EE4323 Industrial Control Systems Homework Assignment 1 Dynamics model of a DC motor with gear train

Paulo R. Loma Marconi

May 4, 2017

The objective is to model the dynamics of a DC servo motor with gear train, Fig. 1, and to deduce two equilibrium points.

Figure 1: DC servo motor with gear train.

1 Free-body diagram analysis

The system can be decomposed in two sections: a rotational mechanical, and an electro-nmechanical. The rotational mechanical can be derived as follows,

Figure 2: Rotational mechanical free-body diagram.
where θ is the angular displacement, ω is the angular speed, B is the rotational viscous-damping coefficient, K is the stiffness coefficient, J is the moment of inertia, f_{c} is the contact force between two gears, and r is the gear radius.

The electro-mechanical section (DC motor) is

Figure 3: Electromechanical free-body diagram.
where R_{F} is the field resistance, L_{F} is the field inductance, E_{F} is the applied constant field voltage, and i_{F} is the input field current. R_{A} is the stationary resistance, L_{A} is the stationary inductance, and e_{m} is the induced voltage, i_{A} is the input stationary current, and $e_{i}(t)$ is the applied armature voltage, and τ_{e} is the electro-mechanical driving torque exerted on the rotor.

If the flux density \mathcal{B} is

$$
\begin{equation*}
\mathcal{B}=\frac{\phi\left(i_{F}\right)}{A} \tag{1}
\end{equation*}
$$

the torque on the rotor is

$$
\begin{align*}
\tau_{e} & =\mathcal{B} l a i_{A} \\
\tau_{e} & =\frac{l a}{A} \phi\left(i_{F}\right) i_{A} \tag{2}
\end{align*}
$$

where $\phi\left(i_{F}\right)$ is the flux induced by i_{F}, A is the cross-sectional area of the flux path in the air gap between the rotor and stator, l is the total length of the armature conductors within the magnetic field, and a is the radius of the armature.

Also, the voltage induced in the armature e_{m} can be written as

$$
\begin{equation*}
e_{m}=\frac{l a}{A} \phi\left(i_{F}\right) \omega \tag{3}
\end{equation*}
$$

where both, τ_{e} and e_{m}, depend on the geometry of the DC motor.

2 Dynamic system

We begin applying D'Alembert's law (restatement of Newton's law) to the rotational mechanical section.

$$
\begin{align*}
\sum \tau_{a l l} & =0 \\
J_{1} \dot{\omega}_{1}+B_{1} \omega_{1}+r_{1} f_{c} & =\tau_{e}(t) \tag{4}\\
J_{2} \dot{\omega}_{2}+B_{2} \omega_{2}+K_{2} \theta-r_{2} f_{c} & =\tau_{L}(t) \tag{5}
\end{align*}
$$

where $\tau_{\text {all }}$ are the torques acting on a body, $K \theta$ is the stiffness torque, $B \omega$ is the viscous-frictional torque, $J \dot{\omega}$ is the inertial torque, $\tau_{e}(t)$ is the driving torque, $\tau_{L}(t)$ is the load torque, and $r f_{c}$ is the contact torque.

Due to the relation between gears,

$$
\begin{aligned}
\theta_{1} & =N \theta_{2} \\
\omega_{1} & =N \omega_{2} \\
\dot{\omega}_{1} & =N \dot{\omega}_{2} \\
N & =\frac{r_{2}}{r_{1}}
\end{aligned}
$$

where N is the gear radius relation. We solve (4) and (5) in terms of ω_{2} and θ_{2},

$$
\left(J_{2}+N^{2} J_{1}\right) \dot{\omega}_{2}+\left(B_{2}+N^{2} B_{1}\right) \omega_{1}+K_{2} \theta_{2}-N \tau_{e}(t)-\tau_{L}(t)=0
$$

defining the relations

$$
\begin{aligned}
J_{e q} & =J_{2}+N^{2} J_{1} \\
B_{e q} & =B_{2}+B^{2} B_{1}
\end{aligned}
$$

it becomes in

$$
\begin{equation*}
J_{e q} \dot{\omega}_{2}+B_{e q} \omega_{2}+K_{2} \theta_{2}-N \tau_{e}(t)-\tau_{L}(t)=0 \tag{6}
\end{equation*}
$$

Now, let us derive the equations of the electro-mechanical section using Kirchoff's law.

$$
\begin{align*}
\sum V_{\text {all }} & =0 \\
e_{m}+V_{L_{A}}+V_{R_{A}} & =e_{i}(t) \tag{7}
\end{align*}
$$

where $V_{\text {all }}$ are the induced voltages on the rotor and stator, $V_{L_{A}}$ is the stationary resistance voltage, $V_{R_{A}}$ is the stationary inductance voltage.

