

UNIVERSIDAD DE GRANADA

Facultad de Ciencias Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación

Doble Grado en Ingeniería Informática y Matemáticas

TRABAJO DE FIN DE GRADO The SAT Problem

Presentado por: Pedro Bonilla Nadal Dirigido por: Serafín Moral Callejón *Ciencias de la computación e Inteligencia Artificial* Curso académico 2019-2020

The SAT Problem

Pedro Bonilla Nadal

Pedro Bonilla Nadal The SAT Problem. Trabajo de fin de Grado. $Curso$ académico 2019-2020.

Facultad de Ciencias Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación

Universidad de Granada

DECLARACIÓN DE ORIGINALIDAD

D.. Pedro Bonilla Nadal

Declaro explícitamente que el trabajo presentado como Trabajo de Fin de Grado (TFG), correspondiente al curso académico 2019-2020, es original, entendida esta, en el sentido de que no ha utilizado para la elaboración del trabajo fuentes sin citarlas debidamente.

En Granada a 29 de Junio de 2020.

Fdo: Pedro Bonilla Nadal

A Mariquilla, una constante positiva.

Contents

[II Solvers](#page-64-0) 47

Introduction

Some 2300 years ago, in Greece, the field of logic was discovered when some people start asking themselves about syllogisms. From that point on, the problem of satisfiability has been a central part of the science. From my point of view, it is one of the most natural problem anyone could be asked: Satisfiability is the study of what can be true under some free conditions. In particular we focus on the problem of satisfiability problem of propositional logic, that is, the study of whether a formula using disjunction, conjunction and negation are satisfiable.

It was not until the 20th century that this problem became something more than a philosophical question. The correct foundation has been laid by Boole and Lindenbaum. The mathematicians were moving from an understanding of science based on not-always-evident arguments to an axiomatized foundation. This shift in perspective became more intense when Hilbert gave some homework for the mathematical community at the beginning of the century. In particular, we are interested in Hilbert's second problem:

Prove that the axioms of arithmetic are consistent.

This interest in logic, as the tool that proves (at last) the mathematics to be perfectly formal was paired with the develop of one of the most influential revolutions of the last century: the computation.

As the mid-century approached, while Gödel's second incompleteness theorem put a huge dump in the faith on axiomatism, different theories were proposed with the aim of creating a thinking machine. It was Turing who finally got the right idea first (I don't know whether Charles Babbage would agree with this statement). With the thinking/computing machine in place, it happened that this branch of the science was absorbed by mathematics, as every formal science that is incipient enough. The idea of getting an automatic demonstrator based in the axioms hovered in the community.

Mathematicians wanted a theorem solver, and they dreamed about it in the form of a linear solver of first order logic formulas, that would solve them efficiently. It turns out that there was an important difficulty underlying this apparent difficulty: the P vs NP.

The next big step forward was made in 1973 by Stephen Cook, as he proved that SAT problem even in propositional logic was as least as difficult to solve as any other problem in NP, therefore, providing a simplification from NP $\subset^?$ P to SAT \in [?] P. This theorem moved the emphasis in SAT from having a supportive

role in the play of logic to be the main character of its own story.

As the century ended, the new agenda for the mathematicians was not determined by a mathematician. Instead, the mathematicians were asked by the Clay Mathematics Institute, to solve the millennium problems. and one of them, as many already now, is whether NP $\subset^?$ P, that is, whether $SAT\in^?$ P. To this day no one truly knows the answer, but everybody suspects that it is negative.

Meanwhile, in the electronics engineering scene, more powerful computers were being developed each day. As the computing power increased, computers enabled us to use them in other branches of science. A lot of these branches needed to solve problems at least as hard as SAT. Furhtermore, as SAT in propositional logic is NP-complete, any other NP-problem can be reduced to it, and therefore any fast algorithm for SAT, could be used to solve any NP problem. Therefore, the community stated the search for a practical algorithm that allows us to know whether or not a formula is satisfiable.

Since then, more fields started to be interested in solving SAT. Nowadays, as John Franco and John Martin said:

Satisfiability stands at the crossroads of logic, graph theory, computer science, computer engineering, and operations research.

I like to think about this crossroad as a bridge that everyone wants to cross for its results, but is guarded by both Mathematics and Computer Science, the rulers of Satisfiability solving.

This document attempts at giving an overview of some results in SAT solving complextity, as well as implementing some reductions to SAT solvers. One hint of the importance of SAT nowadays is the annual conference devoted to SAT where a competition of SAT solvers is held.

The first part, encompassed by chapters 1 to 3 is more theoretical and introduce the the problem and describe the main open problems and hypothesis. The second part, chapters 4 to 6, describes the most relevant algorithms, mainly in terms of asymptotic complexity. The third part, chapter 7, we develop a library that allow us to elegantly solve some relevant NP-Complete problems, making use of cutting-edge solvers.

The main sources of this document were $[42],[28],[1]$ $[42],[28],[1]$ $[42],[28],[1]$ $[42],[28],[1]$ $[42],[28],[1]$ and $[19]$. The sources for each section and chapter are referenced within the text.

Main goals and results achieved

The initials goals of this thesis were:

1. Accomplish a theoretical study of the complexity of SAT.

- 2. Study of reductions of mathematical problems to SAT.
- 3. Study the state-of-the-art of the algorithms solving SAT.
- 4. Study how can we solve MAXSAT using SAT and deduce theoretical complexity .

The first three of them were completely successful. In the first part we study the complexity extensively, in the second part we study the algorithms as well as in the third part we make reductions.

The last one is a partial success result. We expose MAXSAT and present its complexity, but we do not solve it by reducing it to SAT. The study of these reductions from MAXSAT to SAT is left as future work.

For the achievement of these goals, i have to make use of notions relating to: boolean algebra, computational models, probability, graph theory, object oriented programming and software design.

Summary

Brief Summary

On this Bachelors' Thesis we deepen our knowledge in the satisfiability problem for propositional logic. In order to do that we start from the with a theoretical study of logic centered on propositional logic and the theoretical complexity of associated computational problems. Is in this area where SAT has played a fundamental role, being the first problem shown to be NP-Complete. Then, we proceed with the study of the algorithms developed to test satisfiability of a formula (SAT-Solvers or solvers). We consider both deterministics and probabilitics approaches to this task, and discuss their efficiency. To end this project we implement a library that uses the notions explained thorough the text in order to solve some interesting math-related NP-Complete problems.

keywords: NP-Complete, SAT, QBF, Cook-Levin, DPLL, PPSZ.

Resumen Extendido

Durante la redacción de este trabajo estudiaremos un campo multidisciplinar que involucra, por lo general, tanto consideraciones propias de los intereses de las matemáticas como de los intereses del campo de la ingeniería informática. Por lo tanto, es difícil distinguir a grandes rasgos que partes son de mayor interés para un lector que pertenezca a solo una de las disciplinas. Sin embargo, intentaremos diferenciar en la medida de lo posible, que partes son de interés para cada una de estas materias. En caso de que esto no sea posible, justificaremos el interés que cada ciencia tiene.

La primera parte introduce el problema y estudia su complejidad. Procedemos a explicar que realizamos en cada capítulo.

Capítulo 1: En este capítulo exponemos los fundamentos de la lógica. El objetivo es introducir con la m´axima formalidad posible el marco de trabajo durante todo el proyecto. Empezamos definiendo el Algebra Booleana como un retículo distributivo. Posteriormente, demostramos el teorema de Knaster-Tarski para retículos completos. Definimos a continuación la Lógica Proposicional como un Lenguaje Formal. De este modo, primero especificamos la sintaxis y la semántica de este idioma. Definimos una sem´antica basada en asignaciones y asignaciones parciales. Consideramos que este capítulo suscita un interés principal en el campo de la matem´atica. Sin embargo, es recomendado que todo lector lo lea

para poder comprender en toda su extensión los capítulos subsecuentes.

Capítulo 2: En este capítulo, definimos formalmente lo que es un problema e introducimos el problema SAT como un problema de decisión sobre el lenguaje de la lógica proposicional. Un problema de decisión puede entenderse como un problema cuya respuesta es sío no. La decisión que toma el problema SAT es decidir si una fórmula es satisfacible, esto es, si bajo alguna configuración de valores de verdad esta es cierta. An´alogamente, definimos las variaciones de este problema que suscitan m´as inter´es, y que estudiaremos en el siguiente cap´ıtulo. Continuamos demostrando como se realiza un certificado de ejecución de SAT. Para ello demostramos la completitud de la regla de resolución. Por último, hablamos sobre los problemas de satisfacción de restricciones. Consideramos que la definición del problema es de interés para ambas disciplinas. La parte de completitud es más interesante para un punto de vista matemático, así como la última sección es más interesante para la ingeniería informática.

Capítulo 3: En este capítulo estudiamos la complejidad computacional de SAT. En la introducción hemos hablado del concepto de que todos los problemas de NP son como mucho tan difíciles como SAT. En este capítulo presentaremos formalmente este resultado y lo demostraremos. En la última sección estudiaremos algunas nociones aledañas a SAT en relación a la teoría de la complejidad.

Para poder introducir el problema introducimos los modelos de computación, que nos servirán como base para, una vez definidos los problemas, resolverlos. Estos modelos se basan en la noción de máquina de Turing. Sobre estos modelos creamos una división de los problemas basada en su dificultad, que son las clases de complejidad, y presentamos algunas de las m´as importante como P,NP o LSPACE. Llegados a este punto introducimos el problema P vs NP, junto con otros resultados y problemas abiertos de interés.

La tercera sección está destinada a introducir la teoría necesaria para enunciar y demostrar el teorema de Cook-Levin. Una vez expuesto este teorema introducimos una serie de resultados an´alogos en las diferentes variaciones de SAT, presentadas en el capítulo previo. Este teorema nos habla de la dificultad de SAT relativa a otros problemas de NP. Reflexionamos sobre la posibilidad de que SAT pertenezca a P presentado la hipótesis ETH, una hipótesis tan ampliamente aceptada como no demostrada. En la última sección realizamos un desarrollo de teorías asociadas con el problema SAT. En particular, estudiamos la acción de grupos de permutaciones y negaciones sobre f´ormulas CNF. Presentamos las asignaciones Autark así como su NP-Completitud, desarrollamos el teorema de Tseitin que nos permita relacionar eficientemente SAT con GSAT, consideramos CoNP completitud y, para terminar, consideramos FSAT y la relación entre los métodos constructivos y no constructivos de resolución.

En relación a la división del trabajo en informática y matemáticas, consideramos que este capítulo debe ser de interés para ambas disciplinas. Proseguimos

Capítulo 4: En este capítulo estudiamos los algoritmos de resolución sobre conjuntos restringidos de SAT donde se pueden conseguir mejores resoluciones. Empezamos considerando restricciones aplicando nociones de combinatoria. Esta sección es naturalmente para el lector informático. Entre los métodos destacamos para el lector matemático la aplicación que explicamos del Lema Local de Lovasz, asociando un grafo de adyacencia a cada fórmula para poder aplicar el resultado. Proseguimos explicando los famosos casos de 2SAT y HORNSAT.

Capítulo 5: En este capítulo estudiamos los algoritmos completos de resolución de SAT. Las dos estrategias principales estudiadas toman como base el algoritmo DPLL y la búsqueda local. Este es un algoritmo que, sin tener una complejidad teórica mejor que los métodos más obvios, introduce el uso de heurísticas y los algoritmos basados en mejoras de este que tienen un lugar muy relevante entre los casos prácticos de resolución de SAT. Entre sus mejoras mejoras incluimos el algoritmo de Monien-Speckenmeyer y la explicación de los muy extendidos algoritmos de Conflict-Driven-Clause-Learning.

Tomando otro enfoque, al final, explicamos el método de búsqueda local ajustado a SAT. Una vez descrito, lo mejoramos aplicando la teoría de código de cubrimientos. Esta sección consideramos que tiene un interés natural para el ámbito de la ingeniería informática. Desde el ámbito de las matemáticas el interés reside en el análisis de la complejidad de los algoritmos.

Capítulo 6: En este capítulo realizamos un estudio profundo del probablemente campo más activo de los algoritmos SAT-solver: el campo de los algoritmos probabil´ısticos. En estos algoritmos hacemos un compromiso en el cual a cambio de ganar en eficiencia admitimos algoritmos con un error unilateral acotado, es decir, un algoritmo que siempre responda correctamente si una formula no es satisfacible, y tenga una probabilidad de responder correctamente si lo es. Entre los algoritmos probabilísticos, al igual que en la sección anterior estudiamos los dos enfoques: algoritmos basado en DPLL y algoritmos basados en busqueda local. Entre los primeros estudiamos en profundidad el algoritmo PPZ y su mejora el algoritmo PPSZ. Este algoritmo es a día de hoy el que mejor eficiencia teórica presenta. En el ámbito de la búsqueda local encontramos el algoritmos de Schöning, que siendo uno de los más simples tiene una eficiencia no mucho peor a PPSZ.

Este capítulo es de interés para el ámbito de la informática debido al desarrollo de algoritmos de resolución. A su vez, un matemático puede ver reflejado sus intereses en la demostraciones realizadas para el estudio del error unilateral esperado. Con esto acabamos la segunda parte.

Capítulo 7: Este capítulo, único perteneciente a la parte 3, narra el desarrollo de una biblioteca en Python basada en PySAT. El objetivo de esta

biblioteca es realizar una resolución eficaz a la vez que elegante de problemas NP-Completos. Para esto realizamos reducciones de estos problemas al problema SAT. Esta biblioteca resuelve los problemas NP-Completos de Coloreado, Cubrimiento por grafos y existencia de camino hamiltoniano en grafos, así como el problema de distancia en cadenas. Por último desarrollamos naiveQBF que tiene como esperanza ser un esqueleto eficiente para el desarrollo de QBFsolvers basados en SAT. El código asociado a esta biblioteca esta disponible en:

<https://github.com/pedrobn23/TFG/>

El interés de esta sección para las matemáticas está en el desarrollo de herramientas para resolver problemas de su area de conocimiento. Para la informática está en las competencias demostradas en la organización, producción y acabado del código.

palabras clave: SAT, QBF, NP, NP-Completo, Cook-Levin, DPLL.

Part I

Satisfiability Problem: Definition and Relevance

Chapter 1

Logic

"Mathematics is a presuppositionless science."

> Hilbert's Die Grundlagen der Mathematik (1927)

In this chapter we present the bases of Logic and formal languages. Logic will provide us with a framework on which we will be able to define the Satisfiability Problem. We will present the area with formality, explaining only the things that will be necessary for our goal.

1.1 Boolean Algebra

The same way I started my journey on the university, we could have started this text right from the axioms, making a really romantic thesis. Nonetheless, given the goal we want to achieve, it seems excessive. We will refer to the commonly used *Zermelo-Fraenkel axioms*, in order to have a point of reference, and therefore we will work without more considerations with sets and set operations. We will only be concerned with finite sets for most cases.

Further on this section we will present Boolean Algebra in a classic latticebased way that could be found in related literature. In particular we follow Introduction to mathematics of satisfiability^{[\[28\]](#page-115-0)} for the definition of boolean algebra and propositional logic. The definition of Lattice of Partitions is adapted from [\[39\]](#page-116-1).

Definition 1.1.1. A partial ordered set, also poset, is a pair $\{X, \leq\}$ where *X* is a set and \leq is a partial order of *X*. A chain *Y* of $\{X, \leq\}$ is a subset of *X* where \leq is a total order.

Definition 1.1.2. A lattice is a partial ordered set $\{X, \leq\}$ where every pair of elements possesses a least upper bound and a greatest lower bound. A lattice has two new operations defined: given two elements $x, y \in X$

- *x* ∨ *y* denote the least upper bound.
- *x* ∧ *y* denote the greatest lower bound.

 \Box

A lattice is complete if every subset has an unique largest element and an unique lowest element. A lattice is presented generally as a duple $\{L, \leq\}$, a triple $\{X, \vee, \wedge\}$ and, whenever possible, is presented as a quintuple $\{X, \vee, \wedge, \top, \bot\}$ where \top is the greatest element and \bot the lowest element. A lattice is called distributive if $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ and $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$. For every lattice $\{L, \leq\}$ we can consider an associated *inverse lattice* denoted by $\{L, \geq\}$ where:

$$
a \ge b \iff b \le a \qquad \forall a, b \in L.
$$

With the concept of lattice just included, we present the Knaster and Tarski fixpoint theorem. In order to do that we will introduce some concepts. Given a function $f: \{L, \leq\} \to \{L, \leq\}$, a prefixpoint (resp. postfixpoint) is a point $x \in L$ such that $f(x) \leq x$ (resp. $f(x) \geq x$). A fixpoint is a point that is both prefixpoint and postfixpoint. Note that, given that they exists, \top and \bot are a prefixpoint and a postfixpoint of *f* respectively.

Theorem 1.1.1 (Knaster and Tarski fixpoint theorem [\[28\]](#page-115-0)). Let $f: \{L, \leq\} \rightarrow$ ${L, \leq}$ be a monotone function in a complete lattice. Then:

- 1. *f* has a least prefixpoint *l* that is a fixpoint.
- 2. *f* has a largest postfixpoint *l* that is a fixpoint.

Proof.

1. We know that there is at least a prefixpoint. Let

$$
l = \bigwedge_{\{x \in X : x \text{ is a prefixpoint}\}} x.
$$

Lets prove that l is a fixpoint. Le x be an arbitrary fixpoint, therefore, $l \leq x \leq f(x)$. Since *x* was arbitrary, $f(l) \leq l$. To show that it a fixpoint it suffices to see that $f(l)$ is a prefixpoint to, as f is monotone.

2. Apply the previous result on $f: \{L, \geq\} \to \{L, \geq\}.$

Definition 1.1.3. A *Boolean algebra* is a distributive lattice $\{X, \vee, \wedge, \top, \bot\}$ with an additional operation \neg , called complement or negation, such that for all *x* ∈ *X*:

- 1. $x \wedge \neg x = \bot$, $x \vee \neg x = \top$.
- 2. $\neg(x \lor y) = \neg x \land \neg y, \neg(x \land y) = \neg x \lor \neg y.$
- 3. $\neg\neg x = x$.

Definition 1.1.4 (Lattice of Partitions). Given a set $X \neq \emptyset$, we denote as $\mathcal{P}(X)$ the partitions of *X*. Let $\pi, \pi' \in \mathcal{P}(X)$. We say that $\pi \leq_{\mathcal{P}} \pi'$ if for every $A \in \pi$ there exists $B \in \pi'$ such that $A \subset B$. The *lattice of partitions* of *X* is the lattice $\{\mathcal{P}(X), \leq_{\mathcal{P}}\}.$

For example given the lattice $\{\mathcal{P}(\{1, 2, 3, 4\}), \leq_{\mathcal{P}}\}$ and two partitions:

$$
\pi_1 = \{ \{1, 2\}, \{3, 4\} \},\n\pi_2 = \{ \{1, 2, 3\}, \{4\} \}.
$$
\n(1.1)

We have that:

$$
\pi_1 \wedge \pi_2 = \{ \{1, 2\}, \{3\}, \{4\} \},\n\n\pi_1 \vee \pi_2 = \{ \{1, 2, 3, 4\} \}.
$$
\n(1.2)

1.2 Propositional Logic

Propositional logic is the framework that will allow us define the main topics of this text. Let's define some concepts:

- An alphabet *A* is an arbitrary finite non-empty set.
- A symbol *a* is an element of the alphabet.
- A word $w = \{a_i : i \in 1, ..., n\}$ is a finite sequence of symbols.
- The collection of all possible words over an alphabet *A* is denoted by *A* ∗ .
- A language *L* over *A* is a subset of *A* ∗ .

For example, Spanish is a language with a well-known alphabet. Also, Spanish is a proper language over its alphabet as it is not empty, and it does not include all possible words.

When we talk about a logic system we are talking about a distinguished formal language. A formal language is defined by it syntax and its semantics. The syntax is the rules that define the language. They state what words over an alphabet are valid in the language. The semantics deal with the interpretations of the elements in the language. Usually this is achieved by assigning truth values to each word.

We will define now propositional logic, or zeroth-order-logic.

1.2.1 Syntax of Propositional Logic

We first start with the basic building blocks, which collectively form what is called the alphabet:

- Symbols *x*, *y*, *z* for variables. As more variables are necessary sub-indexes will be used.
- Unary operator \neg (negation). A literal will refer to a variable or a negated variable. Thorough the text symbol *l* will denote a literal.
- Values 0 and 1. These values are often named as \perp and \perp respectively.

FIGURE 1.1: Diagram showing the different classes which are constructed on the formal language of Propositional Logic.

• Binary operators: \wedge , \vee , \rightarrow , \oplus , \Longleftrightarrow .

The words of Propositional Logic are called formulas.

Definition 1.2.1. A Boolean formula is defined inductively:

- The constants 0 and 1 are formulas.
- Every variable is a formula.
- If *F* is a formula, then $\neg F$ is a formula.
- The concatenation with a binary operator of two formulas is a formula too.

Examples of formulas are $x \vee y$ or $x_1 \wedge x_2 \vee (x_4 \vee \neg x_3 \wedge (x_5 \rightarrow x_6) \vee 0)$. We should distinguish a special type of formula: the clauses. A clause is a formula with the form $l_1 \vee ... \vee l_n$ where $l_i, i \in 1, ..., n$ are literals. Clauses are will be often regarded as a finite set of literals. Example of a clause is $(x_1 \vee \neg x_4 \vee x_2)$. When regarded as a set every clause *C* has a cardinal |*C*|, that represents the number of literals contained.

We will denote by *Form* the set of all formulas. We define a special mapping, *Var*, that assigns every formula to its variables. Furthermore, for a given set of variables X we define $Form_X$ as the set of all formulas that can be constructed from *X*. The reader should note that $Form_X = Var^{-1}(X)$.

1.2.2 Semantics of Propositional Logic

The underlying problem of semantics is to develop methods to give meaning to the elements allowed by the syntax.When facing a way to provide semantic meaning to formulas the use of function In this section we will discuss to ways of providing meaning to the formulas: two-valued logic and three valued logic.

In two valued logic define the truth value of a formula by assigning a truth value(1 for Truth and 0 for False) to each variable. Note that we assign a meaning of truth to the constants 1 and 0, that until now where meaningless. The truth value of the formulas that involve operators are provide by their truth table.

\boldsymbol{n}				$ q \neg p p \vee q p \wedge q p \oplus q p \rightarrow q p \Leftrightarrow q$

TABLE 1.1: Truth tables of different operators in two valued logic.

The truth value of a formula is therefore obtained by replacing each variable by their assigned constant and propagating the value. The tool that we will use to assign a truth value to each variable is the assignments.

Definition 1.2.2. Let *X* be a finite set of variables. An assignment is a function *α* from *Form_X* to *Form_X*, on which some variables $\{x_1, ..., x_n\}$ are replaced by predefined constants $\{a_1, ..., a_n\}$ respectively.

An assignment that assigns a value to a variable *x* is said to map the variable *x*. In two valued logic we will consider only assignment that maps all variables, and therefore all formulas are given a value by an assignment. We also see that any assignment generate a map from X to $\{0,1\}$. Conversely, any map from X to {0, 1} would uniquely represent a assignment *al pha* over *Form*. In practice when we talk about an assignment α we will refer indistinctly to either the function over *FormVar* or the mapping over *Var*.

One can then *apply* an assignment α to a formula *F*, denoting it by $F\alpha$ $\alpha(F)$. To describe an assignment we will use a set that pairs each variable to it value, i.e. $\alpha = \{x_1 \to 1, ..., x_n \to 0\}$. For example given an assignment $\alpha_0 = \{x_1 \to 1, x_2 \to 1, x_3 \to 0, x_4 \to 1\}$ and $F_0 = x_1 \to (x_2 \wedge x_4)$ then $F_0 \alpha_0 = 1 \rightarrow (1 \wedge 1) = 1.$

Definition 1.2.3. An assignment is said to *satisfy* a formula *F* if $F\alpha = 1$ and in the case $F\alpha = 0$ it is said to *falsify* the statement. A formula F is called *satisfiable* if is exists an assignment that satisfies it. Otherwise it is called unsatisfiable.

Note that we have a really restrictive constraint on assignments: they should map all variables. This is so in order for an assignment to give a meaning to every formula. To ease this constraint we use three-valued logic. On three valued logic we have three significant: True or 1, False or 0, and unknown or *υ*. Now the assignment will map every variable to one of these values. These new assignments

will be called partial assignments, as they only map some variables to a truth value. We can propagate the previous values adding new rules.

TABLE 1.2: Truth table of different operators in three valued logic.

In practice partial assignments will be only defined by denoting only the variables that are mapped to either 0 or 1. We can see that the composition of assignments (seen as functions over *Formvar*) is also a partial assignment. Also, when applying a partial assignment to a formula, instead of mapping it to *υ* we will avoid operating over the variables assigned to *υ*. For example given a partial assignment $\alpha_0 = \{x_1 \to 1, x_2 \to 1, x_3 \to 0\}$ and $F_0 = x_1 \to (x_2 \wedge x_4)$ then $F_0\alpha_0 = 1 \rightarrow (1 \wedge x_4) = 1 \rightarrow (x_4)$. Although F_0 is mapped to another formula by $α_0$, $α_0$ is still providing a meaning to it (the unknown meaning).

Partial assignments will be also used to iteratively expand them: let *Var* = $\{x_i : i \in 1, ..., n\}$ the set of variables and let α_1 be partial assignment that map variables $[x_1 \to a_1, ..., x_j \to a_j]$ with $1 < j < n$ and $a_j \in \{0, 1\}$ for every *j*, we can expand it by choosing a nonempty subset $A \subset \{a_k : k \in j+1, ..., n\}$ and a value $c_x \in \{0,1\}$ for every $x \in A$. Then we can define:

$$
\alpha_2(x) = \begin{cases} \alpha_1(x) & x \in \{x_i : i \in 1, ..., n\}, \\ c_x & x \in A, \\ v & \text{otherwise.} \end{cases}
$$

We can see that α_2 expands α_1 in the sense that the truth value assigned to a formula by α_1 holds in α_2 if it were different that unknown. Therefore we are expanding the 'known' values of the formulas. Note that in the definition of α_1 it were not necessary to state what variables were mapped to *v* at it was implicit that every variable not listed were of unknown value.

