
Type Inference for Rank-2 Intersection Types
using Set Unification

Pedro Ângelo1,2 and Mário Florido1,3

1 LIACC, Departamento de Ciência de Computadores, Faculdade de Ciências,
Universidade do Porto, rua do Campo Alegre s/n, 4169 - 007

2 pedro.angelo@fc.up.pt
3 amflorid@fc.up.pt

Abstract. Several type inference approaches for rank-2 idempotent and
commutative intersection types have been presented in the literature.
Type inference relies on two stages: type constraint generation and solv-
ing. Defining constraint generation rules is rather straightforward, with
one exception. To infer the type of an application, several derivations of
the argument are required, one for each instance of the domain type of
the function. The types of these derivations are then constrained against
the instances. Noting that these derivations are isomorphic, by renaming
of type variables, they can be obtained via a duplication operation on a
single derivation of the argument. The application rule then constrains
the intersection type resulting from duplication against the domain type
of the function, resulting in an equality constraint between intersections.
By treating intersections as sets, these constraints can be solved by solv-
ing a set unification problem, thus ensuring the types of the argument
unify with the domain type of the function. Here we present a new type
inference algorithm for rank-2 intersection types, which relies on set uni-
fication to solve equality constraints between intersections, and show it
is both sound and complete.

Keywords: Intersection types · Type inference · Set unification.

1 Introduction

The benefits (and the costs) of strong static typing in programming languages are
now generally recognized. Languages such as ML, Haskell or Java are examples
of the use of strong typing. To avoid the extra effort of declaring types for every
part of the program, compilers should infer types as much as possible. And
to avoid rejecting well-behaved programs as much as possible, type inference
should be able to support some form of polymorphism. Two of the main options
for polymorphism are universally quantified types (such as the Damas-Milner
type system [16] and System F [28,27,40]), and intersection types [12].

Intersection types originate in the works of Barendregt, Coppo and Dezani
[14,12,5], and give us a characterization of the strongly normalizable terms. New
attention was given to intersection type systems due to a result of Kfoury and

2 P. Ângelo and M. Florido

Wells [34,35] which proved that these systems are decidable for restrictions of
finite rank, which correspond to a large class of typable terms. Consider the
following example: in intersection type systems λx . x x has type (α ∧ (α →
β)) → β. Note that the two (non-unifiable) types of the variable x belong to
the domain type of the abstraction linked by the intersection operator. A more
interesting example is the term (λx . x x) I, where I = λy . y. This term has
type α → α which does not involve intersections, although it is not typable in
the simply typed lambda calculus [15,30] because it has a non-typable subterm.

Intersection type systems characterise the set of strongly normalising terms
and have huge expressive power, typing more terms than the simply typed
lambda calculus or the type system of pure ML or core Haskell. Applications
of intersection types in programming language theory cover diverse topics, in-
cluding the design of programming languages [41,6], program analysis [37], pro-
gram synthesis [25], and extensions such as refinement, union and gradual types
[26,23,22,3,10,11]. But expressive power comes with a price: type theoretic prob-
lems such as type inference and inhabitation are undecidable in general [44,4].

In [34] Wells and Kfoury define an intersection type system which types ex-
actly the strongly normalizable terms and shows that every finite-rank restriction
of this system, using Leivant’s notion of rank [36], has principal typings and also
decidable type inference. This system uses expansion variables [35,9], which are
subject to substitution as are ordinary variables, and a unification-based type
inference algorithm using a new form of unification called β-unification. Due
to the complexity of type inference algorithms for higher finite ranks, the most
successful decidable fragments of intersection type systems have focused on the
rank-2 restriction. Indeed, we rely on the same argument to motivate our rank-2
restriction of the type inference algorithm presented in this paper. The rank of
a type is easily determined by its syntactic tree. A type is of rank n if no path
from the root of the syntactic tree of the type to an intersection passes to the left
of n arrows. Rank 0 and 1 are equivalent to the simple typed lambda-calculus.
But starting from rank 2, the systems type more terms than the type system of
pure ML or Core Haskell.

Van Bakel presents a unification algorithm as the basis of type inference for a
rank-2 system [45]. Later, independent work by Trevor Jim also solves the same
problem for practical programming language issues such as recursive definitions
and separate compilation [32]. Damiani [17] also studied rank-2 principal typings
with intersection types and focus his work on rank-2 typable recursive definitions.

All these previous algorithms rely on extensions to first-order unification [42],
either explicit [45,34,35], or implicit [31,32]. In these, a more general form of
subtyping type constraints is first generated, and subsequently, in the constraint
solving phase, further simplified by rewriting subtyping into equalities.

Several authors have also explored intersection type inference systems using
unification theory. Approaches focus on relating β-reduction with unification
[7], and more similarly to our work, building type inference algorithms using set
unification theory [21,13,43]. However, we relate the properties of intersection
types with set unification, which as far as we know, is novel work.

Type Inference for Rank-2 Intersection Types using Set Unification 3

Originally [14,12], intersection types were denoted by finite sets of types:

"The main idea is to define from an arbitrary set of types {τ1, · · · , τn} a "se-
quence" [τ1, · · · , τn] whose underlying set of terms can be interpreted as the in-
tersection of those of τ1, · · · , τn." [12]

Picking up on this original motivation, we here define a new type inference algo-
rithm for rank-2 intersection types which relies on set unification [19,20] to solve
the type constraints generated by function applications. The main contributions
of this paper are the following:

– A unification-based type inference algorithm for rank-2 intersection types us-
ing set unification. The algorithm is terminating, always returning principal
typings. A nice feature of this algorithm is its similarity with type inference
for simple types [38] - just replace first-order unification by set unification.

– Proofs of soundness and completeness of the algorithm, meaning that the
outputs of type inference are types which are derivable in a rank-2 inter-
section type system, and more, they are principal typings in the sense that
every other type derivable in the type system may be obtained from them
using substitution.

It is important to note that the majority of the discussed results can be
obtained by the other previously defined rank-2 intersection type inference al-
gorithms. Nonetheless, it is our belief that the work in this paper constitutes
further a step towards a better understanding of the role of set unification as
the base of type inference algorithms for intersection types and may highlight
how intersections at different depth are related to different restrictions of set
unification in the type inference mechanism.

The paper is organized as follows. Section 2 introduces the syntax of the
system. A rank-2 intersection type system, where every type declared in the
context is used in the type derivation, is presented in section 3. The formalization
of the type inference algorithm, along with its components, follows in section
4. The first phase of the algorithm consists of the constraint generation rules,
which are detailed in subsection 4.1. In particular, we present an alternative
design to the rule for applications: by requiring only one derivation and then
duplicating it, there is a derivation of the argument for each instance in the
domain type of the function. Set unification, explained in subsection 4.2, will
be required to solve equality constraints between intersection types. The general
constraint solving rules are presented in subsection 4.3. We finally produce the
type inference algorithm, along with important properties, in subsection 4.4. The
conclusion follows in section 5.

2 Types and Terms

Our language is an intersection typed lambda calculus à la Curry, which supports
term constants, such as integers and booleans, and built-in addition. Other arith-

4 P. Ângelo and M. Florido

metic operations can be defined similarly. The syntax of our language is given
by the following grammar:

Definition 1 (Syntax).

monotypes τ, ρ ::= B | α | σ → τ

sequences σ, υ ::= τ1 ∧ . . . ∧ τn | ϕ
terms M,N ::= k | x | λx . M | M M | M +M

typing context Γ ::= ∅ | Γ, x : σ with σ ∈ T1
constraint C ::= σ

.
= σ

constraints C∗ ::= ∅ | C∗ ∪ C

B ranges over base types such as Int and Bool , α and β range over type variables
and ϕ ranges over sequence variables. τ and ρ range over monotypes i.e. the top
level constructor is not the intersection type connective, and σ and υ range over
sequences. M and N range over terms, x, y and z range over term variables and
k ranges over constants, such as integers and booleans. Γ ranges over typing
contexts, and ∅ represents an empty context. C ranges over equality constraints,
written as σ

.
= σ, and C∗ ranges over multisets of equality constraints C. χ

ranges over sets of type, and sequence, variables.

Remark 1. The indexes i, j, m, n, p and q range over the set Z+
0 .

Remark 2. We distinguish meta-variables with different subscript natural num-
bers, and also with superscript apostrophe.

As in the original system [12,39], we consider the intersection connective ∧
as commutative, e.g. τ ∧ ρ = ρ ∧ τ , and idempotent, e.g. τ ∧ τ = τ . We do not
consider associativity, since we are not dealing with a binary operator. Therefore,
an intersection type τ1 ∧ . . . ∧ τn is seen as the set of types τ1, . . . , τn. Given a
sequence τ1 ∧ . . .∧ τn, each τi is called an instance of the intersection. We allow
sequences of size one, so σ and υ also range over monotypes. Sequences can only
appear in the left-hand side of the arrow type constructor, therefore the shape
of a (valid) arrow type is σ → τ . The intersection type connective ∧ has a higher
precedence than the arrow type constructor →, and → associates to the right.

Definition 2 (Type Variables). The function tvars(.), which returns the set
of type, and sequence, variables occurring in a given type, is defined as follows:
tvars(σ)

def
= {α | α occurs in σ} ∪ {ϕ | ϕ occurs in σ}.

Definition 3 (Free Variables). The function fvars(.), which returns the set
of free term variables occurring in a given term, is defined as follows: fvars(M)

def
=

{x | x occurs free in M}.

Type Inference for Rank-2 Intersection Types using Set Unification 5

Definition 4 (Atomic Type Sets). Atomic types in our language are catego-
rized according to the following sets:

Tbase = {B | B is a base type}
Ttvar = {α | α is a type variable}
Tsvar = {ϕ | ϕ is a sequence variable}

According to the definition of rank restriction [36,32], a rank n intersection
type can have no intersection type connective ∧ to the left of n or more arrow
type constructors →:

Definition 5 (Rank). Types of our language are categorized according to rank:

simple types T0 = Tbase ∪ Ttvar ∪ {τ → ρ | τ, ρ ∈ T0}
rank 1 types T1 = T0 ∪ Tsvar ∪ {τ1 ∧ . . . ∧ τn | τ1, . . . , τn ∈ T0}
rank 2 types T2 = T0 ∪ {σ → τ | σ ∈ T1, τ ∈ T2}

We restrict types in our system to be only of up to rank 2, so the only possible
types are those belonging to T1 ∪ T2, e.g. (((τ → ρ)∧ τ) → ρ) → τ is not a valid
type.

Remark 3. We denote the singleton context, which contains only one type bind-
ing, as x : σ. We write Γ1, Γ2 for the union of contexts Γ1 and Γ2, assuming Γ1

and Γ2 are disjoint.

