnTyzyfM1QYkhNDSVj8itX4xQ9XOmgTbcJWyhIEqimqauIKpvtEXy/V17ooygp8ESVM4XODrpYJ/rMaJslMBzyAb9HrPJszpA7mwUZSOJ3BKjhCDqXFMbbbhLmEJBlERiKV+ExYTIMGkb7QLuPVFUzkfkRP1Q6qJslDtTXZ1zoIQjPt7XzYlGiqe796kptSUCZSOJXBKihAvWLe0ONLXZNV4NIV0oiJJIzEQlRknPQgHuPVFUzkf84e9wCeqHUhdlo7p4BpCewzcIW5S6uOX5e0DZSCIH1/Mt12ogQrRGQZREYiYqIcAgyrUnyggjzl37d1xP9qmcL0hBDJcAqB9KLZ6b74ZqNkrMSBN98MxGybX5rut4e8pGErkkRHZNQq5upCCKsIOCKInOdV4FcX1SSyH2RD1QXaj78eZA55VGsxkczzv7vGij3eBJHS6h998jvXId4R2q2SjXwJFKuPRD6c13KRtJ5BIRZkJUmHC6SpkowhIKoiQ6F2Q5n9gTteYKTvf9UCLPvaJoo93gSS2DUaqvgfjmmY3yHLBgdJ5ZKCrh0gfPzXeDzUaFahaWqCOhc7gEZaIISyiIkijYcj6xJyr3wjn674fq5Dlcgkr5tEXZP3V5ZqNMdfJf1WeVewmvEFAS/ZDHiVhMAAAaEElEQVQzG0WlfERJ4jlXNWWiCEMoiJKoJshyPkA48YguLAQcDrmWpS2P4RI0mU9+Uq7yUvZPfZ6T+lIyMrRaiqo8x1m7BpSEfZ7ZqEAnfHoOv6FSPiI3sfqHyvkISyiIkuh8SzsAoE+k9PHmoqiiIqy5HLBzvDHK+Tz2iqLJfPIQT8x99dpQP5T26vPzwVutzuPFtbUZvrzJsxeKslD65zrhUwraG4ooLS5cCKLON3dovBJCulAQJVFji/AEjrYGHkTZcnOx8DvAzHNUzkd65G9vCfVDseH00aPO90NhyIRnLxRlofTJs/w3mP3mKJgmSokJF865GlspiCLsoCBKgg47j+Z2oQRPfEIHoj4/H397uQqVC08Yo/SKyvmYQf1Q2gqVIROu3xdN5NM3z79BUrNRnqV8FEwTJcR0Xriu76wGIoQFFERJ0OiyU3ZMEJmouLw8/Pf8NKSvGWCIUiwq51OHP5vuGiIo1zFvQyaMVtYXl5cHU10dTeQzEM+LL1L+LlEpH1FDtJiJaqFMFGEHBVESNLa6BFFBZKKM1hNlKS8XypfKywFQOZ+sfGy6a4Qg3Ghch0wYsazP9aSZslDG4HnxJZASYfpdIEoSL1w3UDkfYQgFURI0tckTRBmtJ8qWmyucNDociMvLo3I+GfnadJf6odhTn58PR3y8Iaf1eQ6TcMTHUxbKIAJ5vfbMstLvAlGKeM7VQJkowhAKoiRwzURFhVFPlEj8w8nxPB44W+isqS+vK9dyWYYg5aSE+qHYcaakBDCZDDWtLy4vr9swCRplbRzF0917mfzZfNfz94EQpYhBVFObHQ6eqlwIGyiIkkDMREVZzTCbAv/TYbSeKADOsrM1V3R9yAhZNtb01hdlhIDcSE4dP+58Xyzr03Mg5VnGR1PYjEfK5rueGy1TKR9RkljOx/OArc0ge2wS3aMgSoI2u3D1I9wS3I/NaD1RQNdwiVHnrQCE0hA6qZdJD31RwYwiJupwLevTc3+UazkiD4C3WmkKmwFJ2XzXc6AElfIRJUWEdZ13tXRQEEXYQEGUBHaHcDoUZg7ux2a0niigq6yjJF7YTZwm88mnp74o11HE1H/GpjMlJc5NeEWpaWmarScQyVlZ4Nra3E6YXffEIsblz7hzykoSNUS4XLxuaacgirCBgigJ2u1iEEVV4N10ZkvEk0WazCcff67wevYzEHacPnrUrT8K0E8glZST4zbOnMq2jM+fcee0NxRRG2WiCIsoiJKg3SE8cYPNRBm5nO/Cuq5yPkKIQOyP0lsg5To4QMw4UNmWsfkz7pz2hiJqC7d0/ca1UhBFGEFBlAQdMmWiqJyPBCMuL884A0lCyKmqKuf7rAdScXl5bmujPqjQ4nkRrKfXG8pMErVYXIZ5ia0VhGiNgigJ2mXqiTLaiHMAVM6nsI7MTGcWI6qw0O3qMGX99EPciJf1jJSYaeDQ+Zw2magPKoR4lge7vt4kZ7mPPqfMJFGD60RkO404J4ygIEoCuXqijDjinMr5lNVbBoD6ofSjPj+/x4wUC+PPk3JyumWgAPdx7SQ09PQaLvbI0UAJoiYT9/+3d/9BUV13H8c/C8uCCAhCohGhmIYf/npmSqJImg61OqXqOCGPeaImMVWbMdXiGPNLY5Oato8Vq5MwoDFPHJWkpsHaSasmVWMy2k4NxqSmHSP+wGqsYDUirIC6/Nr7/EFZRVDYX3dB3q8ZBjh7zuW7e7h373fvOedaWj+rdY0KAgKtS0lUfX29Vq1apezsbE2ePFlTpkzR3r17u/QHzp8/r4ULFyo7O1s/+MEPNGfOHJ08edKbmAPm2nA+5kTdyHriBMP5gC668YpU6/LnN37Kb6Y7hw1zDct1XYFS22GI6D1u/HBm7JaxLCiBgGod0kcOhe6iS9nA888/r71796q4uFjbt2/XvHnzNG/ePP35z3++Zbu6ujo9/vjjCg4O1gcffKAdO3bom9/8ph577DGdO3fOJ0/ATL5aWOJ2nBN15fHHXSeFEsP5/Om/5kq8vD3b9Vekrr+PVJDdHpDhfQMHD263Cp9EAoVrjlUfY0EJBFTrkD7mRKG76DQbOHDggHbt2qX58+crJiZGkjRu3DhlZmbqV7/61S3bFhUVqaKiQosXL5bVapXFYtHTTz+txsZGrVmzxjfPwERNTt8M57sd50TVLF+ueY+23O3eYrRfJhe+8+Wdco0D43Xu2c6dPeta/lxqO7zv+hvc+otrAQmns20CFRREAoV2x5fciS3fGcqHQLCSRKGb6TSJ2rFjhyQpMzOzTXlmZqa++uorlZaWdtTM1TY5OVlxcXGustDQUKWnp2vnzp0yetjkwEYfDedbunKsEt4YpKUrAz8Hwpf+L9nuOgu8XZLD7qR1CNj1eJ17vnPl5XJGR7dJpCySLA0NGjhoULshVJI0rGiYBr05qMtfHc29HDhoUJsFJKSWk2NndDRzoCCp/fHl9VHXfmYoH8xmDWo59yKJQnfRaTZw5MgRRUdHKyoqqk15YmKiJOno0aMdtquvr9fJkydd9W5sW1NTo4qKCk9iDhhfLXG+IfKYmoNavt9OjBu+w7dYBev29XVpaZt5UtK1ZCr8rbf0v08O0qD/u5YU2Rvsbm3/rdK3XG2HrBnkGjJ4ffLUenXh61t8MIbe58arUVyFQqC4hvP1sA/gcfuydlahurpaffv2bVceEREhSaqqquqwnd1ul9PpdNW7Xuv2qqqqNHjwYLcCbmWxWDRw4ECP2npq2f/cqVf+2ylDTQpRo/qERXq0nZrFl9Qgp2wK8ngb3dGlRdVyWqQgQ4oM6xfocLxm9v9XV1ytrVb1dXttv9Ce/zoHWrfp540bW75qalxX6S+FSrJIy9Ty5SuXXpJkSNH1133o0a+frJK6yavhc92mn3uYjQ9vVH59vuv32hekyD79uuX/CX18e9v7fJwMQwoLCfb6w2zAFzpNom6m9U3eYvH8HzlQbT3Vxxas+qu1kkVqMKRwD2MI7xOlcB/H1h04Lde+B6J/eoOG6/bYICev822pXz/ZHV270mQxpH71rb9YpH79JPu1tvb/JGEdN5bsYS0/RodFexwubn8WQzJaj+9BHHcQGJFhIYEOAWij0yQqJiZGp06dald++fJl1+MdiY6OVlBQkOrq6txu251F9+Fk42Y4EfM/XuPewa1+7nNj42tt+W+BL/TjfQ8A2ul0TlRaWprsdrtqa2vblJ85c8b1eEdCQ0M1ZMgQV70b20ZFRSk+Pt6TmAEAAAAgYDpNoiZMmCBJKikpaVNeUlKipKQkDfvPzSEbGhpUXV3drm1ZWZkuXrzoKmtoaNDBgweVnZ3NkAAAAAAAPU6nSVRGRoays7NVWFgo+3/G2u/Zs0effPKJlixZ4qo3d+5cZWVlqfy6pXFnzZqlu+66SytWrFBzc7MMw1B+fr6sVqtyc3P98HQAAAAAwL+6tLDEypUrVVBQoKlTp8pmsykkJERr1qxRVlaWq05cXJyio6MVFhbmKouIiNCmTZuUl5eniRMnymKxKCEhQZs2bWIVHQAAAAA9ksXoaXe8BQAAAIAA6nQ4HwAAAADgGpIoAAAAAHADSRQAAAAAuIEkCgAAAADcQBIFAAAAAG4giQKADkybNk2pqalt7n0HAPC9mpoaPfvssxxz0aN06T5Rt7v6+noVFhZq9+7dstlsstlsmj9/vr773e922vb8+fPKy8tTaWmpLBaLEhMTtXjxYt19993+Dxxu8bSfS0pKtGXLFp06dUpNTU1qbm7W/fffr7lz5yo2Ntac4NFl3uzPrbZt26YvvvjCf0HCa970c3Nzs959911t375dDQ0NstvtiouL0xNPPKHJkyf7P3h0iTd9/OGHH2rDhg2qq6uT1HLfyieffFLjx4/3c9Rw11//+lctXbpUffr0cbst52AIKAPG/PnzjUmTJhlVVVWGYRjGRx99ZAwdOtTYu3fvLdvV1tYa48ePN5599lmjsbHRcDqdRl5enjFmzBjj3//+txmhww2e9LPD4TBSUlKMX/7yl0ZDQ4NhGIZx5swZY/z48cb3vvc9o7a21pTY0XWe7s+tLl++bGRlZRlPPfWUkZKSYpw5c8af4cJD3vTzc889ZyxYsMC1/zocDmPOnDnGkiVL/Boz3ONpH+/evdtISUkxNm7c6CrbuHGjkZqa2uXjAMwzffp04/Dhw0ZBQYFbx1zOwRBovT6J+vTTT42UlBRj586dbcpnz55tfP/7379l28LCQmPo0KHGhQsXXGUOh8O49957jZdeeskv8cIznvazw+EwRo4caTgcjjblmzdvNlJSUow//OEPfokXnvFmf2716quvGi+++KLbb+gwjzf9vGvXLmPUqFHG5cuX25RXVFQYhw4d8nms8Iw3fbxgwQIjPT29XXl6errxzDPP+DROeK+xsdEwDMPtYy7nYAi0Xj8naseOHZKkzMzMNuWZmZn66quvVFpaesu2ycnJiouLc5WFhoYqPT1dO3fulGEY/gkabvO0n0NDQ/X5558rNDS0TfmAAQMkSZcuXfJDtPCUN/uzJJWXl2vLli165pln/BYjvOdNPxcXF2vMmDEKDw9vUz5o0CCNGDHC98HCI970cXBwsJxOp5xOp6us9ffm5mb/BAyPWa2ezSzhHAyB1uuTqCNHjig6OlpRUVFtyhMTEyVJR48e7bBdfX29Tp486ap3Y9uamhpVVFT4PmB4xNN+liSbzdau7NSpU5KkjIwMH0YJb3nTz5K0YsUKzZo1q82bMrofT/vZ6XTqiy++UHx8vNavX68pU6YoOztbM2bM0J/+9Ce/x42u82Zfnj17tqxWqwoKCtTU1KSmpibXz4899phf44Y5OAdDd9Drk6jq6mr17du3XXlERIQkqaqqqsN2drtdTqfTVe96rdu7WVuYz9N+7khjY6O2bNminJwcpaWl+SxGeM+bft6/f7+OHTumH/7wh36LD77hzXH7ypUrKi4uVllZmX7zm9/ogw8+0IQJE7Rw4UJt3LjRr3Gj67zZl4cPH67169fr448/1ujRozV69Gh9+OGH2rRpk0aNGuW3mGEezsHQHfT6JOpmWi8DWywWj7fhTVuYw5N+zs/Pl81m08svv+yvsOBjnfVzc