In practice we will try to avoid refer to this process whenever is evidently enough what is being done. Nonetheless partial assignments will be a central part of algorithms such as $DPLL[5.1]$ $DPLL[5.1]$. When context is clear enough, assignments will be used for both assignments and partial assignments.

Arguably, the most special case of partial assignment are autarks assignments[\[3.4.2\]](#page-59-0). An autark assignment is a partial assignment that simplify a formula in a sense latter explained.

Given an assignment or partial assignment *α* we will denote the set of variables mapped to either 0 or 1 by $Var(\alpha)$. Analogously, given a formula *F*, $Var(F)$ will denote the variables that appear in *F*. Note that if $F \in Form_{Var}$ then $Var(F) \in Var$ and it is not necessary that $Var(F) = Var$.

Naturally, we want theorems to be the formulas that are always true. In the context of propositional logic, theorems are the tautologies.

Definition 1.2.4. Let *X* be a set of variables. A formula $F \in Form_X$ is a tautology if for every two-valued assignment α over *X* we have that $F\alpha = 1$. We say that *G* follows from *F* if $F \to G$ is a tautology.

Two formulas F, G are said to be equal, represented as $F \sim G$, if for every two-valued assignment *α* we have *Fα* = *Gα*. It follows from the equivalently properties on constants that \sim is an equal relationship. This definition is really intuitive, as it defines as equal the formulas that has the same meaning in every possible situation. Note that this definition is equivalent to ensure that both $F \to G$ and $G \to F$ are tautologies.

With \sim defined we can have what is called a *Lindenbaum algebra*, as a quotient space of *Form* = *Form*_{*Var*} by the relation \sim , denoted as *Form* / \sim . It follows that every operator respect the quotient space structure, i.e., for every [*φ*1], [*φ*2] ∈ *Form*/ ∼:

- $\neg[\phi_1] = [\neg \phi_1]$
- $[\phi_1] \vee [\phi_2] = [\phi_1 \vee \phi_2]$
- $[\phi_1] \wedge [\phi_2] = [\phi_1 \wedge \phi_2]$

The interest of Lindenbaum algebra resides in the fact that {*Form*/ ∼ , \vee , \wedge , [1], [0]} is a Boolean algebra, providing therefore a nexus between the algebraic formulation of the problem an its semantics.

Chapter 2

Definition of the problem

2.1 Satisfiability Problem

2.1.1 Decision Problems

Computability and complexity theory attempts to answer questions regarding how to solve real-world problems efficiently. In this subsection we provide a formal approach to the concept of problem, and its resolution.

We will study the complexity of functions. In order to standardize the approach we code the input of the function and the output of the functions using words over a finite alphabet. As for every finite alphabet *A* there is a bijective mapping from A^* to $\{0,1\}^*$ we can assume when it is convenient that the alphabet is ${0,1}$. With this convention we are now ready to define what a decision problem is.

Definition 2.1.1 (Decision Problem[\[1\]](#page-114-0)). Given a language *L* over an alphabet *A*, it has an associated decision problem that consists on, given a word $w \in A^*$ check whether *w* is in *L*.

When we have a named language, we refer indistinctly by this name to both the language and the associated decision problem. In order to define a decision problem it is only needed to define a language over an alphabet. Therefore a decision problem may be defined implicitly, that is, as the set of the words in an alphabet that satisfy some condition. As semantics provides meaning to the languages, real world problems can be addressed as decision problems.

As a last definition of this subsection, we introduce the complement decision problem.

Definition 2.1.2 (Complement Decision Problem[\[1\]](#page-114-0)). Given a decision problem *L* it has a Complement Decision Problem named *CoL* that consists on, given a word $w \in A^*$ check whether *w* is in *L*.

This definition will be used further in [\[3.2.1\]](#page-40-1) in order to define complexity classes.

2.1.2 Definition

Given the previous definitions, we are now almost prepared to define the central part of this thesis: the satisfiability decision problem of propositional logic, SAT for short. To this end we define a special subset of formulas in Propositional Logic: the formulas in Conjunctive Normal Form.

Definition 2.1.3. A formula *F* is said to be in Conjunctive Normal Form (*CNF*) if *F* is written as:x

$$
F=C_1\wedge...\wedge C_n.
$$

Where C_i are clauses.

Note that every formula in *CNF* can be regarded as a set of clauses. This approach is really useful in some contexts and will be used continuously on this text.

Definition 2.1.4. The Satisfiability Language of Propositional Logic (SAT) is the language over the alphabet of propositional logic that includes all formulas that are both satisfiable and in *CNF*.

We will refer with the acronym *SAT* to both the language and the associated decision problem. As checking if a formula is in CNF is a fairly simple syntax problem, we are only interested in asserting whether or not a formula in *CNF* is satisfiable.

Definition 2.1.5. A SAT-Solver is an algorithm that, being given a formula *F* in CNF as input, answer whether or not is satisfiable.

On chapter[\[II\]](#page-64-0) we analyze the main SAT-solver developed in the literature. We will differentiate two types of SAT-Solver. The algorithms that, given enough time always output the correct result at the end are called complete. The SATsolvers that doesn't guaranty its result are called *incomplete*. Of particular interest among incomplete SAT-solvers are the one-sided bounded error SATsolvers. These are the called probabilistic algorithms, discussed on Section [6.](#page-88-0)

2.2 Variations

The SAT decision problem does has quite a lot of variations, all of them of interest for certain complexity classes. We will list some of the most important, starting with two decision problems. The first of them is a natural generalization.

Definition 2.2.1. The Generalized Satisfiability Language of Propositional Logic (GSAT) is the language over the alphabet of propositional logic that includes all formulas that are Satisfiable.

With Tseitin's Theorem [\[3.4.3\]](#page-61-1) we can see that these two problems are in fact fairly similar. More often than not GSAT will be solved by solving an equivalent SAT problem. Analogously a *GSAT-Solver* is a SAT-solver that also accepts as inputs formulas not in CNF. Further on, every new problem will have a associated solver, defined analogously.

Definition 2.2.2. Let *F* be a formula. *F* is said to be *k*-CNF formula (equivalently a formula in *k*-CNF) if it is in CNF and $\forall C \in F$, $|C| = k$. *k*-SAT is the language of the formulas that are both satisfiable and in *k*-CNF.

Some authors define *k*-CNF relaxing the condition from $|C| = k$ to $|C| \leq k$. Nonetheless, for the purpose of this text we prefer this more restricted version, because all the results that we introduce remain true in both versions. Other variations of SAT could be achieved by generalizing the concept of decision problem.

Definition 2.2.3 (Function Problem). Let *A*, *B* be two languages defined over two alphabets. Given a relation $R \subset A \times B$, it has an associated function problem that consists on, given a word $a \in X$ find a word $b \in B$ such that $(a, b) \in R$.

We can consider decisions problems as a particular subset of function problems: Given a language $L \subset A^*$ we define the relationship $R \subset A^* \times \{0,1\}$ such that $(x, 1) \in R$ iff $x \in L$ and $(x, 0) \in R$ otherwise.

Definition 2.2.4. Let *CNF* be the set of propositional formulas in CNF and *B* the set of assignments. The Satisfiability Function Problem of Propositional Logic (FSAT) is the function problem defined by the relation

$$
R = \{ (F, b) : F \in CNF, b \in B, Fb = 1 \}.
$$

That is, is the problem of finding an assignment that satisfy a formula. Most of SAT-solvers not only try to solve SAT but also to solve FSAT, i.e., try to find an assignment that satisfy the formula should it exists.

Definition 2.2.5. Let *CNF* be the set of propositional formulas in CNF and *B* the set of assignments. The Maximum Satisfiability Problem (MAXSAT) is the problem. function problem defined by the relation

$$
R = \{ (F, n) : F \in CNF, n = \max_{\alpha \in B} \{ | \{ C \in F : C\alpha = 1 \} | \} \}.
$$

That is, is the problem of maximizing the number of assignments that can be satisfied simultaneously.

As we will see, most SAT-solvers are FSAT-solvers. In related literature the FSAT-solver are called constructive SAT-solvers, as they provide a constructive solution of the problem. Solvers that only solve SAT are called non-constructive SAT-solvers. After presenting the concept of algorithmic complexity we will see that from a non constructive SAT-solver, a constructive SAT-solver can be made so that the latter is not much less efficient $[3.4.5]$.

All the variations presented to this point were problems that generalizes SAT. We introduce one restricted version of SAT.

Definition 2.2.6. Let *F* be a formula in CNF. *F* is said to be a Horn formula if for every $C \in F$ there is at most one non-negated literal. HORN is the language of all Horn formulas.

Definition 2.2.7. HORNSAT is the intersection language of HORN and SAT problems. Nonetheless, given the easiness of checking whether a formula is in HORN, it would usually consider as the problem that check the satisfiability of a Horn formula.

 \Box

We study this problem further in Subsection [4.3.3.](#page-75-0)

As we have defined the complement of a decision problem [\[2.1.2\]](#page-28-4) we can use that in order to effortless define CoSAT. The idea of this problem resides in finding whether a CNF-formula is unsatisfiable. This problem is usually called UNSAT, as it looks for Unsatisfiability.

Definition 2.2.8. A formula *F* is said to be in Disjunctive Normal Form (*DNF*) if *F* is written as:x

$$
F=C_1\vee\ldots\vee C_n.
$$

Where C_i are disjunctions of literals.

As done with CNF formulas, we can regard a DNF formula as a set of disjunctions

Definition 2.2.9 (TAUT). The Tautology Language of Propositional Logic (TAUT) is the language over the alphabet of propositional logic that includes all formulas that are both tautologies and in DNF.

This problem is often regarded as the complement problem of SAT, instead of UNSAT, due to the following property:

Proposition 2.2.1. For every CNF Formula $F = \{C_1, ..., C_n\}$ where $C_i = (l_1 \vee$... $\vee l_{n_i}$, there is a DNF formula $F' = \{C'_1\}$ C'_{1} , ..., C'_{n} where $C'_{i} = (\neg l_{1} \land \dots \land \neg l_{i_{n}})$ such that:

 $F \iff \neg F$

Proof. These results are a direct consequence of De Morgan's laws.

Therefore we can choose to solve TAUT instead of CoSAT. To end this subsection we introduce a generalization: QBF or quantified boolean formula. For that we have to defined a quantified formula.

Definition 2.2.10. Let *F* be a propositional logic formula, and let *x* be a variable. We define to operator \exists_x, \forall_x such that:

- $\bullet \ \forall x F = F\{x \rightarrow 1\} \wedge F\{x \rightarrow 0\}$
- $\exists x F = F\{x \rightarrow 1\} \vee F\{x \rightarrow 0\}$

We define a quantified boolean formula as a pair (O, P) where $O = \{o_1, ..., o_n\}$ is a finite sequence of operators and *P* is a propositional logic formula. We say that (O, P) is *satisfiable* iff $(o_1 \circ ... \circ o_n)(P)$ is satisfiable. The language of quantified boolean formulas is also defined inductively.

- Every propositional logic formula is a quantified boolean formula.
- The concatenation of an operator and a quantified boolean formula is a quantified boolean formula.

Definition 2.2.11. The Generalized Satisfiability Language of Quantified Boolean Logic (QBF) is the language over the alphabet of quantified boolean formulas that includes all quantified boolean formulas that are Satisfiable.

2.3 SAT certificates

As SAT solvers become vital in some areas, such as circuit verification, protocols for ensuring the outcome of a SAT-solver are usually needed. When this is required, the so-called SAT certificates will be recalled. These certificates are methods of ensuring the correctness of performance. In this subsection we will present a simple but effective method of performing this task. The information of this subsection appears on Chapter 2[\[42\]](#page-116-0), Chapter 7[\[28\]](#page-115-0) and Section 3.6.6[\[9\]](#page-114-1).

Let F be a CNF formula. If F is satisfied certifying this property is as easy as printing an assignment that satisfies it, i.e., solving FSAT. The problem arises when we want to prove that F is not satisfiable, i.e., when we want to solve the UNSAT and give a proof of its correctness. For that we are going to use the resolution rule, after which we are going to make a proof system, and proof that is refutation complete. Therefore we could provide a proof of unsatisfiability.

Definition 2.3.1 ([\[28\]](#page-115-0)). Let C_1 , C_2 be clauses and *l* be a literal. The resolution rule is an execution of the following partial binary operation:

$$
\frac{l\vee C_1 \quad \neg l\vee C_2}{C_1\vee C_2}.
$$

Definition 2.3.2. We define *Cla* as the lattice of all clauses regarded as sets, along with inclusion.

Definition 2.3.3. Let $C_1, C_2 \in \text{Cla}$ such that the literal *l* appear only once in C_1 and the literal $\neg l$ appear only once in l_2 . Then we define the *resolution operator* as the partial operator $Res: Cla \times Cla \rightarrow Cla$ as

$$
Res(C_1, C_2) = (C_1 \setminus \{l\}) \cup ((C_1 \setminus \{\neg l\})).
$$

Definition 2.3.4. Let $F = \{D_i : 1 \le i \le t\}$ be a CNF formula. A resolution proof of *F* is a finite sequence of clauses $\{C_i : 1 \le i \le n\}$ such that:

- $C_n = \{\}.$
- $C_i = D_i$ for $i \in 1, ..., t$.
- For every $i \in t+1,...,n$ there exists two indexes $j, k \leq i$ such that $R(C_j, C_k) = C_i$.

Once we have the resolution operator we want to define the closure of a CNF formula *F* by res, that it we want to find the least set of clauses that includes *F* and is a fixpoint under resolution. For that, we define the operator $res_F : \mathrm{Cla} \rightarrow \mathrm{Cla}$ as

$$
res_F(G) = F \cup \{Res(C_1, C_2) : C_1, C_2 \in F \cup G,
$$

$$
Res(C_1, C_2) \text{ is non-tautological}\}
$$
 (2.1)

We can see that res_F is monotone. As a consequence of [\[1.1.1\]](#page-21-0) there is an unique least fixpoint of *resF*.

Proposition 2.3.1 (Soundness of Resolution). Let C_1 , C_2 ∈Cla, and α be a two-valued assignment on $Var(C_1) \cup Var(C_2)$. If $C_1 \alpha = 1$ and $C_2 \alpha = 1$ and *Res*(C_1 , C_2) can be executed then $Res(C_1, C_2)$ $\alpha = 1$

Proof. As $Res(C_1, C_2)$ can be executed therefore we have two clauses D_1, D_2 such that $D_1 \subset C_1$, $D_2 \subset C_2$ and $Res(C_1, C_2) = D_1 \vee D_2$. As $C_1 \alpha = 1$ (resp. *C*₂) then $D_1\alpha = 1$ (resp. *C*₂). As $1 \vee 1 = 1$ we have proved the proposition. \Box

Theorem 2.3.1 (Refutation completeness). Let *F* be a CNF. Then *F* is satisfiable if and only if $\{\}\notin Res(F)$

Proof.

 \Rightarrow Direct consequence of proposition [\[2.3.1\]](#page-33-1).

 \equiv We proceed by induction on $n = Var(F)$ and show the contraposition:

- $n = 1$ In this case either *F* is satisfiable or $F = \{\{x\}, \{\neg x\}\}\.$ When $F =$ $\{\{x\}, \{\neg x\}\}\$, we can derive $\{\}\$ by a resolution proof
- $n > 1$ let's assume the case $n 1$ and proof it for *n*. We select an arbitrary variable $x \in Var(F)$. Then both $F\{x \to 0\}$ and $F\{x \to 1\}$ are unsatisfiable, therefore, by induction hypothesis we can derive $\{\}\$ from both of them. Reestablishing the original clauses in both resolutions we have two resolutions that end with $\{x\}$ and $\{\neg x\}$ respectively. Therefore $\{\}\in Res(F)$.

With the completeness of resolution proved, we can ensure, and moreover, require an algorithm that provided either a satisfying assignment or a refutation proof of the formula. Thorough the literature other formats for certifying SAT have been proposed an as alternative, as we can see in section 2.5 [\[42\]](#page-116-0) that the length of these can become exponential. To comment on the state of the art, the DRAT system, (derivation resolution by asymmetric tautology) has been proposed in the literature, and is the one used today by the international SAT competition. For more information on this system, we refer to [\[22\]](#page-115-2) where the process is described and refined thereafter.

2.4 Constraint Satisfaction Problem

We want to introduce the notion of Constraint Satisfaction Problem (CSP) because it defines a new optic over the SAT problem. CSP is, in fact, a generalization of SAT. When dealing with a CSP problem we want to find a solution with certain restrictions. A example of what is a CSP is watching film with your family: each member impose its restrictions, and then we look for a film that satisfies them all. Should it happen that no film is found, we have other type of problem. This concept naturally translates into propositional logic formulation. Let us define CSP formally:

 \Box

Definition 2.4.1 ([\[42\]](#page-116-0)). A Constraint Satisfaction Problem (CSP) is a triple ${X, D, C}$ where:

- $X = \{x_1, ..., x_n\}$ is the set of variables occurring in the problem.
- $D = \{D_1, ..., D_n\}$ is the set of the domains. Each $D_i = d_{i,1}, ..., d_{i,n_i}$ is the domain of the variable *xⁱ* .
- $C = \{C_1, ..., C_m\}$ is the set of constraints over the variables. For our intentions, these constraints must be written as:
	- An equality, for example: $(x_i, x_j) = (d_{i,k}, d_{j,k'})$.
	- $-$ An inequality, for example: $(x_i, x_j) \neq (d_{i,k}, d_{j,k'})$.
	- Concatenation with a Propositional Logic operator of two equalities or inequalities, for example: $((x_1) = (d_{1,1}) \vee (x_2 \neq d_{2,5}) \wedge \neg ((x_8, x_9) =$ $(d_{8,3}, d_{9,7})$.

The goal of a CSP is to found a mapping

$$
\alpha: X \to \cup_{i \in 1, \dots, n} D_i
$$

such that every variable x_i is mapped to a value on its associated domain *Dⁱ* and every constraint is satisfied. Such map will be called an assignment, and if this map satisfy all constraints it is said that *α* satisfies the CSP problem.

Note that we can use all our artillery from Propositional Logic as both equalities and inequalities hold a binary truth value (True/False), therefore can be handled as Propositional Logic Variables.

The value in CSP resides on the simplicity of its formulations. One can easily define a CSP just by selecting the desired conditions of a solution and describing its context. Moreover, a lot of real world problems can be defined in terms of constraints. Constraint programming is a programming paradigm that consists on solving problems by defining them as CSP and letting CSP-solvers do the work.

SAT could be seen as a CSP where every domain is $\{0, 1\}$ and each clause is a constraint. Therefore if we know how to solve CSP we know how to solve SAT. Let see the reverse.

Proposition 2.4.1. Every CSP problem has an equivalent SAT problem.

Proof. Let $\{X, D, C\}$ be a CSP problem. To define a equivalent SAT problem we are going to define a SAT problem that can be solved if, and only if, the CSP problem can be solved. We will also request that from every assignment that satisfies the equivalent SAT problem, we can deduce an assignment that satisfy the CSP problem, and conversely. In order to define a SAT problem we are going to define a set of variables and a set of clauses to be satisfy.

Our set of variables consists on a variable $y_{i,j}$ for each variable $x_i \in X$, and each value $d_{i,j} \in D_i$ that represents whether or not $x_i = d_{i,j}$. Now we define the set of clauses. The first to group of clauses are added for consistency reason, and the latter is added in order to maintain the constraints.

- 1. $(y_{i,1} \vee ... \vee y_{i,n_i})$ for all $i \in 1, ..., n$ that represents that every variable should take a value.
- 2. $(\neg y_{i,j} \lor \neg y_{i,j})$ for all $i \in 1, ..., n$, $j \in 1, ..., n_i$ that represents that a variable can not take more that one value.
- 3. $(y_{i,j})$ for every equality $x_i = d_{i,j}$ and $(\neg y_{i,j})$ for every inequality $x_i \neq d_{i,j}$. If two equalities or inequalities are expressed concatenated by a Propositional Logic operator we express the associated literals of the equalities and inequalities concatenated by the same Propositional Logic Operator. In order to express the resulting formulas as a CNF formula, we use Tseitin's Theorem. A proof of this theorem will be provided on [\[3.4.3\]](#page-61-1).

If there is an assignment α that satisfies the associated SAT problem, then there is an assignment β that satisfies the CSP problem such that $\beta(x_i = d_{i,i})$ if $\alpha(y_{i,j}) = 1$. From the clauses generated in 1. and 2. we can assert that such mapping is well defined, and from the clauses generated by 3. follows that *β* satisfy all constraints.

Conversely we can define an assignment α that satisfies the SAT problem from an assignment β that satisfy the CSP problem by mapping x_i ,

$$
\alpha(x_i) = \begin{cases} 1 & \beta(x_i) = d_{i,j}, \\ 0 & \text{otherwise.} \end{cases}
$$

Therefore the CSP problem is solvable, if and only if, the SAT problem is satisfiable, and given a satisfying assignment of either the SAT or CSP problem we know how to generate a satisfying assignment of the other problem. \Box

In practice we will use CSP as a methodology to define problems. It will provide easy solutions for complex problems, given that we solve the SAT problem. More on this will be shown on [\[III\]](#page-98-0).
Chapter 3

Complexity Classes and Relevance of the Problem

"Either mathematics is too big for the human mind or the human mind is more than a machine."

Kurt Godël $[13]$

3.1 Model of Computation

Computation started as a way of relieving mathematicians of mechanical work. A long journey has been made by now. In particular, models of computation improve our ability to ease work to unexpected limits. Nonetheless some barriers are still left to be broken. In particular there is the dream of a efficient theorem prover, that will made mathematicians life easier, so that formalism would be relegated to the domain of machines, just as arithmetic has already been done.The work of the mathematician would then be to check and understand what things are important and how to pose the problems in the right language.

SAT, and even more QBF, try to solve this problem, by asserting veracity of simple laws. Some projects such as COQ[\[3\]](#page-114-1) have been doing work on this area. They have had limited success, because of the complexity of the problem we have before us. In fact, now we know that this can not be achieved even in restricted domains, as it is believed that there is not a polynomial algorithm for the simpler propositional logic. In this chapter we present the theory of complexity and the state of the art of the complexity analysis. We reflect upon the P vs NP problem and we present sat as the cornerstone for the development of this theory, having as its zenith the Cook-Levin Theorem [\[3.3.2\]](#page-46-0).

3.1.1 Deterministic Computation

In this section we discuss two computation models: Turing Machines and Circuits. We do not expect the text to be the first approximation to Turing machines, so we present a quick formal approach to the area.

Turing machines are arguably the epicenter of models of computation. A Turing Machine represents a long mechanical tape on which we are going to operate. The tape is divided into discrete positions, such that we can see the tape as a one-dimensional array. Operating on this tape we can focus on a cell, scan its contents, overwrite its contents or move to an adjacent cell. These operations try to resemble the process of human calculus by means of a set of rules or algorithm, as done with paper and pencil when applying the long division method for example. Formally:

Definition 3.1.1 (Turing Machine [\[17\]](#page-115-0)). We describe a Turing Machine as a 7tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ whose components have the following meanings:

- *Q* the finite set of states of the finite control.
- Σ the finite set of *input symbols*.
- Γ the finite set of tape symbols. Σ is always a subset of Γ.
- $\bullet \ \delta : \mathcal{O} \times \Gamma \to \mathcal{O} \times \Gamma \times \{L, R\}$ the transition function.
- *q*⁰ the start state.
- $B \in \Gamma$ the blank symbol.
- *F* the accepting states.

A configuration of a Turing machine is a triplet $C = (q, u, v)$ where $q \in Q$, $u, v \in \Gamma^*$. A configuration is accepting if $q \in F$.

A configuration should be understood as a decription of the machine, where *q* is the current state, *u* the part of the tape left to the cell on which we focus and *v* is the part of the tape right to the cell we focus, starting on it.

As a brief note before going on, we have not defined the empty word yet, as in propositional logic is not a valid formula so it lacks our interest until now. We will note the empty word as ϵ and would consist of an empty sequence of symbols. We can now define a relation between configurations:

Definition 3.1.2. Let *M* be a Turing Machine (TM) and $C = (q, u, v)$, $C' =$ (q, u, v) be two configurations of M. We say that $C \vdash C'$ if there is a transition $\delta(q, v_1) = (q', b, D)$ with $D \in L, R$ and:

- if $D = L$, then if $u = u_1...u_n$ and $v = v_1...v_m$, it should happen that $u' = u_1...u_{n-1}$ and $v' = u_n bv_2...v_n$ with two exceptions:
	- $-v$ if $u = \epsilon$ then $u' = \epsilon$ and $v' = bv_2...v_n$,
	- $v = v_1$ and $b = B$ then $u' = u_1...u_{n-1}$ and $v' = u_n$.
- if $D = R$, then if $u = u_1...u_n$ and $v = v_1...v_m$, it should happen that $u' = u_1...u_n b$ and $v' = v_2...v_n$ with two exceptions:
	- $-v_1$ if $u = \epsilon$ then $u' = b$ and $v' = v_2...v_n$,

 $v = v_1$ and $b = B$ then $u' = u_1...u_{n-1}$ and $v' = \epsilon$.

Note that on both cases the two exceptions can be given simultaneously. We say $C \vdash^* C'$ if there exists a finite sequence $\{C_i\}_{i\in\{1,\ldots,n\}}$ such that $C_1 = C$, $C_n = C'$ and $C_i \vdash C_{i+1}$ for every $i \in 1, ..., n-1$.

When it is beneficial we can consider a TM *M* to have an output, that is, to explicitly say whether or not *M* accepts a word.

We now describe the use of Turing Machines: solving problems. We consider that Turing Machines solve both decision and function problems. Lets start by explaining how a Turing Machine solves a decision problem.

Definition 3.1.3. Let *M* be a Turing Machine. We say that $u \in \Sigma^*$ is accepted by *M* if there exists a final configuration *C* such that $(q_0, \epsilon, u) \vdash^* C$. The language accepted by *M* denoted as *L*(*M*) is the collection of all words accepted. We say that *M* decides a language *L* if *L* is the language accepted by *M*.