Definition 6 (Joining Typing Contexts). Let Γ1 and Γ2 be two typing con-
texts. Γ1∧Γ2 is a typing context, where x : σ ∈ Γ1∧Γ2 if and only if σ is defined
as follows:

σ =

σ1 ∧ σ2, if x : σ1 ∈ Γ1 and x : σ2 ∈ Γ2

σ1, if x : σ1 ∈ Γ1 and ¬∃σ2 . x : σ2 ∈ Γ2

σ2, if ¬∃σ1 . x : σ1 ∈ Γ1 and x : σ2 ∈ Γ2

3 Type System

In figure 1 we define an intersection type system where every type declared in
the context is used in the type derivation, a property which is going to be quite
useful in subsequent results.

The two rules for abstractions, [T-AbsI] and [T-AbsK], are necessary be-
cause if there is a derivation of Γ ⊢∧ M : σ and x does not occur free in M ,
then there is not a type declaration for x in Γ . The set of types for a given term
M in this system is strictly included in the set of types for M in the original
intersection type system of Coppo and Dezani [14,12]. For example, the type
(α1 ∧ α2) → α1 types λx . x in the Coppo-Dezani type system but not in our
system. The reason for this is that types for free variables, which are introduced
by rule [T-Var], can only be included in an intersection via rules [T-App] or

6 P. Ângelo and M. Florido

[T-Con]
k is a constant of base type B

∅ ⊢∧ k : B
[T-Var]

x : τ ⊢∧ x : τ

[T-AbsI]
Γ, x : σ ⊢∧ M : τ

Γ ⊢∧ λx . M : σ → τ
[T-AbsK]

Γ ⊢∧ M : τ

Γ ⊢∧ λx . M : σ → τ
x ̸∈ fvars(M)

[T-App]

Γ ⊢∧ M : τ1 ∧ . . . ∧ τn → τ
∀i ∈ 1..n . Γi ⊢∧ N : τi

Γ ∧ Γ1 ∧ . . . ∧ Γn ⊢∧ M N : τ

[T-Add]
Γ1 ⊢∧ M : Int Γ2 ⊢∧ N : Int

Γ1 ∧ Γ2 ⊢∧ M +N : Int

Fig. 1. Intersection Type System (Γ ⊢∧ M : σ)

[T-Add]. Thus each element of the intersection corresponds to a type that is
actually used in the type derivation. However, the set of terms typable in both
systems is the same and corresponds to the strongly normalizable terms (a proof
of this for a similar type system can be found in [24]).

One peculiarity of this type system is that it does not satisfy the property of
subject reduction as it is shown by the following example:

Example 1. In this system, the following two statements hold:

z : α2 → β ⊢∧ λx . (λy . z) x x : α1 ∧ α2 → β

λx . (λy . z) x x →
β

λx . z x

But we also have that

z : α2 → β ̸⊢∧ λx . z x : α1 ∧ α2 → β

because type α1∧α2 can’t be assigned to x, since only one occurrence of x (typed
with α2) exists.

The lack of subject reduction also happens in other restrictions of intersection
type systems where every type in the environment has to be used in the type
derivation [18,34]. The reason for the lack of subject reduction is that there
is no weakening introducing unneeded type assumptions. Note that the lack
of subject reduction is not a problem, because derivations in this system can
be easily translated into derivations on more standard systems of intersection
types which have subject reduction. Defining the system without a weakening
mechanism makes the later analysis about type inference much easier.

Consider the following example of a type derivation for (λx . x x) (λy . y):

Type Inference for Rank-2 Intersection Types using Set Unification 7

Example 2. We abbreviate τ = ρ → ρ. We have the following derivations by
applying the last rule as follows:

[T-AbsI] ∅ ⊢∧ λx . x x : (τ → τ) ∧ τ → τ (1)
[T-AbsI] ∅ ⊢∧ λy . y : τ → τ (2)
[T-AbsI] ∅ ⊢∧ λy . y : τ (3)

By rule [T-App] on derivations (1), (2) and (3), we have:

[T-App] ∅ ⊢∧ (λx . x x) (λy . y) : τ

4 Type Inference

We follow a conventional approach to type inference [46]: a constraint generation
phase generates type constraints from the term, and a constraint solving phase
solves these constraints to generate type substitutions.

Substitution on types is defined in the standard way [38], extended to allow
intersections.

Definition 7 (Substitution). Let S range over standard type substitutions
[38]. We write [α 7→ τ] for a type substitution on monotypes that maps a type
variable α into a monotype τ ; and [ϕ 7→ σ] for a type substitution on sequences
that maps a sequence variable ϕ into a sequence σ.

For each type system rule in figure 1, an analogous constraint generation
rule is required. Deriving these from the type system is rather straightforward:
convert judgments in the premises to constraint generation judgments, making
the type opaque; then convert the judgment in the conclusion, adding constraints
that reflect how types relate to each other in the type system.

Deriving a constraint generation rule from [T-App] is not as straightforward.
In the type system rule for applications, the function is assumed to be typed with
an arrow type. However, the same assumption cannot be made for the constraint
generation rules. Therefore, two constraint generation rules for applications are
required: one where this assumption holds, and another where it does not, leading
to an opaque type being inferred for the function. In standard systems [31], the
application rule which assumes the type of the function is an arrow type behaves
similarly to rule [T-App]. The rule ensures there are distinct type derivations of
the argument, exactly one for each instance of the domain type of the function.
By having distinct type derivations, the rule ensures the argument fits into each
occurrence of the bound variable in the body of the lambda abstraction.

We follow a different approach: the application rule features a single type
derivation of the argument. Then, the type obtained from this derivation is
duplicated, and each copy is constrained to each instance in the domain type of
the function. The duplication operation is defined as in [45]:

Definition 8 (Duplication). Let χ = {α1, . . . , αj} ∪ {ϕj+1, . . . , ϕm} be a set
of type and sequence variables; let β11, . . . , β1n, . . . , βm1, . . . , βmn be fresh type

8 P. Ângelo and M. Florido

variables; and let Si = [α1 7→ β1i, . . . , αj 7→ βji, ϕj+1 7→ β(j+1)i, . . . , ϕm 7→ βmi],
for 1 ≤ i ≤ n. The duplication function duplicatenχ(τ) is defined as follows:

duplicatenχ(τ)
def
= S1(τ) ∧ . . . ∧ Sn(τ).

The argument χ represents the set of variables that will be duplicated, and the
argument n represents the number of duplications. Therefore, n fresh variables β
are required for each type variable in χ, to ensure new duplications. Only simple
types (τ ∈ T0) are duplicated, so sequence variables ϕ that might appear in the
type are treated as simple types and replaced by type variables β. Note that
if duplication is applied to a type without type variables, due to idempotence,
duplication will return the same type, e.g. duplicate2χ(Int → Int) = (Int →
Int) ∧ (Int → Int), which is the same as Int → Int . On the other hand, if type
variables are considered, duplication will generate n many copies of the type,
e.g. duplicate2{α1,α2}(α1 → α2) = (β11 → β21) ∧ (β12 → β22).

We give meaning to constraints through a satisfaction relation |=. A sub-
stitution S satisfies a constraint σ

.
= υ if and only if applying the substitution

to both types in the constraint yields an equality. Taking into account that in-
tersection types are idempotent and commutative, two sequences are equal if
both share the same set of instances. Since sequences of size one are allowed,
the equality constraint between monotypes τ

.
= ρ is an instance of σ .

= υ, i.e.
S |= τ

.
= ρ ⇐⇒ S(τ) = S(ρ).

Definition 9 (Constraint Satisfaction).

1. S |= ∅
2. S |= σ

.
= υ ⇐⇒ S(σ) = S(υ)

3. S |= C∗ ⇐⇒ S |= C for all C ∈ C∗

Definition 10 (Lifting Type Variables). We lift function tvars(.), from def-
inition 2, to typing contexts Γ and equality constraints C∗ in the obvious way.

Definition 11 (Lifting Substitution). We lift substitutions, from definition
7, to:

– typing contexts Γ in the obvious way;
– constraints in the following way: S(σ .

= υ)
def
= S(σ)

.
= S(υ). Also, S(C∗ ∪

C)
def
= S(C∗) ∪ S(C) and S(∅) def

= ∅.

Definition 12 (Lifting Duplication). Assuming S1, . . . , Sn are type substitu-
tions generated from χ according to definition 8, we lift function duplicatenχ(.),
from definition 8, to:

– typing contexts in the following way: duplicatenχ(Γ)
def
= S1(Γ)∧ . . .∧ Sn(Γ);

– constraints in the following way: duplicatenχ(C∗)
def
= S1(C

∗) ∪ . . . ∪ Sn(C
∗).

Besides duplicating the type of argument derivations in the application rule,
the typing context and constraints must also be duplicated, thus simulating
several derivations of the same term. These derivations are just renamings of
type variables of the original derivation.

Type Inference for Rank-2 Intersection Types using Set Unification 9

[G-Con]
k is a constant of base type B

∅ ⊢∧ k : B | ∅
[G-Var]

α fresh
x : α ⊢∧ x : α | ∅

[G-AbsI]
Γ, x : σ ⊢∧ M : τ | C∗

Γ ⊢∧ λx . M : σ → τ | C∗

[G-AbsK]
Γ ⊢∧ M : τ | C∗ ϕ fresh
Γ ⊢∧ λx . M : ϕ → τ | C∗ x ̸∈ fvars(M)

[G-App∧]

Γ1 ⊢∧ M : τ1 ∧ . . . ∧ τn → τ | C∗
1 Γ2 ⊢∧ N : ρ | C∗

2

duplicaten(⟨Γ2, ρ, C
∗
2 ⟩) = ⟨[Γ21, . . . , Γ2n], [ρ1, . . . , ρn], [C

∗
21, . . . , C

∗
2n]⟩

C = τ1 ∧ . . . ∧ τn
.
= ρ1 ∧ . . . ∧ ρn

Γ1 ∧ Γ21 ∧ . . . ∧ Γ2n ⊢∧ M N : τ | C∗
1 ∪ C∗

21 ∪ . . . ∪ C∗
2n ∪ C

[G-App]
Γ1 ⊢∧ M : τ | C∗

1 Γ2 ⊢∧ N : ρ | C∗
2 α fresh

Γ1 ∧ Γ2 ⊢∧ M N : α | C∗
1 ∪ C∗

2 ∪ {τ .
= ρ → α}

[G-Add]
Γ1 ⊢∧ M : τ | C∗

1 Γ2 ⊢∧ N : ρ | C∗
2

Γ1 ∧ Γ2 ⊢∧ M +N : Int | C∗
1 ∪ {τ .

= Int} ∪ C∗
2 ∪ {ρ .