If i_{F} is defined as constant, then (2) is

$$
\begin{align*}
\tau_{e}(t) & =\left(\frac{l a}{A} \phi\left(i_{F}\right)\right) i_{A}(t) \\
\tau_{e}(t) & =\alpha i_{A}(t) \tag{8}
\end{align*}
$$

where α is the internal parameters of the DC motor.
Then, simplifying and using (6) and (7) the dynamic system is,

$$
\begin{array}{r}
J_{e q} \dot{\omega}_{2}+B_{e q} \omega_{2}+K_{2} \theta_{2}-N \tau_{e}-\tau_{L}=0 \\
L_{A} \dot{i}_{A}+R_{A} i_{A}+\alpha \omega_{1}-e_{i}=0 \tag{10}
\end{array}
$$

3 State-space equations

Let us define the state-space equations for $x=\left[\begin{array}{lll}\theta_{2} & \dot{\theta}_{2} & i_{A}\end{array}\right]^{\top}$. From the dynamic system,

$$
\begin{array}{r}
J_{e q} \ddot{\theta}_{2}+B_{e q} \dot{\theta}_{2}+K_{2} \theta_{2}-N \alpha i_{A}-\tau_{L}=0 \\
L_{A} \dot{i}_{A}+R_{A} i_{A}+\alpha \omega_{1}-e_{i}=0
\end{array}
$$

reordering,

$$
\begin{aligned}
& \ddot{\theta}_{2}=-\frac{B_{e q}}{J_{e q}} \dot{\theta}_{2}-\frac{K_{2}}{J_{e q}} \theta_{2}+\frac{N \alpha}{J_{e q}} i_{A}-\frac{1}{J_{e q}} \tau_{L} \\
& i_{A}=-\frac{R_{A}}{L_{A}} i_{A}-\frac{N \alpha}{L_{A}} \dot{\theta}_{2}+\frac{1}{L_{A}} e_{i}
\end{aligned}
$$

defining the states as

$$
\begin{cases}x_{1}=\theta_{2}, & \dot{x}_{1}=\dot{\theta}_{2}=x_{2} \\ x_{2}=\dot{\theta}_{2}, & \dot{x}_{2}=\ddot{\theta}_{2}=-\frac{B_{e q}}{J_{e q}} x_{2}-\frac{K_{2}}{J_{e q}} x_{1}+\frac{N \alpha}{J_{e q}} x_{3}-\frac{1}{J_{e q}} \tau_{L} \\ x_{3}=i_{A}, & \dot{x}_{3}=\dot{i}_{A}=-\frac{R_{A}}{L_{A}} x_{3}-\frac{N \alpha}{L_{A}} x_{2}+\frac{1}{L_{A}} e_{i}\end{cases}
$$

then

$$
\begin{align*}
{\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right] } & =\underbrace{\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{K_{2}}{J_{e q}} & -\frac{B_{e q}}{J_{e q}} & \frac{N \alpha}{J_{e q}} \\
0 & -\frac{N \alpha}{L_{A}} & -\frac{R_{A}}{L_{A}}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}_{\mathbf{x}}+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{1}{J_{e q}} & 0 \\
0 & 0 & \frac{1}{L_{A}}
\end{array}\right]}_{B} \underbrace{\left[\begin{array}{c}
0 \\
\tau_{L} \\
e_{i}
\end{array}\right]}_{\mathbf{u}} \tag{11}\\
\dot{\mathbf{x}} & =A \mathbf{x}+B \mathbf{u} \tag{12}
\end{align*}
$$

The output $y=\dot{\omega}_{2}$ can be defined as

$$
\begin{align*}
& y=\underbrace{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]}_{C}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\underbrace{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]}_{D} e_{i} \tag{13}\\
& y=C \dot{\mathbf{x}} \tag{14}
\end{align*}
$$

4 Equilibrium point $\mathrm{x}_{\mathbf{0}}$

Using $\dot{\mathbf{x}}=0$ in (12), the equilibrium point $\mathbf{x}_{\mathbf{0}}$ can be calculated as

$$
\begin{align*}
0 & =A \mathbf{x}_{\mathbf{0}}+B \mathbf{u} \tag{15}\\
\mathbf{x}_{\mathbf{0}} & =-A^{-1} B \mathbf{u} \tag{16}\\
{\left[\begin{array}{l}
x_{1_{0}} \\
x_{2_{0}} \\
x_{3_{0}}
\end{array}\right] } & =-\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\frac{K_{2}}{J_{e q}} & -\frac{B_{e q}}{J_{e q}} & \frac{N \alpha}{J_{e q}} \\
0 & -\frac{N \alpha}{L_{A}} & -\frac{R_{A}}{L_{A}}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{1}{J_{e} q} & 0 \\
0 & 0 & \frac{1}{L_{A}}
\end{array}\right]\left[\begin{array}{c}
0 \\
\tau_{L} \\
e_{i}
\end{array}\right] \tag{17}
\end{align*}
$$

