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1 Question 1

The aim of this task is to design a Phase-lead compensator using the Bode analysis in the
frequency domain, and evaluate it in Matlab. Although the plant G(s) is a third-order system
Eq.(1), the design requirements can be approximated in terms of the natural frequency (ωn) and
damping ratio (ζ) of a second-order system.

G(s) =
K

s(s+ a)(s+ b)
(1)

G(s) =
K

s(s+ 2.5)(s+ 27)

1.1 Determine the gain K for a step response overshoot no more than 10%

There are two steps to follow in order to obtain the required gain K, the first one uses the
second-order performance approximation in the frequency domain, and the second step uses the
gain and angle condition.

The relation between the Percentage Overshoot (PO) in response to a unity step input of a
second-order system in the time domain, and the Phase Margin (PM) of the Bode analysis in
the frequency domain, can be written as follows,

PO = 100 e−ζπ/
√

1−ζ2 (2)

PM ≈ 100 ζ (3)

applying the requirement of PO ≤ 10%,

ζ =
ln
(

100
P.O.

)√
π2 +

[
ln
(

100
P.O.

)] (4)

ζ = 0.59 ≈ 0.60

Using Eq.(3), the desired Phase Margin (PMd) the system should have in order to satisfy the
PO is defined as,

PMd = 100× 0.6 = 60°

Now, it is necessary to obtain the new crossover frequency (ω′c) where the PMd is satisfied.
Using the PMd equation and the phase angle condition (φ(ω′c)) as follows,

φ(ω′c) = −180° + PMd (5)
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applying the rule of angles into the Eq.(1),

φ(ω′c) = −90°− arctan
ω′c
a
− arctan

ω′c
b

(6)

and after some algebraic operations ω′c,

PMd − 180° = −90°− arctan
ω′c
a
− arctan

ω′c
b

ω′c(a+ b)

a b
=

(
1− ω′2c

a b

)
tan(180°− 90°− PMd)

solving the quadratic equation with the corresponding values a, b, and PMd, and using the high
value of the solution,

ω′2c +
a+ b

tan(180°− 90°− PMd)
ω′c − a b = 0 (7)

ω′c = 1.29 rad/sec

Finally, the gain K can be obtained from the gain condition, where it is established that
the new crossover frequency ω′c should be at 0 dB of magnitude, in other words,

|G(jω′c)| = 1 (8)

applying into the plant G, Eq.(1), and replacing the values

K

ω′c
√
ω′2c + a2

√
ω′2c + b2

= 1

K = ω′c
√
ω′2c + a2

√
ω′2c + b2

K = 97.96

therefore, the plant becomes,

G(s) =
97.96

s(s+ 2.5)(s+ 27)

In Fig. 1a it can be seen that the desired PMd = 60° is satisfied with the new gain, and step
response has an PO = 8.36.

(a) Bode plot (b) Step response

Figure 1: Evaluation of the system with the new gain

The following script in Matlab simulates the previous results.
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%% ========================================================================

% ---- ACS6101 Assignment week 4

% ---- Registration number: 180123717

% ---- Name: Paulo Roberto Loma Marconi

% ---- 23/10/2018

%% === Question 1 =========================================================

clear; clc; close all;

%% plant G parameters

s = tf(’s’);

a = 2.5; b = 27;

%% a) Gain K for PO=10

PO = 10; % percentage overshoot

zeta = log (100/ PO)/sqrt(pi^2+ (log (100/ PO))^2 ); % damping ratio

PM_d = round (100* zeta)+1; % PM desired at the nearest round value

h = tand (180-90- PM_d);

omega_c = roots ([1 (a+b)/h -a*b]); % new omega_c

K = omega_c (2)*sqrt(omega_c (2)^2+a^2)*sqrt(omega_c (2)^2+b^2); % new gain K

G = K/( s*(s+a)*(s+b) ); % Plant G

fig = figure (1);

margin(G);

saveas(fig ,’Q1_a_margin.png’);

fig = figure (2);

step(feedback(G,1));

stepinfo(feedback(G,1))

saveas(fig ,’Q1_a_stepp.png’);