= Int}

Fig. 2. Constraint Generation (Γ ⊢∧ M : τ | C∗)

Definition 13 (Duplication). Let ⟨Γ, τ, C∗⟩ be a triple composed of a typing
context Γ , a type τ and constraints C∗. The duplication function is defined as
duplicaten(⟨Γ, τ, C∗⟩) = ⟨[Γ1, . . . , Γn], [τ1, . . . , τn], [C

∗
1 , . . . , C

∗
n]⟩ where:

– χ = tvars(Γ) ∪ tvars(τ) ∪ tvars(C∗);
– duplicatenχ(Γ) ≡ Γ1 ∧ . . . ∧ Γn;
– duplicatenχ(τ) ≡ τ1 ∧ . . . ∧ τn;
– duplicatenχ(C

∗) ≡ C∗
1 ∪ . . . ∪ C∗

n.

4.1 Constraint Generation

We define the constraint generation rules in figure 2. The constraint generation
judgment is written as Γ ⊢∧ M : τ | C∗, where given a term M , the rules generate
a typing context Γ , type τ and constraints C∗. We follow [31], assigning fresh
type variables to variables in [G-Var]. No assumptions are made for the type
of the term variable, allowing it to be constrained to the correct type according
to the context. Similarly to the type system, there are two constraint generation
rules for lambda abstractions: [G-AbsI], when the bound variable occurs free in
the body, and [G-AbsK], when it does not. When the bound variable occurs free
in the body, rule [G-Var] will gather type assumptions in the context. Then,
rules containing several premises, [G-App], [G-App∧] and [G-Add], join the
contexts under an intersection (definition 6). Due to this, the domain of the

10 P. Ângelo and M. Florido

function type in the conclusion of rule [G-AbsI] corresponds to the intersection
of the types of all ocurrences of the bound variable, which is given by the context
in the premise of the rule. When the bound variable does not occur free in the
body, there is no information regarding the type for the domain. Rule [G-AbsK]
then returns an arrow type whose domain is a fresh sequence variable.

Whereas in the type system, there’s a single application rule, two constraint
generation rules are required: [G-App∧] and [G-App]. In [G-App∧], the type of
the function term is an arrow and its domain is an intersection. Then, the type
of the function term, particularly the domain τ1 ∧ . . .∧ τn, constrains how many
derivations are needed of the argument term. For each instance in the domain
type of the function, a derivation of the argument is required. Furthermore, each
instance must unify with its corresponding argument’s type.

However, instead of following the standard approach [31] of ensuring multiple
derivations of the argument, we explore a different approach. In fact, generating
multiple derivations of the argument amounts to duplicating type variables found
in the context, type and constraints. We made this explicit in rule [G-App∧].

If the type of the function term is not an arrow, then there is no information
on the number of derivations required of the argument term, so only one is
needed. Furthermore, the type of the function is constrained to be an arrow
type, and its domain to match the argument’s type, as specified in [G-App].

Taking the previous example in section 3, constraints are now generated for
the expression:

Example 3. We have the following derivations by applying the rule:

[G-AbsI] ∅ ⊢∧ λx . x x : α1 ∧ α2 → α3 | {α1
.
= α2 → α3} (4)

[G-AbsI] ∅ ⊢∧ λy . y : α4 → α4 | ∅ (5)

By rule [G-App∧] on derivations (4), (5) and premises (6) and (7) we have:

duplicate2(⟨∅, α4 → α4, ∅⟩) = ⟨[∅, ∅], [α5 → α5, α6 → α6], [∅, ∅]⟩ (6)
C = α1 ∧ α2

.
= α5 → α5 ∧ α6 → α6 (7)

[G-App∧] ∅ ⊢∧ (λx . x x) (λy . y) : α3 | {α1
.
= α2 → α3} ∪ C

We show the following properties of our constraint generation algorithm:

Lemma 1 (Soundness of Constraint Generation). If Γ ⊢∧ M : τ | C∗

and S |= C∗ then S(Γ) ⊢∧ M : S(τ).

Proof. Proof by induction on the length of the derivation tree of Γ ⊢∧ M : τ | C∗.

Lemma 2 (Completeness of Constraint Generation). If S1(Γ) ⊢∧ M : τ
then Γ ⊢∧ M : ρ | C∗ s.t. the domain of S1 is disjoint from χ, and ∃S2 s.t.
S2 agrees with S1 except at χ, S2 |= C∗ and S2(ρ) = τ , where χ are the fresh
variables introduced in the derivation of Γ ⊢∧ M : ρ | C∗.

Proof. Proof by induction on the length of the derivation tree of S1(Γ) ⊢∧ M : τ .

Type Inference for Rank-2 Intersection Types using Set Unification 11

4.2 Set Unification

Type inference for simple types relies on first-order unification. However, equal-
ity constraints between idempotent and commutative intersection types are not
so easy to solve. Solving such constraints involves finding the correct associa-
tion between instances in both sequences. If we consider sequences as sets, this
problem is equivalent to solving a set unification problem [20,19].

According to [20], a set is an arbitrary, unordered collection of elements,
i.e. the order and repetition of elements do not matter. Since we consider the
intersection type operator ∧ as idempotent and commutative, a sequence τ1 ∧
. . .∧τn can be interpreted as a set {τ1, . . . , τn}, whose elements are the instances
of the sequence. By definition 1, a sequence can have as instances base types B,
type variables α, and arrows σ → τ . These are the building blocks of sequences,
so we define their counterparts for sets:

Definition 14 (Individuals). The set of individuals U is defined as follows:

– if B ∈ Tbase then B ∈ U ;
– if s, t are abstract set terms, then → (s, t) ∈ U .

Individuals are essentially ground terms that make up our sets. Besides base
types B, the arrow type is also considered an individual, however, one with two
arguments.

Now we can define sets, that will act as a counterpart for sequences. Ac-
cording to [20,19], the full class of sets is defined as follows. For m,n, p, q ≥
0, the class set(m,n, p, q) represents the collection of all abstract set terms
{X1, . . . , Xm′ , a1, . . . , an′ , s1, . . . , sp′} ∪ Y1 ∪ . . .∪ Yq′ such that 0 ≥ m′ ≥ m, 0 ≥
n′ ≥ n, 0 ≥ p′ ≥ p, 0 ≥ q′ ≥ q, where Xi, Yi are variables, ai are individuals and
si, ti are abstract set terms (distinct from variables).

However, the full class of sets has more expressive power than what we need to
encode sequences. The language of types, as well the rank restriction (definition
5), restricts the expressive power of sequences to be less than that of sets. Only
rank 1 sequences are allowed, therefore sequences cannot contain other sequences
as elements. This restriction means that abstract set terms si inside sets are not
permitted. Furthermore, extra variables Yi have no counterpart in our sequences.
Therefore, we only need a restricted fragment of the class set(m,n, p, q): the class
flat(0) =

⋃
m≥0,n≥0 set(m,n, 0, 0). We then define our sets under this class:

Definition 15 (Abstract Set Terms). An abstract set term is a term of the
form: {X1, . . . , Xm, a1, . . . , an}, with m,n ≥ 0.

Therefore, rank 1 sequence solving is equivalent to the Set Unification Decision
[20] problem between two flat(0) sets.

We now define the translation, allowing sequences to be encoded as abstract
set terms, which can be then passed onto the unification algorithm:

12 P. Ângelo and M. Florido

Definition 16 (Types as Abstract Set Terms). The translation function
L.M is defined according to the following rules:

B ∈ Tbase
LBM = B LαM = X

LσM = s LυM = t

Lσ → τM = → (s, t)

Lτ1M = t1 . . . LτnM = tn

Lτ1 ∧ . . . ∧ τnM = {t1, . . . , tn}

The translation function is bijective, and its inverse is defined as follows: assum-
ing LσM = s, then LsMinv = σ.

With an encoding of sequences as sets, we can unify two sets with algo-
rithm AbCl_unify [20,19]. Generally, algorithm AbCl_unify takes a system of
equations as input and returns either fail or a collection of systems in solved
form. However, since the constraint solving algorithm only needs to solve one
equality constraint between sequences at a time, AbCl_unify is only ever called
with a single equation as input. The algorithm then essentially tries to find a
match between the elements of the two sets, non-deterministically checking dif-
ferent permutations. As two sets can be unified in several ways, this algorithm
is non-deterministic, i.e. provides various solutions, albeit all correct. Therefore,
due to relying on AbCl_unify, the constraint solving algorithm is also non-
deterministic. We encapsulate the unification algorithm as well as the necessary
translation, and define the sequence solving procedure C

s⇒ S:

Definition 17 (Sequence Solving). Let σ
.
= υ be an equality constraint be-

tween two rank 1 sequences σ and υ. The sequence solving procedure (σ
.
= υ)

s⇒
Si, that non-deterministically returns a set of substitutions S1, . . . , Sn, is defined
by the following steps.

Let (σ .
= υ)

s⇒ Si, such that:

1. let t, s be abstract set terms such that LσM = t and LυM = s;
2. choose an arbitrary solution Ei returned by AbCl_unify({t = s}):

(a) for every solved form equation X = t′ ∈ Ei, if LXMinv = α and Lt′Minv =
σ′, then [α 7→ σ′] ∈ Si

We transcribe the soundness and completeness result from [19], from which
we can then derive our own:

Theorem 1 (Soundness and Completeness of AbCl_unify [19]). Given
a system E, let E1, . . . , En be all the systems in solved form produced by the
unification algorithm. Then Soln(E) = Soln(E1)|vars(E) ∪ . . . ∪ Soln(En)|vars(E)
where Soln(X) is the set of all ground set-unifiers of X and Soln(Ei)|vars(E) is
Soln(Ei) restricted to the variables of E.

Lemma 3 (Soundness of Sequence Solving). If (σ
.
= υ)

s⇒ S then S |=
σ

.
= υ.

Type Inference for Rank-2 Intersection Types using Set Unification 13

Proof. If (σ
.
= υ)

s⇒ Si, for all i ∈ 1..n, then by definition 17: LσM = t and
LυM = s; AbCl_unify({t = s}) returns solutions E1, . . . , En; and for every solved
form equation X = t′ ∈ Ei, if LXMinv = α and Lt′Minv = σ′, then [α 7→ σ′] ∈ Si.
By theorem 1, Soln({t = s}) = Soln(E1)|vars({t=s}) ∪ . . . ∪ Soln(En)|vars({t=s}).
We then have that Ei is a solution for {t = s}. By definition 16, LtMinv = σ and
LsMinv = υ. Therefore, Si is a solution to σ

.
= υ, or rather, Si(σ) = Si(υ). By

definition 9, Si |= σ
.
= υ.

Lemma 4 (Completeness of Sequence Solving). If S1 |= σ
.
= υ then

∃S, S2 s.t. (σ .
= υ)

s⇒ S2 and S1 = S ◦ S2.

