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1 Question 1

The aim of this task is to design a digital controlled system with some requirements, small
steady state error, small settling time, minimum input action, and minimum overshoot.

The plant to be studied is,

Gp(s) =
0.04(s+ 1)

s2 + 0.2s+ 0.04
(1)

and the digital controller should have the form,

D(z) = K
z −A
z −B

(2)

Fig.1 shows that the plant is very slow with a big overshoot. A phase margin (PM) of 60°
can be the unique requirement. As long as the compensated phase margin is around that value,
the settling time and overshoot should be minimized as much as possible.

(a) Bode plot (b) Step response.

Figure 1: Evaluation of the plant Gp

1.1 Phase-Lead compensator

The selected compensator can be written as follows,

Gc = Kc
s+ z

s+ p
, |z| ≤ |p| (3)
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Step 1. Calculate a gain K that satisfies the desired phase margin PMd = 60°. Applying
the angle condition for a PMd over Gp,

]Gp(jω
′
c) = PMd − 180° (4)

]Gp(jω
′
c) = 60°− 180°

]Gp(jω
′
c) = −120°

where ω′c is the new crossover frequency for the desired phase margin PMd = 60°.
Using the bode plot of Gp, Fig. 2a, the logarithm gain at −120° is −8.02 dB, so the gain K

can be calculated as follows,

20 log10K = | − 8.02| (5)

K = 2.52

Therefore, the uncompensated Gp that satisfies the desired phase margin is,

Gp1 = K Gp

Gp1 = 2.52
0.04(s+ 1)

s2 + 0.2s+ 0.04
(6)

and Fig. 2b shows that the new uncompensated plant Gp1 satisfies the desired phase margin.

(a) Bode plot of Gp (b) Bode plot of Gp1

Figure 2: Evaluation of the plant Gp and Gp1

The following Matlab scripts simulates the previous results.

%% ========================================================================

% ---- ACS6101 Assignment week 5

% ---- Registration number: 180123717

% ---- Name: Paulo Roberto Loma Marconi

% ---- 03/11/2018

%% === Question 1 =========================================================

clear; clc; close all; % clean previous data in order to avoid erros.

%% plant Gp

s = tf(’s’);

Gp = 0.04*(s+1)/(s^2+0.2*s+0.04); % uncompensated plant

fig = figure (1);

margin(Gp); % calculates the phase margin and gain margin at their frequencies

[Gm ,Pm ,Wcg ,Wcp] = margin(Gp);

Gcl = feedback(Gp ,1); % closed -loop of the uncompensated plant
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saveas(fig ,’Q1_Gp_margin.png’);

fig = figure (2);

step(Gcl); % step response to the closed -loop system

stepinfo(Gcl) % system performance values

saveas(fig ,’Q1_Gp_step.png’);

%% Design requirements

PO = 10; % percentage overshoot

zeta = log (100/ PO)/sqrt(pi^2+ (log (100/ PO))^2 ); % damping ratio

PM_d = round (100* zeta)+1; % desired PM

%% Obtaining the gain K that meets the desired PM_d

K = 10^(8.03/20); % the gain 8.03 obtained from the bode plot

Gp1 = K*Gp; % new uncompensated plant

fig = figure (11);

margin(Gp1);

saveas(fig ,’Q1_Gp1_K_margin.png’);

Step 2. The digital uncompensated plant Gz1 of Gp1 can be calculated using a zero-order
holder with a sampling time Ts = 0.01.

Gz1 = 1.01 · 10−3
z − 0.99

z2 − 1.99z + 0.99
(7)

In Fig. 3 it can be seen that the continuous and discrete plant are almost similar. Also, the
settling time has been reduced but the steady state error is too big.

Figure 3: Step response of Gz1 and Gp1

The following Matlab scripts simulates the previous results.