1.2 Design of the Phase-lead compensator

The Phase-Lead compensator has the following transfer function,

Gc =
s+ z

s+ p
(9)

where the location of the zero is to the left of the pole, |z| < |p|.
The design requirements are the velocity error constant Kv ≤ 25, and the step response

PO ≤ 10%
The first step is to calculate the loop gain that satisfies the Kv is calculated as follows,

Kv = lim
s→0

s
K

s(s+ 2.5)(s+ 27)
(10)

Kg = 1687

therefore, the new plant is,

G(s) =
Kg

s(s+ a)(s+ b)
(11)

G(s) =
1687

s(s+ 2.5)(s+ 27)

Using the Eq.(2), Eq.(4), Eq.(3), it is obtained that for an overshoot of PO = 10%, the
damping ratio is ζ = 0.6, and the desired phase margin is PMd = 60°.

In order to obtain the ωc that satisfies the gain condition with the new gain K, Eq.(8) is
applied as follows,

|G(jωc)| = 1∣∣∣∣ Kg

jωc(jωc + a)(jωc + b)

∣∣∣∣ = 1
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after some algebraic operation,

ω2
c (ω

2
c + a2)(ω2

c + b2)−K2
g = 0

ωc = 7.55 rad/sec

Now, the actual phase margin PMact is needed to calculate the additional phase (φm) required
from the compensator,

PMact = 180° + φ(ωc) (12)

PMact = 180°− 90°− arctan
ωc
a
− arctan

ωc
b

PMact = 2.65

so, the additional phase angle is,

φm = PMd + θ − PMact (13)

where θ is a factor of correction. If θ = 0,

φm = 60° + 0°− 2.65

φm = 57°

The additional phase margin is related with the zero and the pole of the Phase-Lead com-
pensator as follows,

α =
sinφm + 1

1− sinφm
(14)

α = 11

where α is,

α =
p

z
(15)

The next step is to determine the new ω′c using the following logarithm gain condition,

20 log |G(jω′c)| = −10 logα (16)

Kg

ω′c
√
ω′2c + a2

√
ω′2c + b2

=
1√
α

(17)

after some operations,

ω′2c (ω′2c + a2)(ω′2c + b2)−K2
g α = 0

ω′c = 13.50 rad/sec

now, calculating the zero of the compensator,

ω′c =
√
p z (18)

z =
ω′c
α

z = 4.07
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and the pole of the compensator using Eq.(15) is,

p = α z

p = 44.78

The last step is to obtain the new gain of the compensated system,

Knew =
√
αKg (19)

Knew = 5596.80

therefore, the compensated open-loop transfer function is as follows,

Gol =
s+ z

s+ p

Knew

s(s+ a)(s+ b)
(20)

Gol =
s+ 4.07

s+ 44.78

5596.80

s(s+ 2.5)(s+ 27)

The following Matlab script calculates the Phase-Lead compensator with the design require-
ments.

%% b) Phase -lead compensator

Kv = 25; % velocity error

Kg = Kv*a*b; % loop gain to satisfy Kv

G = Kg/( s*(s+a)*(s+b) ); % Plant G

% omega_c for the uncompensated system

omega_c = real( sqrt( roots ([1 a^2+b^2 a^2*b^2 -Kg^2]) ) );

% obtaining actual PM

PM_act = 180-90- atand(omega_c (3)/a)-atand(omega_c (3)/b);

% additional phase angle from the compensator PM

theta = 0; % factor of correction

PM_c = round(PM_d+theta -PM_act);

% calculating alpha

alpha = round( (sind(PM_c)+1)/(1-sind(PM_c)) );

% Determine the new cross over frequency

omega_c_new = real( sqrt( roots ([1 a^2+b^2 a^2*b^2 -Kg^2* alpha ]) ) );

% Calculating the zero of the compensator

z = omega_c_new (3)/sqrt(alpha);

