
Facultad de Ciencias
Escuela Técnica Superior de Ingenierías
Informática y de Telecomunicación

Doble Grado en IngenieríaInformática y Matemáticas
trabajo de fin de grado

The SAT Problem

Presentado por:
Pedro Bonilla Nadal
Dirigido por:
Serafín Moral Callejón

Ciencias de la computación e Inteligencia Artificial
Curso académico 2019-2020

The SAT Problem
Pedro Bonilla Nadal

Pedro Bonilla Nadal The SAT Problem.
Trabajo de fin de Grado.
Curso académico 2019-2020.

Responsable de
tutorización

Seraf́ın Moral Callejón
Ciencias de la Computación e
Inteligencia Artificial

Doble Grado en Ingenieŕıa
Informática y Matemáticas

Facultad de Ciencias
Escuela Técnica Superior

de Ingenieŕıas Informática
y de Telecomunicación

Universidad de Granada

Declaración de originalidad

D.. Pedro Bonilla Nadal

Declaro expĺıcitamente que el trabajo presentado como Trabajo de Fin de
Grado (TFG), correspondiente al curso académico 2019-2020, es original, enten-
dida esta, en el sentido de que no ha utilizado para la elaboración del trabajo
fuentes sin citarlas debidamente.

En Granada a 29 de Junio de 2020.

Fdo: Pedro Bonilla Nadal

A Mariquilla, una constante positiva.

ix

Contents

Introduction xi

Summary xv

I Satisfiability Problem: Definition and Relevance 1

1 Logic 3
1.1 Boolean Algebra . 3
1.2 Propositional Logic . 5

1.2.1 Syntax of Propositional Logic 5
1.2.2 Semantics of Propositional Logic 6

2 Definition of the problem 11
2.1 Satisfiability Problem . 11

2.1.1 Decision Problems . 11
2.1.2 Definition . 11

2.2 Variations . 12
2.3 SAT certificates . 15
2.4 Constraint Satisfaction Problem 16

3 Complexity Classes and Relevance of the Problem 19
3.1 Model of Computation . 19

3.1.1 Deterministic Computation 19
3.1.2 Non-deterministic Computation 21
3.1.3 Reductions . 22

3.2 Complexity Classes . 23
3.2.1 Deterministic complexity 23
3.2.2 Non-Deterministic Complexity 24
3.2.3 Complementary Classes 26

3.3 Completeness . 27
3.3.1 Definition . 27
3.3.2 Cook-Levin Theorem . 28
3.3.3 Graph Isomorphism Problem 31
3.3.4 Other Completeness Results 33
3.3.5 Exponential Time Hypothesis 35

3.4 Some Exploitable Properties about SAT 35
3.4.1 Symmetry . 36
3.4.2 Autarks assignments . 42
3.4.3 Tseitin Theorem . 43

x Contents

3.4.4 Tautologies Revisited . 44
3.4.5 From non-constructive to constructive 45

II Solvers 47

4 Special Cases 49
4.1 Satisfiability by Combinatorics 49
4.2 Lovász Local Lemma . 51

4.2.1 First definitions . 52
4.2.2 Statement of the Lovász Local Lemma 53
4.2.3 Nonconstructive proof of [4.2.1] 54
4.2.4 Constructive proof of [4.2.1.2] 56

4.3 Special Cases Solvable in Polynomial Time 57
4.3.1 Unit Propagation . 57
4.3.2 2SAT . 57
4.3.3 Horn Formulas . 58

5 Complete Algorithms 59
5.1 Backtracking and DPLL Algorithms 59

5.1.1 Backtracking . 59
5.1.2 Davis-Putman-Logemann-Loveland (DPLL) algorithm . 59
5.1.3 Clause Learning . 61

5.2 Other complete algorithms . 64
5.2.1 Monien-Speckenmeyer (MS) Algorithm 64
5.2.2 Deterministic Local Search 65
5.2.3 GRASP . 69

6 Probabilistic Algorithms 71
6.1 Paturi-Pudlák-Zane . 71

6.1.1 Paturi-Pudlák-Zane . 71
6.1.2 Paturi-Pudlák-Saks-Zane 75

6.2 Schöning WalkSAT algorithm 76
6.3 Summary of introduced algorithms 79

III Reductions 81

7 Development 83
7.1 Development Environment . 83
7.2 PySAT . 84
7.3 Reductions . 85

7.3.1 Graph based Problems 85
7.3.2 Other problems approached 89

7.4 Implementation . 91

Conclusions and further work 95

Bibliography 96

xi

Introduction

Some 2300 years ago, in Greece, the field of logic was discovered when some peo-
ple start asking themselves about syllogisms. From that point on, the problem
of satisfiability has been a central part of the science. From my point of view, it
is one of the most natural problem anyone could be asked: Satisfiability is the
study of what can be true under some free conditions. In particular we focus on
the problem of satisfiability problem of propositional logic, that is, the study of
whether a formula using disjunction, conjunction and negation are satisfiable.

It was not until the 20th century that this problem became something more
than a philosophical question. The correct foundation has been laid by Boole
and Lindenbaum. The mathematicians were moving from an understanding of
science based on not-always-evident arguments to an axiomatized foundation.
This shift in perspective became more intense when Hilbert gave some homework
for the mathematical community at the beginning of the century. In particular,
we are interested in Hilbert’s second problem:

Prove that the axioms of arithmetic are consistent.

This interest in logic, as the tool that proves (at last) the mathematics to
be perfectly formal was paired with the develop of one of the most influential
revolutions of the last century: the computation.

As the mid-century approached, while Gödel’s second incompleteness theo-
rem put a huge dump in the faith on axiomatism, different theories were proposed
with the aim of creating a thinking machine. It was Turing who finally got the
right idea first (I don’t know whether Charles Babbage would agree with this
statement). With the thinking/computing machine in place, it happened that
this branch of the science was absorbed by mathematics, as every formal science
that is incipient enough. The idea of getting an automatic demonstrator based
in the axioms hovered in the community.

Mathematicians wanted a theorem solver, and they dreamed about it in
the form of a linear solver of first order logic formulas, that would solve them
efficiently. It turns out that there was an important difficulty underlying this
apparent difficulty: the P vs NP.

The next big step forward was made in 1973 by Stephen Cook, as he proved
that SAT problem even in propositional logic was as least as difficult to solve as
any other problem in NP, therefore, providing a simplification from NP ⊂? P to
SAT ∈? P. This theorem moved the emphasis in SAT from having a supportive

xii Introduction

role in the play of logic to be the main character of its own story.

As the century ended, the new agenda for the mathematicians was not de-
termined by a mathematician. Instead, the mathematicians were asked by the
Clay Mathematics Institute, to solve the millennium problems. and one of them,
as many already now, is whether NP ⊂? P, that is, whether SAT∈? P. To this
day no one truly knows the answer, but everybody suspects that it is negative.

Meanwhile, in the electronics engineering scene, more powerful computers
were being developed each day. As the computing power increased, computers
enabled us to use them in other branches of science. A lot of these branches
needed to solve problems at least as hard as SAT. Furhtermore, as SAT in propo-
sitional logic is NP-complete, any other NP-problem can be reduced to it, and
therefore any fast algorithm for SAT, could be used to solve any NP problem.
Therefore, the community stated the search for a practical algorithm that allows
us to know whether or not a formula is satisfiable.

Since then, more fields started to be interested in solving SAT. Nowadays,
as John Franco and John Martin said:

Satisfiability stands at the crossroads of logic, graph theory, computer
science, computer engineering, and operations research.

I like to think about this crossroad as a bridge that everyone wants to cross
for its results, but is guarded by both Mathematics and Computer Science, the
rulers of Satisfiability solving.

This document attempts at giving an overview of some results in SAT solving
complextity, as well as implementing some reductions to SAT solvers. One hint
of the importance of SAT nowadays is the annual conference devoted to SAT
where a competition of SAT solvers is held.

The first part, encompassed by chapters 1 to 3 is more theoretical and intro-
duce the the problem and describe the main open problems and hypothesis. The
second part, chapters 4 to 6, describes the most relevant algorithms, mainly in
terms of asymptotic complexity. The third part, chapter 7, we develop a library
that allow us to elegantly solve some relevant NP-Complete problems, making
use of cutting-edge solvers.

The main sources of this document were [42],[28],[1] and [19]. The sources
for each section and chapter are referenced within the text.

Main goals and results achieved

The initials goals of this thesis were:

1. Accomplish a theoretical study of the complexity of SAT.

Introduction xiii

2. Study of reductions of mathematical problems to SAT.

3. Study the state-of-the-art of the algorithms solving SAT.

4. Study how can we solve MAXSAT using SAT and deduce theoretical
complexity .

The first three of them were completely successful. In the first part we study
the complexity extensively, in the second part we study the algorithms as well
as in the third part we make reductions.

The last one is a partial success result. We expose MAXSAT and present its
complexity, but we do not solve it by reducing it to SAT. The study of these
reductions from MAXSAT to SAT is left as future work.

For the achievement of these goals, i have to make use of notions relating
to: boolean algebra, computational models, probability, graph theory, object
oriented programming and software design.

xv

Summary

Brief Summary

On this Bachelors’ Thesis we deepen our knowledge in the satisfiability problem
for propositional logic. In order to do that we start from the with a theoretical
study of logic centered on propositional logic and the theoretical complexity
of associated computational problems. Is in this area where SAT has played a
fundamental role, being the first problem shown to be NP-Complete. Then, we
proceed with the study of the algorithms developed to test satisfiability of a
formula (SAT-Solvers or solvers). We consider both deterministics and probabil-
itics approaches to this task, and discuss their efficiency. To end this project we
implement a library that uses the notions explained thorough the text in order
to solve some interesting math-related NP-Complete problems.

keywords: NP-Complete, SAT, QBF, Cook-Levin, DPLL, PPSZ.