%% Digital uncompensated system with the new gain K

Ts = 0.01; % sampling time

Gz1 = c2d(Gp1 ,Ts ,’zoh’); % convert the continuos time plant Gp2 to the

% discrete time domain with the zero order holder

Gp1_cl = feedback(Gp1 ,1); % closed -loop system in continuos time

Gz1_cl = feedback(Gz1 ,1); % closed -loop system in discrete time

fig = figure (3);

step(Gp1_cl ,Gz1_cl); % step response of both continuos and discrete systems

saveas(fig ,’Q1_Gpz_K_step.png’);

stepinfo(Gz1_cl) % system performance values

Step 3. With the desired phase margin, the value of β can be calculated as follows,

PMact−PMd + θ = arctan
β − 1

2
√
β

(8)
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where PMact is the actual phase margin of the uncompensated plant Gp1, and θ is a factor of
correction.

After some operations,

β2−β [2 + 4 (tan(PMd − PMact + θ))] + 1 = 0

if θ = 6°, PMd = 60°, and PMact = 61.25° obtained from Fig. 4. The β will be,

β = 1.18

Figure 4: Bode plot of Gp2

Step 4. Now, the crossover over frequency ωc needs to be calculated using the following
gain condition formula,

|Gp1(jωc)| =
1√
β

(9)

if we use the peak magnitude Mpc relation,

Mpc =
1√
β

(10)

and using getGainCrossover(Gp2,Mpc) command on Matlab,

ωc = 1.37 rad/sec

Step 5. Determining the zero of the controller,

ωc =
√
βz2 (11)

z = 1.26

therefore, the compensator in continuous time can be written as follows,

Gc = β
s+ z

s+ βz
(12)

Gc = 1.18
s+ 1.26

s+ 1.49
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and in discrete time,

Gcz = 1.18
z − 0.99

z − 0.98

The open-loop compensated in continuous and discrete time are,

Gol = Gc Gp1 (13)

Gol = 1.18
s+ 1.26

s+ 1.49
2.52

0.04(s+ 1)

s2 + 0.2s+ 0.04
(14)

Golz = 0.01
z − 0.99

z − 0.98

z − 0.98

z2 − 1.99 + 0.99
(15)

Fig. 5 shows that the compensated system using a Phase-Lead controller achieves with
success the desired phase margin of 60°, and has a small settling time ts = 4.84 sec.

(a) Bode plot (b) Step response.

Figure 5: Evaluation of Phase-Lead compensated system in continuous and discrete time.

The following Matlab script simulates and evaluates the previous design.

%% Designing the Phase -lead digital controller

% introducing a new gain 10 times faster in order to obtain a fast

% response to the step input

Gp2 = K*10*Gp;

fig = figure (4);

margin(Gp2); % checking the desired phase margin PM_d

[Gm1 ,PM_act ,Wcg1 ,Wcp1] = margin(Gp2);

saveas(fig ,’Q1_Gp2_margin.png’);

% step 1) obtaining beta with the actual PM and the desired PM

theta = 6; % correction factor

beta = roots( [1 -(2+4*( tand(PM_d -PM_act+theta) )^2) 1] );

% beta = (1+ sind(PM_d -PM_act+theta))/(1-sind(PM_d -PM_act+theta));

% step 2) calculating the new crossover frequency

Mpc = 1/sqrt(beta (1)); % find compensator peak magnitude.

omega_c = getGainCrossover(Gp2 ,Mpc); % The new gain crossover frequency wc

% step 3) determining the zero and the pole of the controller

zc = omega_c/sqrt(beta (1)); % zero of the controller

pc = beta (1)*zc; % pole of the controller

% step 4) controller in continuous and discrete time

Gc = beta (1)*(s+zc)/(s+pc); % phase -lead controller in continuous time

Gcz = c2d(Gc ,Ts ,’zoh’); % phase -lead controller in discrete time
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%% Evaluating the phase -lead controller

