
Public

SMART CONTRACT AUDIT REPORT

for

OTSea & OTSeaERC20

Prepared By: Xiaomi Huang

PeckShield
January 30, 2024

1/17 PeckShield Audit Report #: 2024-041

contact@peckshield.com

Public

Document Properties

Client OTSea
Title Smart Contract Audit Report
Target OTSea & OTSeaERC20
Version 1.0.1
Author Xuxian Jiang
Auditors Jason Shen, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0.1 January 30, 2024 Xuxian Jiang Post Final Release #1
1.0 January 22, 2024 Xuxian Jiang Final Release
1.0-rc January 21, 2024 Xuxian Jiang Release Candidate #

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2024-041

Public

Contents

1 Introduction 4
1.1 About OTSea . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Reward Calculation Logic in OTSeaStaking 11
3.2 Revisited Initial Liquidity Addition in OTSeaERC20 12
3.3 Trust Issue of Admin Keys . 13

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2024-041

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the OTSea protocol and related token contracts, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts is
well-documented and well-engineered, and it can benefit from addressing the reported issues. This
document outlines our audit results.

1.1 About OTSea

OTSea allows users to create over-the-counter buy/sell orders for any token for a specified amount
of ETH. The protocol charges a fee on the amount of ETH traded. The fee in question is dependent
on the sellers $OTSea holdings which is calculated off-chain. It protects DeFi traders from excessive
market volatility while offering a simplified peer-to-peer trading experience. The basic information
of the audited protocol is as follows:

Table 1.1: Basic Information of OTSea & OTSeaERC20

Item Description
Issuer OTSea

Website https://www.otsea.xyz/
Type Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report January 30, 2024

In the following, we show the (private) Git repository name of reviewed files and the commit
hash value used in this audit. This audit covers the following contracts: OTSea.sol, OTSeaERC20.sol,
OTSeaMigration.sol, OTSeaStaking.sol, and OTSeaRevenueDistributor.sol.

4/17 PeckShield Audit Report #: 2024-041

Public

• otsea-smart-contracts.git (a97865e)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• otsea-smart-contracts.git (f3f83f0)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/17 PeckShield Audit Report #: 2024-041

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

DeltaPrimeLabs DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2024-041

Public

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2024-041

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2024-041

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the OTSea protocol and
related token contracts. During the first phase of our audit, we study the smart contract source code
and run our in-house static code analyzer through the codebase. The purpose here is to statically
identify known coding bugs, and then manually verify (reject or confirm) issues reported by our
tool. We further manually review business logic, examine system operations, and place DeFi-related
aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 2

Informational 1

Total 3

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/17 PeckShield Audit Report #: 2024-041

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 low-severity vulnerabilities
and and 1 informational recommendation. We point out that the given repo has included extensive
test cases and achieves 100% coverage.

Table 2.1: Key OTSea & OTSeaERC20 Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Reward Calculation Logic in

OTSeaStaking
Coding Practices Resolved

PVE-002 Informational Revisited Initial Liquidity Addition in
OTSeaERC20

Business Logic Resolved

PVE-003 Low Trust Issue of Admin Keys Security Features Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/17 PeckShield Audit Report #: 2024-041

Public

3 | Detailed Results

3.1 Improved Reward Calculation Logic in OTSeaStaking

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: OTSeaStaking

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

The OTSea protocol has a key OTSeaStaking contract that enables users to stake tokens and earn
rewards from token fees and platform revenue. The rewards are calculated pro-rata based on the
token amount staked in each epoch. While examining the reward calculation, we notice the current
approach can be improved.

To elaborate, we show below the related _calculateRewards() routine that calculates the accu-
mulated rewards by the given _account from the specific deposit _index. It comes to our attention
that the reward calculation has an if condition, i.e., if (startingEpoch <= _currentEpoch), and this
condition can be revised as if (startingEpoch < _currentEpoch) for improved gas efficiency.