3Ozli1bphdeeKHDK4/oGTrr54aGBtfjL7/8ssLDw2W1WvXoo49q1KhRKigokMPhMC1euK8rx+yPPvpIM2bM0JQpU3TgwAEdOHBAjzzyiJ566il99tlnZoWKAOMcDP7W65OomJgYXb58uV15a1lMTEyH7aKjoxUUFORaPtWdtjCfp/18o6KiIv3lL3/R+vXrO/wEDIHlaT8XFxcrLi6O5Y97CE/7ufUT6qSkpHZXOUaMGKErV66orKzMx9HCE94cs5cuXap77rlHM2fOlNVqldVq1cyZMxUfH69Fixb5LWaYh3MwdAe9PolKS0uT3W5XbW1tm/IzZ864Hu9IaGiohgwZ4qp3Y9uoqCjFx8f7PmB4xNN+vt6GDRu0bds2vf322+rfv79f4oR3PO3n/fv36+zZs3rwwQddX8XFxZKkOXPm6MEHH2TOTDfiaT9HRkbqzjvvbLPgQKvg4GBJYjJ6N+FpH1dWVqqyslJDhgxp91hSUpIqKioY5nUb4BwM3UGvT6ImTJggqeWGqtcrKSlRUlKShg0bJqllGEh1dXW7tmVlZbp48aKrrKGhQQcPHlR2djaXkrsRb/pZktauXaudO3eqqKjI9enWnj17tHr1aj9HDnd42s+FhYXatWuXtm7d6vqaNm2aJOnNN9/U1q1bNXHiRJOeBTrjzf48btw4nT59WleuXGlTfvToUfXp00fJycl+jBxd5WkfR0ZGymaz6ezZs+22efbsWYWEhHQ41wrdG+dg6I56fRKVkZGh7OxsFRYWym63S2o5Of7kk0+0ZMkSV725c+cqKytL5eXlrrJZs2bprrvu0ooVK9Tc3CzDMJSfny+r1arc3FzTnwtuzpt+zs/P17p165STk6M9e/a4TrL37NnTph4Cz5t+Rs/hTT/PnTtXYWFhevXVV11XpHbv3q19+/bpJz/5ifr06WPuk0GHPO3j0NBQTZs2TX/729/0/vvvu+q9//77OnjwoKZNm9bulhXo/jgHQ3fk2eL8t5mVK1eqoKBAU6dOlc1mU0hIiNasWaOsrCxXnbi4OEVHRyssLMxVFhERoU2bNikvL08TJ06UxWJRQkKCNm3apIEDBwbiqeAWPOnns2fPau3atZKkn//85+22+dBDD5kTPLrM0/251bZt27R+/XpVVlZKahnOFxISonfeeYd5cN2Ip/08YMAA/fa3v9WqVas0fvx4BQcHKzIyUnl5ecrJyQnEU8FNeNrHixcv1j333KMNGzZo7dq1MgxDYWFheuWVV/TII48E4qngFlavXq3du3e3O+b++te/VmpqqiTOwdA9WQwGgAMAAABAl/X64XwAAAAA4A6SKAAAAABwA0kUAAAAALiBJAoAAAAA3EASBQAAAABuIIkCAAAAADeQRAEAAACAG0iiAAAAAMANJFEAAAAA4AZroAMAAPRsDz/8sA4dOnTLOu+8847uu+8+kyICAMC/SKIAAB5ramrS8ePHFRUVpSeeeOKm9YYPH25iVAAA+BdJFADAYydOnFB9fb0yMjI0f/78QIcDAIApmBMFAPDYl19+KUkaOXJkgCMBAMA8JFEAAI8dPnxYEkkUAKB3YTgfAMBjrUnUvn37XFelrtevX79bzpUCAKAnshiGYQQ6CABAz9PU1KR7771XDofjpnXGjh2rN954w8SoAADwP65EAQA8cuLECTkcDo0bN06vv/56oMMBAMA0zIkCAHiktLRUkpSWlhbgSAAAMBdJFADAI63zoVJTUwMcCQAA5iKJAgB4pDWJ4koUAKC3YU4UAJjs9OnT2rx5s/bv369//etfunr1qiIiItS/f38lJydr+PDhmjFjhsLDwwMd6k01Nzfr6NGjCg8PV2JiYqDDAQDAVKzOBwAmWrdunfLz89XU1HTTOqGhoTp48KCs1u77Odfx48c1efJkxcbGavr06R