With regard to solving a function problem, the intuitive idea is that we write the input on the tape and after some computations we have written on the tape a word that is related to the input one. Formally:

Definition 3.1.4. Let $R \subset \Sigma^* \times \Sigma^*$ be a relation. A Turing Machine *M com*putes R if for every $u \in \Sigma^*$ there is an accepting configuration $C = (q', v, v')$ of *M* such that $(q, \varepsilon, u) \vdash^* C$ and $(u, vv') \in R$. A Turing Machine *M* computes a function problem defined by *R* if it computes *R*.

3.1.2 Non-deterministic Computation

Analogous to the concept of Turing Machine, another recurrent idea in computation is the concept of non-deterministic computing. These models allow an algorithm to react different to the same input. These models are useful as they encapsulate various problems of interest and give upper bound to the deterministic complexity. In order to formalize this concept we will define non-deterministic Turing Machines.

Intuitively, a non-deterministic Turing Machine is a Turing Machine that, at any point on its computation, can choose from several different 'paths' to compute. This choice is made in a non-deterministic manner, that is, it is not known what the result will be until the computation is done.

Definition 3.1.5. We describe a Non-Deterministic Turing Machine (NDTM) as a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ whose components have the following meanings:

- *Q* the finite set of states of the finite control.
- Σ the finite set of *input symbols*.
- Γ the finite set of *tape symbols*. Σ is always a subset of Γ .
- $\delta \subset (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$ the transition relation.
- *q*⁰ the start state.
- $B \in \Gamma$ the blank symbol.
- *F* the accepting states.

A configuration of a Turing machine is a triplet $C = (q, u, v)$ where $q \in Q$, $u, v \in \Gamma^*$. A configuration is accepting if $q \in F$.

Note that there exists $d_0 \in \mathbb{N}$ such that:

$$
\big|\{(q,\gamma',D)\in (Q\times\Gamma\times\{L,R\})\;:\;((p,\gamma),(q,\gamma',D))\in\delta\}\big|\leq d_0.
$$

Such *d*⁰ is called branching factor of *M*.

By opposition, the previously defined Turing machines are considered Deterministic Turing Machines(DTM). The definition of Non-Deterministic Turing Machine is adapted from [\[17\]](#page-115-0).

The definition [\[3.1.2\]](#page-37-0) holds for non-deterministic Turing machines, with the consideration that now instead of finding the image of a function we have to find a related triple. Using analogous notions we define when a problem is decided/ computed by a Non-deterministic Turing Machine. The computation associated with a non-Deterministic Turing machine can be regarded as a tree. In this tree we assume that a branch divides when a decision has to be made. Once this tree is built, we can assume that the execution of our TM will be the progression of one of the possible paths of the tree.

3.1.3 Reductions

Once we now how to make a TM for one problem, we may ask ourselves: can we make a TM machine in order to solve more that one problem?. To answer this question we define the notion of reduction. Intuitively, a reduction is a process in which, instead of solving two problem *L*¹ and *L*2, we choose to only solve *L*¹ and use its resolution in order to solve L_2 . Formally:

Definition 3.1.6. If L_1 and L_2 are decision problems, then we say that L_1 is reduced to *L*² is there is a TM that always stops and computes a function *f* such that for every input w to L_1 , we have that L_2 produces the same answer for the input $f(w)$.

This notion also provides us with a partial order relationship. For function problems we can state the analogue definition.

3.2 Complexity Classes

In this section we are going to define what a complexity class is and then we are going to discuss some results of the complexity of the SAT-problem. We uses [\[1\]](#page-114-2) as principal reference.

3.2.1 Deterministic complexity

There are different approaches to how to measure the complexity of given algorithm. We will focus primarily on worst-case time complexity. We will also introduce worst-case space complexity and provide some results.

Definition 3.2.1. Let $g : \mathbb{N}^{\mathbb{N}}$, then:

$$
O(g) = \left\{ f \in \mathbb{N}^{\mathbb{N}} : \exists N, C \in \mathbb{N} : f(n) \leq Cg(n) \; \forall n \geq N \right\}.
$$

Definition 3.2.2. Let $f : \mathbb{N}^{\mathbb{N}}$.

- 1. We let $TIME(f)$ (resp. $FTIME(f)$) be the set of all decision problems (resp. function problems) that can be decided (resp. computed) by a Turing machine *M* using less that $g(n)$ steps where $g \in O(f)$ and *n* is the number of characters of the input.
- 2. We let $SPACE(f)$ (resp. $FSPACE(f)$) be the set of all decision problems (resp. function problems) that can be decided (resp. computed) by a Turing machine *M* using less that $g(n)$ cells where $g \in O(f)$ and *n* is the number of characters of the input.

Sometimes we will also consider the TM *M* that decides/computes the problem to be in $TIME(f)$ if the context is clear enough. This definition provide us a great tool in order to define collections of problems, and to compare them. We introduce some classes.

Definition 3.2.3. Let Ω be a set of endofunctions of N.

1. We have a homonym complexity class Ω :

$$
\Omega = \bigcup_{f \in \Omega} TIME(f).
$$

2. We have an associated function complexity class *FA*:

$$
F\Omega = \bigcup_{f \in \Omega} FTIME(f).
$$

3. We have an associated space complexity class *FA*:

$$
\OmegaSPACE = \bigcup_{f \in \Omega} SPACE(f).
$$

Although we have defined the complexity classes as collections of decision problems, we can also consider consider a language to be in a class *C* if its associated decision problem is. During the study we will focus on decision problem complexity classes. Nonetheless ties between this classes and its associated function complexity classes are strong and will be pointed out.

In general the notation of complexity classes is additive. Therefore is we want to represent the function space complexity class associated to Ω we denote that by *F*Ω*SPACE*.

Arguably the most important of the complexity classes is P. We define P as the set of all polynomials. Therefore we have an homonym complexity class P. We can justify the importance of this class by the Feasibility Thesis.

Thesis 3.2.1 ([\[5\]](#page-114-3)). A natural problem has a feasible algorithm iff it has a polynomial-time algorithm.

That is, only problems with polynomial time complexity are able to be computed, as otherwise their complexity make them not viable, i.e., not computable in a coherent time. It can be possible to solve some particular cases or to efficiently solve a great proportion of examples, but paying a price: allowing the possibility of errors. The idea of problems being not feasible is the basis of some of the most important conceptions of modern Computer Science. In particular in modern cryptoanalysis the most common encoding technique (private keys protocols) are based upon the conception that no one would be able to solve the presented problem without some added information in a coherent time, independently of their computing capabilities.

Other important class on complexity is L. We define L as the set of all linear combination of logarithms. Now we need to point out that in most part of literature, the class L refer to the class we named LSPACE. Nonetheless we decide to maintain our notation for internal coherence of the text.

3.2.2 Non-Deterministic Complexity

As with TM we can consider complexity classes based on non-deterministic procedures.

Definition 3.2.4. Let $f : \mathbb{N} \to \mathbb{N}$.

- 1. We let NTIME(*f*) the set of all problems that can be decided/computed by a non-deterministic Turing machine *M* using less that $g(n)$ steps where $g \in O(f)$ and *n* is the number of characters of the input.
- 2. We let NSPACE(*f*) the set of all problems that can be decided/computed by a non-deterministic Turing machine *M* using less that $g(n)$ cells where $g \in O(f)$ and *n* is the number of characters of the input.

As with the previous definitions this notation is additive. We can now prove a simple result that relates the concepts defined so far.

Theorem 3.2.2. Let $f : \mathbb{N} \to \mathbb{N}$.

- 1. $SPACE(f) \subset NSPACE(f)$, $TIME(f) \subset NTIME(f)$.
- 2. $NTIME(f) \subset SPACE(f)$.
- *3. NSPACE*(*f*) ⊂ *TIME*($K^{\log(n)+f(n)}$).

Proof.

- 1. Every DTM is a NDTM if we consider the transition function as a relation.
- 2. For every $L \in NTIME$, let *M* be its associated NDTM and let d_0 be the branching index of *M*. Any sequence of choice can be written as a number of length $f(n)$ in d_0 -base. Iteratively execute all options possible. and accept if any of them accepts. Reject otherwise.
- 3. Let $L \in NSPACE(f)$ and M be its associated NDTM. We use the Achievement Method. This method is based on building a network in which the nodes are the possible configurations of a Turing Machine, and the arcs connect configurations such that you can get from one to the other in one step of calculation. The maximum number of nodes (configurations) is

$$
|Q||\Gamma|^{f(n)}(n+1) = |Q||\Gamma|^{f(n)+\log(n+1)} \in O(K^{f(n)+\log(n)}).
$$

Checking if a word is accepted is the same as checking if from a node in a network you can get to an acceptance node. This is checked in quadratic time against the number of nodes, thus obtaining the desired result. As this can be done in quadratic time, the result is proved.

 \Box

Analogous with what we have done with deterministic complexity, we can define non-deterministic complexity classes.

Definition 3.2.5. Let *F* be a set of endofunctions of **N**. We have a complexity class *NF* defined:

$$
NF = \bigcup_{f \in F} NTIME(f).
$$

At this point we can state a corollary of high importance for the mathematical community.

Corollary 3.2.2.1. $P \subset NP$.

This corollary lets itself to a simple doubt: is that inclusion strict? This problem was first stated independently by Stephen Cook and Leonid Levin in 1971[\[5\]](#page-114-3) and is one of the Clay Math Institute Millennium Problems.

Another characterization of NP is by *verfiers*. Given a language that might not be in P, it may be possible to decide the membership of an element to that language when a *proof* is given. Formally:

Proposition 3.2.1 (Alternative definition of NP). A language $L \subset A^*$ is in NP if and only if there is an relationship $R \subset A^* \times A^*$ computable in polynomial time and a polynomial *p* such that

$$
L = \{x \in A^* : \exists y \in A^* \text{ with } |y| \le p(|x|), R(x, y) = 1\}.
$$

Proof.

 \Rightarrow If $L \subset A^*$ is in NP, there is a NDTM *M* that decides *L* in $O(p)$, with *p* a polynomial. For every $x \in L$ we have that *M* accepts *x* after at most $p(|x|)$ decisions. Let $d_{x,i}: 1 \leq i \leq p(|x|) >$ be the word that codify such decisions in the alphabet A^* . We can define the relationship:

$$
R = \{(x, y) : x \in L, y = \}.
$$

We can compute such relationship with a DTM M' that works as M , but at each iteration i make the decision d_i .

 \leq We define a NDTM *M* that works as follow, for an input *x*:

- 1. Non-deterministically choose a word *y* that $|y| \leq p(|x|)$. The selection of ψ is done in polynomial time as each symbol takes one step.
- 2. Accepts if $(x, y) \in R$. Rejects otherwise. This can be done in polynomial time as *R* can be computed in polynomial time.

As both steps are computed in polynomial time M runs in polynomial time. \Box

This result is analogous with functions problems. This proposition give another meaning to the P vs. NP problem. We can consider P to be the class of efficiently doable problems, whether NP is the class of efficiently checkable problems. Another interesting corollary is:

Corollary 3.2.2.2. $LSPACE \subset P$.

The problem of checking whether of not this inclusion is strict is also open to this date.

3.2.3 Complementary Classes

Building on the complementary problem definition, we can define a new kind of complexity classes.

Definition 3.2.6. Let Ω be a complexity class. We let C_0 be the decision complexity class such that:

$$
Co\Omega = \{CoL : L \in \Omega\}.
$$

This concept is not useful for Deterministic Complexity classes as we state in the next proposition.

Proposition 3.2.2. Let Ω be a deterministic Complexity Class. We have that $\Omega = C_0 \Omega$.

Proof. For every $L \in \Omega$, we have a DTM *M* that decides *L* in a time $O(g(n))$. We can construct a DTM M' that runs M and change the value of the output. Therefore, we can decide CoL in $O(g(n))$.

FIGURE 3.1: Turing Machine showcased in the proof.

Nonetheless, this concept is really important for non-deterministic complexity classes, as the previous proposition is, in general, not known to be true. One of the most relevant open problems is whether or not $CoNP = P$. For us, $CoNP$ is important also as is the class of TAUT.

3.3 Completeness

In this subsection we introduce the notion of completeness. This area was developed in late 1960s and early 1970s parallel by researchers on the US and the USSR, at during the Cold War. The first point in the development of this theory and the most important result from the point of view of this text is the Cook-Levin theorem [\[3.3.2\]](#page-46-0), which highlights the theoretical relevance of SAT. The notion of completeness was introduced to the Western World first by Cook [\[6\]](#page-114-4) although the term was coined later.

As a historical note, one of the first references to this notion is the Gödel's Letter^{[\[25\]](#page-115-1)}, that he wrote to Von Neumann relating with the possibility of polynomially (in particular in linear or quadratic time) solving QBF (a generalization of SAT). He was asking, without knowing it, whether an NP-Complete problem could be solvable within polynomial time, and stating some of the consequences of this.

3.3.1 Definition

Once we have defined classes for decision problems, and we have the concept of reduction, we want to use that in order to be able to solve whole classes only solving one of it problems.

 \Box

Prior to that we have to revisit reductions. We have defined reductions without taking care of its complexity. Now we can fully define reductions

Definition 3.3.1. If L_1 and L_2 are decision problems.

- 1. We say that $L_1 \leq_L L_2$ if there is an TM *M* that always stops and computes a function *f* such that for every $w \in L_1$, if and only if $f(w) \in L_2$, there is an $g \in P$ such that $M \in FLSPACE(g)$, and there is another $g' \in P$ such that $|f(w)| \in O(g'(|w|)).$
- If $L_1 \leq_P L_2$ we say that L_1 *is reduced* to L_2 .

Definition 3.3.2. Let Ω be a deterministic complexity class. We say that a problem *L* is Ω -*Complete* iff:

- $L \in \Omega$.
- For every $L' \in \Omega$, we have that $L' \leq_P L$.

If only the latter condition is satisfied, we say that *L* is Ω -Hard.

The set of P-Complete problems is the set of all problems that are reducible in polynomial time to a problem P and are in *P*. Now that we have defined both P-Completeness and NP-Completeness, we can continue our study. If one NP-Complete problem can be solve in Polynomial time, then P=NP. We have, nonetheless, a problem: How do we prove a problem to be NP-Complete? We have two ways:

- 1. To prove that every problem is reducible.
- 2. To reduce another NP-Complete problem in *P*.

We can see that the latter option is preferable, as it involves less work. This option requires that one problem, at least, has been proven to be NP-Complete first, arguably with the first method. The next subsection deals with this matter, and reintroduces SAT as the main point of the text.

3.3.2 Cook-Levin Theorem

At this point we introduce the main theorem of this section. The theorem was first sated on [\[6\]](#page-114-4), although some ideas were first spoken about by Leonid Levin on 1969, the formal explanation of the result was first written by Stephen Cook. Due to our lack of knowledge of the Russian language we did not research Levin's original result, although we would like to point out that he did this research on the advice of the famous mathematician Kolmogorov. Also, later in his life, Levin emigrated to the US and was able to share his knowledge with the Western block[\[24\]](#page-115-2).

The theorem proves that SAT is NP-Complete, and was at the time the first completeness result provided. To this day virtually all proofs of problems to be NP-Complete are done by using either this result or using its ideas. For this theorem Cook received on 1982 the Turing Award, the highest honor conceded in the area of Computer Science.

Reading Cook original work, we can see that the modern standard statement of the theorem is an adaptation of the original statement done in theorem [\[6\]](#page-114-4). Instead of proving the result with the today-standard 3CNF satisfiability, he proved the CoNP-Completeness result for TAUT, proving SAT NP-Completeness in the way. The proof showcased in this paper is the one followed nowadays by most texts, with only a few adaptations.

Lemma 3.3.1. For a set $A = \{a_1, ..., a_n\}$ of Propositional Logic variables, we can define a set of clauses $C(A)$ such that, for an assignment alpha we have $\mathcal{C}(A)\alpha = 1$ iff α maps to 1 one and only one of the variables in A.

Proof. We define

$$
C(A) = D \cup \left(\bigcup_{\substack{i,j \in 1, ..., n \\ i \neq j}} D_{i,j}\right),
$$

where:

$$
D = (a_1 \vee \dots \vee a_n),
$$

\n
$$
D_{i,j} = (\neg a_i \vee \neg a_j).
$$
\n(3.1)

From *D* it follows that α satisfy at least one variable, and from $D_{i,j}$ that α satisfy at most one. \Box

Theorem 3.3.2 (Cook-Levin theorem). SAT is NP-Complete.

Proof. Suppose that a language $L \subset A^*$ is accepted by a NDTM *M* within time $O(q(n))$, where $q(n)$ is a polynomial. Given an input $w \in A^*$ of M, we construct a CNF-Formula $\phi(w)$ such that $\phi(w)$ is satisfiable iff *M* accepts *w*. As the construction is done in polynomial time, we have a polynomial reduction of the problem.

Suppose that $\Gamma = \{\gamma_0, \gamma_1, ..., \gamma_l\}$ is the tape alphabet of *M* with $B = \gamma_0$ $Q = \{q_1, ..., q_s\}$ is the set of states with q_0 the initial state. δ_0 is the branching. factor of *M*. $T(n)^{1}$ $T(n)^{1}$ $T(n)^{1}$ is the polynomial bound of the number of cells used by *M*. We define $T = T(|w|)$

- Firstly, we define the variables of $\phi(w)$.
	- 1. The variables $\{p_{s,t}^i : 1 \leq i \leq l, 1 \leq s, t \leq T\}$. These variables represents (semantically) if tape cell *s* at step *t* contains the symbol *γi* .
	- 2. The variables $\{q_t^i : 1 \leq i \leq l, t \leq T\}$ that represents if at step *t* the machine is in state *qⁱ* .
	- 3. The variables $\{S_{s,t}: 1 \leq s, t \leq T\}$. These variables represents if tape cell *s* is being scanned at step *t*.

¹M is in NP therefore *M* is in PSPACE and as a consequence $T(n)$ exists

- 4. The variables $\{o_{d,t}: 1 \leq d \leq \delta_0, t \leq T\}$. These variables represents that decision *d* is made at step *t*.
- Once we have the variables, we define the clauses of $\phi(w)$.
	- 1. For $t \leq T$, the clauses $\mathcal{C}(S_t)$ with $S_t = \{S_i^t\}$ $i_{i,j}$: $i, j \leq T$ } that ensures that at time *t* one and only one cell is being scanned.
	- 2. For $t \leq T$, the clauses $\mathcal{C}(C_t)$ with $C_t = \{p_{s,t}^i : 1 \leq i \leq l, 1 \leq s \leq T\}$ with that ensures that one and only one symbol is at each step of the machine at each time.
	- 3. For $t \leq T$, the clauses $\mathcal{C}(O_t)$ with $O_t = \{o_i^i\}$ $\frac{d}{dt}$: $1 \leq d \leq \delta_0$ with that ensures that one and only one decision is made at each step of the machine at each time.
	- 4. For $t \leq T$, the clauses $\mathcal{C}(D_t)$ with $D_t = \{q_t^i : 1 \leq i \leq l\}$ with that ensures that at time *t* one and only one state is active.
	- 5. If $w = \langle \gamma_{i_1}...\gamma_{i_k}\rangle$ we add the clauses $(p_{j,0}^{i_j})$ for *j* in 1, ..., *k*. These clauses ensure the initial state. Also, for *j* in $k+1$,, *T* we add $(p_{j,0}^0)$.
	- 6. For each pair state-symbol (q_k, γ_d) we let $\{(q_{k_1}, \gamma_{d_1}, m_1), ..., (q_{k_l}, \gamma_{d_l,m_l}) \subset$ $Q \times \Gamma \times \{-1, 1\}$ be the set of related transitions. We add the clauses:

$$
(\neg s_{s,t} \lor \neg q_t^i \lor p_{s,t}^d \lor \neg o_{t,e} \lor q_{t+1,k_e}),
$$

$$
(\neg s_{s,t} \lor \neg q_t^i \lor p_{s,t}^d \lor \neg o_{t,e} \lor p_{s,t+1}^{d_e}),
$$

$$
(\neg s_{s,t} \lor \neg q_t^i \lor p_{s,t}^d \lor \neg o_{t,e} \lor S_{s+m_e,t+1}),
$$

with $0 \le s, t \le T, 0 \le d \le \delta_0$.

If the set of related transitions is empty we add

$$
(\neg s_{s,t} \lor \neg q_t^i \lor p_{s,t}^d \lor \neg o_{t,e} \lor q_{t+1,k}),
$$

$$
(\neg s_{s,t} \lor \neg q_t^i \lor p_{s,t}^d \lor \neg o_{t,e} \lor p_{s,t+1}^d),
$$

$$
(\neg s_{s,t} \lor \neg q_t^i \lor p_{s,t}^d \lor \neg o_{t,e} \lor S_{s,t+1}),
$$

with $0 \le s, t \le T, 0 \le d \le \delta_0$.

This represent the machine's operation.

7. In order to maintain the tape unchanged in the cells where no operation is done we add:

$$
(\neg s_{t,s} \lor \neg p_{s,t}^i \lor p_{s,t+1}^i),
$$

for $0 \leq s, t \leq T, 0 \leq i \leq l$.

8. Suppose $\{q_{i_1},...,q_{i_k}\}$ is the set of final states. Then we add the clause:

$$
(q_{i_1}^T \vee \ldots \vee q_{i_k}^T).
$$

That represents the necessity of the machine to end on a final state in order to accept *w*.

The equivalence of the Problems is clear from the way the machine is built. The clauses reproduce exactly how the machine works for the entry word *w* and include a clause that indicates that the word is accepted. If in the end (time *T*) the clause (q_i^T) $q_{i_1}^T \vee \ldots \vee q_{i_k}^T$ $\mathbf{f}_{i_k}^T$ can be satisfied, then a state of acceptance can be reached. Then the word is accepted if and only if all are possible satisfy all the clauses.

As all operation described above can be done within Logarithmic space, we have found a L-reduction of any NP problem to SAT.

On the time of publication, this result was a truly breakthrough. On the technical part of the proof we would like to highlight the used methods, are they display two common cases that recurrently appears when reducing a problem to SAT.

- One and only one encodings, as the one showcased in the lemma, are common restrictions for real-world problems. We decide to express this alternative in order to respect the original proof as much as possible, but also because this formulation is commonly believed to work better with DPLL based - solvers^{[\[5.1\]](#page-76-0)}. Different approaches to this reduction are considered in literature. For more information on this area we refer to subsection 2.2.4 [\[9\]](#page-114-5).
- The rest of the clauses has at most one positive literal. These are the so called Horn clauses. The particularity of these clauses resides in the fact that,

 $(\neg u_1 \lor \neg u_2 \dots \lor \neg u_n \lor v) \iff ((u_1 \land \dots \land u_n) \to v).$

That is, they are the natural language of implication in CNF. Because of theorem[\[3.3.3\]](#page-50-0) we know that this language is enough to express polynomial DTM.

3.3.3 Graph Isomorphism Problem

In this subsection we introduce the Graph Isomorphism problem. We introduce this problem for two main reason:

- We want to make use of it in order to detect symmetries in CNF-Formulas.
- It has a really interesting complexity class.

In this subsection we focus in the latter topic. In Subsection [3.4.1](#page-53-0) we explain the interest of this problem in the context of SAT-solving. For more information on the problem we refer to [\[11\]](#page-114-6).

 \Box

In order to define a problem over graph, we have to be able to express them in a language. We can express any finite graph $G = (V, E)$ over an alphabet $\{0, ..., 9, B\}$:

- 1. We name each node in *V* after a number in **N**, that is, we define an injective mapping $\phi: V \to \mathbb{N}$. Without any loss of generalization we can require this naming to be in the first |*V*| naturals.
- [2](#page-49-0). We start with the empty word ϵ , and for every edge $(u, v)^2$ concatenate at the end a word $\phi(u)B\phi(v)BB$.
- 3. When all edges are represented, concatenate at the end a word *BBB*|*V*|

For example given:

F igure 3 .2 : Example Graph

We can code it as 0*B*2*BB*2*B*0*BB*1*B*2*BB*2*B*1*BB*0*B*1*BB*1*B*0*BB*1*B*3*BB*3*B*1*BBBBB*4. We name as *GRAPH* to the language over $\{0, ..., 9, B\}$ that include all well formatted graphs.

Definition 3.3.3. We define the Graph Isomorphism language (*G I*) as the subset $L \subset \text{GRAPH} \times \text{GRAPH}$ such that for every pair of words $(w_1, w_2) \in L$ theirs associated graphs are isomorphic. We name GI to the associated decision problem.

Given a mapping between two graphs, it can be checked in polynomial time whether such mapping is an isomorphism. Therefore GI is in NP. GI is not known to be in P, neither to be NP-Complete. A complexity class is named after this problem:

Definition 3.3.4. We define the class GI as the set of all decision problems that can be reduced to GI.

Therefore a problem is GI complete if GI is reducible to it. As a historical note, Las Vegas Algorithm is a probabilistic algorithm first introduced by László Babai in 1979 to solve this problem.

²We consider $E \subset V \times V$.

3.3.4 Other Completeness Results

Although the most important completeness quetions are the ones related with NP-Completeness, the concept of completeness can be implemented for every mayor complexity class. Most importantly for us, SAT variations are the norm for a lot of completeness results. On this subsection we will present the most important of these results.

The first result regards P-Completeness.

Theorem 3.3.3 ([\[7\]](#page-114-7)). HORNSAT is P-Complete

To this day, the class P-complete is believed to be characterized by the problems that has to be computed sequentially. However, as many problems in this area, is still an open problem.

Although we do not define this notions in these thesis we want to add a note on Nick's class. The formal formulation of the previous problem is $NC \stackrel{?}{=} P$ Where NC is . This name was coined by Stephen Cook, in honor to Nick Pippenger and is the class of decision problems solvable by a uniform family of Boolean circuits, with polynomial size, depth $O(log(n))$, and fan-in 2.

Finding a parallelizable algorithm for HORNSAT would imply that *NC* = *P*. Nonetheless, it is widely believed that it is not possible. As being said, is still an open problem.