456 function _calculateRewards(address _account , uint256 _index) private view returns (
uint256) {

457 if (_deposits[_account][_index]. lastEpoch != 0) {
458 return 0;
459 }
460 uint32 startingEpoch = _deposits[_account][_index]. claimedEpoch != 0
461 ? _deposits[_account][_index]. claimedEpoch
462 : _deposits[_account][_index]. firstEpoch;
463 if (startingEpoch <= _currentEpoch) {
464 return
465 (_deposits[_account][_index]. amount *
466 (_epochs[_currentEpoch - 1]. sharePerToken -
467 _epochs[startingEpoch - 1]. sharePerToken)) / REWARD_PRECISION;
468 }
469 return 0;

11/17 PeckShield Audit Report #: 2024-041

Public

470 }

Listing 3.1: OTSeaStaking::_calculateRewards()

In addition, the related _createDeposit() helper adds a new Deposit element into the user-specific
_deposits array. And the new Deposit can be better initialized as Deposit(nextEpoch, nextEpoch, 0,

_amount) (line 358). With that, the above _calculateRewards() routine can be further improved by
simply computing the startingEpoch variable as uint32 startingEpoch = _deposits[_account][_index

].claimedEpoch (lines 460 − 462).

356 function _createDeposit(uint256 _amount) private returns (Deposit memory deposit) {
357 uint32 nextEpoch = _currentEpoch + 1;
358 deposit = Deposit(nextEpoch , 0, 0, _amount);
359 _deposits[_msgSender ()].push(deposit);
360 _epochs[nextEpoch]. totalStake += uint88(_amount);
361 return deposit;
362 }

Listing 3.2: OTSeaStaking::_createDeposit()

Recommendation Revise the above-mentioned routines to improve the reward calculation.

Status The issue has been resolved by following the above suggestion.

3.2 Revisited Initial Liquidity Addition in OTSeaERC20

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: OTSeaERC20

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The OTSeaERC20 contract implements an ERC20-compliant token that charges specific fees for buy/sel-
l/transfer operations. It also provides a privileged function to add initial liquidity into a Uniswap V2

pool. Our analysis shows the initial liquidity was provided by the calling owner, which may be revisited
by sourcing the OTSeaERC20 token from the _migrationContract contract.

In the following, we show the logic to add initial liquidity via the addInitialLiquidity() function.
The liquidity was added with two tokens OTSeaERC20 and Ether. Our analysis shows the calling owner
directly provides the two tokens, which may be revisited to source OTSeaERC20 from the migration
contract (and the calling owner only provides Ether). The reason is that the migration contract holds
all TOTAL_SUPPLY when the OTSeaERC20 token contract is instantiated.

12/17 PeckShield Audit Report #: 2024-041

Public

124 function addInitialLiquidity(uint256 _amount) external payable onlyOwner {
125 if (_pair != address (0)) revert OTSeaErrors.NotAvailable ();
126 if (_amount == 0 msg.value == 0) revert OTSeaErrors.InvalidAmount ();
127 super._update(_msgSender (), address(this), _amount);
128 _approve(address(this), address(_router), _amount);
129 /// @dev multi -sig admin receives initial LP
130 _router.addLiquidityETH{value: msg.value}(
131 address(this),
132 _amount ,
133 0,
134 0,
135 owner(),
136 block.timestamp
137);
138 address uniswapV2Pair = IUniswapV2Factory(_router.factory ()).getPair(
139 address(this),
140 _router.WETH()
141);
142 _pair = uniswapV2Pair;
143 emit AddedLiquidity(_pair , _amount , msg.value);
144 }

Listing 3.3: OTSeaERC20::addInitialLiquidity()

Recommendation Revisit the liquidity provider when the initial liquidity is added.

Status The issue has been resolved as it is part of the intended design.

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: OTSea

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the OTSea protocol, there is a special administrative account, i.e., owner. This owner account plays
a critical role in governing and regulating the protocol-wide operations (e.g., parameter configuration
and contract pause). Our analysis shows that the privileged account needs to be scrutinized. In
the following, we examine the privileged owner account and its related privileged accesses in current
contracts.