% Calculating the pole of the compensator

p = alpha*z;

% lead compensator

Gc = (s+z)/(s+p);

% new gain of the compensated system

K_new = sqrt(alpha)*Kg;

% compensated open -loop

Gol = K_new*Gc*G/Kg;

% closed -loop

Gcl = feedback(Gol ,1);

1.3 Evaluation of the compensated system to a unit ramp input

The unit ramp in the LaPlace domain has the following equation,

R(s) =
1

s2
(21)

and the steady-state error to that unit ramp is,

essv =
1

Kv
(22)
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where,

Kv = lim
s→0

s G(s) (23)

evaluating Kv for the compensated system Gol,

Kv = lim
s→0

s

[
s+ z

s+ p

Knew

s(s+ a)(s+ b)

]
Kv = 7.53

therefore,

essv = 0.13

which is a relatively small steady-state error.

1.4 Evaluation the performance of the compensated system

Fig. 2 shows the Bode plot, unit step response, and the unit ramp response. It can be seen that
the desired PMd = 60° and the PO = 10% are satisfied, and the system has an improved the
settling time, ts = 1.04, see Table 1.

(a) Bode plot. (b) Step and ramp response.

Figure 2: Evaluation of the compensated system.

Quantity Value

Steady state error to a unit ramp 0.13

Rise Time 0.24

Settling Time 1.04

Percentage Overshoot 10.38

Phase Margin 60.20

Gain Margin 22.90

Bandwidth 8.19

Peak Magnitude 0.57

Resonant frequency 3.42

Table 1: Performance evaluation.

The following Matlab script was used to obtain Fig. 2.
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%% c) evaluating the system to unit step and unit ramp

figure (2);

margin(Gol);

figure (3);

subplot (2,1,1);

step = 1/s; % step input

impulse(step ,Gcl*step);

title(’Step response ’);

subplot (2,1,2);

ramp = 1/s^2; % ramp input

impulse(ramp ,Gcl*ramp);

title(’Ramp response ’);

% evaluating Kv for the new compensated system

Kv_new = (z/p)*K_new /(a*b);

% steady -state error to a unity ramp

ess_ramp = 1/ Kv_new;

stepinfo(Gcl)

% bandwidth of Gcl

BW = bandwidth(Gcl);

% resonant frequency

omega_r = 4/(0.6*1.03) *sqrt (1 -2*0.6^2);

1.5 Conclusion

Comparing the uncompensated system in Fig. 1, and the Phase-Lead compensated system in
Fig. 2, the desired phase margin PMd = 60° and the overshoot PO ≤ 10% were satisfied.
Moreover, the settling time ts was improved three times in the Phase-lead compensated, which
demonstrates this compensator improves the transient response without altering the desired
phase margin.

2 Question 2

The objective of this task is to design a Phase-Lead compensator, and a Phase-Lag compensator
in series with the first Phase-Lead compensator using two different approaches.

The plant to be studied is,

G(s) =
K

s2(s+ a)(s+ b)
(24)

G(s) =
K

s2(s+ 9)(s+ 50)

2.1 Determine the location of closed-loop dominant poles

The design requirements are the settling time ts ≤ 2.9 sec, and the overshoot PO ≤ 20%. Al-
though the plant is a fourth-order system, the compensator can be designed using the properties
of a second-order system.

The settling time is,

ts =
4

ζωn
(25)

where ζ is the damping ration and ωn is the natural frequency. Using Eq.(4), and Eq.(25),

ζ = 0.45, ωn = 3.06 rad/sec
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therefore, the desired closed-loop dominant poles are,

r1,2 = −ωnζ ± j ωn
√

1− ζ2 (26)

r1,2 = −1.38± j 2.73

The following Matlab script calculates the previous results.