Resumen Extendido

Durante la redacción de este trabajo estudiaremos un campo multidisciplinar
que involucra, por lo general, tanto consideraciones propias de los intereses de las
matemáticas como de los intereses del campo de la ingenieŕıa informática. Por lo
tanto, es dif́ıcil distinguir a grandes rasgos que partes son de mayor interés para
un lector que pertenezca a solo una de las disciplinas. Sin embargo, intentaremos
diferenciar en la medida de lo posible, que partes son de interés para cada una
de estas materias. En caso de que esto no sea posible, justificaremos el interés
que cada ciencia tiene.

La primera parte introduce el problema y estudia su complejidad. Procede-
mos a explicar que realizamos en cada caṕıtulo.

Caṕıtulo 1: En este caṕıtulo exponemos los fundamentos de la lógica. El ob-
jetivo es introducir con la máxima formalidad posible el marco de trabajo durante
todo el proyecto. Empezamos definiendo el Álgebra Booleana como un ret́ıculo
distributivo. Posteriormente, demostramos el teorema de Knaster-Tarski para
ret́ıculos completos. Definimos a continuación la Lógica Proposicional como un
Lenguaje Formal. De este modo, primero especificamos la sintaxis y la semántica
de este idioma. Definimos una semántica basada en asignaciones y asignaciones
parciales. Consideramos que este caṕıtulo suscita un interés principal en el
campo de la matemática. Sin embargo, es recomendado que todo lector lo lea

xvi Introduction

para poder comprender en toda su extensión los caṕıtulos subsecuentes.

Caṕıtulo 2: En este caṕıtulo, definimos formalmente lo que es un problema
e introducimos el problema SAT como un problema de decisión sobre el lenguaje
de la lógica proposicional. Un problema de decisión puede entenderse como un
problema cuya respuesta es śı o no. La decisión que toma el problema SAT es
decidir si una fórmula es satisfacible, esto es, si bajo alguna configuración de
valores de verdad esta es cierta. Análogamente, definimos las variaciones de este
problema que suscitan más interés, y que estudiaremos en el siguiente caṕıtulo.
Continuamos demostrando como se realiza un certificado de ejecución de SAT.
Para ello demostramos la completitud de la regla de resolución. Por último,
hablamos sobre los problemas de satisfacción de restricciones. Consideramos
que la definición del problema es de interés para ambas disciplinas. La parte de
completitud es más interesante para un punto de vista matemático, aśı como la
última sección es más interesante para la ingenieŕıa informática.

Caṕıtulo 3: En este caṕıtulo estudiamos la complejidad computacional de
SAT. En la introducción hemos hablado del concepto de que todos los problemas
de NP son como mucho tan dif́ıciles como SAT. En este caṕıtulo presentaremos
formalmente este resultado y lo demostraremos. En la última sección estudi-
aremos algunas nociones aledañas a SAT en relación a la teoŕıa de la complejidad.

Para poder introducir el problema introducimos los modelos de computación,
que nos servirán como base para, una vez definidos los problemas, resolverlos.
Estos modelos se basan en la noción de máquina de Turing. Sobre estos modelos
creamos una división de los problemas basada en su dificultad, que son las clases
de complejidad, y presentamos algunas de las más importante como P,NP o
LSPACE. Llegados a este punto introducimos el problema P vs NP, junto con
otros resultados y problemas abiertos de interés.

La tercera sección está destinada a introducir la teoŕıa necesaria para enun-
ciar y demostrar el teorema de Cook-Levin. Una vez expuesto este teorema
introducimos una serie de resultados análogos en las diferentes variaciones de
SAT, presentadas en el caṕıtulo previo. Este teorema nos habla de la dificultad de
SAT relativa a otros problemas de NP. Reflexionamos sobre la posibilidad de que
SAT pertenezca a P presentado la hipótesis ETH, una hipótesis tan ampliamente
aceptada como no demostrada.En la última sección realizamos un desarrollo de
teoŕıas asociadas con el problema SAT. En particular, estudiamos la acción de
grupos de permutaciones y negaciones sobre fórmulas CNF. Presentamos las
asignaciones Autark aśı como su NP-Completitud, desarrollamos el teorema de
Tseitin que nos permita relacionar eficientemente SAT con GSAT, consideramos
CoNP completitud y, para terminar, consideramos FSAT y la relación entre los
métodos constructivos y no constructivos de resolución.

En relación a la división del trabajo en informática y matemáticas, consider-
amos que este caṕıtulo debe ser de interés para ambas disciplinas. Proseguimos

Introduction xvii

explicando la siguiente parte. En esta, nos centramos en los algoritmos de re-
solución. Dividimos nuestro estudio de los algoritmos en tres caṕıtulos.

Caṕıtulo 4: En este caṕıtulo estudiamos los algoritmos de resolución sobre
conjuntos restringidos de SAT donde se pueden conseguir mejores resoluciones.
Empezamos considerando restricciones aplicando nociones de combinatoria. Esta
sección es naturalmente para el lector informático. Entre los métodos destacamos
para el lector matemático la aplicación que explicamos del Lema Local de Lovasz,
asociando un grafo de adyacencia a cada fórmula para poder aplicar el resultado.
Proseguimos explicando los famosos casos de 2SAT y HORNSAT.

Caṕıtulo 5: En este caṕıtulo estudiamos los algoritmos completos de re-
solución de SAT. Las dos estrategias principales estudiadas toman como base
el algoritmo DPLL y la búsqueda local. Este es un algoritmo que, sin tener
una complejidad teórica mejor que los métodos más obvios, introduce el uso
de heuŕısticas y los algoritmos basados en mejoras de este que tienen un lugar
muy relevante entre los casos prácticos de resolución de SAT. Entre sus mejoras
mejoras incluimos el algoritmo de Monien-Speckenmeyer y la explicación de los
muy extendidos algoritmos de Conflict-Driven-Clause-Learning.

Tomando otro enfoque, al final, explicamos el método de búsqueda local
ajustado a SAT. Una vez descrito,lo mejoramos aplicando la teoŕıa de código
de cubrimientos. Esta sección consideramos que tiene un interés natural para
el ámbito de la ingenieŕıa informática. Desde el ámbito de las matemáticas el
interés reside en el análisis de la complejidad de los algoritmos.

Caṕıtulo 6: En este caṕıtulo realizamos un estudio profundo del probable-
mente campo más activo de los algoritmos SAT-solver: el campo de los algoritmos
probabiĺısticos. En estos algoritmos hacemos un compromiso en el cual a cambio
de ganar en eficiencia admitimos algoritmos con un error unilateral acotado, es
decir, un algoritmo que siempre responda correctamente si una formula no es
satisfacible, y tenga una probabilidad de responder correctamente si lo es. Entre
los algoritmos probabiĺısticos, al igual que en la sección anterior estudiamos los
dos enfoques: algoritmos basado en DPLL y algoritmos basados en busqueda
local. Entre los primeros estudiamos en profundidad el algoritmo PPZ y su
mejora el algoritmo PPSZ. Este algoritmo es a d́ıa de hoy el que mejor eficiencia
teórica presenta. En el ámbito de la búsqueda local encontramos el algoritmos
de Schöning, que siendo uno de los más simples tiene una eficiencia no mucho
peor a PPSZ.

Este caṕıtulo es de interés para el ámbito de la informática debido al desar-
rollo de algoritmos de resolución. A su vez, un matemático puede ver reflejado
sus intereses en la demostraciones realizadas para el estudio del error unilateral
esperado. Con esto acabamos la segunda parte.

Caṕıtulo 7: Este caṕıtulo, único perteneciente a la parte 3, narra el de-
sarrollo de una biblioteca en Python basada en PySAT. El objetivo de esta

xviii Introduction

biblioteca es realizar una resolución eficaz a la vez que elegante de problemas
NP-Completos. Para esto realizamos reducciones de estos problemas al prob-
lema SAT. Esta biblioteca resuelve los problemas NP-Completos de Coloreado,
Cubrimiento por grafos y existencia de camino hamiltoniano en grafos, aśı como
el problema de distancia en cadenas. Por último desarrollamos naiveQBF que
tiene como esperanza ser un esqueleto eficiente para el desarrollo de QBFsolvers
basados en SAT. El código asociado a esta biblioteca esta disponible en:

https://github.com/pedrobn23/TFG/

El interés de esta sección para las matemáticas está en el desarrollo de
herramientas para resolver problemas de su area de conocimiento. Para la infor-
mática está en las competencias demostradas en la organización, producción y
acabado del código.

palabras clave: SAT, QBF, NP, NP-Completo, Cook-Levin, DPLL.

https://github.com/pedrobn23/TFG/

1

Part I

Satisfiability Problem: Definition
and Relevance

3

Chapter 1

Logic

“Mathematics is a
presuppositionless science.”

Hilbert’s Die Grundlagen der
Mathematik (1927)

In this chapter we present the bases of Logic and formal languages. Logic will
provide us with a framework on which we will be able to define the Satisfiability
Problem. We will present the area with formality, explaining only the things
that will be necessary for our goal.

1.1 Boolean Algebra

The same way I started my journey on the university, we could have started this
text right from the axioms, making a really romantic thesis. Nonetheless, given
the goal we want to achieve, it seems excessive. We will refer to the commonly
used Zermelo-Fraenkel axioms, in order to have a point of reference, and there-
fore we will work without more considerations with sets and set operations. We
will only be concerned with finite sets for most cases.

Further on this section we will present Boolean Algebra in a classic lattice-
based way that could be found in related literature. In particular we follow
Introduction to mathematics of satisfiability [28] for the definition of boolean
algebra and propositional logic. The definition of Lattice of Partitions is adapted
from [39].

Definition 1.1.1. A partial ordered set, also poset, is a pair {X,≤} where X is
a set and ≤ is a partial order of X. A chain Y of {X,≤} is a subset of X where
≤ is a total order.