Specifically, the owner account in OTSea contract can pause/unpause the contract, decrease the
fish and whale fees, update partners, manage blacklisted accounts, as well as set the lock time. The

13/17 PeckShield Audit Report #: 2024-041

Public

owner account in OTSeaERC20 can add the initial liquidity, adjust swap threshold, and decrease total fee
charge. Also, owner in OTSeaStaking, OTSeaRevenueDistributor, and OTSeaMigration is rather limited in
performing only protocol-necessary functions.

296 function pauseContract () external onlyOwner {
297 _pause ();
298 }

300 /// @notice Unpause the contract
301 function unpauseContract () external onlyOwner {
302 _unpause ();
303 }

305 /**
306 * @notice Set the fish and whale fees
307 * @param _newFishFee Fish fee
308 * @param _newWhaleFee Whale fee
309 * @param _newPartnerFee Partner fee relative to the revenue
310 */
311 function setFees(
312 uint8 _newFishFee ,
313 uint8 _newWhaleFee ,
314 uint16 _newPartnerFee
315) external onlyOwner {
316 if (
317 _fishFee < _newFishFee
318 _whaleFee < _newWhaleFee
319 _newFishFee < _newWhaleFee
320 _newPartnerFee < MIN_PARTNER_FEE
321 MAX_PARTNER_FEE < _newPartnerFee
322) revert OTSeaErrors.InvalidFee ();
323 _fishFee = _newFishFee;
324 _whaleFee = _newWhaleFee;
325 _partnerFee = _newPartnerFee;
326 emit FeesUpdated(_newFishFee , _newWhaleFee , _newPartnerFee);
327 }

329 /**
330 * @notice Set the maximum number of trades that can occur in a single TX
331 * @param maxTrades_ Max trades
332 */
333 function setMaxTrades(uint8 maxTrades_) external onlyOwner {
334 if (maxTrades_ == 0 MAX_TRADES_UPPER_LIMIT < maxTrades_)
335 revert OTSeaErrors.InvalidAmount ();
336 _maxTrades = maxTrades_;
337 emit MaxTradesUpdated(maxTrades_);
338 }

340 /**
341 * @notice Add , remove or update a partner ’s details
342 * @param _token Token address
343 * @param _partner Partner details

14/17 PeckShield Audit Report #: 2024-041

Public

344 */
345 function updatePartner(address _token , Partner calldata _partner) external onlyOwner

{
346 if (_token == address (0)) revert OTSeaErrors.InvalidAddress ();
347 if (
348 _partners[_token]. account == _partner.account &&
349 _partners[_token]. isLockUpOverrideEnabled == _partner.

isLockUpOverrideEnabled
350) revert OTSeaErrors.Unchanged ();
351 if (_partner.account == address (0) && _partner.isLockUpOverrideEnabled)
352 revert OTSeaErrors.NotAvailable ();
353 _partners[_token] = Partner(_partner.account , _partner.isLockUpOverrideEnabled);
354 emit PartnerUpdated(_token , _partner);
355 }

Listing 3.4: Example Privileged Operations in OTSea

We understand the need of the privileged functions for contract maintenance, but it is worrisome
if the privileged owner account is a plain EOA account. Note that a multi-sig account could greatly
alleviate this concern, though it is still far from perfect. Specifically, a better approach is to eliminate
the administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been addressed as the team clarifies the use of a multisig. Also, it is
worth mentioning that if there are tokens that remain to be migrated, the owner can claim them
after 90 days.

15/17 PeckShield Audit Report #: 2024-041

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the OTSea protocol and related
token contracts. The protocol allows users to create over-the-counter buy/sell orders for any token
for a specified amount of ETH. It protects DeFi traders from excessive market volatility while offering
a simplified peer-to-peer trading experience. The current code base is well structured and neatly
organized. Those identified issues are promptly confirmed and fixed

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

16/17 PeckShield Audit Report #: 2024-041

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2024-041

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About OTSea
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Reward Calculation Logic in OTSeaStaking
	Revisited Initial Liquidity Addition in OTSeaERC20
	Trust Issue of Admin Keys

	Conclusion
	References