%% ========================================================================

% ---- ACS6101 Assignment week 4

% ---- Registration number: 180123717

% ---- Name: Paulo Roberto Loma Marconi

% ---- 27/10/2018

%% === Question 2 =========================================================

clear; clc; close all;

%% plant G parameters

s = tf(’s’);

a = 9; b = 50;

%% a) Location of the dominant poles for PO=20 and ts=2.9

PO = 20; % percentage overshoot

ts = 2.9; % settling time

zeta = log (100/ PO)/sqrt(pi^2+ (log (100/ PO))^2 ); % damping ratio

zeta = round(zeta ,2) -0.01;

omega_n = 4/( zeta*ts);

% desired location of dominant poles

s1 = -omega_n*zeta+omega_n*sqrt(1-zeta ^2)*1i;

2.2 Demonstrate the desired poles do not belong to the root locus

In order to demonstrate that the desired dominant poles r1,2 do not belong to the root locus of
the plant G(s), the angle condition must not be satisfied.

Choosing the pole, r1 = −1.38± j 2.73,

](G(r1)) = −180° (27)

]

(
K

r21(r1 + 9)(r1 + 50)

)
= 180°

− ]r1 − ]r1 − ](r1 + 9)− ](r1 + 50) = −80°

− 2 arctan
2.73

−1.38
− arctan

2.73

9− 1.38
− arctan

2.73

50− 1.38
= −180°

103.44 6= −180°

if the second pole r2 is evaluated,

− 103.44 6= −180°

2.3 Design of the Phase-Lead compensator

The Phase-Lead compensator has the following transfer function,

Glead =
s+ zlead
s+ plead

, |zlead| < |plead| (28)

The design requirement is that the location of the compensator’s zero is 1. Once again, the
angle criteria is applied with the desired pole r1 as follows,

]

(
s+ zlead
s+ plead

K

s2(s+ a)(s+ b)

)
= −180° (29)

]

(
r1 + zlead
r1 + plead

K

r21(r1 + a)(r1 + b)

)
= −180°

]zlead − ]plead − 2 ]s− ]a− ]b = −180°
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if, r1 = −x+ j y(
180°− arctan

y

x− zlead

)
− arctan

y

plead − x
− 2

(
180°− arctan

y

x

)
...

− arctan
y

a− x
− arctan

y

b− x
= 180°

after some operations,

plead = 8.36

so, the Phase-Lead compensator is,

Glead =
s+ 1

s+ 8.36

Now, the gain K of the compensated system can be found using the gain condition,∣∣∣∣s+ zlead
s+ plead

K

s2(s+ 9)(s+ 50)

∣∣∣∣ = 1∣∣∣∣ r1 + 1

r1 + 8.38

K

r21(r1 + 9)(r1 + 50)

∣∣∣∣ = 1

K = 10047

Therefore, evaluating the following open-loop compensated system,

Gol = Glead G(s) (30)

Gol =
s+ 1

s+ 8.36

10047

s2(s+ 9)(s+ 50)

in Fig. 3 it can be seen that the close-loop desired poles belong to the root locus of the
compensated system, but the overshoot is too high, so, it is recommended to use a Pre-filter to
reduce the overshoot.

The script below simulates the Phase-Lead compensator.

%% c) Phase lead compensator

z_lead = 1; % location of the desired zero

% using the angle condition to determine the location of the pole

x = -real(s1); y = imag(s1);

h = 180 + 180 - atand(y/(x-z_lead)) -2*( 180- atand(y/x) )-atand(y/(a-x))...

-atand(y/(b-x));

p_lead = y/tand(h)+x;

% Gc compensator TF

Gc_lead = (s+z_lead)/(s+p_lead);

% obtaining the gain K with the gain condition equation

K = ((-x)^2+y^2)*sqrt((-x+a)^2+y^2)*sqrt((-x+b)^2+y^2) *...

sqrt((-x+p_lead)^2+y^2)/sqrt((-x+z_lead)^2+y^2);

% the open -loop system

G = K/(s^2*(s+a)*(s+b));% plant G

Gol_lead = Gc_lead*G; % open -loop with the Lead compensator

Gcl_lead = feedback(Gol_lead ,1); % closed -loop with the Lead compensator

fig = figure (1);

rlocus(Gcl_lead);

hold;

% ploting the s1 and zeta in the rlocus

n = 0:1:160; m = n*sqrt(zeta ^2/(1 - zeta ^2));

axis ([ -4 1 -4 4]);

plot (-m,n,’--’); % zeta
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(a) Root locus. (b) Step response.