3WsVgsmjdvnoKCGPQAALi9dN93aAC4zWzZskWrVq2SJCUnJ+vhhx9WWlqaIiMjZbfbdf78eR06dEgOh6NbJ1DStaF8Fy9e1OrVqzusc/fddys3N9fMsAAAMAVXogDAJOPGjVN5ebm+853v6I033vA6UfLFgg65ubmaP3++19sBAKA3YYwFAJjg6tWrKi8vlyQ98MAD3f5KEwAAuDnexQHABGFhYbrjjjt04cIFrVu3TnFxccrMzFRMTIzHc4a2b9/udVyxsbFebwMAgN6G4XwAYJKSkhLl5uaqrq6u3WOLFi3S7NmzAxAVAABwF8P5AMAk9913n37xi1/ojjvuaPcY91oCAKDn4EoUAJjg8OHDWrx4sY4fP64xY8YoJydHCQkJioqKkiQlJSXJZrO5tc3jx497HVdsbCxD+gAAcBNJFAD4WXl5uR566CHV1NToxRdf1MyZM32yXbNW5/PF3+nMsWPH/P43AADwFRaWAAA/e/PNN1VTU6OhQ4f6LIEyEwkOAABtkUQBgJ999tlnkqTExESfbpfkBgCAwGBhCQDws/r6ekktydSFCxduWq+xsVFXr141KywAAOAhkigA8LNvfetbkqSqqipNnTpVRUVF+vzzz3XkyBHt27dPf/zjH/Wzn/1MDzzwgL7++usAR9ux3//+90pNTVVBQcEt6zU1NWnSpElKTU3Vp59+alJ0AACYi+F8AOBnzz33nP7xj3/ozJkzqqio0PLlyzusFxER4fMhf77SurhEZysCvvvuuzpx4oQmTpyojIwMM0IDAMB0rM4HACa4cuWKfve732nPnj06ceKELl26JKvVqv79+ys+Pl7p6en69re/rdGjRwc61A45HA6lp6crISFBu3bt6rCO3W5Xdna26uvrtXPnTg0cONDkKAEAMAdXogDABOHh4Zo5c2aPXJ1PksLCwpSYmKjTp0/L4XAoLCysXZ2CggLZ7XYtXLiQBAoAcFtjThQAoEtSUlLkdDr1z3/+s91jZWVlKi4uVmJiombPnh2A6AAAMA9JFACgS1rnRZWVlbV7bPny5WpubtaSJUtks9nMDg0AAFORRAEAuuRmi0t8/PHH2rdvn7KysjR27NhAhAYAgKlIogAAXdJREtXQ0KAVK1YoJCREP/3pT9u1eeuttzR27FiNHDlS06dP19GjR02LFwAAfyGJAgB0yeDBg9W3b982w/nefvttnT59WrNnz9Y3vvGNNvW3b9+uVatWacGCBXrvvfeUkJCgH/3oR6qrqzM7dAAAfIokCgDQJRaLRSkpKTp37pxqa2tVWVmptWvXasCAAfrxj3/crn5RUZGmTZumnJwcJScna9myZWpsbNT27dsDED0AAL5DEgUA6LKUlBRJLUP6XnvtNdXV1WnRokUKDw9vU6+hoUFHjhzR/fff7yoLCQlRRkaG/v73v5saMwAAvkYSBQDostZ5UVu3btV7772nUaNGadKkSe3qVVdXq7m5WbGxsW3KY2NjVVlZaUqsAAD4C0kUAKDLWpOozZs3y2Kx6KWXXnKrvWEY/ggLAABTkUQBALqsNYmSpOnTpystLa3DejExMQoODtbFixfblFdVVSkuLs6vMQIA4G/WQAcAAOg5IiMjdezYsU7r2Ww2DR06VCUlJa57RzU2NurAgQN6+umn/R0mAAB+RRIFAPCLmTNnasmSJRo+fLiGDx+udevWyWq1avLkyYEODQAAr5BEAQD8YvLkyaqqqtJrr72myspKjRgxQuvXr1dERESgQwMAwCsWg1m+AAAAANBlLCwBAAAAAG4giQIAAAAAN5BEAQAAAIAbSKIAAAAAwA0kUQAAAADgBpIoAAAAAHADSRQAAAAAuIEkCgAAAADcQBIFAAAAAG74f6akTFHczhlsAAAAAElFTkSuQmCC\n", "text/plain": [ "