Proof. If S1 |= σ
.
= υ, then by definition 16, (1) LσM = t and LυM = s. We then

have that (2) AbCl_unify({t = s}) returns solutions E1, . . . , En, with i ∈ 1..n. By
theorem 1, we have that Soln({t = s}) = Soln(E1)|vars(E)∪. . .∪Soln(En)|vars(E).
Therefore, the set of solved form equations of Ei, for all i ∈ 1..n, represents all
possible solutions of {t = s}, and each solution Ei is a minimal solution. (2a)
For every solved form equation X = t′ ∈ Ei, if LXMinv = α and Lt′Minv = σ′,
then [α 7→ σ′] ∈ S′

i. By definition 17, since we have (1), (2), and (2a), then
(σ

.
= υ)

s⇒ S′
i, non-deterministically for all i ∈ 1..n. One of these solutions S′

i

agrees with S1, and is a most general solution to σ
.
= υ. Therefore, ∃S, S′

i s.t.
S1 = S ◦ S′

i.

4.3 Constraint Solving

The constraint solving rules are defined in figure 2. The constraint solving judg-
ment is written as C∗ ⇒ S, where given constraints C∗ the rules generate sub-
stitutions S. Most rules are straightforward, following standard formulations for
type inference. Rule [S-Empty] allows constraint solving to terminate: when
no constraints are left, the algorithm returns the substitutions. Rule [S-Same]
discards equality constraints between the same types. Rule [S-Arrow] decon-
structs an equality constraint between two arrows, by constraining both the
domains to each other, and both the codomains to each other.

Rule [S-Seq] solves equality constraints between two sequences by calling
the sequence solving algorithm C

s⇒ S′, which in turn calls the solving algo-
rithm AbCl_unify from [20,19]. Resulting substitutions are then applied to the
remaining constraints, and solving proceeds as usual. Due to non-determinism
of AbCl_unify, and consequently, C s⇒ S′, this rule introduces non-determinism
in the constraint solving algorithm. However, every parallel solution is either
correct, or constraint solving fails.

The remaining rules are standard rules to deal with type variables. Rules [S-
TVarR] and [S-SVarR] apply when the type (and sequence) variables appear
on the right side, swapping the positions of the constrained types. Rules [S-
TVarL] and [S-SVarL] then produce a substitution between the type (and
sequence) variable and the type on the right of the constraint.

Continuing the example from section 4.1, constraints are solved:

14 P. Ângelo and M. Florido

[S-Empty]
∅ ⇒ ∅

[S-Same]
C∗ ⇒ S

{τ .
= τ} ∪ C∗ ⇒ S

τ ∈ Tbase ∪ Ttvar

[S-Arrow]
{σ .

= υ, τ
.
= ρ} ∪ C∗ ⇒ S

{σ → τ
.
= υ → ρ} ∪ C∗ ⇒ S

[S-Seq]
(τ1 ∧ . . . ∧ τn

.
= ρ1 ∧ . . . ∧ ρm)

s⇒ S′ S′(C∗) ⇒ S

{τ1 ∧ . . . ∧ τn
.
= ρ1 ∧ . . . ∧ ρm} ∪ C∗ ⇒ S ◦ S′

[S-TVarR]
{α .

= τ} ∪ C∗ ⇒ S

{τ .
= α} ∪ C∗ ⇒ S

τ ̸∈ Ttvar

[S-TVarL]
[α 7→ τ]C∗ ⇒ S

{α .
= τ} ∪ C∗ ⇒ S ◦ [α 7→ τ]

τ ∈ T0 and α ̸∈ tvars(τ)

[S-SVarR]
{ϕ .

= σ} ∪ C∗ ⇒ S

{σ .
= ϕ} ∪ C∗ ⇒ S

σ ̸∈ Tsvar

[S-SVarL]
[ϕ 7→ σ]C∗ ⇒ S

{ϕ .
= σ} ∪ C∗ ⇒ S ◦ [ϕ 7→ σ]

σ ∈ T1 and ϕ ̸∈ tvars(σ)

Fig. 3. Constraint Solving (C∗ ⇒ S)

Example 4. We now have the following constraints to solve:

{α1
.
= α2 → α3, α1 ∧ α2

.
= α5 → α5 ∧ α6 → α6} ⇒ ∅

[S-TVarL] {α2 → α3 ∧ α2
.
= α5 → α5 ∧ α6 → α6} ⇒ [α1 7→ α2 → α3]

Due to non-determinism of C s⇒ S, there are two solutions:

[S-Seq] ∅ ⇒ [α5 7→ α6 → α6] ◦ [α2 7→ α5, α3 7→ α5] ◦ [α1 7→ α2 → α3]

[S-Seq] ∅ ⇒ [α6 7→ α5 → α5] ◦ [α2 7→ α6, α3 7→ α6] ◦ [α1 7→ α2 → α3]

Choosing the first solution, our expression is typed as follows:

[T-AbsI] ∅ ⊢∧ λx . x x : ((α6 → α6) → α6 → α6) ∧ (α6 → α6) → α6 → α6

[T-AbsI] ∅ ⊢∧ λy . y : (α6 → α6) → α6 → α6

[T-AbsI] ∅ ⊢∧ λy . y : α6 → α6

[T-App] ∅ ⊢∧ (λx . x x) (λy . y) : α6 → α6

We show our constraint solving algorithm is both sound and complete:

Lemma 5 (Soundness of Constraint Solving). If C∗ ⇒ S then S |= C∗.

Proof. Proof by induction on the length of the derivation tree of C∗ ⇒ S.

Type Inference for Rank-2 Intersection Types using Set Unification 15

Lemma 6 (Completeness of Constraint Solving). If S1 |= C∗ then ∃S, S2

s.t. C∗ ⇒ S2 and S1 = S ◦ S2.

Proof. Proof by induction on the breakdown of constraint sets C∗ by the solving
rules.

4.4 Algorithm

Having defined both a constraint generation and solving algorithm, we now in-
clude both in the main type inference algorithm. We also show our type inference
is sound and complete.

Definition 18 (Type Inference). The type inference procedure infer(M)
def
=

(Γ, τ, S), that given an expression M , non-deterministically returns a triple (Γ, τ, S)
composed of a typing context Γ , type τ and substitutions S, is defined by the fol-
lowing steps:

Let infer(M)
def
= (Γ, τ, S), such that:

1. let Γ , τ and C∗ such that Γ ⊢∧ M : τ | C∗;
2. let S such that C∗ ⇒ S;

Theorem 2 (Soundness). If infer(M) = (Γ, τ, S) then S(Γ) ⊢∧ M : S(τ).

Proof. By definition 18, we have Γ , τ and C∗ such that Γ ⊢∧ M : τ | C∗, and S
such that C∗ ⇒ S. By lemma 5, since C∗ ⇒ S then S |= C∗. By lemma 1, since
Γ ⊢∧ M : τ | C∗ and S |= C∗ then S(Γ) ⊢∧ M : S(τ).

Theorem 3 (Completeness). If S1(Γ) ⊢∧ M : τ then ∃S2, ρ, S s.t. infer(M) =
(Γ, ρ, S2) and τ = S ◦ S2(ρ).

Proof. If S1(Γ) ⊢∧ M : τ then by lemma 2, Γ ⊢∧ M : ρ | C∗ and ∃S2 s.t.
S2 agrees with S1 except at χ, S2 |= C∗ and S2(ρ) = τ , where χ are the fresh
variables introduced in the derivation of Γ ⊢∧ M : ρ | C∗. By lemma 6, ∃S, S3

s.t C∗ ⇒ S3 and S2 = S ◦ S3. By definition 18, infer(M) = (Γ, ρ, S3). Then, we
have that τ = S ◦ S3(ρ).

5 Conclusion and Future Work

In this paper we present a sound and complete unification-based type inference
algorithm for rank-2 intersection types using set unification. One nice feature of
this algorithm is its similarity with type inference for simple types, it is basically
the same algorithm, replacing first-order unification by set unification.

16 P. Ângelo and M. Florido

5.1 Future Work

Using Set-Unification based Type Inference in Practice This work is
carried out in the context of a larger research project, focused in the use of
intersection types and gradual types for programming language design and im-
plementation. This larger project assumes the implementation and evaluation
of intersection gradual types in a functional programming language compiler.
Several points need to be further developed to enable the use of the algorithm
presented here in the overall project goals. Some important points to address
are:

1. Extension of the term language with recursive definitions. This will enable to
apply our algorithm to a more realistic language and will address the known
problems related with decidability for recursive definitions [33,29].

2. Add support to let expressions and conditional expressions. Most likely, in
the case of conditional expressions, this will mean extending the type lan-
guage with union types.

Theoretical Issues The work presented here inspires the following possible
future work:

1. Types here use associative, commutative and idempotent intersections. In
the last years non-idempotent intersections have been successfully used to
obtain quantitative information of program behaviour [8,1,2]. We believe
it is rather promising to use multiset unification (usually based on solving
diophantine equations) in the same way we use set unification, to infer types
in this particular setting.

2. Investigate the complexity of our type inference algorithm. Being exponential
for sure, because this is the complexity of the type inference problem for
rank-2 intersection types, we want to study the exact complexity of our type
inference algorithm and investigate if using set-unification may have some
impact on the overall efficiency of type inference.

3. Extension to higher rank intersection types. Here we use a simple form of
set unification where there cannot be sets inside sets. We conjecture that
using those nested sets limited to a fixed level of nesting will result in type
inference algorithms for higher (but finite) rank intersection types.

4. Study the relation of our approach with β-unification [34] and other forms of
unification. Unification theory is a wide research field and studying in detail
the relations between different unification algorithms, which, in this case,
are used for the same purpose may shed some light on their relations and
also contribute to the area of unification theory.

Acknowledgements This work was partially financially supported by the por-
tuguese Fundação para a Ciência e a Tecnologia, under the PhD grant number
SFRH/BD/145183/2019 and by Base Funding - UIDB/00027/2020 of the Artifi-
cial Intelligence and Computer Science Laboratory – LIACC - funded by national
funds through the FCT/MCTES (PIDDAC).