(c) Bode plot.

Figure 3: Closed-loop system with the Lead compensator.

plot (-x,y,’rd’);

saveas(fig ,’Q2_Lead_rlocus.png’);

fig = figure (2);

step(Gcl_lead);

saveas(fig ,’Q2_Lead_step.png’);

fig = figure (3);

margin(Gcl_lead);

saveas(fig ,’Q2_Lead_margin.png’);

BW_lead = bandwidth(Gcl_lead); % bandwidth

2.4 Adding a Pre-filter

The use of a Pre-filter in series with the closed-loop systems can reduce the overshoot canceling
the effect of the Phase-Lead’s zero.

The Pre-filter is written as follows,

Gpf =
p

s+ p
(31)
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where p can be at the exact point of the zlead = 1,

Gpf =
1

s+ 1

applying to the closed-loop Phase-Lead compensated system and evaluating it,

Glead+prefilter = Gpf
Gol

1 +Gol

Glead+prefilter =
1

s+ 1

10047 (s+ 1)

(s+ 50)(s+ 13.07)(s+ 1.64)(s2 + 2.76 s+ 9.40)

Fig. 4 shows the result on implementing a Pre-filter, where the overshoot decreases dramat-
ically with a small change in the settling time.

(a) Step response. (b) Bode plot

Figure 4: Closed-loop Lead compensated in series with a Pre-filter.

The Matlab script below calculates and implements the Pre-filter.

%% Using prefilter to reduce the overshoot

pf = z_lead; % selecting the zero of the lead compensator (z_lead)

Gpf = pf/(s+pf);

fig = figure (3);

step(Gpf*Gcl_lead);

saveas(fig ,’Q2_Lead+prefilter_step.png’);

fig = figure (4);

margin(Gpf*Gcl_lead);

saveas(fig ,’Q2_Lead+prefilter_margin.png’);

BW_lead_prefilter = bandwidth(Gpf*Gcl_lead); % bandwidth

2.5 Design of the Phase-Lag compensator

The Phase-Lag compensator has the following transfer function,

Glag =
s+ zlag
s+ plag

, |plag| < |zlag| (32)

This compensator will be used in series with the Phase-Lead compensator designed in the previ-
ous task. And now, the design requirement is the steady-state error (essa) for a parabolic input
0.5At2 ≤ 2.5%.
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First, obtaining the LaPlace transform of the parabolic input,

r(t) = 0.5At2, R(s) =
A

s3

according to the final value theorem,

ess = lim
s→0

s
A

s3
1

1 +G
(33)

if Ka = lim
s→0

s2 G, the steady-state error is,

essa =
A

Ka
(34)

where Ka is the acceleration error constant.
If essa = 0.025 and A = 1, the desired acceleration error constant (Kad) is obtained using

Eq.(34),

Kad =
1

essa
Kad = 40

and again, with A = 1 and G = Gol from Eq.(30), the actual acceleration error constant Kaact

is,

Kaact = lim
s→0

s2 Gol = Kaact = 2.67

The relation between the zero zlag and the pole plag of the Phase-Lag compensator can be
written as follows,

α =
Kad

Kaact

=
zlag
plag

(35)

α = 14.97

choosing a zlag ten times smaller than the real part of the desired dominant pole r1,

zlag =

∣∣∣∣−1.38

10

∣∣∣∣
zlag = 0.14

and the pole should be,

plag =
zlag
α

plag = 0.0092

therefore, the Phase-Lag compensator becomes,

Glag =
s+ 0.14

s+ 0.0092

The Matlab script of the Phase-Lag compensator is presented below.
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%% d) Phase -lag compensator

ess_a = 0.025; % steady -state error for a parabolic input 0.5At^2

Ka_d = 1/ ess_a; % Ka desired

Ka_act = (z_lead/p_lead)*(K/(a*b));