Definition 1.1.2. A lattice is a partial ordered set {X,≤} where every pair of
elements possesses a least upper bound and a greatest lower bound. A lattice
has two new operations defined: given two elements x, y ∈ X

• x ∨ y denote the least upper bound.

• x ∧ y denote the greatest lower bound.

4 Chapter 1. Logic

A lattice is complete if every subset has an unique largest element and an
unique lowest element. A lattice is presented generally as a duple {L,≤}, a triple
{X,∨,∧} and, whenever possible, is presented as a quintuple {X,∨,∧,>,⊥}
where > is the greatest element and ⊥ the lowest element. A lattice is called
distributive if x∨ (y∧ z) = (x∨ y)∧ (x∨ z) and x∧ (y∨ z) = (x∧ y)∨ (x∧ z).
For every lattice {L,≤} we can consider an associated inverse lattice denoted
by {L,≥} where:

a ≥ b ⇐⇒ b ≤ a ∀a, b ∈ L.

With the concept of lattice just included, we present the Knaster and Tarski
fixpoint theorem. In order to do that we will introduce some concepts. Given
a function f : {L,≤} → {L,≤}, a prefixpoint (resp. postfixpoint) is a point
x ∈ L such that f (x) ≤ x (resp. f (x) ≥ x). A fixpoint is a point that is both
prefixpoint and postfixpoint. Note that, given that they exists, > and ⊥ are a
prefixpoint and a postfixpoint of f respectively.

Theorem 1.1.1 (Knaster and Tarski fixpoint theorem [28]). Let f : {L,≤} →
{L,≤} be a monotone function in a complete lattice. Then:

1. f has a least prefixpoint l that is a fixpoint.

2. f has a largest postfixpoint l that is a fixpoint.

Proof.

1. We know that there is at least a prefixpoint. Let

l =
∧

{x∈X:x is a prefixpoint}
x.

Lets prove that l is a fixpoint. Le x be an arbitrary fixpoint, therefore,
l ≤ x ≤ f (x). Since x was arbitrary, f (l) ≤ l. To show that it a fixpoint
it suffices to see that f (l) is a prefixpoint to, as f is monotone.

2. Apply the previous result on f : {L,≥} → {L,≥}.

Definition 1.1.3. A Boolean algebra is a distributive lattice {X,∨,∧,>,⊥}
with an additional operation ¬, called complement or negation, such that for all
x ∈ X:

1. x ∧ ¬x = ⊥, x ∨ ¬x = >.

2. ¬(x ∨ y) = ¬x ∧ ¬y,¬(x ∧ y) = ¬x ∨ ¬y.

3. ¬¬x = x.

Definition 1.1.4 (Lattice of Partitions). Given a set X 6= ∅, we denote as
P(X) the partitions of X. Let π, π′ ∈ P(X). We say that π ≤P π′ if for every
A ∈ π there exists B ∈ π′ such that A ⊂ B. The lattice of partitions of X is
the lattice {P(X),≤P}.

1.2. Propositional Logic 5

For example given the lattice {P({1, 2, 3, 4}),≤P} and two partitions:

π1 = {{1, 2}, {3, 4}},
π2 = {{1, 2, 3}, {4}}.

(1.1)

We have that:

π1 ∧ π2 = {{1, 2}, {3}, {4}},
π1 ∨ π2 = {{1, 2, 3, 4}}.

(1.2)

1.2 Propositional Logic

Propositional logic is the framework that will allow us define the main topics of
this text. Let’s define some concepts:

• An alphabet A is an arbitrary finite non-empty set.

• A symbol a is an element of the alphabet.

• A word w = {ai : i ∈ 1, .., n} is a finite sequence of symbols.

• The collection of all possible words over an alphabet A is denoted by A∗.

• A language L over A is a subset of A∗.

For example, Spanish is a language with a well-known alphabet. Also, Span-
ish is a proper language over its alphabet as it is not empty, and it does not
include all possible words.

When we talk about a logic system we are talking about a distinguished
formal language. A formal language is defined by it syntax and its semantics.
The syntax is the rules that define the language. They state what words over an
alphabet are valid in the language. The semantics deal with the interpretations
of the elements in the language. Usually this is achieved by assigning truth
values to each word.

We will define now propositional logic, or zeroth-order-logic.

1.2.1 Syntax of Propositional Logic

We first start with the basic building blocks, which collectively form what is
called the alphabet:

• Symbols x, y, z for variables. As more variables are necessary sub-indexes
will be used.

• Unary operator ¬ (negation). A literal will refer to a variable or a negated
variable. Thorough the text symbol l will denote a literal.

• Values 0 and 1. These values are often named as ⊥ and > respectively.

6 Chapter 1. Logic

Figure 1.1: Diagram showing the different classes which are
constructed on the formal language of Propositional Logic.

• Binary operators: ∧,∨,→,⊕, ⇐⇒ .

The words of Propositional Logic are called formulas.

Definition 1.2.1. A Boolean formula is defined inductively:

• The constants 0 and 1 are formulas.

• Every variable is a formula.

• If F is a formula, then ¬F is a formula.

• The concatenation with a binary operator of two formulas is a formula too.

Examples of formulas are x ∨ y or x1 ∧ x2 ∨ (x4 ∨ ¬x3 ∧ (x5 → x6) ∨ 0).We
should distinguish a special type of formula: the clauses. A clause is a formula
with the form l1 ∨ ... ∨ ln where li, i ∈ 1, ..., n are literals. Clauses are will be
often regarded as a finite set of literals. Example of a clause is (x1 ∨ ¬x4 ∨ x2).
When regarded as a set every clause C has a cardinal |C|, that represents the
number of literals contained.

We will denote by Form the set of all formulas. We define a special mapping,
Var, that assigns every formula to its variables. Furthermore, for a given set of
variables X we define FormX as the set of all formulas that can be constructed
from X. The reader should note that FormX = Var−1(X).

1.2.2 Semantics of Propositional Logic

The underlying problem of semantics is to develop methods to give meaning
to the elements allowed by the syntax.When facing a way to provide semantic
meaning to formulas the use of function In this section we will discuss to ways

1.2. Propositional Logic 7

of providing meaning to the formulas: two-valued logic and three valued logic.

In two valued logic define the truth value of a formula by assigning a truth
value(1 for Truth and 0 for False) to each variable. Note that we assign a meaning
of truth to the constants 1 and 0, that until now where meaningless. The truth
value of the formulas that involve operators are provide by their truth table.

p q ¬p p ∨ q p ∧ q p⊕ q p→ q p ⇐⇒ q
0 0 1 0 0 0 1 1
0 1 1 1 0 1 1 0
1 0 0 1 0 1 0 0
1 1 0 1 1 0 1 1

Table 1.1: Truth tables of different operators in two valued
logic.

The truth value of a formula is therefore obtained by replacing each variable
by their assigned constant and propagating the value. The tool that we will use
to assign a truth value to each variable is the assignments.

Definition 1.2.2. Let X be a finite set of variables. An assignment is a function
α from FormX to FormX, on which some variables {x1, ..., xn} are replaced by
predefined constants {a1, ..., an} respectively.

An assignment that assigns a value to a variable x is said to map the variable
x. In two valued logic we will consider only assignment that maps all variables,
and therefore all formulas are given a value by an assignment. We also see that
any assignment generate a map from X to {0, 1}. Conversely, any map from X to
{0, 1} would uniquely represent a assignment alpha over Form. In practice when
we talk about an assignment α we will refer indistinctly to either the function
over FormVar or the mapping over Var.

One can then apply an assignment α to a formula F, denoting it by Fα =
α(F). To describe an assignment we will use a set that pairs each variable to
it value, i.e. α = {x1 → 1, ..., xn → 0}. For example given an assignment
α0 = {x1 → 1, x2 → 1, x3 → 0, x4 → 1} and F0 = x1 → (x2 ∧ x4) then
F0α0 = 1→ (1∧ 1) = 1.

Definition 1.2.3. An assignment is said to satisfy a formula F if Fα = 1 and in
the case Fα = 0 it is said to falsify the statement. A formula F is called satisfiable
if is exists an assignment that satisfies it. Otherwise it is called unsatisfiable.

Note that we have a really restrictive constraint on assignments: they should
map all variables. This is so in order for an assignment to give a meaning to
every formula. To ease this constraint we use three-valued logic. On three valued
logic we have three significant: True or 1, False or 0, and unknown or υ. Now the
assignment will map every variable to one of these values. These new assignments

8 Chapter 1. Logic

will be called partial assignments, as they only map some variables to a truth
value. We can propagate the previous values adding new rules.

p q ¬p p ∨ q p ∧ q p⊕ q p→ q p ⇐⇒ q
υ 0 υ υ 0 υ υ υ
υ 1 υ 1 υ υ 1 υ
0 υ 1 υ 0 υ 1 υ
1 υ 0 1 υ υ υ υ

Table 1.2: Truth table of different operators in three valued
logic.

In practice partial assignments will be only defined by denoting only the
variables that are mapped to either 0 or 1. We can see that the composition of
assignments (seen as functions over Formvar) is also a partial assignment. Also,
when applying a partial assignment to a formula, instead of mapping it to υ we
will avoid operating over the variables assigned to υ. For example given a partial
assignment α0 = {x1 → 1, x2 → 1, x3 → 0} and F0 = x1 → (x2 ∧ x4) then
F0α0 = 1 → (1 ∧ x4) = 1 → (x4). Although F0 is mapped to another formula
by α0, α0 is still providing a meaning to it (the unknown meaning).