Type Inference for Rank-2 Intersection Types using Set Unification 17

References

1. Accattoli, B., Graham-Lengrand, S., Kesner, D.: Tight typings and split bounds.
Proc. ACM Program. Lang. 2(ICFP), 94:1–94:30 (2018)

2. Alves, S., Kesner, D., Ventura, D.: A quantitative understanding of pattern match-
ing. In: 25th International Conference on Types for Proofs and Programs, TYPES
2019, June 11-14, 2019, Oslo, Norway. LIPIcs, vol. 175, pp. 3:1–3:36. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

3. Ângelo, P., Florido, M.: Type inference for rank 2 gradual intersection types. In:
Bowman, W.J., Garcia, R. (eds.) Trends in Functional Programming. pp. 84–
120. Springer International Publishing, Cham (2020). https://doi.org/10.1007/
978-3-030-47147-7_5

4. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Per-
spectives in logic, Cambridge University Press (2013)

5. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and
the completeness of type assignment. Journal of Symbolic Logic 48(4), 931–940
(1983). https://doi.org/10.2307/2273659

6. Bettini, L., Bono, V., Dezani-Ciancaglini, M., Giannini, P., Venneri, B.: Java &
lambda: a featherweight story. Log. Methods Comput. Sci. 14(3) (2018)

7. Boudol, G., Zimmer, P.: On type inference in the intersection type dis-
cipline. Electronic Notes in Theoretical Computer Science 136, 23–42
(2005). https://doi.org/https://doi.org/10.1016/j.entcs.2005.06.016,
https://www.sciencedirect.com/science/article/pii/S1571066105050589,
proceedings of the Third International Workshop on Intersection Types and
Related Systems (ITRS 2004)

8. Bucciarelli, A., Kesner, D., Ventura, D.: Non-idempotent intersection types for the
Lambda-Calculus. Logic Journal of the IGPL 25(4), 431–464 (07 2017). https:
//doi.org/10.1093/jigpal/jzx018

9. Carlier, S., Wells, J.B.: Type inference with expansion variables and intersection
types in system e and an exact correspondence with β-reduction. In: Proceed-
ings of the 6th ACM SIGPLAN International Conference on Principles and Prac-
tice of Declarative Programming. p. 132–143. PPDP ’04, Association for Comput-
ing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/1013963.
1013980, https://doi.org/10.1145/1013963.1013980

10. Castagna, G., Lanvin, V.: Gradual typing with union and intersection types. Proc.
ACM Program. Lang. 1(ICFP), 41:1–41:28 (Aug 2017). https://doi.org/10.
1145/3110285

11. Castagna, G., Lanvin, V., Petrucciani, T., Siek, J.G.: Gradual typing: A new per-
spective. Proc. ACM Program. Lang. 3(POPL), 16:1–16:32 (Jan 2019). https:
//doi.org/10.1145/3290329

12. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory
for the λ-calculus. Notre Dame Journal of Formal Logic 21(4), 685–693 (10 1980).
https://doi.org/10.1305/ndjfl/1093883253

13. Coppo, M., Giannini, P.: Principal types and unification for simple intersection
type systems. Information and Computation 122(1), 70 – 96 (1995). https://
doi.org/https://doi.org/10.1006/inco.1995.1141

14. Coppo, M.: An extended polymorphic type system for applicative languages. In:
Dembiński, P. (ed.) Mathematical Foundations of Computer Science 1980. pp. 194–
204. Springer Berlin Heidelberg, Berlin, Heidelberg (1980)

https://doi.org/10.1007/978-3-030-47147-7_5
https://doi.org/10.1007/978-3-030-47147-7_5
https://doi.org/10.1007/978-3-030-47147-7_5
https://doi.org/10.1007/978-3-030-47147-7_5
https://doi.org/10.2307/2273659
https://doi.org/10.2307/2273659
https://doi.org/https://doi.org/10.1016/j.entcs.2005.06.016
https://doi.org/https://doi.org/10.1016/j.entcs.2005.06.016
https://www.sciencedirect.com/science/article/pii/S1571066105050589
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1093/jigpal/jzx018
https://doi.org/10.1145/1013963.1013980
https://doi.org/10.1145/1013963.1013980
https://doi.org/10.1145/1013963.1013980
https://doi.org/10.1145/1013963.1013980
https://doi.org/10.1145/1013963.1013980
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3110285
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1145/3290329
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/https://doi.org/10.1006/inco.1995.1141
https://doi.org/https://doi.org/10.1006/inco.1995.1141
https://doi.org/https://doi.org/10.1006/inco.1995.1141
https://doi.org/https://doi.org/10.1006/inco.1995.1141

18 P. Ângelo and M. Florido

15. Curry, H.B.: Functionality in Combinatory Logic. Proceedings of the National
Academy of Science 20(11), 584–590 (Nov 1934). https://doi.org/10.1073/
pnas.20.11.584

16. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 207–212. POPL ’82, ACM, New York, NY, USA (1982).
https://doi.org/10.1145/582153.582176

17. Damiani, F.: Rank 2 intersection types for modules. In: Proceedings of the 5th
ACM SIGPLAN International Conference on Principles and Practice of Declaritive
Programming. p. 67–78. PPDP ’03, Association for Computing Machinery, New
York, NY, USA (2003). https://doi.org/10.1145/888251.888259

18. Damiani, F., Giannini, P.: A decidable intersection type system based on relevance.
In: Hagiya, M., Mitchell, J.C. (eds.) Theoretical Aspects of Computer Software.
pp. 707–725. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)

19. Dovier, A., Omodeo, E., Pontelli, E., Rossi, G.: A language for programming in
logic with finite sets. J. Log. Program. 28, 1–44 (01 1996)

20. Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theory and Prac-
tice of Logic Programming 6(6), 645–701 (2006). https://doi.org/10.1017/
S1471068406002730

21. Dudenhefner, A., Martens, M., Rehof, J.: The algebraic intersection type unifica-
tion problem. Log. Methods Comput. Sci. 13 (2017)

22. Dunfield, J.: Elaborating intersection and union types. In: Proceedings of the
17th ACM SIGPLAN International Conference on Functional Programming.
p. 17–28. ICFP ’12, Association for Computing Machinery, New York, NY,
USA (2012). https://doi.org/10.1145/2364527.2364534, https://doi.org/10.
1145/2364527.2364534

23. Dunfield, J., Pfenning, F.: Type assignment for intersections and unions in call-
by-value languages. In: Gordon, A.D. (ed.) Foundations of Software Science and
Computation Structures. pp. 250–266. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2003)

24. Florido, M., Damas, L.: Linearization of the lambda-calculus and its relation with
intersection type systems. Journal of Functional Programming 14(5), 519–546
(2004). https://doi.org/10.1017/S0956796803004970

25. Frankle, J., Osera, P.M., Walker, D., Zdancewic, S.: Example-directed synthe-
sis: A type-theoretic interpretation. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. p.
802–815. POPL ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2837614.2837629, https://doi.org/10.
1145/2837614.2837629

26. Freeman, T., Pfenning, F.: Refinement types for ml. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion. p. 268–277. PLDI ’91, Association for Computing Machinery, New York, NY,
USA (1991). https://doi.org/10.1145/113445.113468

27. Girard, J.Y.: Une extension de Ľinterpretation de gödel a Ľanalyse, et son
application a Ľelimination des coupures dans Ľanalyse et la theorie des types.
In: Fenstad, J. (ed.) Proceedings of the Second Scandinavian Logic Symposium,
Studies in Logic and the Foundations of Mathematics, vol. 63, pp. 63–92. Elsevier
(1971). https://doi.org/https://doi.org/10.1016/S0049-237X(08)70843-7,
https://www.sciencedirect.com/science/article/pii/S0049237X08708437

28. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
Cambridge (1989)

https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1073/pnas.20.11.584
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/888251.888259
https://doi.org/10.1145/888251.888259
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1145/2364527.2364534
https://doi.org/10.1017/S0956796803004970
https://doi.org/10.1017/S0956796803004970
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/113445.113468
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/https://doi.org/10.1016/S0049-237X(08)70843-7
https://www.sciencedirect.com/science/article/pii/S0049237X08708437

Type Inference for Rank-2 Intersection Types using Set Unification 19

29. Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Program.
Lang. Syst. 15(2), 253–289 (1993). https://doi.org/10.1145/169701.169692,
https://doi.org/10.1145/169701.169692

30. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press (1997)
31. Jim, T.: Rank 2 type systems and recursive definitions. Tech. rep., Cambridge,

MA, USA (1995)
32. Jim, T.: What are principal typings and what are they good for? In: Proceedings

of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 42–53. POPL ’96, ACM, New York, NY, USA (1996). https://
doi.org/10.1145/237721.237728

33. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: Type reconstruction in the presence of
polymorphic recursion. ACM Trans. Program. Lang. Syst. 15(2), 290–311 (1993)

34. Kfoury, A.J., Wells, J.B.: Principality and decidable type inference for finite-rank
intersection types. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. pp. 161–174. POPL ’99, ACM,
New York, NY, USA (1999). https://doi.org/10.1145/292540.292556

35. Kfoury, A., Wells, J.: Principality and type inference for intersection types using
expansion variables. Theoretical Computer Science 311(1), 1 – 70 (2004). https:
//doi.org/10.1016/j.tcs.2003.10.032

36. Leivant, D.: Polymorphic type inference. In: Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. p.
88–98. POPL ’83, Association for Computing Machinery, New York, NY, USA
(1983). https://doi.org/10.1145/567067.567077

37. PALSBERG, J., PAVLOPOULOU, C.: From polyvariant flow information to in-
tersection and union types. Journal of Functional Programming 11(3), 263–317
(2001). https://doi.org/10.1017/S095679680100394X

38. Pierce, B.C.: Types and Programming Languages. The MIT Press, 1st edn. (2002)
39. Pottinger, G.: A type assignment for the strongly normalizable lambda-terms. In:

Hindley, J., Seldin, J. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pp. 561–577. Academic Press (1980)

40. Reynolds, J.C.: Towards a theory of type structure. In: Programming Symposium,
Proceedings Colloque Sur La Programmation. p. 408–423. Springer-Verlag, Berlin,
Heidelberg (1974)

41. Reynolds, J.C.: Design of the Programming Language Forsythe, pp. 173–
233. Birkhäuser Boston, Boston, MA (1997). https://doi.org/10.1007/
978-1-4612-4118-8_9

42. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (Jan 1965). https://doi.org/10.1145/321250.321253

43. Ronchi Della Rocca, S.: Principal type scheme and unification for intersection type
discipline. Theor. Comput. Sci. 59(1–2), 181–209 (Jul 1988). https://doi.org/
10.1016/0304-3975(88)90101-6

44. Urzyczyn, P.: The emptiness problem for intersection types. In: Proceedings Ninth
Annual IEEE Symposium on Logic in Computer Science. pp. 300–309 (1994).
https://doi.org/10.1109/LICS.1994.316059

45. Van Bakel, S.J.: Intersection type disciplines in lambda calculus and applicative
term rewriting systems. Amsterdam: Mathematisch Centrum (1993)

46. Wand, M.: A simple algorithm and proof for type inference. Fundamenta Infor-
maticae 10(2), 115–121 (1987)

https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/237721.237728
https://doi.org/10.1145/292540.292556
https://doi.org/10.1145/292540.292556
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1016/j.tcs.2003.10.032
https://doi.org/10.1145/567067.567077
https://doi.org/10.1145/567067.567077
https://doi.org/10.1017/S095679680100394X
https://doi.org/10.1017/S095679680100394X
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1016/0304-3975(88)90101-6
https://doi.org/10.1109/LICS.1994.316059
https://doi.org/10.1109/LICS.1994.316059

20 P. Ângelo and M. Florido

A Proofs

In this section, we present the full proofs for all the stated properties:

– Lemma 1 (Soundness of Constraint Generation) in A;
– Lemma 2 (Completeness of Constraint Generation) in A;
– Lemma 5 (Soundness of Constraint Solving) in A;
– Lemma 6 (Completeness of Constraint Solving) in A;

Lemma 1 (Soundness of Constraint Generation). If Γ ⊢∧ M : τ | C∗ and
S |= C∗ then S(Γ) ⊢∧ M : S(τ).