% calculating the zero and pole of the compensator

alpha = Ka_d/Ka_act;

z_lag = abs(x)/10;

p_lag = z_lag/alpha;

% Gc phase -lag compensator

Gc_lag = (s+z_lag)/(s+p_lag);

2.6 Evaluation of the performance

Finally, the open-loop of the Phase-Lead compensator in series with the Phase-Lag compensator
is written as follows,

Gol1 = Glag Glead G(s) (36)

Gol1 =
s+ 0.14

s+ 0.0092

s+ 1

s+ 8.36

10047

s2(s+ 9)(s+ 50)

and the Pre-filter with the closed-loop systems is,

Glag+lead+prefilter = Gpf
Gol1

1 +Gol1
(37)

Glag+lead+prefilter = Gpf
10047(s+ 1)(s+ 0.14)

(s+ 50)(s+ 13.05)(s+ 1.78)(s+ 0.14)(s2 + 2.51 s+ 8.75)

Fig. 5c shows the step response of the system with and without the Pre-filter, it is clear
that the Pre-filter reduces the overshoot in both cases with good settling time, the performance
results can be seen in Table 2. On the other hand, in Fig. 5a, the desired dominant poles are
slightly out of the root locus, it is recommended to add a second Phase-lead compensator in
series in order correct that gap.

Quantity Lead Prefilter+Lead Lead+Lag Prefilter+Lead+Lag

Rise Time 0.37 1.00 0.36 0.94

Settling Time 2.79 3.08 3.59 3.31

Percentage Overshoot 51.46 0.07 57.96 1.79

Phase Margin 40.80 -180 36.60 36.60

Gain Margin 8.96 7.07 8.51 8.51

Bandwidth 4.87 2.31 4.89 2.58

Peak Magnitude 1.51 1.00 1.58 1.02

Table 2: Performance evaluation to unit step response

The following Matlab script was used to evaluate the performance of the previous systems.

%% Evaluating the performance with the phase -lead , phase -lag and prefilter

Gol_lead_lag = Gc_lead*Gc_lag*G;

Gcl_lead_lag = feedback(Gol_lead_lag ,1);

fig = figure (5);

rlocus(Gcl_lead_lag);

hold;

% ploting the s1 and zeta in the rlocus

n = 0:1:160; m = n*sqrt(zeta ^2/(1 - zeta ^2));

axis ([ -4 1 -4 4]);

plot (-m,n,’--’); % zeta
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(a) Root locus of the Lead and Lag closed-loop com-
pensator system.

(b) Bode plot of the closed-loop system.

(c) Step response of the closed-loop system.

Figure 5: Phase-lead, Phase-lag in series, and the Pre-filter.

plot (-x,y,’rd’);

saveas(fig ,’Q2_Lead+Lag_rlocus.png’);

fig = figure (6);

step(Gcl_lead ,Gpf*Gcl_lead ,Gcl_lead_lag ,Gpf*Gcl_lead_lag)

legend(’Lead’,’Pre -filter + Lead’,’Lead + Lag’,’Pre -filter + Lead + Lag’...

,’Location ’,’southeast ’);

saveas(fig ,’Q2_All_step_1.png’);

stepinfo(Gpf*Gcl_lead_lag)

fig = figure (7);

margin(Gcl_lead_lag);

saveas(fig ,’Q2_Lead+lag_margin.png’);

BW_lead_lag = bandwidth(Gcl_lead_lag); % bandwidth

fig = figure (8);

margin(Gcl_lead_lag);
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saveas(fig ,’Q2_Lead+lag+prefilter_margin.png’);

BW_lead_lag_prefilter = bandwidth(Gpf*Gcl_lead_lag); % bandwidth

%% Verifing Ka = 40

Ka = (z_lag/p_lag) * (z_lead/p_lead) * ( K/(a*b) );

ess_parabolic = a/Ka;

2.7 New Phase-Lead compensator

Fig. 5a demonstrates that the desired dominant closed-loop poles have moved slightly from the
root locus, therefore, a new Phase-Lead compensator is calculated to correct that shift.