Partial assignments will be also used to iteratively expand them: let Var =
{xi : i ∈ 1, ..., n} the set of variables and let α1 be partial assignment that map
variables [x1 → a1, ..., xj → aj] with 1 < j < n and aj ∈ {0, 1} for every j, we
can expand it by choosing a nonempty subset A ⊂ {ak : k ∈ j + 1, .., n} and a
value cx ∈ {0, 1} for every x ∈ A. Then we can define:

α2(x) =

α1(x) x ∈ {xi : i ∈ 1, ..., n},
cx x ∈ A,
υ otherwise.

We can see that α2 expands α1 in the sense that the truth value assigned
to a formula by α1 holds in α2 if it were different that unknown. Therefore we
are expanding the ’known’ values of the formulas. Note that in the definition
of α1 it were not necessary to state what variables were mapped to υ at it was
implicit that every variable not listed were of unknown value.

In practice we will try to avoid refer to this process whenever is evidently
enough what is being done. Nonetheless partial assignments will be a central
part of algorithms such as DPLL[5.1]. When context is clear enough, assignments
will be used for both assignments and partial assignments.

Arguably, the most special case of partial assignment are autarks assign-
ments[3.4.2]. An autark assignment is a partial assignment that simplify a for-
mula in a sense latter explained.

Given an assignment or partial assignment α we will denote the set of vari-
ables mapped to either 0 or 1 by Var(α). Analogously, given a formula F, Var(F)

1.2. Propositional Logic 9

will denote the variables that appear in F. Note that if F ∈ FormVar then
Var(F) ∈ Var and it is not necessary that Var(F) = Var.

Naturally, we want theorems to be the formulas that are always true. In the
context of propositional logic, theorems are the tautologies.

Definition 1.2.4. Let X be a set of variables. A formula F ∈ FormX is a
tautology if for every two-valued assignment α over X we have that Fα = 1. We
say that G follows from F if F → G is a tautology.

Two formulas F, G are said to be equal, represented as F ∼ G, if for every
two-valued assignment α we have Fα = Gα. It follows from the equivalently
properties on constants that ∼ is an equal relationship. This definition is really
intuitive, as it defines as equal the formulas that has the same meaning in every
possible situation. Note that this definition is equivalent to ensure that both
F → G and G → F are tautologies.

With ∼ defined we can have what is called a Lindenbaum algebra, as a
quotient space of Form = FormVar by the relation ∼, denoted as Form/ ∼. It
follows that every operator respect the quotient space structure, i.e., for every
[φ1], [φ2] ∈ Form/ ∼:

• ¬[φ1] = [¬φ1]

• [φ1] ∨ [φ2] = [φ1 ∨ φ2]

• [φ1] ∧ [φ2] = [φ1 ∧ φ2]

The interest of Lindenbaum algebra resides in the fact that {Form/ ∼
,∨,∧, [1], [0]} is a Boolean algebra, providing therefore a nexus between the
algebraic formulation of the problem an its semantics.

11

Chapter 2

Definition of the problem

2.1 Satisfiability Problem

2.1.1 Decision Problems

Computability and complexity theory attempts to answer questions regarding
how to solve real-world problems efficiently. In this subsection we provide a
formal approach to the concept of problem, and its resolution.

We will study the complexity of functions. In order to standardize the ap-
proach we code the input of the function and the output of the functions using
words over a finite alphabet. As for every finite alphabet A there is a bijective
mapping from A∗ to {0, 1}∗ we can assume when it is convenient that the alpha-
bet is {0, 1}. With this convention we are now ready to define what a decision
problem is.

Definition 2.1.1 (Decision Problem[1]). Given a language L over an alphabet
A, it has an associated decision problem that consists on, given a word w ∈ A∗

check whether w is in L.

When we have a named language, we refer indistinctly by this name to both
the language and the associated decision problem. In order to define a decision
problem it is only needed to define a language over an alphabet. Therefore a
decision problem may be defined implicitly, that is, as the set of the words in
an alphabet that satisfy some condition. As semantics provides meaning to the
languages, real world problems can be addressed as decision problems.

As a last definition of this subsection, we introduce the complement decision
problem.

Definition 2.1.2 (Complement Decision Problem[1]). Given a decision problem
L it has a Complement Decision Problem named CoL that consists on, given a
word w ∈ A∗ check whether w is in L.

This definition will be used further in [3.2.1] in order to define complexity
classes.

2.1.2 Definition

Given the previous definitions, we are now almost prepared to define the central
part of this thesis: the satisfiability decision problem of propositional logic, SAT

12 Chapter 2. Definition of the problem

for short. To this end we define a special subset of formulas in Propositional
Logic: the formulas in Conjunctive Normal Form.

Definition 2.1.3. A formula F is said to be in Conjunctive Normal Form (CNF)
if F is written as:x

F = C1 ∧ ...∧ Cn.

Where Ci are clauses.

Note that every formula in CNF can be regarded as a set of clauses. This
approach is really useful in some contexts and will be used continuously on this
text.

Definition 2.1.4. The Satisfiability Language of Propositional Logic (SAT) is
the language over the alphabet of propositional logic that includes all formulas
that are both satisfiable and in CNF.

We will refer with the acronym SAT to both the language and the associated
decision problem. As checking if a formula is in CNF is a fairly simple syntax
problem, we are only interested in asserting whether or not a formula in CNF
is satisfiable.

Definition 2.1.5. A SAT-Solver is an algorithm that, being given a formula F
in CNF as input, answer whether or not is satisfiable.

On chapter[II] we analyze the main SAT-solver developed in the literature.
We will differentiate two types of SAT-Solver. The algorithms that, given enough
time always output the correct result at the end are called complete. The SAT-
solvers that doesn’t guaranty its result are called incomplete. Of particular
interest among incomplete SAT-solvers are the one-sided bounded error SAT-
solvers. These are the called probabilistic algorithms, discussed on Section 6.

2.2 Variations

The SAT decision problem does has quite a lot of variations, all of them of
interest for certain complexity classes. We will list some of the most important,
starting with two decision problems. The first of them is a natural generalization.

Definition 2.2.1. The Generalized Satisfiability Language of Propositional
Logic (GSAT) is the language over the alphabet of propositional logic that
includes all formulas that are Satisfiable.

With Tseitin’s Theorem[3.4.3] we can see that these two problems are in fact
fairly similar. More often than not GSAT will be solved by solving an equivalent
SAT problem. Analogously a GSAT-Solver is a SAT-solver that also accepts
as inputs formulas not in CNF. Further on, every new problem will have a
associated solver, defined analogously.

Definition 2.2.2. Let F be a formula. F is said to be k-CNF formula (equiva-
lently a formula in k-CNF) if it is in CNF and ∀C ∈ F, |C| = k. k-SAT is the
language of the formulas that are both satisfiable and in k-CNF.

2.2. Variations 13

Some authors define k-CNF relaxing the condition from |C| = k to |C| ≤ k.
Nonetheless, for the purpose of this text we prefer this more restricted version,
because all the results that we introduce remain true in both versions. Other
variations of SAT could be achieved by generalizing the concept of decision
problem.

Definition 2.2.3 (Function Problem). Let A, B be two languages defined over
two alphabets. Given a relation R ⊂ A× B, it has an associated function problem
that consists on, given a word a ∈ X find a word b ∈ B such that (a, b) ∈ R.

We can consider decisions problems as a particular subset of function prob-
lems: Given a language L ⊂ A∗ we define the relationship R ⊂ A∗×{0, 1} such
that (x, 1) ∈ R iff x ∈ L and (x, 0) ∈ R otherwise.

Definition 2.2.4. Let CNF be the set of propositional formulas in CNF and
B the set of assignments. The Satisfiability Function Problem of Propositional
Logic (FSAT) is the function problem defined by the relation

R = {(F, b) : F ∈ CNF, b ∈ B, Fb = 1}.

That is, is the problem of finding an assignment that satisfy a formula. Most
of SAT-solvers not only try to solve SAT but also to solve FSAT, i.e., try to find
an assignment that satisfy the formula should it exists.

Definition 2.2.5. Let CNF be the set of propositional formulas in CNF and
B the set of assignments. The Maximum Satisfiability Problem (MAXSAT) is
the problem. function problem defined by the relation

R = {(F, n) : F ∈ CNF, n = max
α∈B
{|{C ∈ F : Cα = 1}|}}.

That is, is the problem of maximizing the number of assignments that can
be satisfied simultaneously.

As we will see, most SAT-solvers are FSAT-solvers. In related literature the
FSAT-solver are called constructive SAT-solvers, as they provide a constructive
solution of the problem. Solvers that only solve SAT are called non-constructive
SAT-solvers. After presenting the concept of algorithmic complexity we will see
that from a non constructive SAT-solver, a constructive SAT-solver can be made
so that the latter is not much less efficient[3.4.5].

All the variations presented to this point were problems that generalizes SAT.
We introduce one restricted version of SAT.

Definition 2.2.6. Let F be a formula in CNF. F is said to be a Horn formula if
for every C ∈ F there is at most one non-negated literal. HORN is the language
of all Horn formulas.

Definition 2.2.7. HORNSAT is the intersection language of HORN and SAT
problems. Nonetheless, given the easiness of checking whether a formula is in
HORN, it would usually consider as the problem that check the satisfiability of
a Horn formula.

14 Chapter 2. Definition of the problem

We study this problem further in Subsection 4.3.3.

As we have defined the complement of a decision problem [2.1.2] we can use
that in order to effortless define CoSAT. The idea of this problem resides in
finding whether a CNF-formula is unsatisfiable. This problem is usually called
UNSAT, as it looks for Unsatisfiability.

Definition 2.2.8. A formula F is said to be in Disjunctive Normal Form (DNF)
if F is written as:x

F = C1 ∨ ...∨ Cn.

Where Ci are disjunctions of literals.

As done with CNF formulas, we can regard a DNF formula as a set of
disjunctions

Definition 2.2.9 (TAUT). The Tautology Language of Propositional Logic
(TAUT) is the language over the alphabet of propositional logic that includes
all formulas that are both tautologies and in DNF.