To continue, we present a brief discussion about FNP-Completeness. The same way we work with decision problems, we could be talking about Function Problem. In particular:

Theorem 3.3.4. FSAT is FNP-Complete.

To briefly sketch the proof, it follows the one of the Cook-Levin theorem, only that we have the considerations of a function problem and therefore we have to state different final conditions.

The other function problem variation presented was MAXSAT.

Theorem 3.3.5 (theorem 2.1 [el2016computational]). MAXSAT is FNP-Hard.

The statement of the theorem in the article differ a bit, as this is an adaptation into our notation. The next problem we will discuss is QBF.

Theorem 3.3.6 ([\[12\]](#page-114-8), theorem 4.11 [\[1\]](#page-114-2)). *QBF is PSPACE-Complete.*

This in an important result as it shows the implicit difficult of automatically checking theorems in first order Logic. Nonetheless, it is worthy of considering, as the subsequent results of being able to solve this problem efficiently enough will make mathematicians life a lot easier, as theorem resolution will be a topic of well defined axioms and computer reasoning. This idea, was the one showcased in Gödel's Letter.

We can use the study of NP Completeness in order to study CoNP Completeness.

Proposition 3.3.1. Let *L* be a language. *L* is NP-Complete iff *CoL* is CoNP-Complete.

Proof.

 \Rightarrow Let *L'* be a CoNP language. Therefore *CoL'* is a NP language. There is a reduction *R* from Col' to *L* such that, $x \in Col' \iff R(x) \in L$. Therefore $x \in L' \iff R(x) \in Col$.

 \equiv Analogue.

 \Box

Therefore, UNSAT is CoNP complete and TAUT is CoNP complete.

We make a little recall of all concepts introduced, to contextualize all problems. In the first section we have introduce the most relevant complexity classes, and we have denote some open problems:

FIGURE 3.3: Two possible diagram of complexity classes.

This diagram represents two possibilities of inclusion relationships between classes. It is strongly believed by the community that all inclusions represented are strict inclusions. Nonetheless, proving these believes remains elusive. In fact, it is only known that LSPACE \subseteq PSPACE.

These classes have been defined in the context of this thesis in order to prove some important results about SAT. Being the Cook-Levin theorem the most representative among the result. Analogously to SAT, its variations play a fundamental role, each in their own particular class. These proof are made following

the ideas shown in Cook-Levin's theorem, adapting them for the Turing machine in question.

3.3.5 Exponential Time Hypothesis

In this subsection we will introduce the hypothesis, shown first on [\[20\]](#page-115-3). It states that no sub-exponential time algorithm can be found for 3-SAT. This hypothesis, although widely accepted, is still unproven. Formally:

Definition 3.3.5 (ETH). For $k \geq 3$, lets define:

 $s_k = \inf\{\delta : \text{there exists a } O(2^{\delta n}) \, | \, k - \text{SAT solver}\}.$

It is claim that $s_k > 0$.

This result has some equivalent formulations.

Proposition 3.3.2 (theorem 1. [\[20\]](#page-115-3)). The following statements are equivalent:

- 1. ETH: for all $k \ge 3$, $s_k > 0$.
- 2. For some $k, s_k \geq 0$.
- 3. $s_3 \geq 0$.

This theorem is proven making use of The Sparsification Lemma, which is based in turn on the ideas of critical and forced variables. By the time of the publication of the article, Zane has already worked with these ideas for the development of the PPZ algorithm[\[35\]](#page-116-0). Although we are not going to prove this result, we are going to present these ideas when analyzing the Paturi-Pudlák-Zane Algorithm $[6.1.1]$.

This claim is harder that $P \neq NP$, as it not only declares that SAT is not polynomial time, but neither is sub-exponential time.

3.4 Some Exploitable Properties about SAT

In this section we explain some concepts of SAT that are interesting because they have beautiful related mathematical theories and also because they can be useful resolving and analyzing complexity. Also, we will present some result that where intentionally postponed, in order to talk about them once complexity classes has been introduced, although they belong thematically to previous chapters. In particular we will talk about:

- Symmetric Clauses.
- Autarks assignments.
- Tseitin Theorem.
- Tautologies and CO-NP completeness

• Constructiveness.

The first of them are useful when modelling a problem in order to generate SAT problems on which we can work more efficiently. Then second of them is an useful technique that is used extensively on SAT solvers

3.4.1 Symmetry

In this subsection we talk about symmetry groups and its application to SAT. The information and examples resemble the ones in [\[39\]](#page-116-1). We will start this subsection with a motivating example.

Example 3.4.1. Consider the boolean formula:

$$
F = (\neg a \land b \land c) \lor (a \land \neg b \land c).
$$

It is not difficult to see that this functions remains invariant under some variations, namely:

- The trivial variation: the identity. For the example, we will denote this transformation by *I*.
- Swapping the inputs of *a* and *b*. It is equivalent to renaming *a* as *b* and *b* as *a*. For the example, we will denote this transformation as π :

$$
\pi(F) = (\neg b \land a \land c) \lor (b \land \neg a \land c) = (\neg a \land b \land c) \lor (a \land \neg b \land c) = F.
$$
\n(3.2)

• Swapping the inputs of *a* and $\neg b$. It is equivalent to renaming *a* as $\neg b$ and *b* as $\neg a$. For the example, we will denote this transformation as *β*:

$$
\beta(F) = (\neg\neg b \land \neg a \land c) \lor (\neg b \land \neg\neg a \land c)
$$

= (\neg a \land b \land c) \lor (a \land \neg b \land c) = F. (3.3)

• Swapping *a* with $\neg a$ and *b* with $\neg b$. For the example, we will denote this transformation as *γ*:

$$
\gamma(F) = (\neg \neg a \land \neg b \land c) \lor (\neg a \land \neg \neg b \land c)
$$

= (\neg a \land b \land c) \lor (a \land \neg b \land c) = F. (3.4)

With these three invariants we can also see that the composition of each one of these invariants with each other produce another invariant. Moreover, each invariant is its own inverse, as $\varphi \circ \varphi = I$ for $\varphi \in \{I, \alpha, \beta, \gamma\}.$

We can see therefore that by invariant γ , it does not matter what value does we assign to *a*, as either both $F\{a = 1\}$ and $F\{a = 0\}$ are satisfiable or none are. Therefore we can solve $F\{a=1\}$, and we have a simplified problem to examine.

This is what is called *symmetry breaking*. An avid reader would have already recognized the group structure on the invariants. On this subsection we are going to explore the necessary concepts to define a symmetry, explore the group of negations and permutations, and develop some strategies to implement *symmetry* breaking. Now we are going to define a few concepts.

Definition 3.4.1. Let *F* be a formula and ϕ be a function α : *Form*_{*Var*(*F*) \rightarrow} *Form*_{*Var*(*F*). We say that ϕ is an invariant of *F* if $\phi(F) = F$.}

We have a function α : *Form*_{*X*} \rightarrow *Form*_{*X*} that maps $F = (\neg a \land b \land c) \lor (a \land c)$ $\neg b \land c$) to $\alpha(F) = (\neg c \land b \land a) \lor (c \land \neg b \land a).$

Definition 3.4.2 (Group Action). An action of a group *G* on a set *S* is a map $G \times S \rightarrow S$ such that:

- $es = s$ for e the identity element of G and every $s \in S$.
- $(g_1g_2)(s) = g_1(g_2s)$ for all $s \in S$ and all $g_1, g_2 \in G$.

Definition 3.4.3 (Group-Induced Equivalence Partition). Let *G* be an action group and *X* be a set. The action of the group *G* over *X* induces an equivalence relation such that, for $x_1, x_2 \in X$:

$$
x_1 \sim x_2
$$
 if $\exists g \in G$ such that $gx_1 = x_2$.

This relation induce a quotient space on *X* and, therefore, a partition, that could be seen as an element of the lattice of partitions of *X*. We will denote this partition as $P(X, G)$.

Note that the inverse property on groups and the two properties of group actions imply that the equivalence relation is, in fact, an equivalence relation. We note a simple result in order to make this concept more manageable.

Proposition 3.4.1. Let *G* be a group, $\{g_1, ..., g_n\} \subset G$ be a set that generates *G* and *X* be a set. We have that:

$$
P(X, G) = \vee_{i \in 1, \dots, n} P(X, < g_i >),
$$

where $\langle g_i \rangle$ is the cyclic group generated by g_i .

Definition 3.4.4 (Permutation). Given a finite set of variables $X = \{x_1, ..., x_n\}$, a permutation of X is any injective mapping $\alpha : X \to X$. Each permutation induces a homonym function on α : *Form*_{*X*} \rightarrow *Form*_{*X*} that replaces every variable by its image by *α*. This homonym function can be seen as the action of *al pha* over *FormX*.

For example given $X = \{a, b, c\}$, and a injective mapping $\alpha : X \to X$ such that:

$$
\alpha(a) \to c,\n\alpha(b) \to b,\n\alpha(c) \to a.
$$
\n(3.5)

We can see set of all permutations over a set *X* such that $|X| = n$ along with composition is the *permutation group* on *n* elements, P_n .

In algebra the permutations group (further on classic permutation group) consists in the group of injective mappings of $\{1, ..., n\}$ along with composition, studied in most group algebra courses. In fact, what we define as permutation group is the action group of the classic permutation group over the set of variables.

Definition 3.4.5. Let *X* be a non-empty set of variables. Given $A \subset X$ a negation of *A* is a mapping $\sigma_A : Lit(X) \to Lit(X)$ defined by:

> $\sigma_A(x_i) = \begin{cases} \neg l & l \in A, \\ l & \text{otherwise} \end{cases}$ *l* otherwise.

Where $Lit(X)$ is the set of literals over *X*. Each negation induces a homonym function $\sigma_A : Form_X \rightarrow Form_X$.

The same way with the group of permutation this is the action group of a elementary group of negations over integers. Nonetheless, as this group may be a little more exotic, we include a proof that is, in fact, a group.

Proposition 3.4.2. The set of negations over a set *X* and composition is a group.

Proof.

- Closure: We can see that $\sigma_A \circ \sigma_B = \sigma_{(A \cup B) \setminus (A \cap B)}$.
- Associativity: Associativity is inherited from the general associativity of composition.
- Identity: We have an identity element σ_{\varnothing} .
- Inverse: For every $A \subset X$, $\sigma_A^2 = \sigma_{\emptyset}$.

We will denote the group of negations over *n* variables as N_n .

Proposition 3.4.3 (NP_n). The set of negations and permutations on *n* variables along with the composition is a group, denoted by *NPn*.

Proof. Note that every element $x \in NP_n$ can be expressed as $\alpha \circ \sigma$ where α is a permutation and σ is a negation. Also note that

- Closure: $\alpha \circ \sigma_A \circ \alpha' \circ \sigma_{A'} = \alpha \circ \alpha' \circ \sigma_{\alpha^{-1}A} \circ \sigma_{A'} = \alpha'' \circ \sigma_{A''},$ where α'' is a permutation and $\sigma_{A^{\prime\prime}}$ is a negation.
- Associativity: associativity is inherited from the general associativity of composition.
- Identity: we have an identity element $\sigma_{\emptyset} = I$.

 \Box

• Inverse: for every $\alpha \circ \sigma_A$ the function $\alpha^{-1} \circ \sigma_{\alpha(A)}$ is its inverse.

Proposition 3.4.4. NP_n s the semi-direct product of N_n and P_n . That is:

$$
NP_n = N_n \rtimes P_n.
$$

Proof. Note that due to the property aforementioned, $NP_n = P_nN_n$ and $P_n \cap$ $N_n = I$. Therefore NP_n is the semi direct product of P_n and N_n . \Box

For us, a symmetry of a formula *F* is any $\phi \in NP_{|Var(n)|}$ that is an invariant for *F*. We will have three type of symmetries:

- Value: a symmetry ϕ will be called a value symmetry if $\phi \in N_n$. The idea behind this name resides in the fact can flip the value of this variable without changing the truth value of the formula.
- Variable: a symmetry ϕ will be called a variable symmetry if $\phi \in P_n$. The idea behind this name resides in the fact can swap two of this variables without changing the truth value of the formula.
- Mixed: a symmetry that is not a value symmetry neither a variable symmetry is a mixed symmetry. The idea behind this name resides in the fact that this symmetries has to be a composition of a value symmetry with a variable symmetry.

We are going to search symmetries in a CNF formula *F*. Until now we have a naive method in order to do this: for every $\phi \in NP_n$ check whether ϕ is an invariant of *F*. Nonetheless the complexity of this process is as hard as solving SAT. Instead, we will in fact reduce the problem of symmetries detection to a colored graph automorphism problem[\[3.2\]](#page-40-0).

Definition 3.4.6. Let $G = (V, E)$ be a graph where V is the set of nodes and *E* be the set of edges, represented as unordered pairs. A coloring of a graph its a partition $(V_1, ..., V_n)$ of *V*. Each V_i is called a *color*, and for every $x \in V_i$ it is said that *x* with color *i*. Also, let $v \in V$ we define

$$
d(v, V_i) = |\{u \in V_i : (u, v) \in E\}|.
$$

We say that a coloring is *stable* if

$$
d(u, V_i) = d(v, V_i), \qquad \forall u, v \in V_j, \ \forall i, j \in 1, ..., n.
$$

A colored graph is a pair (G, π) where G is a graph and π is a coloring of it.

We are going to associated our formula with a colored graph as defined above, and choose a coloring π of that graph. From every coloring π of G we can make a stable coloring π' by iteratively splitting colors with different vertex degree. We can see that $\pi' \leq_{\mathcal{P}} \pi$. If π' is a discrete partition, i.e. $|\pi'| = |V|$, G has no symmetries beyond the identity. Otherwise we have some candidates for

 \Box

symmetry. This possible symmetry is checked (or refuted) by selecting a color $V_i \in \pi' = \{V_i : 1 \leq i \leq n\}$ with more than one element, and, for each $v \in V_i$ we put *v* in front of $V_i \backslash \{v\}$, generating all symmetries.

Example 3.4.2. A little example of the procedure may be of some help:

F igure 3 .4 : Initial Graph

We now have a partition with only one set with all nodes. We will make a refinement by selecting the node with different adjacency. Now we obtain a new coloring.

FIGURE 3.5: First modification.

Now we have an stable coloring, with a partition $\pi' = \{V_i : 1 \le i \le 3\},\$ where $V_1 = \{0, 2\}$, $V_2 = \{1\}$ and $V_3 = \{3\}$. We represent this partition with a table:

To continue with the refinement, we are going to divide the color 1, as it is not a singleton. we are going to make two modification of the color: modification 1, and modification 2. On modification 1 we the value of node 0 to 1'. On modification 2 we change the value of node 2 to 1' and put it up front of it color. This will mean that we look for a potential symmetry between 0 and 2.

And now we reach, in both modifications, a discrete coloring. Now we have two symmetries, each one induced by one modified coloring. We have all symmetries on the selected graph:

Original			
Modified 1			
Color Modified 1			
Modified 2			
Color Modified 2	1 ,		

TABLE 3.2: Partition Table.

- The first coloring induces the trivial symmetry.
- The second induces the symmetry of swapping 0 and 2.

Now that we have the right tool we can deepen in our study. In order to discover symmetries in a formula *F* we will apply this method to it associated symmetry graph *SF*.

Definition 3.4.7. Let *F* be a CNF formula, the associated symmetry graph S_F , is a colored undirected graph such that:

- has as nodes:
	- − Clause node: there is a node n_C with color 0 for every clause $C \in F$.
	- Positive Literal node: there is a node n_x with color 1 for every variable $x \in Var(F)$.
	- Negative Literal node: there is a node $n_{\neg x}$ with color 1 every variable $x \in Var(F)$.
- has as edges (represented as unordered pairs):
	- Clause edges: for every clause *C* ∈ *F*, and for every literal *l* ∈ *C* there is an edge (n_c, n_l) .
	- Variable edges: for every variable $x \in Var(F)$ there is an edge (n_x, n_{-x}) .

Once we have detected for our formula F its group of symmetries \mathfrak{G}_F we want to disambiguate its properties. That is, in the same way as Clause Learning [5.1.3,](#page-78-0) we want to add a predicate in order to allow any algorithm to consider the rest of the possible values automatically.

Although this idea tend to be portrayed with a lot of fancy tools, it is in fact a really simple idea once well explained: we are going to order the satisfying assignments of *F* and only consider true the least of them. This idea is correct, as we can easily make an ordering on the assignment of *Var*(*F*). The interesting idea of this method resides on how to translate it to propositional logic language.

We are going to order the assignments in lexicographic order. We are going to consider that $Var(F) = \{x_i : 1 \le i \le n\}$, and being α, β two assignments on

Var(*F*) then

$$
\alpha \leq \beta \iff \exists i \in 1, ..., n \text{ such that}
$$

$$
(\alpha(x_i + 1) = \beta(x_i + 1) : \forall j \in 1, ..., n - i) \implies \alpha(x_i) \leq \beta(x_i).
$$

Then we are going to impose that, for every orbit of a symmetry $\pi \in \mathfrak{G}_F$, we have that $\alpha \leq \alpha \circ \pi$, therefore having only one correct assignment. This is translated to formulas thanks to lex-leader predicate.

Definition 3.4.8 (10.7[\[39\]](#page-116-1)). Let *F* be a CNF formula, $X = \{x_i : 1 \le i \le n\}$ *Var*(*F*) and $\pi \in \mathfrak{G}_F$, we define the *lex-leader predicate* $PP(X, \pi)$ as

$$
PP(X,\pi) = \wedge_{1 \leq i \leq n} \left(\left(\wedge_{i+1 \leq j \leq n} (x_j = \pi(x_j)) \right) \rightarrow (x_i \leq \pi(x_i)) \right).
$$

Definition 3.4.9. Let *F* be a CNF formula, and \mathfrak{G}_F be its symmetry group. We define the *symmetry breaking predicate* $\rho(F)$ as:

$$
\rho(F) = \wedge_{\pi \in \mathfrak{G}_F} PP(X, \pi).
$$

And we have that, considering $F \wedge \rho(F)$ only the least of the symmetries can be considered.

3.4.2 Autarks assignments

Once we have defined what is a CNF formula and what is a problem we can proceed to define this anticipated concept.

Definition 3.4.10. An partial assignment α is called autark for a CNF formula *F* if for every clause $C \in F$ it happens that if $Var(C) \cap Var(\alpha) \neq \emptyset$ then $C\alpha = 1$.

An autark assignment α for a CNF formula *F* is an assignment that satisfies all clauses that it 'touches'. These assignments provide simplifications of the CNF formulas in the context of satisfiability, as they generate a new CNF formula $F\alpha$ that are satisfiable if, and only if, F is satisfiable. In set notation we can state that α is autark for *F* if $F\alpha \subsetneq F$. Subsequently, trying to find simple autark assignment, is a good praxis.

Should it happen that we have an algorithm for the Autarks Finding Problem, iterating it, we could find a satisfying assignment of any given formula if it exists such assignment, therefore solving FSAT. Let's define the problem formally:

Definition 3.4.11. Let *CNF* the set of formulas in CNF and *Part* the set of partial assignments. The Autark Finding Problem is the function problem defined by the relation:

$$
R = \{ (F, \alpha) : F \in CNF \land \forall C \in F, \newline C \neq \emptyset \ (Var(C) \cap Var(\alpha) \neq \emptyset \implies C\alpha = 1) \}. \tag{3.6}
$$

Theorem 3.4.1. There is a reduction from FSAT to the Autark-Finding problem.

Proof. Suppose that an algorithm such that if it exists any autark it return one of them, and end with an error code otherwise is given.

Given a formula *F*, if there is not an autark then there is no solution for the SAT problem. If it finds an Autark-assignment α then we apply the same algorithm to $\alpha(F)$. Also, as it happens that $|Var(\alpha(F))| < |Var(F)|$ so we only apply the algorithm finitely many times. Also, *F* will be solvable if, and only if, *Fα* is solvable. \Box

The most common autark assignment is the pure literal. A literal *l* is a pure literal for a formula *F* if there is no $\neg l$ in *F*. The partial-assignment that only maps $u \to 1$ is an autark assignment for *F*. This type of autark are used on DPLL algorithm $[5.1]$. The MS algorithm $[5.2.1]$ also uses an autark finding technique.

Corollary 3.4.1.1. The autark finding problem is FNP-Complete.

Proof. As checking whether an assignment is autark is linear on the number of clauses, then this make the autark-finding problem is in FNP. From [3.4.1](#page-60-0) follows that the autark finding problem is FNP-Complete. \Box

3.4.3 Tseitin Theorem

Now that we are able to talk about efficiency is time to talk about an interesting, anticipated result. If we remember Lindenbaum algebra $[1.2.2]$ we have defined a quotient space on the formulas in terms of satisfiability. In order to solve GSAT, we are not in need of solving all formulas. Instead we can learn how to solve a language of formulas *F* such that for every class $[\phi_1] \in \text{Form}/\sim$ there is a formula $f \in F$ such that $f \in [\phi_1]$. Also, we will need a method that allows us to find such $f \in F$ given any element of $[\phi_1]$. We want to prove that SAT is a language that satisfies this restrictions. The naive approach to the problem is straightforward:

Proposition 3.4.5. There is a CNF formula in each equivalence class. Moreover, given a function $f \in \text{Form}$ we are able to find an equivalent *CNF* formula.

Proof. Given $\phi_1 \in \text{Form}$ we make the truth table of ϕ_1 . Two formulas are in the same equivalent classes if, and only if, they share the same truth table.

We can generate a *CNF* formula that has the same table this way: for every row $[x_1 \rightarrow a_1, ..., x_n \rightarrow a_n]$ (x_i variables, $a_i \in \{0, 1\}$) that falsifies ϕ_1 we add a clause $(z_1 \vee ... \vee z_n)$ with $z_i = x_i$ if $a_i = 0$ and $z_i = \neg x_i$ if $a_i = 1$. \Box

This method is interesting as it shows the truth table, as the collection of all two-valued assignments*a* such that $Var(\alpha) = \phi_1$. Nonetheless is not a method that should be considered useful, as it has exponential time. Tseitin theorem provides us with a solution to this problem that runs in polynomial time. We will need a lemma first:

Lemma 3.4.2. For every SAT formula there is an associated circuit.

Proof. Every operator can be seen as a gate and every variable as an input.

 \Box

Theorem 3.4.3 (Tseitin [\[49\]](#page-116-2)). There is a 3-CNF formula on each equivalent class. Moreover, given an element *F* there is a equivalent formula *G* in 3-CNF which could be computed in polynomial time.

Proof. We will show that for every circuit with *n* inputs and *m* binary gates there is a formula in 3-CNF that could be constructed in polynomial time in *n* and *m*. Then, given a formula we will work with it considering its associated circuit.

We will construct the formula considering variables x_1, \ldots, x_n that will represent the inputs and $y_1, ..., y_m$ that will represents the output of each gate.

$$
G=(y_1)\wedge\bigwedge_{i=1}^m(y_i\iff f_i(z_{i,1},z_{i,2})).
$$

Where f_i represents the formula associated to the *i*-gate, $z_{i,1}$, $z_{i,2}$ each of the two inputs of the *i*-gate, whether they are *x*− or *y*− variables. This formula is not 3-CNF yet, but for each configuration being f_i a Boolean operator there would be a 3-CNF equivalent.

- $z \iff (x \lor y) = (x \lor y \lor \neg z) \land (\neg x \lor z) \land (\neg y \lor z).$
- \bullet *z* \iff $(x \land y) = (\neg x \lor z) \land (\neg y \lor z) \land (\neg z \lor x) \land (\neg y \lor x) \land (\neg z \lor y) \land$ $(\neg x \lor y)$.

•
$$
z \iff (x \iff y) = (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor \neg z) \land (x \lor y \lor z).
$$

$$
\bullet \; z \iff (x \oplus y) = z \iff (\neg x \iff y).
$$

In the last item we use the third one.

 \Box

The fact that they are reachable on polynomial time is important because it means it could be done efficiently. Should this be impossible it will not be of much relevance in practice, as we yearn to solve this problem as efficiently as possible. This result implies that if we know how to solve 3-SAT we know how to solve GSAT.

3.4.4 Tautologies Revisited

Proposition 3.4.6. Given a tautology $F \rightarrow G$, there exists a formula *I* such that $Var(I) = Var(F) \cap Var(G)$ and both $F \to I$ and $I \to G$ are tautologies. A polynomial algorithm to solve this problem is not known.

Proof. Let $\{x_1, ..., x_k\} = Var(F) \cup Var(G)$ then we will build *I* by defining its truth table in the following way: Given an assignment *α*:

$$
I\alpha = \begin{cases} 1 & \text{if } \alpha \text{ could be extended to an assignment that satisfies } F, \\ 0 & \text{if } \alpha \text{ could be extended to an assignment that nullifies } G, \\ * & \text{otherwise.} \end{cases}
$$

Where $*$ mean that it could be either 0 or 1. This is well defined because if for an arbitrary α it happens that $G\alpha = 0$ then $F\alpha = 0$.

For every assignment β such that $Var(\beta) = Var(F) \cup Var(G)$ then if $\beta(F) =$ 1 then $\beta(I) = 1$ so $F \to I$ is a tautology. Similarly it can not happen that $I\beta = 1$ and $G\beta = 0$, because the second will imply that $I\beta = 0$.

For the last part we will refer to [\[41\]](#page-116-3).

3.4.5 From non-constructive to constructive

In this subsection we explain how a constructive SAT-solver can be made from a non-constructive SAT-solver without changing its asymptotic time complexity, assuming true the exponential time hypothesis[\[3.3.5\]](#page-52-0).