This time, the location of the zero is exactly below the real part of the desired pole, zlead 2 =
1.38. Applying the angle condition with the desired pole r1 as follows,

]

(
s+ zlead 2

s+ plead 2

s+ zlag
s+ plag

s+ zlead
s+ plead

K

s2(s+ a)(s+ b)

)
= −180° (38)

]

(
r1 + zlead 2

r1 + plead 2

r1 + zlag
r1 + plag

r1 + zlead
r1 + plead

K

r21(r1 + a)(r1 + b)

)
= −180°

]zlead 2 + ]zlag + ]zlead − ]plead 2 − ]plag − ]plead − 2 ]s− ]a− ]b = −180°

if, r1 = −x+ j y

arctan
y

x− zlead 2
+

(
180°− arctan

y

x− zlag

)
+

(
180°− arctan

y

x− zlead

)
...

− arctan
y

plead 2
−
(

180°− arctan
y

x− plag

)
− arctan

y

plead − x
− 2

(
180°− arctan

y

x

)
...

− arctan
y

a− x
− arctan

y

b− x
= 180°

after some operations,

plead 2 = 1.48

so, the second Phase-Lead compensator is,

Glead 2 =
s+ 1.38

s+ 1.48

Now, the new gain Knew of the compensated system can be found using the gain condition,∣∣∣∣Knew
s+ zlead 2

s+ plead 2

s+ zlag
s+ plag

s+ zlead
s+ plead

K

s2(s+ a)(s+ b)

∣∣∣∣ = 1 (39)∣∣∣∣Knew
r1 + zlead 2

r1 + plead 2

r1 + zlag
r1 + plag

r1 + zlead
r1 + plead

K

r21(r1 + a)(r1 + b)

∣∣∣∣ = 1

Knew = 1

which means that the gain has not changed.
The following script in Matlab simulates the previous results.

%% New phase -lead compensator

z_lead2 = x; % given zero lead right below the desired pole

f = 180 + atand(y/(x-z_lead2))+(180 - atand(y/(x-z_lag)))...

+(180 - atand(y/(x-z_lead))) - (180- atand(y/(x-p_lag)))-atand(y/(p_lead -x))...

-2*(180- atand(y/x))-atand(y/(a-x))-atand(y/(b-x));

% p_lead2 = y/tand (180+f) - x;
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p_lead2 = y/tand(f) + x;

Gc_lead2 = (s+z_lead2)/(s+p_lead2);

% Calculating the new gain K with the lead 2 compensator

K_new = sqrt((-x+p_lead2)^2+y^2)*sqrt((-x+p_lag)^2+y^2) *...

sqrt((-x+p_lead)^2+y^2)*((-x)^2+y^2)*sqrt((-x+a)^2+y^2)*sqrt((-x+b)^2+y^2) /...

( sqrt((-x+z_lead)^2+y^2)*sqrt((-x+z_lag)^2+y^2)*sqrt((-x+z_lead)^2+y^2)*K );

Gol_lead2_lead_lag = K_new*Gc_lead2*Gol_lead_lag;

Gcl_lead2_lead_lag = feedback(Gol_lead2_lead_lag ,1);

%% Verifing Ka = 40

Ka_new = K_new *( z_lead2/p_lead2)*(z_lag/p_lag)*( z_lead/p_lead)*(K/(a*b));

ess_parabolic_new = a/Ka_new;

2.8 Evaluation of the performance with the second Phase-Lead compensator

The open-loop of the new Phase-Lead compensator in series with the previous compensators is
written as follows,

Gol2 = Glead 2 Glag Glead G(s) (40)