This problem is often regarded as the complement problem of SAT, instead
of UNSAT, due to the following property:

Proposition 2.2.1. For every CNF Formula F = {C1, ..., Cn} where Ci = (l1 ∨
...∨ lni), there is a DNF formula F′ = {C′1, ..., C′n} where C′i = (¬l1 ∧ ...∧ ¬lin)
such that:

F ⇐⇒ ¬F

Proof. These results are a direct consequence of De Morgan’s laws.

Therefore we can choose to solve TAUT instead of CoSAT. To end this
subsection we introduce a generalization: QBF or quantified boolean formula.
For that we have to defined a quantified formula.

Definition 2.2.10. Let F be a propositional logic formula, and let x be a variable.
We define to operator ∃x, ∀x such that:

• ∀xF = F{x → 1} ∧ F{x → 0}

• ∃xF = F{x → 1} ∨ F{x → 0}

We define a quantified boolean formula as a pair (O, P) where O = {o1, ..., on}
is a finite sequence of operators and P is a propositional logic formula. We say
that (O, P) is satisfiable iff (o1 ◦ ... ◦ on)(P) is satisfiable. The language of quan-
tified boolean formulas is also defined inductively.

• Every propositional logic formula is a quantified boolean formula.

• The concatenation of an operator and a quantified boolean formula is a
quantified boolean formula.

Definition 2.2.11. The Generalized Satisfiability Language of Quantified Boolean
Logic (QBF) is the language over the alphabet of quantified boolean formulas
that includes all quantified boolean formulas that are Satisfiable.

2.3. SAT certificates 15

2.3 SAT certificates

As SAT solvers become vital in some areas, such as circuit verification, proto-
cols for ensuring the outcome of a SAT-solver are usually needed. When this is
required, the so-called SAT certificates will be recalled. These certificates are
methods of ensuring the correctness of performance. In this subsection we will
present a simple but effective method of performing this task. The information
of this subsection appears on Chapter 2[42], Chapter 7[28] and Section 3.6.6[9].

Let F be a CNF formula. If F is satisfied certifying this property is as easy as
printing an assignment that satisfies it, i.e., solving FSAT. The problem arises
when we want to prove that F is not satisfiable, i.e., when we want to solve the
UNSAT and give a proof of its correctness. For that we are going to use the
resolution rule, after which we are going to make a proof system, and proof that
is refutation complete. Therefore we could provide a proof of unsatisfiability.

Definition 2.3.1 ([28]). Let C1, C2 be clauses and l be a literal. The resolution
rule is an execution of the following partial binary operation:

l ∨ C1 ¬l ∨ C2

C1 ∨ C2
.

Definition 2.3.2. We define Cla as the lattice of all clauses regarded as sets,
along with inclusion.

Definition 2.3.3. Let C1, C2 ∈ Cla such that the literal l appear only once
in C1 and the literal ¬l appear only once in l2. Then we define the resolution
operator as the partial operator Res : Cla× Cla→ Cla as

Res(C1, C2) = (C1\{l}) ∪ ((C1\{¬l})).

Definition 2.3.4. Let F = {Di : 1 ≤ i ≤ t} be a CNF formula. A resolution
proof of F is a finite sequence of clauses {Ci : 1 ≤ i ≤ n} such that:

• Cn = {}.

• Ci = Di for i ∈ 1, ..., t.

• For every i ∈ t + 1, ..., n there exists two indexes j, k ≤ i such that
R(Cj, Ck) = Ci.

Once we have the resolution operator we want to define the closure of a
CNF formula F by res, that it we want to find the least set of clauses that
includes F and is a fixpoint under resolution. For that, we define the operator
resF : Cla→ Cla as

resF(G) = F ∪ {Res(C1, C2) :C1, C2 ∈ F ∪ G,
Res(C1, C2) is non-tautological}

(2.1)

We can see that resF is monotone. As a consequence of [1.1.1] there is an
unique least fixpoint of resF.

16 Chapter 2. Definition of the problem

Proposition 2.3.1 (Soundness of Resolution). Let C1, C2 ∈Cla, and α be a
two-valued assignment on Var(C1) ∪ Var(C2). If C1α = 1 and C2α = 1 and
Res(C1, C2) can be executed then Res(C1, C2)α = 1

Proof. As Res(C1, C2) can be executed therefore we have two clauses D1, D2
such that D1 ⊂ C1, D2 ⊂ C2 and Res(C1, C2) = D1 ∨ D2. As C1α = 1 (resp.
C2) then D1α = 1 (resp. C2). As 1∨ 1 = 1 we have proved the proposition.

Theorem 2.3.1 (Refutation completeness). Let F be a CNF. Then F is satisfi-
able if and only if {} 6∈ Res(F)

Proof.

⇒ Direct consequence of proposition[2.3.1].

⇐ We proceed by induction on n = Var(F) and show the contraposition:

n = 1 In this case either F is satisfiable or F = {{x}, {¬x}}. When F =
{{x}, {¬x}}, we can derive {} by a resolution proof

n > 1 let’s assume the case n− 1 and proof it for n. We select an arbitrary
variable x ∈ Var(F). Then both F{x → 0} and F{x → 1} are
unsatisfiable, therefore, by induction hypothesis we can derive {} from
both of them. Reestablishing the original clauses in both resolutions
we have two resolutions that end with {x} and {¬x} respectively.
Therefore {} ∈ Res(F).

With the completeness of resolution proved, we can ensure, and moreover,
require an algorithm that provided either a satisfying assignment or a refutation
proof of the formula. Thorough the literature other formats for certifying SAT
have been proposed an as alternative, as we can see in section 2.5 [42] that the
length of these can become exponential. To comment on the state of the art,
the DRAT system, (derivation resolution by asymmetric tautology) has been
proposed in the literature, and is the one used today by the international SAT
competition. For more information on this system, we refer to [22] where the
process is described and refined thereafter.

2.4 Constraint Satisfaction Problem

We want to introduce the notion of Constraint Satisfaction Problem (CSP)
because it defines a new optic over the SAT problem. CSP is, in fact, a general-
ization of SAT. When dealing with a CSP problem we want to find a solution
with certain restrictions. A example of what is a CSP is watching film with your
family: each member impose its restrictions, and then we look for a film that
satisfies them all. Should it happen that no film is found, we have other type of
problem. This concept naturally translates into propositional logic formulation.
Let us define CSP formally:

2.4. Constraint Satisfaction Problem 17

Definition 2.4.1 ([42]). A Constraint Satisfaction Problem(CSP) is a triple
{X, D, C} where:

• X = {x1, ..., xn} is the set of variables occurring in the problem.

• D = {D1, ..., Dn} is the set of the domains. Each Di = di,1, .., di,ni is the
domain of the variable xi.

• C = {C1, ..., Cm} is the set of constraints over the variables. For our
intentions, these constraints must be written as:

– An equality, for example: (xi, xj) = (di,k, dj,k′).

– An inequality, for example: (xi, xj) 6= (di,k, dj,k′).

– Concatenation with a Propositional Logic operator of two equalities or
inequalities, for example: ((x1) = (d1,1)∨ (x2 6= d2,5)∧¬((x8, x9) =
(d8,3, d9,7)) .

The goal of a CSP is to found a mapping

α : X → ∪i∈1,...,nDi

such that every variable xi is mapped to a value on its associated domain
Di and every constraint is satisfied. Such map will be called an assignment, and
if this map satisfy all constraints it is said that α satisfies the CSP problem.

Note that we can use all our artillery from Propositional Logic as both equal-
ities and inequalities hold a binary truth value (True/False), therefore can be
handled as Propositional Logic Variables.

The value in CSP resides on the simplicity of its formulations. One can easily
define a CSP just by selecting the desired conditions of a solution and describing
its context. Moreover, a lot of real world problems can be defined in terms of
constraints. Constraint programming is a programming paradigm that consists
on solving problems by defining them as CSP and letting CSP-solvers do the
work.

SAT could be seen as a CSP where every domain is {0, 1} and each clause
is a constraint. Therefore if we know how to solve CSP we know how to solve
SAT. Let see the reverse.

Proposition 2.4.1. Every CSP problem has an equivalent SAT problem.

Proof. Let {X, D, C} be a CSP problem. To define a equivalent SAT problem
we are going to define a SAT problem that can be solved if, and only if, the
CSP problem can be solved. We will also request that from every assignment
that satisfies the equivalent SAT problem, we can deduce an assignment that
satisfy the CSP problem, and conversely. In order to define a SAT problem we
are going to define a set of variables and a set of clauses to be satisfy.

18 Chapter 2. Definition of the problem

Our set of variables consists on a variable yi,j for each variable xi ∈ X, and
each value di,j ∈ Di that represents whether or not xi = di,j. Now we define the
set of clauses. The first to group of clauses are added for consistency reason, and
the latter is added in order to maintain the constraints.

1. (yi,1∨ ...∨ yi,ni) for all i ∈ 1, ..., n that represents that every variable should
take a value.

2. (¬yi,j ∨¬yi,j) for all i ∈ 1, ..., n, j ∈ 1, ..., ni that represents that a variable
can not take more that one value.

3. (yi,j) for every equality xi = di,j and (¬yi,j) for every inequality xi 6= di,j. If
two equalities or inequalities are expressed concatenated by a Propositional
Logic operator we express the associated literals of the equalities and
inequalities concatenated by the same Propositional Logic Operator. In
order to express the resulting formulas as a CNF formula, we use Tseitin’s
Theorem. A proof of this theorem will be provided on [3.4.3].

If there is an assignment α that satisfies the associated SAT problem, then
there is an assignment β that satisfies the CSP problem such that β(xi = di,j
if α(yi,j) = 1. From the clauses generated in 1. and 2. we can assert that such
mapping is well defined, and from the clauses generated by 3. follows that β
satisfy all constraints.