Proof. We proceed by induction on the length of the derivation tree of Γ ⊢∧ M :
τ | C∗.

Base case:

– Rule [G-Con]. If ∅ ⊢∧ k : B | ∅ and S |= ∅, then k is a constant of base type
B. Then, by rule [T-Con], ∅ ⊢∧ k : B holds. By definition 7, we have that
S(∅) = ∅ and S(B) = B. Therefore, S(∅) ⊢∧ k : S(B) holds.

– Rule [G-Var]. If x : α ⊢∧ x : α | ∅ and S |= ∅, then α is a fresh type variable.
By definition 7, S(α) = τ for any τ . By rule [T-Var], x : τ ⊢∧ x : τ . By
definition 11, x : S(α) = S(x : α). Therefore, S(x : α) ⊢∧ x : S(α).

Induction step:

– Rule [G-AbsI]. If Γ ⊢∧ λx . M : σ → τ | C∗ and S |= C∗ then by rule
[G-AbsI], Γ, x : σ ⊢∧ M : τ | C∗. By the induction hypothesis, S(Γ, x :
σ) ⊢∧ M : S(τ). By definition 11, S(Γ, x : σ) = S(Γ), x : S(σ), therefore
S(Γ), x : S(σ) ⊢∧ M : S(τ). By rule [T-AbsI], S(Γ) ⊢∧ λx . M : S(σ) →
S(τ), or rather, S(Γ) ⊢∧ λx . M : S(σ → τ).

– Rule [G-AbsK]. Assuming x ̸∈ fvars(M), if Γ ⊢∧ λx . M : ϕ → τ | C∗ and
S |= C∗ then by rule [G-AbsK], Γ ⊢∧ M : τ | C∗ and ϕ is a fresh sequence
variable. By the induction hypothesis, S(Γ) ⊢∧ M : S(τ). By definition 7,
S(ϕ) = σ for any σ. By rule [T-AbsK], S(Γ) ⊢∧ λx . M : σ → S(τ) holds,
which means S(Γ) ⊢∧ λx . M : S(ϕ → τ) also holds.

– Rule [G-App∧]. If Γ1∧Γ21∧ . . .∧Γ2n ⊢∧ M N : τ | C∗
1 ∪C∗

21∪ . . .∪C∗
2n∪C

and S |= C∗
1 ∪ C∗

21 ∪ . . . ∪ C∗
2n ∪ C then by rule [G-App∧], Γ1 ⊢∧ M :

τ1 ∧ . . . ∧ τn → τ | C∗
1 , Γ2 ⊢∧ N : ρ | C∗

2 and duplicaten(⟨Γ2, ρ, C
∗
2 ⟩) =

⟨[Γ21, . . . , Γ2n], [ρ1, . . . , ρn], [C
∗
21, . . . , C

∗
2n]⟩, and by definition 9, S |= C∗

1 ,
S |= C∗

21 and . . . and S |= C∗
2n and S |= τ1 ∧ . . . ∧ τn

.
= ρ1 ∧ . . . ∧ ρn.

By the induction hypothesis, S(Γ1) ⊢∧ M : S(τ1 ∧ . . . ∧ τn → τ). As we
have that Γ2 ⊢∧ N : ρ | C∗

2 , we also have Γ21 ⊢∧ N : ρ1 | C∗
21 and . . . and

Γ2n ⊢∧ N : ρn | C∗
2n, which are just renamings of variables. By the induction

hypothesis, S(Γ21) ⊢∧ N : S(ρ1) and . . . and S(Γ2n) ⊢∧ N : S(ρn). By defini-
tion 9, S(τ1∧. . .∧τn) = S(ρ1∧. . .∧ρn). Therefore, S(Γ1) ⊢∧ M : S(ρ1∧. . .∧
ρn) → S(τ). By rule [T-App], S(Γ1)∧S(Γ21)∧ . . .∧S(Γ2n) ⊢∧ M N : S(τ),
or rather, S(Γ1 ∧ Γ21 ∧ . . . ∧ Γ2n) ⊢∧ M N : S(τ).

Type Inference for Rank-2 Intersection Types using Set Unification 21

– Rule [G-App]. If Γ1 ∧ Γ2 ⊢∧ M N : α | C∗
1 ∪ C∗

2 ∪ {τ .
= ϕ → α, ϕ

.
= ρ} and

S |= C∗
1 ∪C∗

2 ∪ {τ .
= ϕ → α, ϕ

.
= ρ} then by rule [G-App], Γ1 ⊢∧ M : τ | C∗

1

and Γ2 ⊢∧ N : ρ | C∗
2 and α and ϕ are fresh type (and sequence) variables,

and by definition 9, S |= C∗
1 , S |= ∪C∗

2 , S |= τ
.
= ϕ → α and S |= ϕ

.
= ρ.

By the induction hypothesis, S(Γ1) ⊢∧ M : S(τ) and S(Γ2) ⊢∧ N : S(ρ). By
definition 9, S(τ) = S(ϕ → α) and S(ϕ) = S(ρ). Therefore, we have that
S(Γ1) ⊢∧ M : S(ρ → α), or rather, S(Γ1) ⊢∧ M : S(ρ) → S(α). By rule
[T-App], S(Γ1) ∧ S(Γ2) ⊢∧ M N : S(α). By definitions 6 and 7, we have
that S(Γ1 ∧ Γ2) ⊢∧ M N : S(α) holds.

– Rule [G-Add]. If Γ1 ∧ Γ2 ⊢∧ M + N : Int | C∗
1 ∪ {τ .

= Int} ∪ C∗
2 ∪ {ρ .

=
Int} and S |= C∗

1 ∪ {τ .
= Int} ∪ C∗

2 ∪ {ρ .
= Int}, then by rule [G-Add],

Γ1 ⊢∧ M : τ | C∗
1 and Γ2 ⊢∧ N : ρ | C∗

2 , and by definition 9, S |= C∗
1 ,

S |= τ
.
= Int , S |= C∗

2 and S |= ρ
.
= Int . By the induction hypothesis,

S(Γ1) ⊢∧ M : S(τ) and S(Γ2) ⊢∧ N : S(ρ). By definition 9, S(τ) = Int and
S(ρ) = Int . Therefore, S(Γ1) ⊢∧ M : Int and S(Γ2) ⊢∧ N : Int . By rule
[T-Add], S(Γ1) ∧ S(Γ2) ⊢∧ M + N : Int . By definitions 6 and 7, we have
that S(Γ1 ∧ Γ2) ⊢∧ M +N : S(Int) holds.

Lemma 2 (Completeness of Constraint Generation). If S1(Γ) ⊢∧ M : τ
then Γ ⊢∧ M : ρ | C∗ s.t. the domain of S1 is disjoint from χ, and ∃S2 s.t.
S2 agrees with S1 except at χ, S2 |= C∗ and S2(ρ) = τ , where χ are the fresh
variables introduced in the derivation of Γ ⊢∧ M : ρ | C∗.

Proof. We proceed by induction on the length of the derivation tree of S1(Γ) ⊢∧
M : τ .

Base case:

– Rule [T-Con]. If S1(∅) ⊢∧ k : B then by rule [T-Con], k is a constant of
base type B. By rule [G-Con], ∅ ⊢∧ k : B | ∅. We have that S1 |= ∅, by
definition 9, and that S1(B) = B, by definition 7.

– Rule [T-Var]. If S1(x : ρ) ⊢∧ x : τ then by definition 7, S1(ρ) = τ . By rule
[G-Var], x : α ⊢∧ x : α | ∅. For a S2 = S1 ◦ [α 7→ τ], then S2 agrees with S1

except at {α}. By definition 9, S2 |= ∅. By definition 7, S2(α) = τ .

Induction step:

– Rule [T-AbsI]. If S1(Γ) ⊢∧ λx . M : S1(σ) → τ then by rule [T-AbsI],
S1(Γ, x : σ) ⊢∧ M : τ . By the induction hypothesis, Γ, x : σ ⊢∧ M : ρ | C∗

s.t. the domain of S1 is disjoint from χ, and ∃S2 s.t. S2 agrees with S1 except
at χ, S2 |= C∗ and S2(ρ) = τ . By rule [G-AbsI], Γ ⊢∧ λx . M : σ → ρ | C∗.
Since S2 agrees with S1 except at χ, then S2(σ) = S1(σ). Therefore, by
definition 7, S2(σ → ρ) = S1(σ) → τ .

– Rule [T-AbsK]. If S1(Γ) ⊢∧ λx . M : σ → τ then by rule [T-AbsK],
S1(Γ) ⊢∧ M : τ . By the induction hypothesis, Γ ⊢∧ M : ρ | C∗ s.t. the
domain of S1 is disjoint from χ, and ∃S2 s.t. S2 agrees with S1 except at χ,
S2 |= C∗ and S2(ρ) = τ . By rule [G-AbsK], Γ ⊢∧ λx . M : ϕ → ρ | C∗. For
an S3 = S2 ◦ [ϕ 7→ σ], then S3 agrees with S2 except at χ, where ϕ ∈ χ. By
definition 9, S3 |= C∗. By definition 7, S3(ϕ → ρ) = σ → τ .

22 P. Ângelo and M. Florido

– Rule [T-App]. If S(Γ0 ∧ Γ1 ∧ . . . ∧ Γn) ⊢∧ M N : τ then by rule [T-App],
S(Γ0) ⊢∧ M : τ1 ∧ . . . ∧ τn → τ and ∀i ∈ 1..n . S(Γi) ⊢∧ N : τi. By the
induction hypothesis, Γ0 ⊢∧ M : τ ′′ | C∗

0 s.t. the domain of S is disjoint
from χ0 and ∃S0 s.t. S0 agrees with S except at χ0, S0 |= C∗

0 and S0(τ
′′) =

τ1 ∧ . . . ∧ τn → τ . There are two possibilities:
• τ ′′ = τ ′1 ∧ . . .∧ τ ′n → τ ′. Therefore, Γ0 ⊢∧ M : τ ′1 ∧ . . .∧ τ ′n → τ ′ | C∗

0 . By
the induction hypothesis, ∀i ∈ 1..n, Γi ⊢∧ N : ρi | C∗

i s.t. the domain of
S is disjoint from χi and ∃Si s.t. Si agrees with S except at χi, Si |= C∗

i

and Si(ρi) = τi.