Gol2 =
s+ 1.38

s+ 1.48

s+ 0.14

s+ 0.0092

s+ 1

s+ 8.36

10047

s2(s+ 9)(s+ 50)

and the Pre-filter with the closed-loop systems is,

Glag+lead+prefilter = Gpf
Gol2

1 +Gol2
(41)

Glag+lead+prefilter = Gpf
10047(s+ 1.38)(s+ 1)(s+ 0.14)

(s+ 8.36)(s+ 1.48)(s+ 0.009)s2(s+ 9)(s+ 50)

From Fig. 6a it can be seen that the desired closed-loop poles are exactly in the root locus.
Also, the PM has changed a little with respect of the previous compensated system, from 36.60°

to 39.50°, Fig. 6b. On the other hand, the step response has been improved with the Pre-filter
and the new Phase-Lead compensator, see Table 3.

Quantity Lead Prefilter
+Lead

Lead
+Lag

Prefilter
+Lead
+Lag

Lead 2
+Lead
+Lag

Prefilter
+Lead 2
+Lead
+Lag

Rise Time 0.37 1.00 0.36 0.94 0.37 0.97

Settling Time 2.79 3.08 3.59 3.31 2.87 1.68

Percentage
Overshoot

51.46 0.07 57.96 1.79 55.00 1.25

Phase Margin 40.80 -180 36.60 36.60 39.50 -180

Gain Margin 8.96 7.07 8.51 8.51 8.79 6.79

Bandwidth 4.87 2.31 4.89 2.58 4.88 2.42

Peak Magnitude 1.51 1.00 1.58 1.02 1.55 1.01

Table 3: Performance evaluation to unit step response

The following script in Matlab simulates the previous results.

%% Comparing the new compensator of the previous designs.

fig = figure (9);

rlocus(Gcl_lead2_lead_lag)

hold on;

% ploting the s1 and zeta in the rlocus

n = 0:1:160; m = n*sqrt(zeta ^2/(1 - zeta ^2));
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(a) Root locus (b) Bode plot of the open-loop system without the Pre-
filter.

(c) Bode plot of the closed-loop system with the Pre-
filter

(d) Step response of the closed-loop system.

Figure 6: Phase-lead 2, Phase-lead, Phase-lag in series, and the Pre-filter.

axis ([ -4 1 -4 4]);

plot (-m,n,’--’); % zeta

plot (-x,y,’rd’);

saveas(fig ,’Q2_Lead2+Lead+Lag_rlocus.png’);

fig = figure (10);

% step(Gcl_lead2_lead_lag ,Gpf*Gcl_lead2_lead_lag)

step(Gcl_lead ,Gpf*Gcl_lead ,Gcl_lead_lag ,Gpf*Gcl_lead_lag ,...

Gcl_lead2_lead_lag ,Gpf*Gcl_lead2_lead_lag)

legend(’Lead’,’Pre -filter+Lead’,’Lead+Lag’,’Pre -filter+Lead+Lag’...

,’Lead 2+Lead+Lag’,’Pre -filter+Lead2+Lead+Lag’,’Location ’,’southeast ’);

saveas(fig ,’Q2_All_step_2.png’);

stepinfo(Gpf*Gcl_lead2_lead_lag)

fig = figure (11);

margin(Gcl_lead2_lead_lag);

saveas(fig ,’Q2_Lead2+lead+lag_margin.png’);

BW_lead2_lead_lag = bandwidth(Gcl_lead2_lead_lag); % bandwidth

fig = figure (12);

margin(Gpf*Gcl_lead2_lead_lag);

saveas(fig ,’Q2_Lead2+lead+lag+prefilter_margin.png’);

BW_lead2_lead_lag_prefilter = bandwidth(Gpf*Gcl_lead2_lead_lag); % bandwidth

17



Registration Number: 180123717

2.9 Conclusion

The settling time requirement ts ≤ 2.9 was satisfied by three of the six compensators, and only
the last one with the Pre-filter achieved the desired overshoot PO ≤ 20%. It is clear that the
use of the Pre-filter reduces the overshoot drastically.
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