Proposition 3.4.7. Let ϕ be an oracle that decides SAT in $O(\phi(n+m))$ where *n* is the number of variables and *m* the number of clauses. Then we can make an algorithm that computes FSAT on $O((n(\varphi(n+m)) + m))$

Proof. We will iteratively expand a partial assignment *α*. *α* initially maps all variables to *υ*. The procedure take as input a CNF formula *F*. The algorithm that solve FSAT is described in $[1]$. It is based in the notion that, if F is satisfiable. either $F\{x=1\}$ or $F\{x=0\}$ is satisfiable. We are able to explore the variable lineally being sure that we are always assigning the correct value to each variable.

```
Algorithm 1 FSAT routine
```

```
1: procedure SOLVER(F)2: F_0 \leftarrow F3: \alpha \leftarrow \text{empty partial assignment.}4:
 5: for x \in Var(F) do
 6: if \phi(F_0\{x=1\}) then
 7: \alpha + \alpha = \{x = 1\}8: F_0 \leftarrow F_0 \{x = 1\}9: else
10: if \phi(F_0\{x=0\}) then
11: \alpha + \alpha = \{x = 0\}12: F_0 \leftarrow F_0 \{x = 0\}13: else
14: return Unsatisfiable
15: return α
```
 \Box

Let's analyze the complexity of this algorithm. We make at most *n* repetitions of the for loop, and on each repetition we call ϕ and assign a variable in a formula. Therefore the procedure runs in $O(n\varphi(n+m) + m)$ \Box

Assuming ETH we assume that ϕ is exponential in time, an therefore asymptotic complexity $O(\varphi(n+m))$ is the same as $O(n(\varphi(n+m)+m))$, so, until *ETH* is proved wrong we can consider SAT and FSAT as being equal in complexity. On this text we will only deal with non-constructive solvers on the combinatorics section[??].

Part II Solvers

Chapter 4

Special Cases

On this part we attack the main problem of SAT: explain the different techniques that can be applied.Onward we will see how it could be solved, and develop applied techniques. There are a lot of approaches to this problem and they differ on their way to attack it. We have to realise that three things are important to judge an algorithm.

- The simplicity: following Occam's razor, between two solutions that do not appear to be better or worse, one should choose the easiest one. This solution are far more comprehensible and tends to be more variable and adaptable for our problem. We should not despise an easy solution to a complex problem only because a far more difficult approach give slightly better results.
- The complexity: and by that I mean its algorithmic ('Big O') complexity. It is important to get good running times in all cases and have an analysis of the worst cases scenario that the algorithm could have.
- The efficiency: Some algorithms will have the same complexity as the most simple ones, but will use some plans to be able to solve most part of the cases fast (even in polynomial time). There are some cases that would make this algorithms be pretty slow, but more often than not a trade-off is convenient.

On this chapter we are going to talk about solvability in special situations where we work with a restricted subset of formulas (more restricted than CNF formulas). We want to exploit special characteristics of these subsets in our favor in order to get a resolution without involving a complex exponential time algorithms (as the ones needed to solve SAT).

The first section of this chapter will talk about combinatorics. We proceed to analyze solvability in special cases, i.e., algorithms that work really well in formulas given that they satisfy some restriction.

4.1 Satisfiability by Combinatorics

To get an intuition about how unsolvable clauses are, we gonna state some simple results about combinatorics and resolution. These techinques present some cases where we can solve the decision problem efficently, although more often that not we would not provide a satisfying assignment, i.e., we do not solve the function problem.

As there is no complete SAT-solver known to work in polymial time complexity, a polynomial increase does not affect overall the assymptotical complexity.

Firstly, it is easy to break a big clause on some smaller ones, adding one another on this way: Suppose we got two positive integers n, m such that $m < n$ a clause $x_1 \vee x_2 \vee \ldots \vee x_n$ we could split it into two parts $x_1 \vee x_2 \vee \ldots \vee x_{m-1} \vee$ *y*, ¬*y* \vee *x*_{*m*} \vee ... \vee *x*_{*n*}. Also given the same clause with a given length *n* we could enlarge it one variable adding $x_1 \vee ... \vee x_n \vee y$ and $x_1 \vee ... \vee x_n \vee \neg y$ where *y* is a new variable. Note that to enlarge a clause from a length m to a length $n > m$ we would generate 2 *ⁿ*−*^m* clauses.

Proposition 4.1.1. Let *F* be a *k*-CNF formula, if $|F| < 2^k$ then *F* is satisfiable. *Proof.* Let $n = Var(F)$, it happens that $n > k$. For each clause $C \in F$ there are 2^{n-k} assignments that falsify *F*, so in total there could be strictly less than $2^k \cdot 2^{n-k} = 2^n$. Therefore it exists an assignment that assigns all variables and not falsifies the formula *F*. \Box

Proposition 4.1.2. Let $F = \{C_1, ..., C_n\}$ be a CNF formula. If $\sum_{j=1}^{m} 2^{-|C_j|} < 1$, then F is satisfiable.

Proof. Enlarging clauses the way it is explained to the maximum length *k* and applying the previous result. \Box

Following this idea we could define the weight of a clause $C \in F$ as

$$
\omega(\mathsf{C}) = 2^{-|\mathsf{C}|}
$$

being this the probability that a uniform-random assignment violates this clause.

Corollary 4.1.0.1. For a formula in CNF, if the sum of the weights of the clauses is less than one then the formula is satisfiable.

Definition 4.1.1. Let F be a CNF formula. It is said to be minimally unsatisfiable if:

- *F* is unsatisfiable.
- $F \setminus \{C\}$ is satisfiable $\forall C \in F$.

Then the following proof will be shown as in [\[42\]](#page-116-4). For that we will need the well known Hall marriage theorem[\[15\]](#page-114-9). A similar result is proved in Chapter 7 of [\[28\]](#page-115-4), using the König theorem. Both versions take the idea of associate a graph with a set of clauses.

Definition 4.1.2. Let $G = (N, E)$ be a graph where N is the set of nodes and *E* the set of edges, represented as pair of nodes. Given $n \in X$, the neighborhood of *n*, denoted as $\Gamma_G(n)$, is defined as:

$$
\Gamma_G(n) = \{ n' \in X : n' \neq n, \exists e \in E \text{ such that } n, n' \in e \}
$$

Analogously, the inclusive neighborhood is defined as $\Gamma_{\mathcal{C}}^{+}$ $G^{+}(n) = \Gamma_{G}(n) \cup \{n\}.$ The neighborhood of a subset $W \subset X$ is defined as $\Gamma_G(X) = \mathbb{U}_{n \in X} \Gamma_G(n)$

Definition 4.1.3. Let G be a finite bipartite graph with finite sets of vertices *X*,*Y*. A matching edge cover is a cover such that every vertex only participate in one edge)

Theorem 4.1.1 (Hall marriage graph version). Let *G* be a finite bipartite graph with finite sets of vertices *X*,*Y*. There is a matching edge cover of *X* if and only $if |W| < |\Gamma_G(W)|$ for every $W \subset X$.

Lemma 4.1.2. Let F be a CNF formula. If for every subset *G* of *F* it holds that $|G| \leq |Var(G)|$, then *F* is satisfiable.

Proof. We will associate a bipartite graph with *F*: *U*, *V* be the two set of vertices where *U* consists on the set of clauses and *V* on the set of variables. There is an edge (*u*, *v*) if *v* takes part on *u*.

By the marriage theorem every clause can be associated to a variable. Therefore we could make an assignment that take every variable associated to a clause to the value that the clause requires. \Box

This idea or neighbourhood in clause is important and curious. It defines a relation between clauses and give clauses resolution some nice graph-tools to work with.

Proposition 4.1.3. If *F* is minimally unsatisfiable, then $|F| > Var(F)$.

Proof. Since *F* is unsatisfiable, there must be a subset *G* such that is maximal and satisfy $|G| > Var(G)$. If $G = F$ them the theorem is proved.

Otherwise, let $H \subset F \backslash G$ be an arbitrary subset. If $|H| > |Var(H)(G)|$ then $|G \cup H| > |Var(G \cup H)|$ and *G* would not be maximal. Therefore *F* satisfies the condition of the lemma and is satisfiable using an assignment that does not use any variable $x \in Var(G)$. As G is minimally unsatisfiable G is satisfiable by an assignment β . We could then define an assignment:

$$
\gamma(x) = \begin{cases} \beta(x) & \text{if } x \in Var(G) \\ \alpha(x) & \text{otherwise.} \end{cases}
$$

this assignment would satisfy F against the hypothesis. We proved $G = F$ by contradiction and therefore we proved the lemma. \Box

4.2 Lovász Local Lemma

We continue to prove an interesting lemma on the theoretical analysis of satisfiability problem: the Lovász Local Lemma (LLL). This lemma was first proven on 1972 by Erdös and Lovász while they were studying 3-coloration of hypergraphs. Then it was Moser which understood the relationship between this result and the constraint satisfaction problem. SAT could be regarded as the simplest of these problems.

This section is going to be based on the works of Moser, Tardos, Lovász and Erdös. As it will be shown, LLL is applicable to set a sufficient condition for satisfiability. We will explain the lemma for theoretical purposes and prove the most general version, and give a constructive algorithm to solve a less general statement of the problem. The principal source of bibliography for the whole section would be Moser PhD. Thesis[\[30\]](#page-115-5).

The main contribution of Moser's work to this problem is finding an efficient constructive algorithm to find what assignment satisfies the formula, given that *F* satisfies the hypothesis of the lemma. Previously only probabilistic approaches had been successful.

The probabilistic method is a useful method to prove the existence of objects with an specific property. The philosophy beneath this type of proofs is the following: in order to prove the existence of an object we do not need to give the object, instead, we could just consider a random object in the space we are exploring an prove that the probability is strictly positive. Then we can deduce that an object with that property exists. It is not necessary to provide the exact value, bounding it by a constant greater that zero would be enough.

This technique was pioneered by Paul Erdös. LLL is an useful tool to prove lower bounds for probabilities that is commonly used to prove that a probaility is strictly positive.

This section will follow this order:

- Present the notation and general expression for the LLL.
- Use the result to prove an interesting property on satisfiability on CNF.
- Prove the general result with the probabilistic result.
- Provide the more concise CNF-result with a constructive algorithm.

4.2.1 First definitions

We will work here with a very specific type of formulas.

Definition 4.2.1. Let *C* be a clause in *F*, the neighborhood of *C*, denoted as $\Gamma_F(C)$ as

$$
\Gamma_F(C) = \{D \in F : D \neq C, \text{Var}(C) \cap \text{Var}(D) \neq \emptyset\}.
$$

Analogously, the inclusive neighborhood Γ_F^+ $\Gamma_F^+(C) = \Gamma(C) \cup \{C\}.$

Further on Γ and Γ^+ will respectively denote inclusive or exclusive neighborhood on CNF formulas or graphs

Definition 4.2.2. Two clauses are *conflicting* if there is a variable that is required to be true in one of then and to be false in the other. G_F^* $\frac{k}{f}$ is the graph such that there is an edge between C and D iff they *conflict* in some variable.

Definition 4.2.3. Let Ω be a probability space and let $\mathcal{A} = \{A_1, ..., A_m\}$ be arbitrary events in this space. We say that a graph G on the vertex set A is a lopsidependency graph for $\mathcal A$ if no event is more likely in the conditional space defined by intersecting the complement of any subset of its non-neighbors. In others words:

$$
P\left(A \mid \bigcap_{B \in S} \overline{B}\right) \leq P(A) \qquad \forall A \in \mathcal{A}, \ \forall S \subset \mathcal{A} \backslash \Gamma_G^+(A).
$$

If, instead of requiring the event to be more likely, we require it to be independent (i.e. to be equal in probability) the graph is called dependency graph.

4.2.2 Statement of the Lovász Local Lemma

Theorem 4.2.1 (Lovász Local Lema). Let Ω be a probability space and let $A = \{A_1, ..., A_m\}$ be arbitrary events in this space. Let G be a lopsidependency graph for A. If there exists a mapping $\mu : A \rightarrow (0,1)$ such that

$$
\forall A \in \mathcal{A} : P(A) \leq \mu(A) \prod_{B \in \Gamma_G(A)} (1 - \mu(B)),
$$

then $P(\bigcap_{A \in \mathcal{A}} \overline{A}) > 0$.

By considering the random experiment of drawing an assignment uniformly, with the event corresponding to violating the different clauses we could reformulate this result. The weight of each clause is the probability of violating each clause. Therefore, we can state a SAT-focused result.

Corollary 4.2.1.1 (Lovász Local Lema for SAT). Let *F* be a CNF formula. If there exists a mapping $\mu : F \to (0,1)$ that associates a number with each clause in the formula such that

$$
\forall A \in \mathcal{A} : \omega(A) \leq \mu(A) \prod_{B \in \Gamma_G^*(A)} (1 - \mu(B)),
$$

then F is satisfiable.

Proof. To prove the result it would only be necessary to show that Γ^* is the lopsidependency graph for this experiment. Given $C \in F$ and $D \subset F \backslash \Gamma_{G_F^*}(D)$ (i.e. no $D \in \mathcal{D}$ conflict with *C*). We want to check the probability of a random assignment falsifying C given that it satisfies all of the clauses in D , and prove that it is at most $2^{-|C|}$.

Let α be an assignment such that it satisfies $\mathcal D$ and violates $\mathcal C$. We could generate a new assignment from α changing any value on $Var(\mathcal{C})$, and they still will satisfy \mathcal{D} (as there are no conflict) so the probability is still at most 2^{-k} .

The result that we will prove in a constructive way will be slightly more strict, imposing the condition not only in Γ^* but in Γ^+

$$
\qquad \qquad \Box
$$

Corollary 4.2.1.2 (Constructive Lovász Local Lema for SAT). Let *F* be a CNF formula. If there exists a mapping $\mu : F \to (0,1)$ that associates a number with each clause in the formula such that

$$
\forall A \in \mathcal{A} : \omega(A) \leq \mu(A) \prod_{B \in \Gamma_G(A)} (1 - \mu(B)),
$$

then F is satisfiable.

In order to get a result easier to check we will present a new criteria. If $k \leq 2$ the *k*-SAT problem is polynomially solvable so we will not be interested on such formulas.

Corollary 4.2.1.3. Let *F* be a *k*-CNF with $k > 2$ formula such that $\forall C \in F$ and $|\Gamma_F(C)| \leq 2^k/e - 1$ then *F* is satisfiable.

Proof. We will try to use [\[4.2.1.2\]](#page-71-0). We will define such $\mu : F \to (0,1)$, $\mu(C) =$ $e \cdot 2^{-k}$. Let $C_0 \in F$ be an arbitrary clause.

$$
2^{-k} = \omega(C) \leq \mu(C) \prod_{B \in \Gamma_F(C)} (1 - \mu(B)) = e2^{-k} (1 - e2^{-k})^{|\Gamma_F(C)|}.
$$

With the hypothesis

$$
2^{-k} \le e^{2^{-k}} (1 - e^{2^{-k}})^{2^{k}/e-1},
$$

$$
1 \le e(1 - e^{2^{-k}})^{2^{k}/e-1}.
$$

Being famous that the convergence of the sequence $\{(1-e^{2^{-k}})^{2^{k}/e-1}\}_k$ to 1/*e* is monotonically decreasing.

 \Box

4.2.3 Nonconstructive proof of [\[4.2.1\]](#page-70-0)

We explain the way Erdös, Lovász and Spencer originally proved the Lemma [\[10\]](#page-114-10) [\[46\]](#page-116-5). The write-up presented here will resemble the one done by [\[31\]](#page-115-6).

Thorough the proof we will use repeatedly the Chain Rule. It states that for any events $\{E_i\}_{i\in 1,\dots,r}$,

$$
P\left(\bigcap_{i=1}^r E_1\right) = \prod_{i=1}^r P\left(E_i \middle| \bigcap_{j=1}^{i-1} E_j\right).
$$

Further on this subsection we will consider Ω to be a probability space and $\mathcal{A} = \{A_1, ..., A_m\}$ to be arbitrary events in this space, G to be a lopsidependency graph, and $\mu : \mathcal{A} \to (0,1)$ such that the conditions of the theorem are satisfied. We first prove an auxiliary lemma.
Lemma 4.2.2. Let $A_0 \in \mathcal{A}$ and $\mathcal{H} \subset \mathcal{A}$. then

$$
P\left(A \Big| \bigcap_{B \in \mathcal{H}} \overline{B}\right) \leq \mu(A).
$$

Proof. The proof is by induction on the size of $|\mathcal{H}|$. The case $H = \emptyset$ follows from the hypothesis easily:

$$
P\left(A \Big| \bigcap_{B \in \mathcal{H}} \overline{B}\right) = P(A) \leq^{1} \mu(A) \prod_{B \in \Gamma_G^*(A)} (1 - \mu(B)) \leq^{2} \mu(A).
$$

Where 1. uses the hypothesis and 2. uses that $0 < \mu(B) < 1$. Now we suppose that $|\mathcal{H}| = n$ and that the claim is true for all \mathcal{H}' such that $|\mathcal{H}'| < n$. We distinguish two cases. The induction hypothesis will not be necessary for the first of them

- When $\mathcal{H} \cap \Gamma^*_{\mathcal{C}}$ ${}_{G}^{*}(A) = \emptyset$ then $P(A|A)$ $\left(\bigcap_{B\in\mathcal{H}}\overline{B}\right)=0\leq P(A)$ by definition of Γ^*_c $^*_{\mathsf{G}}$ and $P(A) \leq \mu(A)$ by definition of μ .
- Otherwise we have $A \notin \mathcal{H}$ and $\mathcal{H} \cap \Gamma_{\mathcal{C}}^*$ $^*_{G}(A) \neq \emptyset$. Then we can define to sets $\mathcal{H}_A = \mathcal{H} \cap \Gamma^*_\zeta$ $G_{\mathsf{G}}^*(A) = \{H_1, ..., H_k\}$ and $\mathcal{H}_0 = \mathcal{H} \backslash \mathcal{H}_A$.

$$
P\left(A \Big| \bigcap_{B \in \mathcal{H}} \overline{B}\right) = \frac{P\left(A \cap \left(\bigcap_{B \in \mathcal{H}_A} \overline{B}\right) \Big| \bigcap_{B \in \mathcal{H}_0} \overline{B}\right)}{P\left(\bigcap_{B \in \mathcal{H}_A} \overline{B} \Big| \bigcap_{B \in \mathcal{H}_0} \overline{B}\right)}.
$$

We will bound numerator and denominator. For the numerator:

$$
P\left(A\cap\left(\bigcap_{B\in\mathcal{H}_A}\overline{B}\right)\Big|\bigcap_{B\in\mathcal{H}_0}\overline{B}\right)\leq P\left(A\Big|\bigcap_{B\in\mathcal{H}_0}\overline{B}\right)\leq P(A).
$$

Where the second inequality is given by the definition of lopsidependency graph. On the other hand, for the denominator, we can define $\mathcal{H}_i :=$ { H *i*, ..., H ^{*k*}}∪ H ₀.

$$
P\left(\bigcap_{B\in\mathcal{H}_A} \overline{B} \Big| \bigcap_{B\in\mathcal{H}_0} \overline{B}\right) = \prod_{i=1}^k P\left(\overline{B_i} \Big| \bigcap_{B\in\mathcal{H}_i} \overline{B}\right)
$$

$$
\geq \sum_{i=1}^k \left(1 - \mu(H_i)\right) \geq \sum_{B\in\Gamma_G^*(A)} (1 - \mu(B))
$$

 \Box

 \Box

Where in 3. the induction hypothesis is used, and in 4. is considering that $H_i \in \Gamma^*_{\mathcal{C}}$ $^*_{G}(A)$ Considering now both parts:

$$
P\left(A \Big| \bigcap_{B \in \mathcal{H}} \overline{B}\right) \leq \frac{P(A)}{\prod_{B \in \Gamma_G^*(A)} (1 - \mu(B))} \leq \mu(A).
$$

Where the last inequality uses the hypothesis on *µ*.

proof of the theorem [4.2.1.](#page-70-0)

$$
P\left(\bigcap_{A\in\mathcal{A}}\overline{A}\right)=\prod_{i=1}^m P\left(\overline{A_i}\Big|\bigcap_{j=1}^{i-1}\overline{A_j}\right)\geq^{5}\prod_{i=1}^m (1-\mu(A_i)),
$$

where in 5. is used $4.2.2$ and since $\mu : \mathcal{A} \to (0, 1)$ then $P(\bigcap_{A \in \mathcal{A}} \overline{A}) > 0$.

4.2.4 Constructive proof of [\[4.2.1.2\]](#page-71-0)

Moser[\[31\]](#page-115-0) proves that there exists an algorithm such that it gives an assignment satisfying the SAT formula, should it happen that the formula satisfies [4.2.1.1](#page-70-1) conditions. This is no a big deal, as a backtrack would be also capable of providing the solution, given that we know its existence. Not so trivial is that it would run in $O(|F|)$. We will show the version of the algorithm shown in [\[42\]](#page-116-0).

```
Algorithm 2 Moser's Algorithm
```

```
1: C_1, ..., C_m ← Clauses in F to satisfy, globally accessible
2: \alpha \leftarrow assignment on Var(F)3:
4: procedure \text{REPAIR}(\alpha, C)5: for v \in Var(C) do
6: \alpha(v) = \text{random} \in \{0, 1\}7: for i := 1 to m do
8: if (Var(C_i) \cap Var(C) \neq \emptyset) \wedge (C_i \alpha = 0) then
9: Repair(C_i)10:
11: Randomly choose an initial assignment α
12: for j := 1 to m do
13: if \alpha(C_i) = 0 then
14: Repair(C_i)
```
At first sight it is not clear if it terminates. If *F* verifies [4.2.1.1](#page-70-1) it is proved that if will end after running Repair at most $O(\sum_{C \in F} \frac{\mu(C)}{1 - \mu(C)})$ $\frac{\mu(C)}{1-\mu(C)}$

4.3 Special Cases Solvable in Polynomial Time

In this section we will discuss some cases of the SAT problem solvable in P. These cases are of interest because polynomial is no achievable in all cases. Nonetheless, they only work with a subset of all possible formulas. They should be used whenever possible as no general polynomial time is believed to exist, nor it is proved its non-existence. In general thorough the section we will follow The Satisfiability Problem: Algorithms and Analyses[\[42\]](#page-116-0).

Definition 4.3.1. Let *F* be a formula. A subset $V \subset Var(F)$ is called a backdoor if $F\alpha \in P$ for every assignment α that maps all *V*.

Let us explain this concept. Given a formula *F* a backdoor is a expecial subset of the variables such that if all of it is assigned then we can solve the remaning formula in polynomial time, i.e., once we have assigned these variables the problem is easy. The trivial backdoor is the set of all variables. For a backdoor the smaller, the better.

A goal for a SAT-solver could be to find a backdoor of minimum size. DPLL would try to search for a backdoor, using heuristics in order not to explore all subsets (only achievable if such backdoor exists).

4.3.1 Unit Propagation

Unit propagation is a simple concept that is worth standing out because it is commonplace. Given a CNF formula *F* if there is a clause with only one element then the value of the variable should be assigned accordingly to the clause, otherwise F is unsatisfiable. This lead to the unit propagation concept. Whenever we have a unitary clause $\{p\}$ we should *resolve* it and start working with $F[p = 1]$ being $[p = 1]$ the assignment that maps the value of the metavariable p to 1, which could possibly imply mapping a variable to 0.

Also, the unit propagation might result on a recursive problem, as other unit clauses could appear. Unit propagation is a usefull way to simplify .

4.3.2 2SAT

It is already know that 3-SAT is equivalent to SAT. However, this is not the case of 2-SAT.

Proposition 4.3.1. 2SAT is in P

Proof. To prove that 2SAT is in P, a polynomial algorithm on the number of clauses will be given. Let $F \in 2CNF$. Without loss of generality, we will consider that there are no clauses in $F\{u,u\}$ or $\{u,\neg u\}$ as the first one should be handle with unit propagation and the second one is a tautology. Therefore each clause is $(u \vee v)$ with $var(u) \neq var(v)$, which could be seen as $(\neg u \rightarrow v) \wedge (\neg v \rightarrow u)$.

 \Box

We would consider a step to be as follow: we choose a variable $x \in Var(F)$ and set it to 0. Then a chain of implications would arise, which might end on conflict. If no conflict arises, then is an autark assignment, so repeat the process. Otherwise set it to 1 and proceed. If conflict arise, then *F* is unsatisfiable. If no conflict arise, then is an autark assignment, so repeat the process.

Each step is of polynomial time over the number of clauses. Also there would be at most as many steps as variables, therefore we have a polynomial algorithm.

4.3.3 Horn Formulas

In this subsection we will analyze Horn formulas. They named after Alfred Horn[\[18\]](#page-115-1). They are of special interest as HORNSAT is P-complete.

Proposition 4.3.2. HORNSAT is in P.

Proof. Given a formula *F* it could have a clause with only one non-negated literal or not. If it does not have a clause like this, set all the variables in to 0 and is solved. Otherwise, unit-propagate the unary clause and repeat the process recursively. If a contradiction is raised, them the *F* is not satisfiable. \Box

Now we will discuss a simple generalization of Horn formulas: the renamable Horn Formulas. These formulas allow us to give some use to the otherwise not really useful Horn definition. They also add a condition that can be checked efficiently.

Definition 4.3.2. Let *F* be a CNF formula. *F* is called renamable Horn if there is a subset *U* of the variables $Var(F)$, so that $F[x = \neg x | x \in U]$ is a Horn formula. That set is called a renaming.

Definition 4.3.3. Let *F* be a CNF formula. Then a 2CNF formula F^* is defined as:

 $F^* = \{(u \vee v) | u, v \text{ are literals in the same clause } K \in F\}$

Theorem 4.3.1. The CNF formula *F* is renamable Horn if and only if the associated *F* ∗ formula is satisfiable. Moreover, if a satisfying assignment *α* for F^* exists then it encodes a renaming *U* in the sense that $x \in U \iff \alpha(x) = 1$.

Proof. Let *F* be renamable Horn and *U* be a renaming. We consider the assignment

$$
\alpha(x) = \begin{cases} 1 & x \in U, \\ 0 & \text{otherwise.} \end{cases}
$$

Let $\{u \vee v\} \in F^*$ after the renaming. There should be at least one negative variable so if every variable is set to 0, F^* is satisfiable.

The other direction is analogous: let α be an assignment that satisfies F^* . Then there is no to literals in the same clause set to 0. Defining $U = \{x \in$ $Var(F): \alpha(x) = 1$ } there is no two positives variables in a clause. \Box

If a renaming exists, it can be obtained efficiently, and then solve efficiently with the HORNSAT algorithm.