Conversely we can define an assignment α that satisfies the SAT problem
from an assignment β that satisfy the CSP problem by mapping xi,j

α(xi) =

{
1 β(xi) = di,j,
0 otherwise.

Therefore the CSP problem is solvable, if and only if, the SAT problem is
satisfiable, and given a satisfying assignment of either the SAT or CSP problem
we know how to generate a satisfying assignment of the other problem.

In practice we will use CSP as a methodology to define problems. It will pro-
vide easy solutions for complex problems, given that we solve the SAT problem.
More on this will be shown on [III].

19

Chapter 3

Complexity Classes and
Relevance of the Problem

“Either mathematics is too big for
the human mind or the human
mind is more than a machine.”

Kurt Godël[13]

3.1 Model of Computation

Computation started as a way of relieving mathematicians of mechanical work.
A long journey has been made by now. In particular, models of computation
improve our ability to ease work to unexpected limits. Nonetheless some barriers
are still left to be broken. In particular there is the dream of a efficient theo-
rem prover, that will made mathematicians life easier, so that formalism would
be relegated to the domain of machines, just as arithmetic has already been
done.The work of the mathematician would then be to check and understand
what things are important and how to pose the problems in the right language.

SAT, and even more QBF, try to solve this problem, by asserting veracity of
simple laws. Some projects such as COQ[3] have been doing work on this area.
They have had limited success, because of the complexity of the problem we have
before us. In fact, now we know that this can not be achieved even in restricted
domains, as it is believed that there is not a polynomial algorithm for the simpler
propositional logic. In this chapter we present the theory of complexity and the
state of the art of the complexity analysis. We reflect upon the P vs NP problem
and we present sat as the cornerstone for the development of this theory, having
as its zenith the Cook-Levin Theorem [3.3.2].

3.1.1 Deterministic Computation

In this section we discuss two computation models: Turing Machines and Circuits.
We do not expect the text to be the first approximation to Turing machines, so
we present a quick formal approach to the area.

20 Chapter 3. Complexity Classes and Relevance of the Problem

Turing machines are arguably the epicenter of models of computation. A
Turing Machine represents a long mechanical tape on which we are going to
operate. The tape is divided into discrete positions, such that we can see the
tape as a one-dimensional array. Operating on this tape we can focus on a
cell, scan its contents, overwrite its contents or move to an adjacent cell. These
operations try to resemble the process of human calculus by means of a set
of rules or algorithm, as done with paper and pencil when applying the long
division method for example. Formally:

Definition 3.1.1 (Turing Machine [17]). We describe a Turing Machine as a 7-
tuple M = (Q, Σ, Γ, δ, q0, B, F) whose components have the following meanings:

• Q the finite set of states of the finite control.

• Σ the finite set of input symbols.

• Γ the finite set of tape symbols. Σ is always a subset of Γ.

• δ : Q× Γ→ Q× Γ× {L, R} the transition function.

• q0 the start state.

• B ∈ Γ the blank symbol.

• F the accepting states.

A configuration of a Turing machine is a triplet C = (q, u, v) where q ∈ Q,
u, v ∈ Γ∗. A configuration is accepting if q ∈ F.

A configuration should be understood as a decription of the machine, where
q is the current state, u the part of the tape left to the cell on which we focus
and v is the part of the tape right to the cell we focus, starting on it.

As a brief note before going on, we have not defined the empty word yet, as
in propositional logic is not a valid formula so it lacks our interest until now.
We will note the empty word as ε and would consist of an empty sequence of
symbols. We can now define a relation between configurations:

Definition 3.1.2. Let M be a Turing Machine (TM) and C = (q, u, v), C′ =
(q, u, v) be two configurations of M. We say that C ` C′ if there is a transition
δ(q, v1) = (q′, b, D) with D ∈ L, R and:

• if D = L, then if u = u1...un and v = v1...vm, it should happen that
u′ = u1...un−1 and v′ = unbv2...vn with two exceptions:

– if u = ε then u′ = ε and v′ = bv2...vn,

– if v = v1 and b = B then u′ = u1...un−1 and v′ = un.

• if D = R, then if u = u1...un and v = v1...vm, it should happen that
u′ = u1...unb and v′ = v2...vn with two exceptions:

– if u = ε then u′ = b and v′ = v2...vn,

3.1. Model of Computation 21

– if v = v1 and b = B then u′ = u1...un−1 and v′ = ε.

Note that on both cases the two exceptions can be given simultaneously.
We say C `∗ C′ if there exists a finite sequence {Ci}i∈1,...,n such that C1 = C,
Cn = C′ and Ci ` Ci+1 for every i ∈ 1, ..., n− 1.

When it is beneficial we can consider a TM M to have an output, that is, to
explicitly say whether or not M accepts a word.

We now describe the use of Turing Machines: solving problems. We consider
that Turing Machines solve both decision and function problems. Lets start by
explaining how a Turing Machine solves a decision problem.

Definition 3.1.3. Let M be a Turing Machine. We say that u ∈ Σ∗ is accepted
by M if there exists a final configuration C such that (q0, ε, u) `∗ C. The
language accepted by M denoted as L(M) is the collection of all words accepted.
We say that M decides a language L if L is the language accepted by M.

With regard to solving a function problem, the intuitive idea is that we write
the input on the tape and after some computations we have written on the tape
a word that is related to the input one. Formally:

Definition 3.1.4. Let R ⊂ Σ∗ × Σ∗ be a relation. A Turing Machine M com-
putes R if for every u ∈ Σ∗ there is an accepting configuration C = (q′, v, v′) of
M such that (q, ε, u) `∗ C and (u, vv′) ∈ R. A Turing Machine M computes a
function problem defined by R if it computes R.

3.1.2 Non-deterministic Computation

Analogous to the concept of Turing Machine, another recurrent idea in compu-
tation is the concept of non-deterministic computing. These models allow an
algorithm to react different to the same input. These models are useful as they
encapsulate various problems of interest and give upper bound to the determinis-
tic complexity. In order to formalize this concept we will define non-deterministic
Turing Machines.

Intuitively, a non-deterministic Turing Machine is a Turing Machine that,
at any point on its computation, can choose from several different ’paths’ to
compute. This choice is made in a non-deterministic manner, that is, it is not
known what the result will be until the computation is done.

Definition 3.1.5. We describe a Non-Deterministic Turing Machine (NDTM)
as a 7-tuple M = (Q, Σ, Γ, δ, q0, B, F) whose components have the following
meanings:

• Q the finite set of states of the finite control.

• Σ the finite set of input symbols.

• Γ the finite set of tape symbols. Σ is always a subset of Γ.

22 Chapter 3. Complexity Classes and Relevance of the Problem

• δ ⊂ (Q× Γ)× (Q× Γ× {L, R}) the transition relation.

• q0 the start state.

• B ∈ Γ the blank symbol.

• F the accepting states.

A configuration of a Turing machine is a triplet C = (q, u, v) where q ∈ Q,
u, v ∈ Γ∗. A configuration is accepting if q ∈ F.

Note that there exists d0 ∈N such that:∣∣{(q, γ′, D) ∈ (Q× Γ× {L, R}) : ((p, γ), (q, γ′, D)) ∈ δ
}∣∣ ≤ d0.

Such d0 is called branching factor of M.

By opposition, the previously defined Turing machines are considered Deter-
ministic Turing Machines(DTM). The definition of Non-Deterministic Turing
Machine is adapted from [17].

The definition [3.1.2] holds for non-deterministic Turing machines, with the
consideration that now instead of finding the image of a function we have to find
a related triple. Using analogous notions we define when a problem is decided/-
computed by a Non-deterministic Turing Machine. The computation associated
with a non-Deterministic Turing machine can be regarded as a tree. In this tree
we assume that a branch divides when a decision has to be made. Once this tree
is built, we can assume that the execution of our TM will be the progression of
one of the possible paths of the tree.

3.1.3 Reductions

Once we now how to make a TM for one problem, we may ask ourselves: can we
make a TM machine in order to solve more that one problem?. To answer this
question we define the notion of reduction. Intuitively, a reduction is a process
in which, instead of solving two problem L1 and L2, we choose to only solve L1
and use its resolution in order to solve L2. Formally:

Definition 3.1.6. If L1 and L2 are decision problems, then we say that L1 is
reduced to L2 is there is a TM that always stops and computes a function f
such that for every input w to L1 , we have that L2 produces the same answer
for the input f (w).

This notion also provides us with a partial order relationship. For function
problems we can state the analogue definition.

3.2. Complexity Classes 23

3.2 Complexity Classes

In this section we are going to define what a complexity class is and then we are
going to discuss some results of the complexity of the SAT-problem. We uses [1]
as principal reference.

3.2.1 Deterministic complexity

There are different approaches to how to measure the complexity of given al-
gorithm. We will focus primarily on worst-case time complexity. We will also
introduce worst-case space complexity and provide some results.

Definition 3.2.1. Let g : NN, then:

O(g) =
{

f ∈NN : ∃N, C ∈N : f (n) ≤ Cg(n) ∀n ≥ N
}

.

Definition 3.2.2. Let f : NN.

1. We let TIME (f) (resp. FTIME (f)) be the set of all decision problems
(resp. function problems) that can be decided (resp. computed) by a Turing
machine M using less that g(n) steps where g ∈ O(f) and n is the number
of characters of the input.

2. We let SPACE (f) (resp. FSPACE (f)) be the set of all decision problems
(resp. function problems) that can be decided (resp. computed) by a Turing
machine M using less that g(n) cells where g ∈ O(f) and n is the number
of characters of the input.

Sometimes we will also consider the TM M that decides/computes the prob-
lem to be in TIME(f) if the context is clear enough. This definition provide us
a great tool in order to define collections of problems, and to compare them. We
introduce some classes.