We also have that ∀i ∈ 1..n, the derivations Γi ⊢∧ N : ρi | C∗
i are just

type variables renamings of each other. We can have an extra deriva-
tion Γ ′ ⊢∧ N : ρ′ | C ′∗ which is also just a type variable renam-
ing of the previous. With a proper choice of variables, we have that
duplicaten(⟨Γ ′, ρ′, C ′∗⟩) = ⟨[Γ1, . . . , Γn], [ρ1, . . . , ρn], [C

∗
1 , . . . , C

∗
n]⟩.

We must now introduce a substitution S′ such that: (1) S′ agrees with S
except at χ0∪χ1∪ . . .∪χn, (2) S′ |= C∗

0 ∪C∗
1 ∪ . . .∪C∗

n∪{τ ′1∧ . . .∧ τ ′n
.
=

ρ1 ∧ . . . ∧ ρn} and (3) S′(τ ′) = τ . We define S′ as follows:
∗ [α 7→ τ0] ∈ S′ if α ̸∈ χ0 ∪ χ1 ∪ . . . ∪ χn and [α 7→ τ0] ∈ S;
∗ [ϕ 7→ σ0] ∈ S′ if ϕ ̸∈ χ0 ∪ χ1 ∪ . . . ∪ χn and [ϕ 7→ σ0] ∈ S;
∗ ∀i ∈ 0..n, then [αi 7→ ρ′i] ∈ S′ if αi ∈ χi and [αi 7→ ρ′i] ∈ Si;
∗ ∀i ∈ 0..n, then [ϕi 7→ σi] ∈ S′ if ϕi ∈ χi and [ϕi 7→ σi] ∈ Si;
∗ a substitution S′′ such that S′′ |= τ ′1 ∧ . . . ∧ τ ′n

.
= ρ1 ∧ . . . ∧ ρn.

Is it easy to check that conditions (1) hold. S′ |= C∗
0∪C∗

1∪. . .∪C∗
n because

χ0, χ1, . . . , χn are all disjoint from each other. Since S′′ |= τ ′1∧ . . .∧ τ ′n
.
=

ρ1∧. . .∧ρn, then also S′ |= τ ′1∧. . .∧τ ′n
.
= ρ1∧. . .∧ρn. Therefore, condition

(2) holds. Note that the domain of Si is disjoint from χj , with i ̸= j.
Therefore, S′(τ ′1∧. . .∧τ ′n → τ ′) = S0(τ

′
1∧. . .∧τ ′n → τ ′) = τ1∧. . .∧τn → τ .

Therefore, S′(τ ′) = τ and condition (3) holds. By rule [G-App∧], Γ0 ∧
Γ1∧. . .∧Γn ⊢∧ M N : τ ′ | C∗

0∪C∗
1∪. . .∪C∗

n∪{τ ′1∧. . .∧τ ′n
.
= ρ1∧. . .∧ρn}

and S′ fulfills the conditions.
• τ ′′ is not an arrow type. Therefore Γ0 ⊢∧ M : τ ′′ | C∗

0 . Also, according
to definition 7, S0(τ

′′) = τ1 → τ , and then we have the single premise
S(Γ1) ⊢∧ N : τ1. By the induction hypothesis, Γ1 ⊢∧ N : ρ1 | C∗

1 s.t.
the domain of S is disjoint from χ1 and ∃S1 s.t. S1 agrees with S except
at χ1, S1 |= C∗

1 and S1(ρ1) = τ1. We also have that χ0 is disjoint from χ1.

We must now introduce a substitution S′ such that: (1) S′ agrees with
S except at χ0 ∪ χ1 ∪ {α}, (2) S′ |= C∗

0 ∪ C∗
1 ∪ {τ ′′ .

= ρ1 → α} and (3)
S′(α) = τ . We define S′ as follows:

∗ [α0 7→ τ0] ∈ S′ if α0 ̸∈ χ0 ∪ χ1 ∪ α and [α0 7→ τ0] ∈ S;
∗ [ϕ0 7→ σ0] ∈ S′ if ϕ0 ̸∈ χ0 ∪ χ1 and [ϕ0 7→ σ0] ∈ S;
∗ [α0 7→ τ0] ∈ S′ if α0 ∈ χ0 ∪ α and [α0 7→ τ0] ∈ S0;
∗ [ϕ0 7→ σ0] ∈ S′ if ϕ0 ∈ χ0 and [ϕ0 7→ σ0] ∈ S0;

Type Inference for Rank-2 Intersection Types using Set Unification 23

∗ [α0 7→ τ0] ∈ S′ if α0 ∈ χ1 ∪ α and [α0 7→ τ0] ∈ S1;
∗ [ϕ0 7→ σ0] ∈ S′ if ϕ0 ∈ χ1 and [ϕ0 7→ σ0] ∈ S1;
∗ [α 7→ τ] ∈ S′;

Is it easy to check that condition (1) and (3) hold. S′ |= C∗
0 ∪ C∗

1 be-
cause χ0 and χ1 are disjoint. First note that the domain of S0 is disjoint
from χ1, and the domain of S1 is disjoint from χ0. Therefore, S′(τ ′′) =
S0(τ

′′) = τ1 → τ = S1(ρ1) → S′(α) = S′(ρ1) → S′(α) = S′(ρ1 → α).
Therefore, S′ |= {τ ′′ .

= ρ1 → α} and so (2) holds. By rule [G-App],
Γ0 ∧ Γ1 ⊢∧ M N : α | C∗

0 ∪ C∗
1 ∪ {τ ′′ .

= ρ1 → α} and S′ fulfills the
conditions.

– Rule [T-Add]. If S(Γ1 ∧ Γ2) ⊢∧ M + N : Int then by rule [T-Add],
S(Γ1) ⊢∧ M : Int and S(Γ2) ⊢∧ N : Int . By the induction hypothesis,
Γ1 ⊢∧ M : τ | C∗

1 s.t. the domain of S is disjoint from χ1, and ∃S1 s.t. S1

agrees with S except at χ1, S1 |= C∗
1 and S1(τ) = Int ; and Γ2 ⊢∧ M : ρ | C∗

2

s.t. the domain of S is disjoint from χ2, and ∃S2 s.t. S2 agrees with S except
at χ2, S2 |= C∗

2 and S2(ρ) = Int ; and χ1 is disjoint from χ2.

We must now introduce a substitution S′ such that: (1) S′ agrees with
S except at χ1 ∪ χ2, (2) S′ |= C∗

1 ∪ {τ .
= Int} ∪ C∗

2 ∪ {ρ .
= Int} and (3)

S′(Int) = Int . We define S′ as follows:
• [α 7→ τ0] ∈ S′ if α ̸∈ χ1 ∪ χ2 and [α 7→ τ0] ∈ S;
• [ϕ 7→ σ0] ∈ S′ if ϕ ̸∈ χ1 ∪ χ2 and [ϕ 7→ σ0] ∈ S;
• [α1 7→ τ ′] ∈ S′ if α1 ∈ χ1 and [α1 7→ τ ′] ∈ S1;
• [ϕ1 7→ σ1] ∈ S′ if ϕ1 ∈ χ1 and [ϕ1 7→ σ1] ∈ S1;
• [α2 7→ ρ′] ∈ S′ if α2 ∈ χ2 and [α2 7→ ρ′] ∈ S2;
• [ϕ2 7→ σ2] ∈ S′ if ϕ2 ∈ χ2 and [ϕ2 7→ σ2] ∈ S2.

Is it easy to check that conditions (1) and (3) hold. S′ |= C∗
1 ∪C∗

2 because χ1

and χ2 are disjoint. First note that the domain of S1 is disjoint from χ2, and
the domain of S2 is disjoint from χ1. Therefore, S′(τ) = S1(τ) = Int and
S′(ρ) = S2(ρ) = Int , and S′ |= {τ .

= Int , ρ
.
= Int}. We have that (2) holds.

By rule [G-Add], Γ1 ∧Γ2 ⊢∧ M +N : Int | C∗
1 ∪{τ .

= Int}∪C∗
2 ∪{ρ .

= Int}
and S′ fulfills the conditions.

Lemma 5 (Soundness of Constraint Solving). If C∗ ⇒ S then S |= C∗.

Proof. We proceed by induction on the length of the derivation tree of C∗ ⇒ S.

Base case:

– Rule [S-Empty]. By definition 9, ∅ |= ∅ holds.

Induction step:

– Rule [S-Same]. Assuming τ ∈ Tbase ∪ Ttvar, if {τ .
= τ} ∪ C∗ ⇒ S, then by

rule [S-Same], C∗ ⇒ S. By the induction hypothesis, S |= C∗. By definition
7, we have that S(τ) = S(τ), so by definition 9, we have that S |= τ

.
= τ .

Therefore, S |= {τ .
= τ} ∪ C∗.

24 P. Ângelo and M. Florido

– Rule [S-Arrow]. If {σ → τ
.
= υ → ρ} ∪ C∗ ⇒ S then by rule [S-Arrow],

{σ .
= υ, τ

.
= ρ} ∪ C∗ ⇒ S. By the induction hypothesis, S |= {σ .

= υ, τ
.
=

ρ} ∪ C∗. By definition 9, S(σ) = S(υ), S(τ) = S(ρ) and S |= C∗. By
definition 7, S(σ) → S(τ) = S(υ) → S(ρ), or rather, S(σ → τ) = S(υ → ρ).
Therefore, S |= {σ → τ

.
= υ → ρ} ∪ C∗.

– Rule [S-Seq]. If {τ1 ∧ . . . ∧ τn
.
= ρ1 ∧ . . . ∧ ρm} ∪ C∗ ⇒ S ◦ S′ then by rule

[S-Seq], (τ1 ∧ . . . ∧ τn
.
= ρ1 ∧ . . . ∧ ρm)

s⇒ S′ and S′(C∗) ⇒ S. By lemma 3,
S′ |= τ1∧ . . .∧τn

.
= ρ1∧ . . .∧ρm, and thus, by definition 9, S′(τ1∧ . . .∧τn) =

S′(ρ1 ∧ . . .∧ρm). By definition 7, S ◦S′(τ1 ∧ . . .∧ τn) = S ◦S′(ρ1 ∧ . . .∧ρm).
Therefore, by definition 9, S ◦ S′ |= τ1 ∧ . . . ∧ τn

.
= ρ1 ∧ . . . ∧ ρm.