Solving for no external torque $\tau_{L}=0$, constant applied armatrue voltage $e_{i}=E_{0}$, and $K_{2} \neq 0$,

$$
\begin{aligned}
& 0=x_{2_{0}} \\
& 0=-\frac{K_{2}}{J_{e q}} x_{1_{0}}-\frac{B_{e q}}{J_{e q}} x_{2_{0}}+\frac{N \alpha}{J_{e q}} x_{3_{0}} \\
& 0=-\frac{N \alpha}{L_{A}} x_{2_{0}}-\frac{R_{A}}{L_{A}} x_{3_{0}}+\frac{1}{L_{A}} E_{0}
\end{aligned}
$$

due to $x_{2_{0}}=0$, we have

$$
\begin{aligned}
0 & =-\frac{K_{2}}{J_{e q}} x_{1_{0}}+\frac{N \alpha}{J_{e q}} x_{3_{0}} \\
0 & =-\frac{R_{A}}{L_{A}} x_{3_{0}}+\frac{1}{L_{A}} E_{0}
\end{aligned}
$$

then

$$
\begin{aligned}
x_{1_{0}} & =\frac{N \alpha}{K_{2} R_{A}} E_{0} \\
x_{3_{0}} & =\frac{1}{R_{A}} E_{0}
\end{aligned}
$$

therefore the equilibrium point is

$$
\mathbf{x}_{\mathbf{0}}=\left[\begin{array}{l}
x_{1_{0}} \tag{18}\\
x_{2_{0}} \\
x_{3_{0}}
\end{array}\right]=\left[\begin{array}{c}
\frac{N \alpha}{K_{2} R_{A}} \\
0 \\
\frac{1}{R_{A}}
\end{array}\right] E_{0}
$$

This equilibrium point indicates that a constant angular displacement (twist) produced by $x_{1_{0}}=\theta_{2_{0}}$ is sufficient to balance the constant applied armature voltage $e_{i}=E_{0}$.

On the other hand, if we solve for no external torque $\tau_{L}=0$, constant applied armature voltage $e_{i}=E_{0}$, and no stiffness $K_{2}=0$. The problem is,

$$
\left[\begin{array}{l}
x_{1_{0}} \\
x_{2_{0}} \\
x_{3_{0}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -\frac{B_{e q}}{J_{e q}} & \frac{N \alpha}{J_{e q}} \\
0 & -\frac{N \alpha}{L_{A}} & -\frac{R_{A}}{L_{A}}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{1}{J_{e} q} & 0 \\
0 & 0 & \frac{1}{L_{A}}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
E_{0}
\end{array}\right]
$$

if we eliminate $x_{1_{0}}$ because the first column of A^{-1} has zeros, the problem reduces to

$$
\left[\begin{array}{c}
x_{2_{0}} \tag{19}\\
x_{3_{0}}
\end{array}\right]=-\left[\begin{array}{cc}
-\frac{B_{e q}}{J_{e q}} & \frac{N \alpha}{J_{e q}} \\
-\frac{N \alpha}{L_{A}} & -\frac{R_{A}}{L_{A}}
\end{array}\right]^{-1}\left[\begin{array}{cc}
-\frac{1}{J_{e} q} & 0 \\
0 & \frac{1}{L_{A}}
\end{array}\right]\left[\begin{array}{c}
0 \\
E_{0}
\end{array}\right]
$$

solving, we have

$$
\left[\begin{array}{l}
x_{2_{0}} \tag{20}\\
x_{3_{0}}
\end{array}\right]=\left[\begin{array}{c}
\frac{N \alpha}{B_{e q} R_{A}+(N \alpha)^{2}} \\
\frac{-B_{e q}}{B_{e q} R_{A}+(N \alpha)^{2}}
\end{array}\right] E_{0}
$$

which indicates that a constant angular speed produced by $x_{2_{0}}=\dot{\theta_{20}}$ is needed to balance the constant applied armature voltage $e_{i}=E_{0}$.

References

[1] Close, Charles M. and Frederick, Dean K. and Newell, Jonathan C., Modeling and Analysis of Dynamic Systems, 2001, ISBN 0471394424.