Chapter 5

Complete Algorithms

5.1 Backtracking and DPLL Algorithms

In this section we will talk about algorithms that explore the space of possible assignments in order to find one that satisfies a given formula, or otherwise prove its non-existence. Onward whenever a formula is given, it would be a CNF formula.

5.1.1 Backtracking

We will start with the approach based on the simple and well-known backtracking algorithm.

```
Algorithm 3 Backtrack
```

```
1: procedure \texttt{BACKTRACKING}(F)2: if 0 \in F then return 0
3: if F = 1 then return 1
4: Choose x \in Var(F)5: if backtracking(F\{x=0\}) then return 1
6: return backtracking(F\{x = 1\})
  =0
```
This algorithm describe a recursion with $O(2^n)$ complexity with *n* being the number of variables. It also lends itself to describe a plethora of approaches varying how we choose the variable *x* in line 4. This algorithm will be an upper bound in complexity and a lower bound in simplicity for the rest of algorithms in this section.

An easy modification can be done to improve a little its efficiency in the context of *k*-SAT. Choosing a clause of at most *k* variable we could choose between $2^k - 1$ satisfying assignments. The recursion equation of this algorithm will be $T(n) = (2^k - 1) * (T(n - k))$, so it would have asymptotic upper bound *O*(a^n) with $a^n = (2^k - 1)^{\frac{1}{k}} < 2^n$.

5.1.2 Davis-Putman-Logemann-Loveland (DPLL) algorithm

This algorithm is an improvement of the backtracking algorithm, still really simple and prone to multiple modifications and improvements. This algorithm was develop by Martin Davis and Hillary Putnam in 1960 while they where studying Hilbert's tenth problem. Nonetheless, the most extended version is the improved algorithm develop by Martin Davis, George Logemann and Donald Loveland in 1962.

Algorithm 4 DPLL

1: procedure DPLL(*F*) 2: if $0 \in F$ then return Unsatisfiable 3: **if** $F = 1$ then return Satisfiable 4: 5: if *F* contains a unit clause $\{l\}$ then return DPLL($F\{l = 1\}$) 6: if *F* contains a pure literal l then return DPLL($F{l = 1}$) 7: 8: Choose $x \in Var(F)$ with an strategy. 9: if DPLL $(F\{x = 0\})$ = Satisfiables then return Satisfiable 10: **return DPLL** $(F\{x = 1\})$

We could see to main differences:

- The algorithm try to look for backdoors and simplifications in lines 5 and 6. Although only some of these techniques are present, and even some implementations skip the pure literal search, is an improvement. Search for autarks assignments or renames could also be a good idea.
- We can see that, although we present an algorithm for SAT, it can be adapted to FSAT by keeping a log of the calls to DPLL, and returning this log when Satisfiability is ensured.
- It uses heuristics to select variables. It does not imply that they always are better chosen (and there would be cases that run worse), but tend to be better. In practice, hard heuristics approaches give excellent results[\[44\]](#page-116-1). The idea behind heuristics is trying to reduce as much as possible the number of branching steps. Many heuristics functions have been proposed. For the formulation of some of them we will define:

$$
f_k(u) =
$$
number of occurrences of literal u in clauses of size k
 $f(u) =$ number of occurrences of literal u (5.1)

- DLIS (dynamic largest individual sum): choose *u* that maximizes *f* . Try first $u = 1$.
- DLCS (dynamic largest clause sum): choose u that maximizes $f(u)$ + $f(\neg u)$. Try first whichever has largest individual sum.
- Jeroslaw-Wang: For the one sided version choose *u* such that maximizes the sum of the weights of the clauses that include the literal. For the two sided version choose a variable instead of a literal.
- Shortest Clause: choose the first literal from the shortest clause, as this clause is one of the clauses with the biggest weight in *F*.

– VSIDS: This heuristics function is a variation of DLIS. The difference is that once a conflict is obtained and the algorithm need to back track, the weight of that literals are increased by 1.

On [\[14\]](#page-114-0) differences in behauvior between differences between DPLL SATsolvers are explored, mainly differences in behavior in randomized versions of the algorithm.

5.1.3 Clause Learning

Despite not being an algorithm, clause learning is a rather useful technique in order to improve any search based algorithm (as DPLL variations). The technique works adding clauses to ensure that once reached a contradiction it would not be reached again, that is, providing new clauses to the *CNF* formula that, without being satisfied, the formula could not be satisfied. When we add those clauses we avoid the repetitions that led to the contradiction, bounding some branches in a problem specific manner. The technique that we introduce is the so called Conflict Driven Clause Learning(CDCL), as we focus on learning clauses after conflict arise. The content of this subsection is from [\[48\]](#page-116-2). The information and definition on UIP is from [\[50\]](#page-116-3)

In the context of Clause Learning we have to think about an algorithm that works by iteratively expanding a partial assignment as is done in DPLL.

In order to add clarity to the explanation we will introduce some definitions: Conflict clause, decision level, and implication graph. A conflict clause would represent part of an assignment that will never be part of a solution.

Definition 5.1.1. A clause *C* is a conflict clause of the formula *F* if:

- $Var(C) \subset Var(F)$
- Each variable in *Var*(*C*) appear only once is the clause *C*.
- *C* \notin *F* and for every assignment α such that $C\alpha = 0$ it happens $F\alpha = 0$.

It is clear that the third condition of the definition is the one that add meaning to it. Nonetheless the first two are important to bound the clauses that can be interesting. By adding conflict clauses more constraints are added to the formula, avoiding searching on assignments that will not satisfy the formula. The purpose of clause learning is to find conflict clauses. In order to do that we will built a implication graph and examine it when a conflict happens.

A decision is made every time a variable is assigned and its not part of a unit clause or is a pure literal, i.e., each time we make a non-forced decision. These decisions anidate, and the decision level refer to the number of anidations done when the literal *u* was assigned to the value *a*.

The implication graph is the directed graph that has as nodes a pair with a variable an a value assigned to that variable, and there is an edge from (x, a_x) to (y, a_y) if at some point, assign *x* to a_x makes mandatory that *y* is assigned to a_y . The idea behind this graph is to has a log of the decisions taken to expand the current partial assignment. Formally:

Definition 5.1.2. Let *F* be a CNF formula, $\{x_i: 1, ..., n\} = Var(F)$, and $A =$ ${a_i \in \{0,1\} : i \in \{1,...,n\}$. The associated implication graph $\mathcal{G}_{F,A}$ is defined inductively:

- \mathcal{G}_0 is the empty graph, and $F_0 = F$.
- From \mathcal{G}_{i-1} , F_{i-1} we define \mathcal{G}_i , F_i :
	- Let x_j be the first variable in $Var(F_i)$. We add the node named (x_j, a_j) .
	- *−* We define $F_i' = F_{i-1}\{x_j \to a_j\}$ and $\mathcal{G}_i = \mathcal{G}_{i-1}$.
	- Every unit clause $\{l\}$ in F_i , we add to \mathcal{G}_i a node (x, a) such that $(l){x \rightarrow a} = 1.$ Note that (x, a) is unique as *l* is a literal.
	- \mathcal{L} = { $l_{i_1},...,l_{i_k}$ } \in *F* and a associated node (x, a) . Necessarily, all other literals in C has been assigned already, so they has an associated node in the graph (y, b) . We add to \mathcal{G}_i an edge from every associated node $(y, b) \rightarrow (x, a)$.
	- We define:

 $F_i = F'_i$ S_i ['] $\{x \rightarrow a : (x, a)$ is a node associated to a unit clause in F_i' *i* }

• We repeat the process until either all variables are assigned or a conflict arise. The implication graph has a conflict if there are two nodes with the same variable and opposite value. The resulting graph will be $\mathcal{G}_{F,A}$

We say that *x* was assigned at *decision level i* if $x \in Var(F_{i-1})$ and $x \notin F_i$.

As we can see a decision graph is dependent of the order on which the variables are assigned (should a decision be made) and the value chosen for each variable when this decision happens.

We will show a little example in order to clarify this definition.

Example 5.1.1. Suppose that we have $F = \{(x_1 \lor x_2 \lor x_3), (x_1 \lor x_2), (\neg x_1 \lor \neg x_2) \lor \neg x_2\}$ ¬*x*2),(¬*x*³ ∨ ¬*x*4),(*x*⁴ ∨ *x*² ∨ ¬*x*3)}. We make a list *A* = {1, 1, 1, 0} of values associated to each variable. We start by adding the node(x_1 , 1) to \mathcal{G}_1 .

FIGURE 5.1: \mathcal{G}_1 before unit propagation

Then we define $F'_1 = F_0\{x_1 \rightarrow 1\} = F_0\{x_1 \rightarrow 1\} = F\{x_1 \rightarrow 1\} =$ $\{(-x_2),(-x_3 \vee -x_4), (x_4 \vee x_2 \vee -x_3)\}\.$ We have an unit clause, therefore, we add a node(x_2 , 0), as this clause where associated in *F* with the clause ($\neg x_1 \vee \neg x_2$) we add an edge $(x_1, 1) \rightarrow (x_2, 0)$. As there were only one unit clause, we can define $F_1 = \{ (\neg x_3 \lor \neg x_4), (x_4 \lor \neg x_3) \}.$

FIGURE 5.2: \mathcal{G}_1 after unit propagation

Once we have F_1 and \mathcal{G}_i we continue the iteration. Therefore we choose the variable x_3 (as x_1 and x_2 where already assigned) and assign it to 1 as we initially decided. Therefore we define $\mathcal{G}_2 = \mathcal{G}_1$, and immediately after we add the node $(x_3, 1)$. We define $F_2' = \{(\neg x_4), (x_4)\}\.$ We have two unit clauses. Solving them as done above we have:

FIGURE 5.3: \mathcal{G}_2 after unit propagation

We can see that a conflict has arised. Therefore we can not continue iterating throw the process and $\mathcal{G}_{F,A} = \mathcal{G}_2$. Note that have we wanted to assign the values in other order, only a renaming would have been necessary.

As we already stated, the purpose of the implication graph is to show the root of the conflict. That is, we want to know what assignments led to the conflict. This could be made by making a set of nodes $N = \{(x_j, a_j : j \in 1, ..., k)\}\$ such that every path from a decision node to the conflict has to include one node of the set. This will be named a cut, not confuse with the graph theory concept.

A conflict clause can be made from each cut *N*: once we have the set *N*, we can add a new clause $C = (l_1, ..., l_k)$ to F such that $l_k = x_k$ if $a_k = 0$ and $l_k = \neg x_k$ otherwise.

Let's summarize what we know until know:

- We know how to make implication graph.
- We know how to add conflict clauses from a cut of a implication graph with conflict.

So we only has to learn strategies in order to detect cuts on implication graphs. Although every cut is enough to add conflict clauses, the most two common approaches are to choose cut are base on the idea of Unique Implication Point(UIP). A UIP is a vertex that dominates both vertices corresponding to the conflicting variable.

- Last UIP choosing every decision node that has a path to the conflict.
- First UIP choosing the first unique point encountered. That is, following backward the implication graph from the conflict, choosing the first UIP.

The first UIP tend to produce smaller clauses and experimental results [\[48\]](#page-116-2) [\[50\]](#page-116-3) provide evidence in favor of it. It is commonplace on DPLL-based solver. The GRASP[\[5.2.3\]](#page-86-0) algorithm was one of the first conflict driven solver, that is, a sat solver that implements a DPLL procedure based mainly on Clause Learning.

We can incorporate clause learning to DPLL easily:

On the algorithm *D*[0 : *m*] represents the first *m* decisions of *D*.

5.2 Other complete algorithms

5.2.1 Monien-Speckenmeyer (MS) Algorithm

This algorithm is a variation of the DPLL-Shortest Clause algorithm, specifying that once you choose the shortest clause, all variables you choose should be from that clause until you satisfy it, as it will continue to be the shortest given that there is no clause with repeated literals as well as no clause that is a tautology. This algorithm (DPLLSC) on *k*-SAT generates a recursion such that $T(n)$ =

 $\sum_{i=1}^{k} T(n-i)$. Under the hypothesis that MS does not has a under-exponential worst case complexity, then $T(n) = a^n$ for some $a \in (1, \infty)$. Therefore,

$$
a^k = \sum_{i=1}^k T(i) = \frac{1 - a^k}{1 - a}
$$

that solved in the equation $a^{k+1} + 1 = 2a^k$. The difference between MS and DPLLSC is that MS includes an autark assignment search in addition to the unit clause search and generalizing the pure literal search (that would be a search of autarks of size 1). When we select a clause (the shortest) we first try to generate an autark with its variables and otherwise continue the algorithm.

Algorithm 6 Monien-Speckenmeyer

```
1: procedure MS(F)
 2: if 0 \in F then return 0
 3: if F = 1 then return 1
 4:
 5: if F contains a unit clause \{l\} then return MS(F\{l \rightarrow 1\})
 6: if F contains a pure literal l then return MS(F{I \rightarrow 1})7: Choose the shortest clause C = \{u_1, ..., u_m\}8: for i \in \{1, ..., m\} do
 9: \alpha_1 := \{u_1 \to 0, ..., u_{i-1} \to 0, u_i \to 1\}10: if \alpha_i is autark then return MS(F\alpha_i)11: if MS(F{u_1 = 1}) then return 1
12: return MS(F\{u_1 = 0\})
```
Other version of the algorithm repeats the last for-loop in the successive calls of *F* (calling $MS(F\alpha_i)$). Nonetheless we consider that with a deterministic heuristic (that, for example, choose the first clause between the set of clauses with minimum size) the result is equivalent and this provides a simpler algorithm.

For the *k*-SAT complexity analysis we have to consider whether or not an autark was found. If so, $T(n) \leq T(n-1)$. Otherwise we are applying a non autark assignment that necessarily collide with a clause which size is at most $k-1$. Let us denote by $B(n)$ the number of recursive calls with n variables and under the hypothesis that there is a clause with at most $k-1$ variables. In this case $T(n) \le \sum_{i=1}^{k} B(n-i)$ and $B(n) \le \sum_{i=1}^{k-1}$ $\sum_{i=1}^{k-1} B(n-i)$. Both of these cases are worse than $T(n-1)$ so in order to study a worst case complexity we have to study the case when no autark is found. Under the hypothesis that $B(n) = a^n$ we get $a^k + 1 = 2^{k-1}$. For $k = 3$ we obtain $a = \frac{1+\sqrt{5}}{2}$ √ $\frac{1}{2}$.

5.2.2 Deterministic Local Search

The local search procedure on SAT context is the same as in other branches of computer science. The idea is that we start with an initial assignment *α* and search in the *neighborhood* of α for a satisfying assignment, that is, those assignments that are close to *α* according to a distance *d*.

Definition 5.2.1. Let α and β be assignments, we define the Hamming distance $d_{\mathcal{H}}$ as:

$$
d_{\mathcal{H}}(\alpha,\beta)=|\{x\in Var(\alpha)\cup Var(\beta): \alpha(x)\neq \beta(x)\}|
$$

Note that in case that for every $y \in Var(\alpha) \setminus Var(\beta)$, we can consider that $\alpha(y) = v$, and respectively with β .

For every α we define its neighborhood as $D(\alpha, \delta) = {\beta : d_{\mathcal{H}}(\alpha, \beta) \leq \delta}.$ In order for this algorithm to work is necessary that $\delta > 0$ and is preferable that $\delta \ll |Var(\alpha) \cup Var(\beta)|$, in order to avoid doing a backtrack. The procedure determines whether or not there is a satisfying assignment for *F* in $D(\alpha, \delta)$. The procedure takes as input a CNF formula F , an assignment α and a positive integer *δ*.

For 3-SAT the running time is $O(m3^{\delta})$ where *m* is the number of clauses. This technique is useful on formulas with a great density of satisfying assignments. Nonetheless, until now this is an incomplete algorithm. The strategy to prove incompleteness is the following. Let *F* be a CNF formula, such that $Var(F) = \{x_1, ..., x_n\}$ and consider $\delta = \frac{n}{2} + \frac{n}{62}$ where ℓ is the integer division and % is the modulo, and $\alpha_a = \{x_1 \rightarrow a, ..., x_n \rightarrow a\}$. Then by running $LS(F, \alpha_0, \delta)$ and $LS(F, \alpha_1, \delta)$ we have a complete algorithm. The asymptotic complexity for this algorithm is $O(3^{n/2}) \approx O(2^{0.793n})$. Note that in this context we only work with two-valued assignment, as we are not dealing with partial assignments.

Algorithm 8 Complete Local Search

1: procedure CLS(*F*) 2: $n \leftarrow |Var(F)|$ 3: $\alpha_0 \leftarrow \{x_i \rightarrow 0 : 1 \leq i \leq n\}$ 4: $\alpha_1 \leftarrow {\overline{x_i \rightarrow 1 : 1 \le i \le n}}$ 5: 6: if LS($F, \alpha_0, n//2 + n\%2$) then return Satisfiable 7: return LS($F, \alpha_1, n // 2 + n \% 2$)

There is a natural way to generalize the idea of exploring all the space of assignments by coordinates local searches, and that is the covering codes.

Definition 5.2.2. Let *X* be a set of variables and let $A = \{a_i : 1 \le i \le n\}$ be a set of two valued assignments over *X*, and δ be a positive integer. The pair (A, δ) is a covering code with Hamming radius *δ* if for any two-valued assignment *α* over *X*, there exists $\alpha' \in A$ such that $d_{\mathcal{H}}(\alpha, \alpha') < \delta$.

We can note that the only important thing about *X* on a covering code is the number of variables that it has. Therefore a covering code (A, δ) for $X = \{x_1, ..., x_n\}$ is also, after a renaming, a covering code for $Y = \{y_1, ..., y_n\}$ therefore we can consider that *A* is a covering code of length *n*. When no details about the set of variables is given other than its length *n* we assume is a covering code over the set $X = \{x_1, ..., x_n\}$

For the next lemma we introduce the Shannon's binary entropy function, that will be useful when dealing with binomial coefficients. The information needed is provided on chapter1 [\[26\]](#page-115-2) and Appendix on binomial coefficients [\[42\]](#page-116-0). Claude Shannon was a mathematician and electronic engineer, known as the father of Information Theory.

Definition 5.2.3. We define the Shannon's binary entropy function as h : $(0, 1) \rightarrow \mathbb{R}$ such that:

$$
\mathfrak{h}(\delta) = -\delta \log_2 \frac{1}{\delta} - (1 - \delta) \log_2 \frac{1}{1 - \delta}.
$$

Proposition 5.2.1. Let $\delta \in (0,1)$ and $n \in \mathbb{N}$, we have that:

1. $\sum_{i=0}^{\delta n} \binom{n}{i}$ $\binom{n}{i} \leq 2^{\mathfrak{h}(\delta)n}$,

2.
$$
\binom{n}{i} = \stackrel{poly}{\sim} 2^{\mathfrak{h}(\delta)n}.
$$

3. $2^{\mathfrak{h}}(\delta) = \frac{1}{(\delta)^{(\delta)n}(1-\delta)^{(1-\delta)n}}$

Where $=$ ^{$poly$} means that the expressions are equals expect for a polynomial coefficient.

For the proof of 1. and 2. we refer to Appendix on binomial coefficients [\[42\]](#page-116-0). 3. is just a reformulation of the definition.

Lemma 5.2.1 (lemma 5.3[\[42\]](#page-116-0)). For every $\epsilon > 0$ and $\delta \in (0, \frac{1}{2})$ there is a length *n*₀ so that there is a covering code $C_0 = (A = {\alpha_i : 1 \le i \le t}, \delta n_0)$ of length n_0 , with $t \leq 2^{1 - \mathfrak{h}(\delta) + \epsilon)n_0}$, where $\mathfrak{h}(\delta)$ is Shannon's binary entropy function.

Proof. As done with the LLL, we will prove this result with probabilistic existence. We fix a set of variables $X = \{x_i : 1 \leq i \leq n\}$ choose *t* random assignments over *x* following a uniform distribution.

We are going to prove that

$$
P(\exists \alpha_0 \forall i \in 1, ..., t : d_{\mathcal{H}}(\alpha_0, \alpha_1) > \delta n) < 1.
$$

We can see that

$$
P(\exists \alpha_0 \forall i \in 1, ..., t : d_{\mathcal{H}}(\alpha_0, \alpha_1) < \delta n) = \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} P(d_{\mathcal{H}}(\alpha_0, \alpha) > \delta n)
$$

\n
$$
= \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - P(d_{\mathcal{H}}(\alpha_0, \alpha) \le \delta n) \right)
$$

\n
$$
= \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)
$$

\n
$$
= \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)^t
$$

\n
$$
\leq \sum_{j=0}^{\delta n} \left(\frac{n}{j} \right)^t
$$

\n
$$
\leq \sum_{j=0}^{\delta n} \left(\frac{n}{j} \right)^t
$$

\n
$$
= \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)^t
$$

\n
$$
\leq \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)^t
$$

\n
$$
= \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)^t
$$

\n
$$
\leq \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)^t
$$

\n
$$
= \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {n \choose j}}{2^n} \right)^t
$$

\n
$$
\leq \sum_{\alpha_0 \in A_X} \prod_{\alpha \in A} \left(1 - \frac{\sum_{j=0}^{\delta n} {
$$

Where A_X is the set of all two-valued assignments over X , 1. is because of results on binomials distribution, 2. is because the expresion is independent of eithet α_0 and α , 3. is because properties derived on the fact that $\lim_{n \to \infty} (1 - \frac{1}{n})^n \to e$ and 4. is because we have yet to define *t* and we choose to define it as:

$$
t = \frac{n2^n}{\sum_{j=0}^{\delta n} {n \choose j}}.
$$

As $\left(\frac{2}{e}\right)$ $\frac{2}{e}$, \int_0^{∞} → $n \to \infty$ 0 for some n_0 big enough we have that $P(\exists \alpha_0 \forall i \in 1, ..., t)$ $d_{\mathcal{H}}(\alpha_0, \alpha_1) < \delta n$ < 1 and therefore there exists a covering on which such α does not exists. To end the proof, we consider that:

$$
t = \frac{n_0 2_0^n}{\sum_{j=0}^{\delta n_0} \binom{n_0}{j}} \leq 5. 2^{1 - b(\delta) + \epsilon) n_0}.
$$

where 5. is a direct consequence of proposition $[5.2.1]$.

 \Box

Remark 5.2.1. Every covering code $C = (\{\alpha_i : 1 \le i \le k\}, \delta)$ of length *n* can be *truncated* to a covering code $C' = (\{\alpha_i\})$ i' : $1 \leq i \leq k$, δ) of length $m < n$ with α_i' i ^{\prime} defined as:

$$
\alpha'_i(x) = \begin{cases} \alpha_i(x) & x \in \{x_i : 1 \le i \le m\}, \\ v & \text{otherwise.} \end{cases}
$$

Remark 5.2.2. Every covering code $C = (\{\alpha_i : 1 \le i \le k\}, \delta n_0)$ of length n can be *extended* to a covering code $C' = (\lbrace \alpha_i' \rbrace)$ $i_{1,\dots,i_{m//n+1}}$: $1 \leq i_{j} \leq k$, *δn*) of length $m > n$ with α_i' i ^{\prime} defined as:

$$
\alpha'_{i_1,\dots,i_{m//n+1}}(x) = \begin{cases} \alpha_{i_j}(x) & x \in \{x_i : n(j-1)+1 \le i \le nj\}, \\ v & \text{otherwise.} \end{cases}
$$

Then, for every $\epsilon > 0$, setting $\delta = 0.5$ we have a covering code C_0 . We can suppose that for implementing our algorithm we have such covering without any need of processing for our algorithm, as we can brute-force look for it once, and then the algorithm can run as many time as required without any need of repeating those computations.

Algorithm 9 Covering Code Local Search

1: C_0 ← the covering code provided by the lemma for $\epsilon > 0 \land \delta = 0.5$ 2: procedure Covering-Codes-LS(*F*) 3: $n \leftarrow |Var(F)|$ 4: if $n \leq n_0$ then return CLS(*F*) 5: $C = (A, \delta n_0) \leftarrow$ the extended covering code of C_0 to *n* variables 6: for $\alpha \in A$ do 7: **if** $LS(F, \alpha, \delta n) = S$ atisfiable then return Satisfiable 8: return Unsatisfiable

This algorithm for 3-SAT run on $O((1.5 + \epsilon)^n)[8]$ $O((1.5 + \epsilon)^n)[8]$.

In fact what made this algorithm relevant is that its performs different from DPLL algorithm. No only on complexity but on what formulas it is able to solve efficiently.When we reduce a problem to SAT we have to take into account how a SAT will behave with our formulas, and from that we have to consider how to code it (if several alternative codings are available). LS allows us to not only design formulas that will work well in a DPLL search.

5.2.3 GRASP

We present now one of the most cited algorithms. GRASP(Generic seaRch Algorithm for the Satisfiability Problem) was introduced by Marques-Silva and Sakallah[\[29\]](#page-115-3) that works on CNF formulas. It is based on clause learning techniques, and unit propagation. It divides the search process in four parts:

- 1. Decide: Chooses a decision assignment at each stage of the search process. Based of experimental results it uses the heuristic DLIS.
- 2. Deduce: Which implement a recursive unit propagation as done before.
- 3. Diagnose: Which implement a clause learning procedure.
- 4. Erase: Which delete assignments implied by the last decision.

The method Erase is needed as the assignment is considered a global variable. The way that the algorithm work is that each time, either a new conflict clause is added to the formula, and therefore we Erase our last assignment to explore other options, or we find an assignment that satisfy the formula.

GRASP is important as it popularized the Clause Learning, and introduced non-chronological backtrack as a standard.

Chapter 6

Probabilistic Algorithms

In this chapter we consider probabilistic algorithms for SAT and *k*-SAT.When we talk about probabilistic algorithms, we are trying to define an incomplete SAT-solver, with a bounded probability error. This might seems like a big loss in power. Nonetheless, given the complexity of the problem, neither are complete solvers capable of solving all formulas in a feasible time. Therefore, dropping completeness could be a fair exchange in order to get better time complexity.