Gol = Gc*Gp2; % open -loop compensated in continuous time

Gcl = feedback(Gol ,1); % closed -loop in continuous time

Gp2z = c2d(Gp2 ,Ts,’zoh’); % plant in discrete time

Golz = Gcz*Gp2z; % open -loop compensated in discrete time

Gclz = feedback(Golz ,1); % closed -loop in discrete time

fig = figure (5);

margin(Gol);

saveas(fig ,’Q1_lead_margin.png’);

fig = figure (6);

step(Gcl ,Gclz);

saveas(fig ,’Q1_lead_step.png’);

2 Question 2

The deadbeat controller approach finds an input signal in order to bring the output to the
steady-state in the smallest number of time steps [1]. It has some characteristics:

� Zero steady-state error.
� Minimum rise time.
� Minimum settling time
� Less than 2% overshoot/undershoot.
� Very high control signal output.
� Can not be used in continuous time.
As long as the plant G(z) has all zeros and poles inside the unit circle (minimum phase), the

plant can be written as,

G(z) =
zdB(z)

A(z)
=
zd(bo + b1z

−1 + ...+ bmz
−m)

1 + a1z−1 + ...+ anz−n
, d = n−m > 0

with an step input r(k), the deadbeat response requirement implies,

M(z) = z−d

The digital deadbeat will have the following transfer function,

D(z) =
A(z)

z−dB(z)

z−d

1− z−d
(16)

and the closed-loop system is,

Y (z) = z−dU(z)

which means,

y(k) = u(k − d)

So when u(k) is a step input, the output will be d-step delay of the same signal.
The aim of this question is to design a digital deadbeat controller for the plant,

Gp(s) =
0.04(s+ 1)

s2 + 0.2s+ 0.04

Gp(z) =
5.47× 10−2(z − 0.34)

z2 − 1.78z + 0.82

with sampling time Ts = 1.
After using the following code in Matlab.

6



Registration Number: 180123717

%% ========================================================================

% ---- ACS 6101 Assignment week 5

% ---- Registration number: 180123717

% ---- Name: Paulo Roberto Loma Marconi

% ---- 03/11/2018

%% === Question 2 =========================================================

clear; clc; close all;

s = tf(’s’);

Gp = 0.04*(s+1)/(s^2+0.2*s+0.04); % uncompensated plant

Ts = 1; % sampling time

Gz = c2d(Gp,Ts,’zoh ’); % System transfer function in discrete time

% Minimum phase case

z=zpk(’z’,Ts);

Mz = 1/z; % closed -loop because the relative order d = 1

Dz = Mz/(Gz*(1-Mz)); % deadbeat controller

Dz = minreal(Dz); % cancel common factors

fig = figure (1);

step(Dz*Gz/(1+Dz*Gz)) % step response of closed -loop

saveas(fig ,’Q2_ deadbeat_step.png ’);

fig = figure (2);

step(Dz/(1+Dz*Gz)) % control signal

saveas(fig ,’Q2_ deadbeat_control.png ’);

The closed-loop discrete system is,

Gclz =
(z − 1)(z − 0.3392)2(z2 − 1.783z + 0.8187)2

z(z − 0.3392)2(z − 1)(z2 − 1.783z + 0.8187)2

where the controller is,

Gcz =
18.288(z − 1)(z − 0.3392)(z2 − 1.783z + 0.8187)2

z(z − 0.3392)2(z − 1)(z2 − 1.783z + 0.8187)

Fig. 6 shows the output of the deadbeat controller and the closed-loop system response to
a unit step input. It shows clearly that the steady-state error reaches zero value at the first
sampled time.

In addition, the control signal is very high when the sampling time is increased, Fig. 7.

(a) Step response of the closed-loop (b) Control signal

Figure 6: Performance of the deadbeat controller system for Ts = 1
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(a) Step response of the closed-loop (b) Control signal

Figure 7: Performance of the deadbeat controller system for Ts = 0.01
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