Definition 3.2.3. Let Ω be a set of endofunctions of N.

1. We have a homonym complexity class Ω:

Ω =
⋃

f∈Ω

TIME(f).

2. We have an associated function complexity class FA:

FΩ =
⋃

f∈Ω

FTIME(f).

3. We have an associated space complexity class FA:

ΩSPACE =
⋃

f∈Ω

SPACE(f).

24 Chapter 3. Complexity Classes and Relevance of the Problem

Although we have defined the complexity classes as collections of decision
problems, we can also consider consider a language to be in a class C if its
associated decision problem is. During the study we will focus on decision prob-
lem complexity classes. Nonetheless ties between this classes and its associated
function complexity classes are strong and will be pointed out.

In general the notation of complexity classes is additive. Therefore is we
want to represent the function space complexity class associated to Ω we denote
that by FΩSPACE.

Arguably the most important of the complexity classes is P. We define P as
the set of all polynomials. Therefore we have an homonym complexity class P.
We can justify the importance of this class by the Feasibility Thesis.

Thesis 3.2.1 ([5]). A natural problem has a feasible algorithm iff it has a
polynomial-time algorithm.

That is, only problems with polynomial time complexity are able to be com-
puted, as otherwise their complexity make them not viable, i.e., not computable
in a coherent time. It can be possible to solve some particular cases or to effi-
ciently solve a great proportion of examples, but paying a price: allowing the
possibility of errors. The idea of problems being not feasible is the basis of some
of the most important conceptions of modern Computer Science. In particular
in modern cryptoanalysis the most common encoding technique (private keys
protocols) are based upon the conception that no one would be able to solve
the presented problem without some added information in a coherent time, in-
dependently of their computing capabilities.

Other important class on complexity is L. We define L as the set of all
linear combination of logarithms. Now we need to point out that in most part
of literature, the class L refer to the class we named LSPACE. Nonetheless we
decide to maintain our notation for internal coherence of the text.

3.2.2 Non-Deterministic Complexity

As with TM we can consider complexity classes based on non-deterministic
procedures.

Definition 3.2.4. Let f : N→N.

1. We let NTIME (f) the set of all problems that can be decided/computed
by a non-deterministic Turing machine M using less that g(n) steps where
g ∈ O(f) and n is the number of characters of the input.

2. We let NSPACE (f) the set of all problems that can be decided/computed
by a non-deterministic Turing machine M using less that g(n) cells where
g ∈ O(f) and n is the number of characters of the input.

As with the previous definitions this notation is additive. We can now prove
a simple result that relates the concepts defined so far.

3.2. Complexity Classes 25

Theorem 3.2.2. Let f : N→N.

1. SPACE(f) ⊂ NSPACE(f),
TIME(f) ⊂ NTIME(f).

2. NTIME(f) ⊂ SPACE(f).

3. NSPACE(f) ⊂ TIME(Klog(n)+ f (n)).

Proof.

1. Every DTM is a NDTM if we consider the transition function as a relation.

2. For every L ∈ NTIME, let M be its associated NDTM and let d0 be
the branching index of M. Any sequence of choice can be written as a
number of length f (n) in d0-base. Iteratively execute all options possible,
and accept if any of them accepts. Reject otherwise.

3. Let L ∈ NSPACE(f) and M be its associated NDTM. We use the Achieve-
ment Method. This method is based on building a network in which the
nodes are the possible configurations of a Turing Machine, and the arcs
connect configurations such that you can get from one to the other in one
step of calculation. The maximum number of nodes (configurations) is

|Q||Γ| f (n)(n + 1) = |Q||Γ| f (n)+log(n+1) ∈ O(K f (n)+log(n)).

Checking if a word is accepted is the same as checking if from a node in a
network you can get to an acceptance node. This is checked in quadratic
time against the number of nodes, thus obtaining the desired result. As
this can be done in quadratic time, the result is proved.

Analogous with what we have done with deterministic complexity, we can
define non-deterministic complexity classes.

Definition 3.2.5. Let F be a set of endofunctions of N. We have a complexity
class NF defined:

NF =
⋃
f∈F

NTIME(f).

At this point we can state a corollary of high importance for the mathematical
community.

Corollary 3.2.2.1. P ⊂ NP.

This corollary lets itself to a simple doubt: is that inclusion strict? This
problem was first stated independently by Stephen Cook and Leonid Levin in
1971[5] and is one of the Clay Math Institute Millennium Problems.

Another characterization of NP is by verfiers. Given a language that might
not be in P, it may be possible to decide the membership of an element to that
language when a proof is given. Formally:

26 Chapter 3. Complexity Classes and Relevance of the Problem

Proposition 3.2.1 (Alternative definition of NP). A language L ⊂ A∗ is in NP
if and only if there is an relationship R ⊂ A∗ × A∗ computable in polynomial
time and a polynomial p such that

L = {x ∈ A∗ : ∃y ∈ A∗ with |y| ≤ p(|x|), R(x, y) = 1}.

Proof.

⇒ If L ⊂ A∗ is in NP, there is a NDTM M that decides L in O(p), with p
a polynomial. For every x ∈ L we have that M accepts x after at most
p(|x|) decisions. Let < dx,i : 1 ≤ i ≤ p(|x|) > be the word that codify
such decisions in the alphabet A∗. We can define the relationship:

R = {(x, y) : x ∈ L, y =< dx,i : 1 ≤ i ≤ p(|x|) >}.

We can compute such relationship with a DTM M′ that works as M, but
at each iteration i make the decision di.

⇐ We define a NDTM M that works as follow, for an input x:

1. Non-deterministically choose a word y that |y| ≤ p(|x|). The se-
lection of y is done in polynomial time as each symbol takes one
step.

2. Accepts if (x, y) ∈ R. Rejects otherwise. This can be done in polyno-
mial time as R can be computed in polynomial time.

As both steps are computed in polynomial time M runs in polynomial time.

This result is analogous with functions problems. This proposition give an-
other meaning to the P vs. NP problem. We can consider P to be the class
of efficiently doable problems, whether NP is the class of efficiently checkable
problems. Another interesting corollary is:

Corollary 3.2.2.2. LSPACE ⊂ P.

The problem of checking whether of not this inclusion is strict is also open
to this date.

3.2.3 Complementary Classes

Building on the complementary problem definition, we can define a new kind of
complexity classes.

Definition 3.2.6. Let Ω be a complexity class. We let CoΩ be the decision
complexity class such that:

CoΩ = {CoL : L ∈ Ω}.

This concept is not useful for Deterministic Complexity classes as we state
in the next proposition.

3.3. Completeness 27

Proposition 3.2.2. Let Ω be a deterministic Complexity Class. We have that
Ω = CoΩ.

Proof. For every L ∈ Ω, we have a DTM M that decides L in a time O(g(n)).
We can construct a DTM M′ that runs M and change the value of the output.
Therefore, we can decide CoL in O(g(n)).

Figure 3.1: Turing Machine showcased in the proof.

Nonetheless, this concept is really important for non-deterministic complexity
classes, as the previous proposition is, in general, not known to be true. One of
the most relevant open problems is whether or not CoNP = P. For us, CoNP is
important also as is the class of TAUT.

3.3 Completeness

In this subsection we introduce the notion of completeness. This area was de-
veloped in late 1960s and early 1970s parallel by researchers on the US and
the USSR, at during the Cold War. The first point in the development of this
theory and the most important result from the point of view of this text is the
Cook-Levin theorem [3.3.2], which highlights the theoretical relevance of SAT.
The notion of completeness was introduced to the Western World first by Cook
[6] although the term was coined later.

As a historical note, one of the first references to this notion is the Gödel’s
Letter[25], that he wrote to Von Neumann relating with the possibility of polyno-
mially (in particular in linear or quadratic time) solving QBF (a generalization
of SAT). He was asking, without knowing it, whether an NP-Complete problem
could be solvable within polynomial time, and stating some of the consequences
of this.

3.3.1 Definition

Once we have defined classes for decision problems, and we have the concept of
reduction, we want to use that in order to be able to solve whole classes only
solving one of it problems.

28 Chapter 3. Complexity Classes and Relevance of the Problem

Prior to that we have to revisit reductions. We have defined reductions
without taking care of its complexity. Now we can fully define reductions

Definition 3.3.1. If L1 and L2 are decision problems.

1. We say that L1 ≤L L2 if there is an TM M that always stops and computes
a function f such that for every w ∈ L1 , if and only if f (w) ∈ L2, there is
an g ∈ P such that M ∈ FLSPACE(g), and there is another g′ ∈ P such
that | f (w)| ∈ O(g′(|w|)).

If L1 ≤P L2 we say that L1 is reduced to L2.

Definition 3.3.2. Let Ω be a deterministic complexity class. We say that a
problem L is Ω-Complete iff:

• L ∈ Ω.

• For every L′ ∈ Ω, we have that L′ ≤P L.

If only the latter condition is satisfied, we say that L is Ω-Hard.

The set of P-Complete problems is the set of all problems that are reducible
in polynomial time to a problem P and are in P. Now that we have defined
both P-Completeness and NP-Completeness, we can continue our study. If one
NP-Complete problem can be solve in Polynomial time, then P=NP. We have,
nonetheless, a problem: How do we prove a problem to be NP-Complete? We
have two ways:

1. To prove that every problem is reducible.

2. To reduce another NP-Complete problem in P.

We can see that the latter option is preferable, as it involves less work. This
option requires that one problem, at least, has been proven to be NP-Complete
first, arguably with the first method. The next subsection deals with this matter,
and reintroduces SAT as the main point of the text.