6.1 Paturi-Pudlák-Zane

The first one that we will consider is the Paturi-Pudlák-Zane(PPZ) algorithm [\[35\]](#page-116-4) developed in 1997 and its improvements Paturi-Pudlák-Saks-Zane(PPSZ). It was the first probabilistic algorithm for *k*-SAT proven to work. It has an associated deterministic version that could well be included in the DPLL chapter. Then, some improvements have been done to the algorithm in [\[36\]](#page-116-5) and [\[16\]](#page-115-4).

6.1.1 Paturi-Pudlák-Zane

In this subsection we will present the PPZ algorithm and in the next subsection its improved version PPSZ. The information presented here follows the discussion in [\[36\]](#page-116-5). The difference between PPZ and PPSZ is some added preprocessing. At the time of release, PPSZ was the asymptotically fastest algorithm for random k -SAT with $k > 4$ only improved in 3-SAT by the Schönning random walk algorithm and its improved version the Hofmeister algorithm, because PPSZ were not able to extend the results they found but it was suggested that it should be extendable. At the end, it was proved 9 years later by Hertli [\[16\]](#page-115-4) that the bounds hold on general.

To define the algorithms, we first define some subroutines. The first of them take a CNF formula F, an assignment α and a permutation π and returns other assignment u . Note that in line 5 and 7 on the procedure modify $[A]$ gorithm¹⁰ is only checking whether or not we can unit propagate the variable $x_{\pi(i)}$. The algorithm Search[Algorithm [11\]](#page-89-1) is obtained by running Modify on many pairs (α, π) where α is a random assignment and π a random permutation.

Algorithm 10 Modify subroutine

1: procedure Modify (α, π, F) 2: $F_0 \leftarrow F$ 3: $u \leftarrow \text{empty partial assignment.}$ 4: 5: for $i \in \{0, ..., m-1\}$ do 6: if $\{x_{\pi(i)}\}\in F_i$ then 7: $u + \overline{ } = \{ x_{\pi(i)} = 1 \}$
8: **else** else 9: if $\{\neg x_{\pi(i)}\} \in F_i$ then 10: $u + \equiv \{x_{\pi(i)} = 0\}$
11: **else** else 12: $u + \frac{1}{\pi} \{ x_{\pi(i)} = \alpha(x_{\pi(i)}) \}$ 13: $F_{i+1} = F_i u$ 14: return u

This procedure is the named PPZ algorithm. As we can see is a pretty simple algorithm, but more often than not the work on random algorithms is not to program but to prove them correct. Therefore we will proceed to prove why this algorithm is, in fact, a correct probabilistic algorithm.

Search always answers Unsatisfiable if *F* is unsatisfiable. The only problem is to upper bound the error probability in the case that *F* is unsatisfiable. In fact, we only have to to find $\tau(F)$: the probability that Modify (F, π, α) find a satisfying assignment. The error probability of search would be therefore $(1 - \tau(F))^I$. As $1 - x \leq exp(-x)$ with $x \in [0, 1]$ them $(1 - \tau(F))^I \leq exp(-I\tau(F))$, which is at most $exp(-n)$ where $n = |Var(F)|$ provided $I > n/\tau(F)$. it suffices to give good upper bounds on $\tau(F)$. In order to do that we will prove first two lemmas.

To prove the first lemma we introduce some notation:

Definition 6.1.1. A variable x is forced for an assignment α , a formula F and a permutation π if x is unit propagated in the procedure Modify(α , π , F). *Forced*(α , π , F) is the set of all variables that are forced for (α, π, F)

Lemma 6.1.1. Let *z* be a satisfying assignment of a CNF formula *G*, and let π be a permutation of $\{1, ..., n\}$ and γ be any assignment to the variables. Then, $Modify(G, \pi, y) = z$ if and only if $y(x) = z(x)$ $\forall x \in Var(G) \backslash Fored(z, \pi, G)$.

Proof. If $y(x) = z(x) \forall x \in Var(G) \setminus \text{Forced}(z, \pi, G)$ we prove that $u = z$ where *u* is the assignment provided by Modify (i, π, F) . by induction on *i*. $x_i \pi(0)$ is forced only if F has a unit clause on x , therefore either it is forced for all assignments or it is not forced for any of them. Otherwise $u(x_{\pi(0)}) = z(x_{\pi(0)}) =$ $y(x_{\pi(0)})$ Therefore $u(x_{\pi(0)}) = z(x_{\pi(0)})$. Let suppose that $u(x_{\pi(j)}) = z(x_{\pi(j)})$ for $j < i$. If the variable $x_{\pi(i)}$ is forced on *z* it should be forced on *u* to (and to the same value). Otherwise $u(x_{\pi(j)}) = z(x_{\pi(j)}) = y(x_{\pi(j)})$.

Let *i* be the first index such that $y(x_{\pi(i)}) \neq z(x_{\pi(i)})$ with $x_{\pi(i)} \notin \text{Forced}(z, \pi, G)$ therefore $u(x_{\pi(i)}) = y(x_{\pi(i)}) \neq z(x_{\pi(i)})$.

Now, let *τ*(*F*,*z*) the probability that Modify($α$, $π$, F) would return *z* with random π and α . From the previous lemma:

$$
\tau(F,z) = 2^{-n} \mathbb{E}_{\pi}[2^{\lfloor \text{forced}(z,\pi,F) \rfloor}] \geq 1 \cdot 2^{-n+E_{\pi}[|\text{forced}(z,\pi,F)|]},
$$

where 1. is by the convexity of the exponential function and \mathbb{E}_{π} is the expected value with π as variable.

Let *v* be a variable in $Var(f)$ and *z* a satisfying assignment of *F*. let *C* be a clause in *F*, then we say that *C* is critical for (v, z, F) if the only true literal in *C* is the one corresponding to *v*. Suppose that π is a permutation such that *v* appears after all other variables in *C*. It is easy to follow that $v \in \text{Forced}(z, \pi, F)$ if *C* is critical for (v, z, F) . Conversely, if z is forced it must be critical and appears last on the permutation. Let $Last(v, G, z)$ be the set of permutation of the variables such that for at least one critical clause for (v, G, z) , v appears last on the permutation. That is, the set of permutations where *v* is forced. Let $P(v, z, F)$ the probability that a random permutation is in $Last(v, G, z)$. It follows that

$$
\mathbb{E}_{\pi}[|\text{Forced}(z,\pi,F)|] = \sum_{v \in Var(F)} \mathbb{E}_{\pi}[v \in \text{Forced}(z,\pi,F)]
$$

$$
= \sum_{v \in Var(F)} P(v,z,F).
$$

Putting it all together we have:

Lemma 6.1.2. For any satisfying assignment *z* of a CNF formula *F*

$$
\tau(F,z) \geq 2^{-n+\sum_{v\in Var(F)} P(v,z,F)}.
$$

In particular, if $P(v, z, F) \geq p$ for all variables *v* then $\tau(G, z) \geq 2^{-(1-p)n}$.

Theorem 6.1.3. Let *F* be a *k*-CNF formula. If *F* is satisfiable by an isolated assignment, $\tau(F) \geq 2^{-(1-\frac{1}{k})n}$, where *n* is the number of variables.

Proof. Let *z* be a satisfying assignment of *F*. Then $\tau(F) \geq \tau(F, z)$. If *z* is an isolated assignment, them for each variable v there is a critical clause C_v and the probability that for a random permutation v appear last is $1/k$. Therefore by the previous lemma

$$
\tau(F) \geq \tau(F, z) \geq 2^{-(1-\frac{1}{k})n}.
$$

Then we can think that it is unusual that it is easier to guess a satisfying assignment with such a simple method when there is less satisfiable assignments. We are now going to formalize that intuition, growing on the previous lemmas, and giving similar arguments. For that we will introduce a new concept.

Definition 6.1.2. Let α be an assignment of a proper subset $A \subset Var(F)$. Then the subcube defined by α is the set of the assignments that extends α , i.e. all β that assign all elements in $Var(F)$ and $\beta(x) = \alpha(x), \forall x \in A$.

Lemma 6.1.4. Let *V* be a set of variables and let $A \neq \emptyset$ be a set of assignments that map all variables in *V*. The set of all assignments that map all *V* can be partitioned into a family $(B_z : z \in A)$ of distinct disjoint subcubes so that $z \in B_z \ \forall z \in A$.

Proof. If $|A| = 1$ choose B_z as the set of all possible assignments. Otherwise there is two assignments that differ on one variable *X*. We will partition two subcubes: the one from the assignment that map *x* to 0 and the assignment that map x to 1. Then we proceed recursively on both subcubes. \Box

Given a formula F we will apply this lemma to the set $sat(F)$ of assignments that satisfy *F*, and obtain a family of ${B_z : z \in sat(F)}$. We will analyze the probability $\tau(F, z|B_z)$, that is, the probability of Modify(y, π, F) returns *z* given that $y \in B_z$. It is easy to follow that:

$$
\tau(G) \geq \sum_{z \in sat(F)} \tau(G, z | B_z) Prob(y \in B_z)
$$

$$
\geq \sum_{z \in sat(F)} \min_{\chi \in sat(F)} \{\tau(G, \chi | B_\chi)\} Prob(y \in B_z)
$$

=
$$
\min_{\chi \in sat(F)} \{\tau(G, \chi | B_\chi)\}.
$$

Further on let *z* be a satisfying assignment and $B = B_z$. Let *N* be the set of unassigned variables in B_z (the set of variables that are not assigned equal for all α in *B*). Writing $\text{Forced}_z(y, \pi, F) = N \cap \text{Forced}(y, \pi, F)$ we have

$$
\tau(F, z|B) \ge 2^{-N+E[|Forced_z(z, \pi, G]|]}
$$

Therefore $P(v, z, F) \geq 1/k$ for $v \in N$. This is true because z is the unique satisfying assignment in *B*, hence changing the value in *v* produce a nonsatisfying assignment. Therefore *v* is critical on some permutation and analogously as the lemm[a6.1.2](#page-90-0) we have that $P(v, z, F)$.

Theorem 6.1.5 ([\[36\]](#page-116-5)). Let *F* be a *k*-CNF formula, *z* a satisfying assignment and let *B* be a subcube on *Var*(*F*) that contains *z* and no other satisfying assignment. Then:

$$
\tau(G,z|B) \geq 2^{-(1-\frac{1}{k})|N|}
$$

With that we could analyze the complexity of this algorithm. Modify run on $O(nC)$ where *n* is the number of variables and *C* is the number of clauses (assign CNF-formula has a worst case of *C*). Search run on $O(I \cdot O(\text{Modify}))$ supposing that we can get a random number in $O(1)$ and therefore a random assignment and a random permutation on $O(n)$. As we will set $I > n/\tau(G, z|B) > n/\tau(F)$ we get a running time of $O(n \cdot C \cdot 2^{1-\frac{1}{k}n})$, with a one-sided error probability of *e*^{−*n*} (0.049 for 3-SAT).

6.1.2 Paturi-Pudlák-Saks-Zane

This algorithm includes a preprocessing of the formula prior to the searching algorithm. This preprocessing will try to find isolated assignments improving its running time (or at least its complexity analysis). The preprocessing takes as input a CNF formula *F* and a positive integer *I*. It uses the concept of resolution: should it happen that we have to clauses $C_1 = \{x_1, ..., x_n\}, C_2 = \{y_1, ..., y_{n'}\}$ such that $C_1, C_2 \in G$ and the literal $x_i = \neg y_j$; $i \in \{1, ..., n\}$, $j \in \{1, ..., n'\}$ them $\mathcal{C} = R(C_1, C_2) = \{x_k : k \in \{1, ..., n\} \setminus i\} \cup \{y_k : k \in \{1, ..., n\} \setminus i\}$ $\{1, ..., n'\}\$ and the formula $F' = F \wedge C$ has the same satisfying assignment that *F*. A pair of clauses (C_1, C_2) are said to be s-bounded if they are resolvable and $|C_1|, |C_2|, |R(C_1, C_2)| < s$.

Algorithm 12 Resolve subroutine

1: procedure $\texttt{ResOLVE}(F,s)$ 2: $F_s = F$ 3: while F_s has a s-bounded pair (C_1, C_2) with $R(C_1, C_2) \notin F_s$ do 4: $F_s = F_s \wedge R(C_1, C_2)$ 5: return Satisfiable 6: return F_s 7: 8: procedure $\texttt{ResOLVESAT}(F, s, I)$ 9: $F_s = \text{Resolve}(F, s)$ 10: return Search(*F*,*s*)

With this prepossessing added to the algorithm a better upper bound is proved. Defining

$$
\mu_k = \sum_{j=1}^{\infty} \frac{1}{j\left(j + \frac{1}{k-1}\right)}
$$

Theorem 6.[1](#page-93-0).6 (theorem 1. [\[36\]](#page-116-5)). Let $k \geq 3^1$, let $s(n)$ a function going to infinity. Then, for any satisfiable *k*-CNF formula *F* on *n* variables,

$$
\tau(F_s) \geq 2^{-(1-\frac{\mu_k}{k-1})n - o(n)}
$$

Hence ResolveSat(F,s,I) with $I = 2^{+(1-\frac{\mu_k}{k-1})n+o(n)}$ has an error probability $o(1)$ and running time $2^{-\left(1-\frac{\mu_k}{k-1}\right)n-o(n)}$ on any satisfiable *k*-CNF formula, provided that $s(n)$ goes to infinity sufficiently slowly.

By slowly the theorem means that $s(n)$ diverge in $o(log(n))$. Also the term $o(n)$ can be reduced as wished.

6.2 Schöning WalkSAT algorithm

In this section we consider the Schöning WalkSAT algorithm, first introduced on 1998 [\[40\]](#page-116-6). At the time of publication provides the best complexity for 3-SAT, achieving $O((4/3)^n)$, and it remained so until Hertli result. It is also one of the most simple algorithms. The information presented here follows the discussion in the original paper $[40]$ as well as the book $[42]$, also by Schöning himself. Without further ado, we present the algorithm.

```
Algorithm 13 WalkSAT algorithm
```

```
1: procedure \texttt{Random-LS}(F, \alpha, t)2: for i \in \{1, ..., t\} do
3: if Fα = 1 then return Satisfiable
4: Choose C = l_1, ..., l_n \in F such that C\alpha = 05: Choose randomly n \in 1, ..., n.
6: \alpha \leftarrow \alpha \circ \{l_1 \rightarrow 1\}7: return Unsatisfiable
8: procedure WalkSAT(F,r)
9: n \leftarrow |Var(F)|10: for i \in 1, ..., r do
11: \alpha \leftarrow random two-valued assignment on Var(F)12: if Random-LS(F, \alpha, n) = Satisfiable then return Satisfiable
13: return Unsatisfiable
```
Note that we look in a random walk with as many steps as the number of variables. this parameter, in the original paper, was set to $3n$, but it was later proved that *n* is enough. This is not really important in terms of complexity, as a constant variation does not imply a difference on its big O complexity. Nonetheless is a sensible difference on running time on industrial applications.

Theorem 6.2.1. WalkSAT is a correct Probabilistic Algorithm. The algorithm *runs on* $O^*(2(1-\frac{1}{k})^n)$.

¹Here we are also using the Hertli Result [\[16\]](#page-115-4).

Proof. Let's analyze this algorithms for a *k*-CNF formula *F*. As previously explained, to prove that this is a correct probabilistic algorithm, we have to prove that it has a one-sided bounded error. It is clear that, if no satisfiable assignment exists, the WalkSAT algorithm will always get the correct result, so the stress of the proof on bounding the probability of not finding a satisfying assignment in the case that *F* is satisfiable.

Suppose that F is satisfiable, and therefore there is a satisfying assignments α_0 . Let $n = |Var(F)|$. We will analyze the probability that α_0 is obtanied after *n* iterations of the algorithm. In order to do that, we can analyze the process as a Markov Chain, that is, a sequence of random variables where the value of each variable is independent of all others except the previous one. We have sequence of random variables (X_i) that represents the distance $d_{\mathcal{H}}$ from α_0 to a randomly drawn *α* after *j* steps on the for loop. These random variables have an image $\{0, ..., n\}$. It is easy to see that the value of the random variable X_{i+1} depends only on the value on X_i . In particular we have a Markov chain on a finite state space.

Now let us suppose that we have an assignment α such that $d_{\mathcal{H}}(\alpha, \alpha_0) = d$. If $d = 0$ we have a satisfying assignment, so there is nothing left to do. Otherwise there is a clause $C \in F$ such that $C\alpha = 0$. Let $C = (\vee_{i \in 1,\ldots,n} l_i)$ where each l_i is a literal. In the next steps of our process we will change *α* forcing a map from one l_i to 1. It is clear that α_0 maps at least one of those literals to 1. Let $p = |\{l \in \mathcal{C} : \alpha_0(l) = 1\}|$. There, on each iteration, there is a probability of p/k of decreasing the distance between α and α_0 by 1 and $1 - p/k$ of increasing it by 1. Therefore on the worst case we have a probability of 1/*k* to progress in the right direction.

FIGURE 6.1: Representation of the Stocastic Process

Therefore we can see that our markov chain is denoted by the matrix:

$$
\begin{pmatrix}\n1 & 0 & 0 & \dots & 0 \\
1/k & 0 & (k-1)/k & \dots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
0 & \dots & 1/k & 0 & (k-1)/k \\
0 & \dots & 0 & 1 & 0\n\end{pmatrix}
$$

Now that we have all our machineri working we will define and study three events:

.

- The event E_1 is the event where $X_0 = \lfloor n/k \rfloor$, i.e., the event of an uniformly drawn variable is at distance $\vert n/k \vert$, where $\vert n/k \vert = \max\{a \in \mathbb{N} : a \leq \vert n/k \vert\}$ *n*/*k*}.
- The event E_2 where $X_n = 0$, given that $X_0 = |n/k|$.
- The event E_3 is the event $X_n = 0$

For the analysis of the probability of E_1 we can assume $\alpha_0 = \{x \to 0 :$ $x \in Var(F)$ without loss of generality. To draw our assignment α we randomly choose a value $a_x \in \{0,1\}$ for every $x \in Var(F)$. Therefore, the number of variables mapped to 1 obtained in a random assignment follows a binomial distribution $B(n, 1/2)$. We can see that:

$$
P(E_1) = P(B(n, 1/2) = \lfloor n/k \rfloor) = {n \choose \lfloor n/k \rfloor} \left(\frac{1}{2}\right)^n.
$$

Note also that $k \leq n$, as by the Pigeon Hole Principle, there would exists a variable $x \in Var(F)$ for every $C \in F$ such that both literals x and $\neg x$ belong to *C*, and therefore the formula would be a tautology. We do not consider clauses with repeated literals.

For the probability of the event E_2 , we 'walk' in the right direction at least $\lfloor n/k \rfloor$. As each step follows a Bernoulli distribution of probability $1/k$ we can see that:

$$
P(E_2) = P(B(n, 1/k) \ge \lfloor n/k \rfloor) = \sum_{i=\lfloor n/k \rfloor}^{n} {n \choose i} \left(\frac{1}{k}\right)^i \left(\frac{k-1}{k}\right)^{n-i}
$$

Now we can see that

$$
P(E_3) \ge P(E_1 \wedge E_2) = P(E_1)P(E_2)
$$

= $\binom{n}{\lfloor n/k \rfloor} 2^{-n} \sum_{i=\lfloor n/k \rfloor}^n \binom{n}{i} \left(\frac{1}{k}\right)^i \left(\frac{k-1}{k}\right)^{n-i}$

$$
\ge \binom{n}{\lfloor n/k \rfloor}^2 2^{-n} \left(\frac{1}{k}\right)^{n/k} \left(\frac{k-1}{k}\right)^{n-(n/k)}
$$

= $poly \ 1 \cdot 2^{2\mathfrak{h}(1/k)n} 2^{-n} \left(\frac{1}{k}\right)^{n/k} \left(\frac{k-1}{k}\right)^{n-(n/k)}$
= $\frac{2^{-n} \left(\frac{1}{k}\right)^{n/k} \left(\frac{k-1}{k}\right)^{n-(n/k)}}{\left(\frac{1}{k}\right)^{2n/k} \left(\frac{k-1}{k}\right)^{2\left((k-1)/k\right)n}} = \frac{1}{\left(2\left(1-\frac{1}{k}\right)\right)^n}.$ (6.1)

Where 1. is a direct consequence of proposition $[5.2.1]$. Now that we have bounded the probability that Random-LS finds a satisfiable assingment, we can see that, if $r = c \left(2 \left(1 - \frac{1}{k} \right) \right)$)^{*n*} then the probability of WalkSAT algorithm not finding a correct assignment conditioned on its existence is:

$$
\left(1-\frac{1}{\left(2\left(1-\frac{1}{k}\right)\right)^n}\right)^{\left(c2\left(1-\frac{1}{k}\right)\right)^n} \approx^{2} e^{-c},
$$

where on 2. we coinsder n to be big enough in order to approximate to the limit of the expresion. \Box

This algorithm was fully derandomized [\[32\]](#page-115-5).

6.3 Summary of introduced algorithms

As a last section of this part we will summarize all SAT solver explained and classify them. Note that restricted algorithms are considered to be complete, mean that they are complete for their restricted set of Formulas.

TABLE 6.1 : Algorithms presented.

We have gone through the main algorithms in question of their theoretical relevance. We would like to make a mention of Stalmark's algorithm. This algorithm, instead of trying to solve the SAT problem focuses on the resolution of the TAUT analog. This algorithm had great importance since its discovery and is said to be very well adapted to induced formulas of real situations. However, our mainly theoretical point of view has made us prefer to expose other algorithms.

Part III Reductions

Chapter 7

Development

The objective of this chapter is to develop a brief work based mostly on original ideas as a final step to an extensive work of deepening in an area of knowledge. It also seeks to illustrate some of the skills acquired during the degree in the context of programming, as well as to develop tools that are of practical interest in the field of mathematics.

To this end, we are going to create a library (SATreduce) in the Python programming language that will allow us to solve NP-complete problems in an elegant and efficient way. We will consider graph, hypergraph, and other problems.

7.1 Development Environment

In this chapter we briefly introduce the development environment used to program reductions.

We use the programming language Python for three main reasons:

- It is interpreted. Furthermore, it is compatible with major platforms and systems. This allow us to develop a program that is accessible to virtually everyone without the need of compiling the program multi-platform.
- It is considered to have one of the most accessible learning curves. Therefore, is excellent to introduce to reductions programming to those who are mostly interested in the theoretical part.
- It allow us to satisfy all necessary software dependencies using free software[\[47\]](#page-116-7). I believe that, whenever possible, public-funded research should be accessible to everyone interested. This implies reducing the barriers to access to knowledge to a minimum. Furthermore, it must not encourage the economic gain of a third party private entity that is not even aware of the existence of the project by making it compulsory to use it for the full exploitation of the project carried out.

All test cases are done in an ARCH-BASED OS. In particular:

Linux 4.19.122-1-MANJARO 2020 x86_64 GNU/Linux

With 4 physical (8 virtual) processor Intel (R) Core (TM) i7-8550U CPU © 1.80GHz.

The code was uploaded and updated at:

<https://github.com/pedrobn23/TFG/tree/master/src>

The code uploaded may be subject to small modifications or corrections, so we recommend to check the link best. On this repository you will also find this document and all the .text files attached to it.

7.2 PySAT

PySAT[\[19\]](#page-115-6) is a library developed for python SAT solving. It has been primarily develop by Alexey Ignatiev, Antonio Morgado, Joao Marques-Silva since 2018. Among their feature we can highlight:

- Solvers: PySAT include some solvers of great diffusion. Namely
	- CaDiCaL: A CDCL based, developed by Armin Biere et al. Armin Biere is one of the leading voices in SAT Solving. Is one of editors of Handbook of Satisfiability. CaDiCaL won the SAT Race 2019.
	- MapleSAT: Another variations of DPLL. It used an specific heuristic: the learning rate branching heuristic (LRB), which is inspired in the ones that are used for in Machine Learning as in Decision Trees. MapleSAT is developed by the University of Waterloo, and is the winner of SAT competition 2018.
	- Minisat: is "a minimalistic, open-source SAT solver, developed to help researchers and developers alike to get started on SAT." Is one of the main references in SAT solving. This year SAT competitions included a MiniSAT Hack Track, that aim to display the best improvements possible to the classical MiniSAT with only minor changes (<10 lines).

We will use generally the solver CaDiCaL. The solvers read a formula as a list of list of integers, negated or not. Should an integer *n* exists, it assumes that all integers in $\{1, ..., n\}$ exist as variable. Each particular solver is a class. The class Solver is a wrapper that works as an interface between the users and a solver.

- Cardinality Encodings: PySAT includes a series of cardinality encodings. This will play an important in the development of reductions, as this type of constraints are commonplace on problems. An example the formula explained in the lemma $[3.3.1]$, that is the called pairwise encoding. There are two classes involved:
	- IDPool: a class that help us manage variables without having personally to have a log of what variable is associated to each integer. Nonetheless, we do not consider this class to be a black box. Reading

the code we recognize that the variables are named after their order of arrival. This details is important in order to solve some function problems.

– CardEnc: a class that allow us to encode cardinality restrictions of the type atmost, atleast and equals. I feel proud to say that I notified a bug in this particular class relative to a unidiomatic use of Python that derived in a error, while thoroughly studying the project. \geq

7.3 Reductions

7.3.1 Graph based Problems

In order to demonstrate the utility of SAT, a series of reductions will be developed. This will imply a formal approach to the resolution of the problems, as well as deploying a little theoretical background to some problems when needed. Also we would like to show that this technique provides sometimes really simple approximations to the problems. We start approaching graph related problems, for two reasons:

- 1. The graphs arouse interest both in mathematics and in computer science, thus deriving a work that could be interesting for profiles coming from both subjects.
- 2. We want to use SAT to solve problems at least as complex as SAT. Thus, we look for problems that are NP-Hard. Some of the most important classical NP-Problems are defined over graphs.

We choose to solve three of the 21 Karp's NP-Complete problems[\[21\]](#page-115-7), namely:

- Hamiltonian Path.
- Proper Coloring.
- Dominant Subseting.

