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The objective is to model the dynamics of a DC servo motor with gear train, Fig. 1, and to deduce
two equilibrium points.

Figure 1: DC servo motor with gear train.

1 Free-body diagram analysis

The system can be decomposed in two sections: a rotational mechanical, and an electro-nmechanical.
The rotational mechanical can be derived as follows,

Figure 2: Rotational mechanical free-body diagram.

where θ is the angular displacement, ω is the angular speed, B is the rotational viscous-damping
coefficient, K is the stiffness coefficient, J is the moment of inertia, fc is the contact force between two
gears, and r is the gear radius.
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The electro-mechanical section (DC motor) is

Figure 3: Electromechanical free-body diagram.

where RF is the field resistance, LF is the field inductance, EF is the applied constant field voltage,
and iF is the input field current. RA is the stationary resistance, LA is the stationary inductance, and
em is the induced voltage, iA is the input stationary current, and ei(t) is the applied armature voltage,
and τe is the electro-mechanical driving torque exerted on the rotor.

If the flux density B is

B =
φ(iF )

A
(1)

the torque on the rotor is

τe = Bla iA

τe =
la

A
φ(iF )iA (2)

where φ(iF ) is the flux induced by iF , A is the cross-sectional area of the flux path in the air gap
between the rotor and stator, l is the total length of the armature conductors within the magnetic
field, and a is the radius of the armature.

Also, the voltage induced in the armature em can be written as

em =
la

A
φ(iF )ω (3)

where both, τe and em, depend on the geometry of the DC motor.

2 Dynamic system

We begin applying D’Alembert’s law (restatement of Newton’s law) to the rotational mechanical
section. ∑

τall = 0

J1ω̇1 +B1ω1 + r1fc = τe(t) (4)

J2ω̇2 +B2ω2 +K2θ − r2fc = τL(t) (5)

where τall are the torques acting on a body, Kθ is the stiffness torque, Bω is the viscous-frictional
torque, Jω̇ is the inertial torque, τe(t) is the driving torque, τL(t) is the load torque, and rfc is the
contact torque.
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Due to the relation between gears,

θ1 = Nθ2

ω1 = Nω2

ω̇1 = Nω̇2

N =
r2
r1

where N is the gear radius relation. We solve (4) and (5) in terms of ω2 and θ2,

(J2 +N2J1)ω̇2 + (B2 +N2B1)ω1 +K2θ2 −Nτe(t)− τL(t) = 0

defining the relations

Jeq = J2 +N2J1

Beq = B2 +B2B1

it becomes in

Jeqω̇2 +Beqω2 +K2θ2 −Nτe(t)− τL(t) = 0 (6)

Now, let us derive the equations of the electro-mechanical section using Kirchoff’s law.∑
Vall = 0

em + VLA
+ VRA

= ei(t) (7)

where Vall are the induced voltages on the rotor and stator, VLA
is the stationary resistance voltage,

VRA
is the stationary inductance voltage.

If iF is defined as constant, then (2) is

τe(t) =

(
la

A
φ(iF )

)
iA(t)

τe(t) = αiA(t) (8)

where α is the internal parameters of the DC motor.
Then, simplifying and using (6) and (7) the dynamic system is,

Jeqω̇2 +Beqω2 +K2θ2 −Nτe − τL = 0 (9)

LAi̇A +RAiA + αω1 − ei = 0 (10)

3 State-space equations

Let us define the state-space equations for x =
[
θ2 θ̇2 iA

]ᵀ
. From the dynamic system,

Jeq θ̈2 +Beq θ̇2 +K2θ2 −NαiA − τL = 0

LAi̇A +RAiA + αω1 − ei = 0

reordering,

θ̈2 = −Beq
Jeq

θ̇2 −
K2

Jeq
θ2 +

Nα

Jeq
iA −

1

Jeq
τL

i̇A = −RA
LA

iA −
Nα

LA
θ̇2 +

1

LA
ei
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defining the states as
x1 = θ2, ẋ1 = θ̇2 = x2

x2 = θ̇2, ẋ2 = θ̈2 = −Beq

Jeq
x2 − K2

Jeq
x1 + Nα

Jeq
x3 − 1

Jeq
τL

x3 = iA, ẋ3 = i̇A = −RA

LA
x3 − Nα

LA
x2 + 1

LA
ei

then ẋ1ẋ2
ẋ3

 =

 0 1 0

−K2

Jeq
−Beq

Jeq
Nα
Jeq

0 −NαLA
−RA

LA


︸ ︷︷ ︸

A

x1x2
x3


︸ ︷︷ ︸

x

+

0 0 0
0 − 1

Jeq
0

0 0 1
LA


︸ ︷︷ ︸

B

 0
τL
ei


︸ ︷︷ ︸

u

(11)

ẋ = Ax +Bu (12)

The output y = ω̇2 can be defined as

y =
[
0 1 0

]︸ ︷︷ ︸
C

x1x2
x3

+
[
0 0 0

]︸ ︷︷ ︸
D

ei (13)

y = Cẋ (14)

4 Equilibrium point x0

Using ẋ = 0 in (12), the equilibrium point x0 can be calculated as

0 = Ax0 +Bu (15)

x0 = −A−1Bu (16)x10x20
x30

 = −

 0 1 0

−K2

Jeq
−Beq

Jeq
Nα
Jeq

0 −NαLA
−RA

LA


−1 0 0 0

0 − 1
Jeq

0

0 0 1
LA

 0
τL
ei

 (17)

Solving for no external torque τL = 0, constant applied armatrue voltage ei = E0, and K2 6= 0,

0 = x20

0 = −K2

Jeq
x10 −

Beq
Jeq

x20 +
Nα

Jeq
x30

0 = −Nα
LA

x20 −
RA
LA

x30 +
1

LA
E0

due to x20 = 0, we have

0 = −K2

Jeq
x10 +

Nα

Jeq
x30

0 = −RA
LA

x30 +
1

LA
E0

then

x10 =
Nα

K2RA
E0

x30 =
1

RA
E0
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therefore the equilibrium point is

x0 =

x10x20
x30

 =

 Nα
K2RA

0
1
RA

E0 (18)

This equilibrium point indicates that a constant angular displacement (twist) produced by
x10 = θ20 is sufficient to balance the constant applied armature voltage ei = E0.

On the other hand, if we solve for no external torque τL = 0, constant applied armature voltage
ei = E0, and no stiffness K2 = 0. The problem is,x10x20

x30

 = −

0 1 0

0 −Beq

Jeq
Nα
Jeq

0 −NαLA
−RA

LA


−1 0 0 0

0 − 1
Jeq

0

0 0 1
LA

 0
0
E0


if we eliminate x10 because the first column of A−1 has zeros, the problem reduces to

[
x20
x30

]
= −

[
−Beq

Jeq
Nα
Jeq

−NαLA
−RA

LA

]−1 [
− 1
Jeq

0

0 1
LA

] [
0
E0

]
(19)

solving, we have [
x20
x30

]
=

[
Nα

BeqRA+(Nα)2

−Beq

BeqRA+(Nα)2

]
E0 (20)

which indicates that a constant angular speed produced by x20 = ˙θ20 is needed to balance the
constant applied armature voltage ei = E0.
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