By the induction hypothesis, S |= S′(C∗). By definition 9, S ◦ S′ |= C∗.
Therefore, by definition 9, S ◦ S′ |= {τ1 ∧ . . . ∧ τn

.
= ρ1 ∧ . . . ∧ ρm} ∪ C∗.

– Rule [S-TVarR]. Assuming τ ̸∈ Ttvar, if {τ .
= α}∪C∗ ⇒ S then by rule [S-

TVarR], {α .
= τ}∪C∗ ⇒ S. By the induction hypothesis, S |= {α .

= τ}∪C∗.
By definition 9, S(α) = S(τ), or rather, S(τ) = S(α). By definition 9,
S |= {τ .

= α} ∪ C∗.
– Rule [S-TVarL]. Assuming τ ∈ T0 and α ̸∈ tvars(τ), if {α .

= τ} ∪ C∗ ⇒
S ◦ [α 7→ τ] then by rule [S-TVarL], [α 7→ τ]C∗ ⇒ S. By the induction
hypothesis, S |= [α 7→ τ]C∗.

We show that if S |= [α 7→ τ]C∗ then S ◦ [α 7→ τ] |= C∗. We proceed
by showing that, for all C ∈ C∗, if S |= [α 7→ τ]C then S ◦ [α 7→ τ] |= C.
There is only one possibility:
• C = σ

.
= υ. We have that S |= [α 7→ τ](σ

.
= υ). By definition 11, [α 7→

τ](σ
.
= υ) = ([α 7→ τ]σ)

.
= ([α 7→ τ]υ). Therefore, S |= ([α 7→ τ]σ)

.
=

([α 7→ τ]υ). By definition 9, S([α 7→ τ]σ) = S([α 7→ τ]υ), or rather,
S ◦ [α 7→ τ](σ) = S ◦ [α 7→ τ](υ). By definition 9, S ◦ [α 7→ τ] |= σ

.
= υ.

By definition 7, S ◦ [α 7→ τ](α) = S ◦ [α 7→ τ](τ). Therefore, by definition 9,
S ◦ [α 7→ τ] |= {α .

= τ}. By definition 9, S ◦ [α 7→ τ] |= {α .
= τ} ∪ C∗.

– Rule [S-SVarR]. Assuming σ ̸∈ Tsvar, if {σ .
= ϕ}∪C∗ ⇒ S then by rule [S-

SVarR], {ϕ .
= σ}∪C∗ ⇒ S. By the induction hypothesis, S |= {ϕ .

= σ}∪C∗.
By definition 9, S(ϕ) = S(σ), or rather, S(σ) = S(ϕ). By definition 9,
S |= {σ .

= ϕ} ∪ C∗.
– Rule [S-SVarL]. Assuming σ ∈ T1 and ϕ ̸∈ tvars(σ), if {ϕ .

= σ} ∪ C∗ ⇒
S ◦ [ϕ 7→ σ] then by rule [S-SVarL], [ϕ 7→ σ]C∗ ⇒ S. By the induction
hypothesis, S |= [ϕ 7→ σ]C∗.

We show that if S |= [ϕ 7→ σ]C∗ then S ◦ [ϕ 7→ σ] |= C∗. We proceed
by showing that, for all C ∈ C∗, if S |= [ϕ 7→ σ]C then S ◦ [ϕ 7→ σ] |= C.
There is only one possibility:
• C = υ1

.
= υ2. We have that S |= [ϕ 7→ σ](υ1

.
= υ2). By definition

11, [ϕ 7→ σ](υ1
.
= υ2) = ([ϕ 7→ σ]υ1)

.
= ([ϕ 7→ σ]υ2). Therefore,

S |= ([ϕ 7→ σ]υ1)
.
= ([ϕ 7→ σ]υ2). By definition 9, S([ϕ 7→ σ]υ1) =

S([ϕ 7→ σ]υ2), or rather, S ◦ [ϕ 7→ σ](υ1) = S ◦ [ϕ 7→ σ](υ2). By definition

Type Inference for Rank-2 Intersection Types using Set Unification 25

9, S ◦ [ϕ 7→ σ] |= υ1
.
= υ2.

By definition 7, S ◦ [ϕ 7→ σ](ϕ) = S ◦ [ϕ 7→ σ](σ). Therefore, by definition 9,
S ◦ [ϕ 7→ σ] |= {ϕ .

= σ}. By definition 9, S ◦ [ϕ 7→ σ] |= {ϕ .
= σ} ∪ C∗.

Lemma 6 (Completeness of Constraint Solving). If S1 |= C∗ then ∃S, S2

s.t. C∗ ⇒ S2 and S1 = S ◦ S2.

Proof. We proceed by induction on the breakdown of constraint sets C∗ by the
solving rules.

Base case:

– Rule for ∅ ⇒ ∅. If S1 |= ∅ then by rule [S-Empty], ∅ ⇒ ∅. For an S = S1,
then S1 = S ◦ ∅.

Induction step:

– Rule for {τ .
= τ} ∪ C∗ ⇒ S. If S1 |= {τ .

= τ} ∪ C∗, then by definition 9,
S1 |= τ

.
= τ and S1 |= C∗. By the induction hypothesis, ∃S, S2 s.t. C∗ ⇒ S2

and S1 = S ◦ S2. By rule [S-Same], {τ .
= τ} ∪ C∗ ⇒ S2.

– Rule for {σ → τ
.
= υ → ρ} ∪ C∗ ⇒ S. If S1 |= {σ → τ

.
= υ → ρ} ∪ C∗,

then by definition 9, S1(σ → τ) = S1(υ → ρ), or rather, S1(σ) = S1(υ) and
S1(τ) = S1(ρ). By definition 9, S1 |= {σ .

= υ, τ
.
= ρ} ∪ C∗. By the induction

hypothesis, ∃S, S2 s.t. {σ .
= υ, τ

.
= ρ} ∪ C∗ ⇒ S2 and S1 = S ◦ S2. By rule

[S-Arrow], {σ → τ
.
= υ → ρ} ∪ C∗ ⇒ S2.

– Rule for {τ1∧ . . .∧ τn
.
= ρ1∧ . . .∧ρm}∪C∗ ⇒ S ◦S′. If S1 |= {τ1∧ . . .∧ τn

.
=

ρ1 ∧ . . .∧ ρm} ∪C∗ then S1 |= τ1 ∧ . . .∧ τn
.
= ρ1 ∧ . . .∧ ρm and S1 |= C∗. By

lemma 4, ∃S, S2 s.t. (τ1 ∧ . . . ∧ τn
.
= ρ1 ∧ . . . ∧ ρm)

s⇒ S2 and S1 = S ◦ S2.
Therefore, S ◦ S2 |= C∗, and by definition 9, S |= S2(C

∗). By the induction
hypothesis, ∃S′, S3 s.t. S2(C

∗) ⇒ S3 and S = S′ ◦ S3. By rule [S-Seq],
{τ1 ∧ . . . ∧ τn

.
= ρ1 ∧ . . . ∧ ρm} ∪ C∗ ⇒ S3 ◦ S2. Since S1 = S ◦ S2 and

S = S′ ◦ S3 then S1 = S′ ◦ S3 ◦ S2.
– Rule for {τ .

= α} ∪ C∗ ⇒ S. If S1 |= {τ .
= α} ∪ C∗, then by definition 9,

S1(τ) = S1(α), or rather S1(α) = S1(τ). By definition 9, S1 |= {α .
= τ}∪C∗.

By the induction hypothesis, ∃S, S2 s.t. {α .
= τ}∪C∗ ⇒ S2 and S1 = S ◦S2.

By rule [S-TVarR], {τ .
= α} ∪ C∗ ⇒ S2.

– Rule for {α .
= τ}∪C∗ ⇒ S◦[α 7→ τ]. If S1 |= {α .

= σ}∪C∗ then by definition
9, S1(α) = S1(σ) and S1 |= C∗. Therefore, for each constraint σ1

.
= σ2 ∈ C∗,

S1 ◦ [α 7→ σ](σ1) = S1 ◦ [α 7→ σ](σ2), which by definition 7, is the same
as S1([α 7→ σ]σ1) = S1([α 7→ σ]σ2). By definition 9, S1 |= [α 7→ σ]σ1

.
=

[α 7→ σ]σ2, and by definition 11, S1 |= [α 7→ σ](σ1
.
= σ2). By definition 9,

S1 |= [α 7→ σ]C∗. By the induction hypothesis, ∃S, S2 s.t. [α 7→ σ]C∗ ⇒ S2

and S1 = S ◦ S2. By rule [S-TVarL], {α .
= σ} ∪ C∗ ⇒ S2 ◦ [α 7→ σ]. Since

S1(α) = S1(σ), then S1 = S ◦ S2 ◦ [α 7→ σ].
– Rule for {σ .

= ϕ} ∪ C∗ ⇒ S. If S1 |= {σ .
= ϕ} ∪ C∗, then by definition 9,

S1(σ) = S1(ϕ), or rather S1(ϕ) = S1(σ). By definition 9, S1 |= {ϕ .
= σ}∪C∗.

By the induction hypothesis, ∃S, S2 s.t. {ϕ .
= σ}∪C∗ ⇒ S2 and S1 = S ◦S2.

By rule [S-TVarR], {σ .
= ϕ} ∪ C∗ ⇒ S2.

26 P. Ângelo and M. Florido

– Rule for {ϕ .
= σ}∪C∗ ⇒ S◦[ϕ 7→ σ]. If S1 |= {ϕ .

= σ}∪C∗ then by definition
9, S1(ϕ) = S1(σ) and S1 |= C∗. Therefore, for each constraint σ1

.
= σ2 ∈ C∗,

S1 ◦ [ϕ 7→ σ](σ1) = S1 ◦ [ϕ 7→ σ](σ2), which by definition 7, is the same
as S1([ϕ 7→ σ]σ1) = S1([ϕ 7→ σ]σ2). By definition 9, S1 |= [ϕ 7→ σ]σ1

.
=

[ϕ 7→ σ]σ2, and by definition 11, S1 |= [ϕ 7→ σ](σ1
.
= σ2). By definition 9,

S1 |= [ϕ 7→ σ]C∗. By the induction hypothesis, ∃S, S2 s.t. [ϕ 7→ σ]C∗ ⇒ S2

and S1 = S ◦ S2. By rule [S-SVarL], {ϕ .
= σ} ∪ C∗ ⇒ S2 ◦ [ϕ 7→ σ]. Since

S1(ϕ) = S1(σ), then S1 = S ◦ S2 ◦ [ϕ 7→ σ].

	Type Inference for Rank-2 Intersection Types using Set Unification