When we talk about graph in this subsection we will consider undirected graphs only, more precisely, undirected graphs without more than one edge between two nodes and no loops.

These problems are among the most representatives of graphs theory, so we believe that there is a great interest developing a library to solve then. Thorough the chapter, when we refer to $\mathcal{C}(A)$ we do it in the context of the lemma [3.3.1.](#page-46-0)

Hamiltonian Path

The problem of, given a graph, whether there exists a Hamiltonian Path is well know to be NP-Complete. Then by Cook Theorem it is known that a reduction from the problem of the Hamiltonian Cycle to SAT exists. This theorem is constructive, so it effectively does gives a reduction. Nonetheless, this reduction is unmanageable and in order to use SAT-solvers to improve Hamiltonian cycle resolution it would be necessary to provide easier programming techniques. On this subsection an alternative reduction will be shown.

Definition 7.3.1. A Hamiltonian cycle (resp. path) is a cycle (resp. path) that visits every node in a graph only once. The associated problem is to check, given a graph, whether such cycle (resp. path) exists.

We will consider the problem of the Hamiltonian cycle of undirected graphs. Therefore an edge would have two sources instead of a source and a target as it is regarded on directed graphs.

This problem is a very good example to represent what means to use a SATsolver to solve a hard problem. The presented reduction is done as shown in [\[4\]](#page-114-3), with a minor error solved.

It moves the complexity of the problem from how to solve it to how to implement a SAT-solver.The reduction will encode the Hamiltonian cycle problem as a SAT problem. We use the same reduction in order to reduce both the problem for the Hamiltonian path and the Hamiltonian cycle.

Let $G = (V = \{v_1, ..., v_n\}, E = \{e_1, ..., e_m\})$ be a graph. To reduce it to a SAT problem, we will first define the variables $\{x_{i,j}: i \in 1, ..., n; j \in 1, ..., n\}$. If the variable $x_{i,j}$ is assigned to true it would mean that the vertex v_i is in position *j* in the path. We would like to find a assignment of these variables that satisfy the following clauses.

1. Each vertex must appear at least once in the path, and only one. Thus:

$$
C({x_{i,j}: j \in 1,..., n})
$$
 $i \in 1,..., n.$

2. Every position in the path must has an associated vertex, and only one:

$$
C({x_{i,j}: i \in 1,..., n})
$$
 $j \in 1,..., n.$

3. Two consecutive vertices have to be adjacent:

$$
(\neg x_{i,j} \lor \neg x_{i+1,k}) \qquad \forall (k,j) \notin E, i \in 1, ..., n-1.
$$

4. Should a cycle be wanted, we add:

$$
(\neg x_{1,j} \lor \neg x_{n,k}) \qquad \forall (k,j) \notin E.
$$

This is a correct reduction, i.e., that an assignment that can satisfy these clauses exists if, and only if, the graph *G* has a Hamiltonian graph. If such an assignment exists we can make a Hamiltonian cycle with the variables assigned to 1. On the other hand if such cycle exists an assignment that assign to 1 the variable $x_{i,j}$ given that the vertex v_i is in position *j* in the path would satisfy all the clauses.

The optimization trick

The next problems that we consider have a characteristic in common: they are optimization problem with an associated NP-Complete decision problem. That is, we have a decision problem that, given a graph *G* and a number *k*, check whether a condition is satisfied, and an associated minimizing (resp. maximizing) problem that consists of looking for the least (resp. greatest) *k* where the conditions are satisfied for *G*. For the rest of the discussion we consider that we can solve the decision problem in $O(f(n))$ for some $f \in \mathbb{N}^{\mathbb{N}}$.

The naive approach is straight forward: trying iteratively for every *k* increasingly (resp. decreasingly) until that one satisfy the condition, therefore finding the minimum (resp. maximum). As in all three problems it happens that $1 \leq k \leq n$ therefore we can solve the function problem in $O(n f(n))$.

Nonetheless there is a somewhat common trick that consist of using one more property of these type of problem: if the conditions are satisfied for a number *k* then they are satisfy for every $k' \geq k$. Therefore we can implement a binary search, therefore achieving a better efficiency $O(log(n)f(n))$.

This method allows us to study the decision problem, and having an slightly refined algorithm to solve the associated optimization problem.

Coloring

We now introduce one of the most active problems in graph theory: the graph coloring. In this text we have already consider graph coloring, defined in definition [3.4.6.](#page-56-0) In that context we focused on trying to find a stable coloring in order to exploit symmetry in formulas, we now focus on proper colorings.

Definition 7.3.2. Let $G = (V, E)$ be a graph and let π be a coloring of G. We say that π is a *proper coloring* of *G* if not two adjacent vertices belong to the same color.

Definition 7.3.3. The Graph Proper Coloring Language is the language *L* ⊂ $GRAPH \times \mathbb{N}$, such that for every $(G, k) \in L$ there exists a proper coloring π of *G* such that $|\pi| = k$.

The Graph Proper Coloring Decision problem is a well-known NP-Complete problem. We will reduce this problem to SAT in order to make use of efficient solvers, nonetheless, we will first consider a minor generalization of the problem.

Definition 7.3.4. We define the chromatic number function $\chi : \text{GRAPH} \to \mathbb{N}$ as follows:

$$
\chi(G) = \min\{|\pi| : \pi \text{ is a proper coloring of } G\} \qquad G \in \text{GRAPH}
$$

We get an associated function problem by considering the relation *R* ⊂ $GRAPH \times \mathbb{N}$ such that $R = \{ (G, \chi(G)) : G \in GRAPH. \}$. This problem is NP-Hard, as a simple result of the following remark.

Remark 7.3.1. Let *L* be The Graph Proper Coloring Language. If $(G, k) \in L$ we have that $(G, k') \in L$ for every $k' \geq k$.

Therefore being able to solve this problem is enough to be able to solve the coloring problem. This remark also allow us to use the optimization trick for minimizing, if we find a upper bound for *k*. This upper bound is the number of vertices, as every discrete coloring is a proper coloring. Let us therefore solve the decision problem and we will solve both problem described in this subsection as a consequence.

Let *G* = $(V = \{v_1, ..., v_n\}, E = \{e_1, ..., e_m\})$ be a graph and let *k* ∈ **N**. To reduce it to a SAT problem, we will first define the variables $\{x_{i,j}: 1 \leq i \leq j\}$ $n, 1 \leq j \leq k$. If the variable $x_{i,j}$ is assigned to true, it would means that the vertex v_i is in the color j . We would like to find a assignment of these variables that satisfy the following clauses.

1. Each vertex should have one and only one coloring. Thus, for every vertex v_i :

 $C({x_{i,j}: j \in 1, ..., k})$ $\forall i \in 1, ..., n$.

2. No two adjacent vertices should have the same color:

$$
(\neg x_{i,j}, \neg x_{k,j}) \qquad \forall (i,k) \in E, \ \forall j \in 1, ..., k.
$$

This is a correct reduction. If there exists a satisfying assignment of the following clauses, thanks to 1, we can define a coloring of *G* and thanks to 2, such coloring is a proper coloring. Reversely, should that coloring V_i exists we can define a satisfying assignment *α* as:

$$
\alpha(x_{i,j})=1_{V_j}(v_i),
$$

where 1_{V_j} is the characteristic function of V_j .

.

Dominant subset

As in the previous subsection this problem is among the ones that consist on a NP-Complete decision problem with an associated NP-Hard minimizing problem. Dominant subseting is used in planification in order to ensure supply of areas using the minimum amount of resources.

Definition 7.3.5. Let $G = (V, E)$ be a graph and let $V' \subset V$. We say that V is a *dominant subset* of *G* for every $v \in V$ there exists some $v' \in V'$ such that $(v, v') \in E$.

Definition 7.3.6. The Graph Dominant Subset Language is the language *L* ⊂ GRAPH \times **N**, such that for every $(G, k) \in L$ there exists a dominant subset V' of *G* such that $|V'| = k$

Therefore we have a decision problem. We define the associated minimizing problem of, for a given graph *G*, finding the least $k \in \mathbb{N}$ that satisfy the decision problem. As we can state that $k \leq |V|$ and the remark [7.3.1](#page-105-0) holds for The Graph Dominant Subset Language we can also use the optimization trick for minimizing in order to solve the associated minimizing problem, once we solve the decision problem.

Let *G* = $(V = \{v_1, ..., v_n\}, E = \{e_1, ..., e_m\})$ be a graph and let *k* ∈ **N**. To reduce it to a SAT problem, we will first define the variables $\{x_i : 1 \le i \le n\}$. If the variable x_i is assigned to 1, it would means that the vertex v_i is in V' . We would like to find a assignment of these variables that satisfy the following clauses.

1. At most *k* vertex should be selected:

$$
(\neg x_{i_j} : j \in 1, ..., k+1) \qquad i_j \in 1, ..., n.
$$

2. All vertices should be accessible, therefore

 $(x : (x, x_i) \in E)$ $i \in 1, ..., n$

7.3.2 Other problems approached

QBF

We look on this problem for a series of reasons:

- We want to study a PSPACE-Complete problem in order to analysis it whole complexity, and to make some considerations about the feasibility of this class.
- We have commented about Gödel letter $[25]$. The 'Gödel's dream' was of a QBF solver that run in linear time. A bit too ambitious, but nothing to reproach yourself with, given the youth of the branch at the time.
- The 23rd International Conference on Theory and Applications of Satisfiability Testing is on 3-10 July 2020. A workshop about the state of the

art on QBF will be hold, and I was interested in trying to implement over this clean skeleton some of the improvements.

At the moment of exposing this thesis the conference will be finishing, however I am very interested to see how it will be and to see what line or development are though of being optimal.

We implement a pretty simple QBF-solver that we have called **naive-solver**. We hope that it will serve as a basis for developing QBF-solvers over preexisting SAT-Solvers.

The resolution is done by computing the formula as in $2.2.10$. Therefore we have an algorithm of complexity $O(2^n)$ where *n* is the number of variables.

Closest string

This is the latest of the decision problems with an associaged minimization problem. it is named closest string problem. Our interest in this problem arises from our study of Hamming distance for the Local Search Procedure.

We find that this is a simple, yet interesting problem relating codes and strings. Let us define the problem.

Definition 7.3.7. Let $m \in \mathbb{N}$ and $s_1, s_2 \in \{0, 1\}^m$, we define the Hamming distance for Strings $d_{\mathcal{S}}$ as:

$$
d_{\mathcal{S}}(s_1, s_2) = |\{i : s_1(i) \neq s_2(i)\}|,
$$

where $s_j(i)$ is the position *i* of the string s_j .

Definition 7.3.8. The Language of Closest string of length *m* is the language $L \subset (\{0,1\}^m)^n \times \mathbb{N}$, such that, for every $((s_1, ..., s_m), k) \in L$ there is an string $s' \in \{0,1\}^m$ such that $d_S(s', s_j) < k$ for all $j \in 1, ..., n$. The string *s'* is called a string of distance *k*.

This problem is known to be NP-Complete[\[23\]](#page-115-9). We reduce it to SAT. For this reduction we use some of the techniques developed in order to solve the Tseitin theorem [3.4.3.](#page-61-0) In particular we use the fact that:

$$
z \iff (x \iff y) = (x \lor \neg y \lor z) \land (\neg x \lor y \lor \neg z) \land
$$

$$
(x \lor \neg y \lor \neg z) \land (x \lor y \lor z) = \mathcal{C}'(z, x, y)
$$
 (7.1)

We would use this in order to gain more flexibility reducing the problem, without needing a GSAT solver.

Lets define the reduction, Let $\{s_1, ..., s_n\}$ be a set of strings of length $k \in \mathbb{N}$. We look for a string s' that is at most at distance k . To reduce this to a SAT problem, we will first define the variables $\{x_{i,j} : 1 \leq i \leq m, 1 \leq j \leq n\}$, $\{y_i: 1 \leq i \leq m\}$ and $\{z_{i,j}: 1 \leq i \leq m, 1 \leq j \leq n\}$. $x_{i,j}$ represents the value of the word s_j at position *i*, and y_j represent the value of s' at position *j*. z_j is
an auxiliary variable that allow us to make a more elegant reduction. We would like to find a assignment of these variables that satisfy the following clauses.

1. $z_{i,j}$ is true if and only if $x_{i,j} = y_j$:

$$
\mathcal{C}'(z_{i,j}, x_{i,j}, y_i) \qquad i \in 1, ..., m, j \in 1, ..., n
$$

2. At most $z_{i,j}$ can be true for each *j*:

$$
(\neg x_{i_j} : j \in 1, ..., k+1) \qquad i_j \in 1, ..., n.
$$

Note that, although we treat $x_{i,j}$ as variables, they are fixed constants, defined by the problem itself. It is easy to see that if such a satisfying assignment *α* exists therefore the string $\langle \alpha(y_i) : 1 \le i \le m \rangle$ is a string of distance k. Conversely, if such an string *s* exists, by assigning $\alpha(y_i) = s(i)$ and computing every value of $z_{i,j}$ we can find a satisfying assignment of the clauses.

7.4 Implementation

In this subsection, once we have proved the reduction in a constructive way, we proceed to program this in order to make these ideas usable.

Planning

We consider that we have to face three problems:

- Representation of the graph. We want to make an elegant yet useful representation of the graph.
- Development of the reduction.
- Adapt the reduction to the solver.
- Prepare folder as a package in order to be importable and release it.

Analysis and Design

We start with the design of the library. We divide the library in four different modules grouped by thematic. We can see the organization in figure [7.1.](#page-109-0) Lets talk about each module.

We start with the module graph. For that purpose we implement a graph class. We choose the basic implementation from [\[38\]](#page-116-0), that resembles the one done by Networkx. We like the fact that it uses a dictionary, an object that naturally represents a graph. We improve two major details:

1. The original class uses a dictionary as a god-object on which resides all the work. As recommended in [\[45\]](#page-116-1), we choose to inherit directly from dict, in order to gain some strength in processing.

2. We consider a set to be better to represent the adjacent nodes, as the order that a list provides is useless and makes more difficult membership checking.

We implement the graph in a class Graph, that can be found in the file graph.py. We implement, among other functionalities that provide a good interface, the methods:

- find_hamiltonian_path
- coloring
- dominating_subset

Let's now talk about the package utility, we implement two main functionalities:

- 1. The functions xvar,yvar, zvar that provide an useful interface to define variables with an undefined number of variables. For that we use the multiple function parameters syntax allowed in python. This functions should be used in conjunction with an IDPool object.
- 2. We implement the triple_equal function that is to be used in the closest string reduction.

FIGURE 7.1: Diagram of the library. We can see in red the library name, in white the different modules and in grey the reductions implemented in each module.

The last two modules include a single homonym function each, that implements the associated reduction. More information about the code can be found in the documentation of each function.

Test

In order to automatize testing we use the Python class of test classes. Therefore we can use automatic test cases in order to check our implementations. The work-flow followed is an agile one, on which we first define the objective of each code along with the test cases that we want it to pass, and then we start to develop the code. We use the class graph_test.py to test the Graph class as a example of this process.

Conclusions

In this document we have developed an overview on the properties, algorithms and applications of SAT problems. We have made a selection of these results, mainly because the investigation on SAT has been a thriving field in the last half century. Nonetheless, we consider that all main results have been covered. To our knowledge, we have also studied the most influential algorithms that can be found in the literature.

We are satisfied with the work done in the bibliographic research on the topic. On the development of the library we celebrate what is done, with the note that much more can be done. There are a lot of NP-Complete problems, and as many reductions.

Further work

We propose further work to be done in each part:

- 1. For the first part we are interested in the Valiant–Vazirani theorem. This theorem states that if there is a polynomial algorithm for Unambiguous- SAT , then $NP = RP$. The proof is based on the Mulmuley–Vazirani–Vazirani isolation lemma.
- 2. As we mention in the summary section, we would like to explore the Stalmark's Algorithm. For the first section of this part the addition of the Schaefer's dichotomy theorem would be nice.
- 3. Initially the reduction of MAXSAT to a class based of on SAT-Solver was proposed as one of the objectives of this thesis. This work has already been done for PySAT as can be seen in:

<https://github.com/pysathq/pysat/blob/master/examples/rc2.py>.

Therefore we propose as further work to improve the skeleton provided with the class nativeQBF.

Acknowledgements

Professor Serafín Moral Callejón has helped me greatly with his corrections and advice in writing this document, assisting me with useful bibliography and notifying when more clarity was needed. I am also thankful to him and to the Department for allowing me to pursue this project with a collaboration grant.

The PySAT project has been a key piece in adding another dimension to this work, which otherwise would have been eminently theoretical. Without them it would not have been possible to demonstrate so efficiently the advantages that SAT research provides us with.

Lastly, I thanks to all my classmates that has enriched this text, leaving a bit of their ideas in myself and in this project every time we discuss how a concept could be understand or clarified. In particular, conversations with the undergraduates Antonio Coín, Sofía Almeida, Yabir García, Antonio Martín and José María Martín, and the graduates Pablo Baeyens and Francisco Luque have greatly influence this thesis.

Bibliography

- [1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University Press, 2009.
- [2] László Babai. "Monte-Carlo algorithms in graph isomorphism testing". In: Université tde Montréal Technical Report, DMS 79-10 (1979).
- [3] Yves Bertot. "A short presentation of Coq". In: International Conference on Theorem Proving in Higher Order Logics. Springer. 2008, pp. 12–16.
- [4] Dor Cohen. Find hamilton cycle in a directed graph reduced to sat problem. Computer Science Stack Exchange. URL: [https://cs.stackexchange.](https://cs.stackexchange.com/q/49593%20(version:%202016-07-29)) [com/q/49593%20\(version:%202016-07-29\)](https://cs.stackexchange.com/q/49593%20(version:%202016-07-29)).
- [5] Stephen Cook. "The P versus NP problem". In: The millennium prize prob $lems$ (2006), pp. 87-104. URL: [https://www.claymath.org/millennium](https://www.claymath.org/millennium-problems/p-vs-np-problem)[problems/p-vs-np-problem](https://www.claymath.org/millennium-problems/p-vs-np-problem).
- [6] Stephen A Cook. "The complexity of theorem-proving procedures". In: Proceedings of the third annual ACM symposium on Theory of computing. 1971, pp. 151–158.
- [7] Nadia Creignou and Miki Hermann. "Complexity of generalized satisfiability counting problems". In: Information and computation 125.1 (1996), pp. 1–12.
- [8] Evgeny Dantsin et al. "Deterministic algorithms for k-SAT based on covering codes and local search". In: International Colloquium on Automata, Languages, and Programming. Springer. 2000, pp. 236–247.
- [9] Adnan Darwiche and Knot Pipatsrisawat. "Complete Algorithms." In: Handbook of Satisfiability 185.99-130 (2009), p. 142.
- [10] Paul Erd˝os and L´aszl´o Lov´asz. "Problems and results on 3-chromatic hypergraphs and some related questions". In: Colloquia Mathematica Societatis Janos Bolyai 10. Infinite And Finite Sets, Keszthely (Hungray). Citeseer. 1973.
- [11] Scott Fortin. The graph isomorphism problem. 1996. URL: [https://doi.](https://doi.org/10.7939/R3SX64C5K) [org/10.7939/R3SX64C5K](https://doi.org/10.7939/R3SX64C5K).
- [12] John Franco and John Martin. "A History of Satisfiability." In: Handbook of satisfiability 185 (2009), pp. 3–74.
- [13] Robert Goldblatt. Topoi: the categorial analysis of logic. Elsevier, 2014.
- [14] Carla P Gomes and Ashish Sabharwal. "Exploiting Runtime Variation in Complete Solvers." In: Handbook of Satisfiability (2009).
- [15] Philip Hall. "On representatives of subsets". In: Classic Papers in Combinatorics. Springer, 2009, pp. 58–62.
- [16] Timon Hertli. "3-SAT Faster and Simpler—Unique-SAT Bounds for PPSZ Hold in General". In: SIAM Journal on Computing 43.2 (2014), pp. 718– 729.
- [17] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, languages, and computation. Pearson, 2007. Chap. 8.
- [18] Alfred Horn. "On sentences which are true of direct unions of algebras". In: The Journal of Symbolic Logic 16.1 (1951), pp. 14–21.
- [19] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. "PySAT: A Python Toolkit for Prototyping with SAT Oracles". In: SAT. 2018, pp. 428– 437. do i: [10.1007/978-3-319-94144-8_26](https://doi.org/10.1007/978-3-319-94144-8_26). ur l: [https://doi.org/](https://doi.org/10.1007/978-3-319-94144-8_26) [10.1007/978-3-319-94144-8_26](https://doi.org/10.1007/978-3-319-94144-8_26).
- [20] Russell Impagliazzo and Ramamohan Paturi. "On the complexity of k-SAT". In: Journal of Computer and System Sciences 62.2 (2001), pp. 367– 375.
- [21] Richard M Karp. "Reducibility among combinatorial problems". In: Complexity of computer computations. Springer, 1972, pp. 85–103.
- [22] Peter Lammich. "Efficient verified (UN) SAT certificate checking". In: Journal of Automated Reasoning 64.3 (2020), pp. 513–532.
- [23] J Kevin Lanctot et al. "Distinguishing string selection problems". In: Information and Computation 185.1 (2003), pp. 41–55.
- [24] Leonid Levin. Leonid Levint Curriculum Vitae. URL: [http://www.cs.bu.](http://www.cs.bu.edu/fac/lnd/research/curv.htm) [edu/fac/lnd/research/curv.htm](http://www.cs.bu.edu/fac/lnd/research/curv.htm).
- [25] Dick Lipton. "Gödel's Lost Letter and P=NP". In: $URL: \text{https://}/$ rjlipton.wordpress.com/about-me/.
- [26] David JC MacKay and David JC Mac Kay. Information theory, inference and learning algorithms. Cambridge university press, 2003. Chap. 1, pp. 2– 15. ur l: [https : / / web . archive . org / web / 20160304062221 / http :](https://web.archive.org/web/20160304062221/http://www.inference.phy.cam.ac.uk/itprnn/book.pdf) [//www.inference.phy.cam.ac.uk/itprnn/book.pdf](https://web.archive.org/web/20160304062221/http://www.inference.phy.cam.ac.uk/itprnn/book.pdf).
- [27] Stephen M Majercik. "Stochastic Boolean Satisfiability." In: Handbook of satisfiability 185 (2009), pp. 887–925.
- [28] Victor W Marek. Introduction to mathematics of satisfiability. CRC Press, 2009.
- [29] Jo˜ao P Marques-Silva and Karem A Sakallah. "GRASP: A search algorithm for propositional satisfiability". In: IEEE Transactions on Computers 48.5 (1999), pp. 506–521.
- [30] Robin Moser. "A constructive proof of the Lovász local lemma". In: Proceedings of the forty-first annual ACM symposium on Theory of computing. 2009, pp. 343–350.
- [31] Robin Moser. Exact Algorithms for Constraint Satisfaction Problems. Logos Verlag Berlin GmbH, 2013, pp. 17–45.
- [32] Robin A Moser and Dominik Scheder. "A full derandomization of schöning's k-SAT algorithm". In: Proceedings of the forty-third annual ACM symposium on Theory of computing. 2011, pp. 245–252.
- [33] $NPDatalog$ Main page. URL: http://wwwinfo.deis.unical.it/ [npdatalog/](http://wwwinfo.deis.unical.it/npdatalog/) (visited on 06/23/2020).
- [34] Christos H Papadimitriou. "Games against nature". In: Journal of Computer and System Sciences 31.2 (1985), pp. 288–301.
- [35] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. "Satisfiability coding lemma". In: Proceedings 38th Annual Symposium on Foundations of Computer Science. IEEE. 1997, pp. 566–574.
- [36] Ramamohan Paturi et al. "An improved exponential-time algorithm for k-SAT". In: Journal of the ACM (JACM) 52.3 (2005), pp. 337–364.
- [37] Steven David Prestwich. "CNF Encodings." In: Handbook of satisfiability 185 (2009), pp. 75–97.
- [38] Python Advanced Course Topics, Graphs in Python. ur l: [https://www.](https://www.python-course.eu/graphs_python.php) [python-course.eu/graphs_python.php](https://www.python-course.eu/graphs_python.php) (visited on 06/23/2020).
- [39] Karem A Sakallah. "Symmetry and Satisfiability." In: Handbook of Satisfiability 185 (2009), pp. 289–338.
- [40] T Schoning. "A probabilistic algorithm for k-SAT and constraint satisfaction problems". In: 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039). IEEE. 1999, pp. 410–414.
- [41] Uwe Schöning and Jacobo Torán. "A note on the size of Craig interpolants". In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2007.
- $|42|$ Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms and Analyses. Vol. 3. Lehmanns media, 2013.
- [43] Dmitry Sergeev. "Hamiltonian" path using Python. Computer Science Stack Overflow. URL: [https://stackoverflow.com/questions/4798260](https://stackoverflow.com/questions/47982604/hamiltonian-path-using-python%20(version:%202020-06-23))4/ [hamiltonian-path-using-python%20\(version:%202020-06-23\)](https://stackoverflow.com/questions/47982604/hamiltonian-path-using-python%20(version:%202020-06-23)).
- [44] Carsten Sinz and Markus Iser. "Problem-sensitive restart heuristics for the DPLL procedure". In: International Conference on Theory and Applications of Satisfiability Testing. Springer. 2009, pp. 356–362.
- [45] Brett Slatkin. Effective Python: 90 Specific Ways to Write Better Python. Addison-Wesley Professional, 2019.
- [46] Joel Spencer. "Asymptotic lower bounds for Ramsey functions". In: Discrete Mathematics 20 (1977), pp. 69–76.
- [47] Richard Stallman. Free software, free society: Selected essays of Richard M. Stallman. Lulu. com, 2002.
- [48] Richard Tichy and Thomas Glase. "Clause learning in sat". In: University of Potsdam (2006).
- [49] Grigori S Tseitin. "On the complexity of derivation in propositional calculus". In: Automation of reasoning. Springer, 1983, pp. 466–483.
- [50] Lintao Zhang et al. "Efficient conflict driven learning in a boolean satisfiability solver". In: (2001), pp. 279–285.