3.3.2 Cook-Levin Theorem

At this point we introduce the main theorem of this section. The theorem was
first sated on [6], although some ideas were first spoken about by Leonid Levin
on 1969, the formal explanation of the result was first written by Stephen Cook.
Due to our lack of knowledge of the Russian language we did not research Levin’s
original result, although we would like to point out that he did this research
on the advice of the famous mathematician Kolmogorov. Also, later in his life,
Levin emigrated to the US and was able to share his knowledge with the Western
block[24].

The theorem proves that SAT is NP-Complete, and was at the time the first
completeness result provided. To this day virtually all proofs of problems to be
NP-Complete are done by using either this result or using its ideas. For this

3.3. Completeness 29

theorem Cook received on 1982 the Turing Award, the highest honor conceded
in the area of Computer Science.

Reading Cook original work, we can see that the modern standard statement
of the theorem is an adaptation of the original statement done in theorem [6].
Instead of proving the result with the today-standard 3CNF satisfiability, he
proved the CoNP-Completeness result for TAUT, proving SAT NP-Completeness
in the way. The proof showcased in this paper is the one followed nowadays by
most texts, with only a few adaptations.

Lemma 3.3.1. For a set A = {a1, ..., an} of Propositional Logic variables, we
can define a set of clauses C(A) such that, for an assignment alpha we have
C(A)α = 1 iff α maps to 1 one and only one of the variables in A.

Proof. We define

C(A) = D ∪

 ⋃
i,j∈1,..,n

i 6=j

Di,j

 ,

where:

D = (a1 ∨ ...∨ an),
Di,j = (¬ai ∨ ¬aj).

(3.1)

From D it follows that α satisfy at least one variable, and from Di,j that α
satisfy at most one.

Theorem 3.3.2 (Cook-Levin theorem). SAT is NP-Complete.

Proof. Suppose that a language L ⊂ A∗ is accepted by a NDTM M within
time O(q(n)), where q(n) is a polynomial. Given an input w ∈ A∗ of M, we
construct a CNF-Formula φ(w) such that φ(w) is satisfiable iff M accepts w.
As the construction is done in polynomial time, we have a polynomial reduction
of the problem.

Suppose that Γ = {γ0, γ1, ..., γl} is the tape alphabet of M with B = γ0
.Q = {q1, .., qs} is the set of states with q0 the initial state. δ0 is the branching
factor of M. T(n)1 is the polynomial bound of the number of cells used by M.
We define T = T(|w|)

• Firstly, we define the variables of φ(w).

1. The variables {pi
s,t : 1 ≤ i ≤ l, 1 ≤ s, t ≤ T}. These variables

represents (semantically) if tape cell s at step t contains the symbol
γi.

2. The variables {qi
t : 1 ≤ i ≤ l, t ≤ T} that represents if at step t the

machine is in state qi.

3. The variables {Ss,t : 1 ≤ s, t ≤ T}. These variables represents if
tape cell s is being scanned at step t.

1M is in NP therefore M is in PSPACE and as a consequence T(n) exists

30 Chapter 3. Complexity Classes and Relevance of the Problem

4. The variables {od,t : 1 ≤ d ≤ δ0, t ≤ T}. These variables represents
that decision d is made at step t.

• Once we have the variables, we define the clauses of φ(w).

1. For t ≤ T, the clauses C(St) with St = {St
i,j : i, j ≤ T} that ensures

that at time t one and only one cell is being scanned.

2. For t ≤ T, the clauses C(Ct) with Ct = {pi
s,t : 1 ≤ i ≤ l, 1 ≤ s ≤ T}

with that ensures that one and only one symbol is at each step of the
machine at each time.

3. For t ≤ T, the clauses C(Ot) with Ot = {oi
d,t : 1 ≤ d ≤ δ0} with

that ensures that one and only one decision is made at each step of
the machine at each time.

4. For t ≤ T, the clauses C(Dt) with Dt = {qi
t : 1 ≤ i ≤ l} with that

ensures that at time t one and only one state is active.

5. If w =< γi1 ...γik > we add the clauses (p
ij
j,0) for j in 1, ..., k. These

clauses ensure the initial state. Also, for j in k + 1,, T we add (p0
j,0).

6. For each pair state-symbol (qk, γd) we let {(qk1 , γd1 , m1), ..., (qkl
, γdl ,ml

) ⊂
Q× Γ×{−1, 1} be the set of related transitions. We add the clauses:

(¬ss,t ∨ ¬qi
t ∨ pd

s,t ∨ ¬ot,e ∨ qt+1,ke),

(¬ss,t ∨ ¬qi
t ∨ pd

s,t ∨ ¬ot,e ∨ pde
s,t+1),

(¬ss,t ∨ ¬qi
t ∨ pd

s,t ∨ ¬ot,e ∨ Ss+me,t+1),

with 0 ≤ s, t ≤ T, 0 ≤ d ≤ δ0.

If the set of related transitions is empty we add

(¬ss,t ∨ ¬qi
t ∨ pd

s,t ∨ ¬ot,e ∨ qt+1,k),

(¬ss,t ∨ ¬qi
t ∨ pd

s,t ∨ ¬ot,e ∨ pd
s,t+1),

(¬ss,t ∨ ¬qi
t ∨ pd

s,t ∨ ¬ot,e ∨ Ss,t+1),

with 0 ≤ s, t ≤ T, 0 ≤ d ≤ δ0.

This represent the machine’s operation.

7. In order to maintain the tape unchanged in the cells where no opera-
tion is done we add:

(¬st,s ∨ ¬pi
s,t ∨ pi

s,t+1),

for 0 ≤ s, t ≤ T, 0 ≤ i ≤ l.

8. Suppose {qi1 , ..., qik} is the set of final states. Then we add the clause:

(qT
i1 ∨ ...∨ qT

ik).

3.3. Completeness 31

That represents the necessity of the machine to end on a final state
in order to accept w.

The equivalence of the Problems is clear from the way the machine is built.
The clauses reproduce exactly how the machine works for the entry word
w and include a clause that indicates that the word is accepted. If in the
end (time T) the clause (qT

i1
∨ ... ∨ qT

ik
) can be satisfied, then a state of

acceptance can be reached. Then the word is accepted if and only if all
are possible satisfy all the clauses.

As all operation described above can be done within Logarithmic space,
we have found a L-reduction of any NP problem to SAT.

On the time of publication, this result was a truly breakthrough. On the
technical part of the proof we would like to highlight the used methods, are they
display two common cases that recurrently appears when reducing a problem to
SAT.

• One and only one encodings, as the one showcased in the lemma, are
common restrictions for real-world problems. We decide to express this
alternative in order to respect the original proof as much as possible,
but also because this formulation is commonly believed to work better
with DPLL based - solvers[5.1]. Different approaches to this reduction are
considered in literature. For more information on this area we refer to
subsection 2.2.4 [9].

• The rest of the clauses has at most one positive literal. These are the so
called Horn clauses. The particularity of these clauses resides in the fact
that,

(¬u1 ∨ ¬u2...∨ ¬un ∨ v) ⇐⇒ ((u1 ∧ ...∧ un)→ v).

That is, they are the natural language of implication in CNF. Because of
theorem[3.3.3] we know that this language is enough to express polynomial
DTM.

3.3.3 Graph Isomorphism Problem

In this subsection we introduce the Graph Isomorphism problem. We introduce
this problem for two main reason:

• We want to make use of it in order to detect symmetries in CNF-Formulas.

• It has a really interesting complexity class.

In this subsection we focus in the latter topic. In Subsection 3.4.1 we explain
the interest of this problem in the context of SAT-solving. For more information
on the problem we refer to [11].

32 Chapter 3. Complexity Classes and Relevance of the Problem

In order to define a problem over graph, we have to be able to express them
in a language. We can express any finite graph G = (V, E) over an alphabet
{0, .., 9, B}:

1. We name each node in V after a number in N, that is, we define an injective
mapping φ : V → N. Without any loss of generalization we can require
this naming to be in the first |V| naturals.

2. We start with the empty word ε, and for every edge (u, v)2 concatenate
at the end a word φ(u)Bφ(v)BB.

3. When all edges are represented, concatenate at the end a word BBB|V|

For example given:

0

1

23

Figure 3.2: Example Graph

We can code it as 0B2BB2B0BB1B2BB2B1BB0B1BB1B0BB1B3BB3B1BBBBB4.
We name as GRAPH to the language over {0, .., 9, B} that include all well for-
matted graphs.

Definition 3.3.3. We define the Graph Isomorphism language (GI) as the sub-
set L ⊂ GRAPH × GRAPH such that for every pair of words (w1, w2) ∈ L
theirs associated graphs are isomorphic. We name GI to the associated decision
problem.

Given a mapping between two graphs, it can be checked in polynomial time
whether such mapping is an isomorphism. Therefore GI is in NP. GI is not
known to be in P, neither to be NP-Complete. A complexity class is named after
this problem:

Definition 3.3.4. We define the class GI as the set of all decision problems
that can be reduced to GI.

Therefore a problem is GI complete if GI is reducible to it. As a historical
note, Las Vegas Algorithm is a probabilistic algorithm first introduced by László
Babai in 1979 to solve this problem.

2We consider E ⊂ V ×V.

3.3. Completeness 33

3.3.4 Other Completeness Results

Although the most important completeness quetions are the ones related with
NP-Completeness, the concept of completeness can be implemented for every
mayor complexity class. Most importantly for us, SAT variations are the norm
for a lot of completeness results. On this subsection we will present the most
important of these results.

The first result regards P-Completeness.

Theorem 3.3.3 ([7]). HORNSAT is P-Complete

To this day, the class P-complete is believed to be characterized by the
problems that has to be computed sequentially. However, as many problems in
this area, is still an open problem.

Although we do not define this notions in these thesis we want to add a note

on Nick’s class. The formal formulation of the previous problem is NC ?
= P

Where NC is . This name was coined by Stephen Cook, in honor to Nick Pip-
penger and is the class of decision problems solvable by a uniform family of
Boolean circuits, with polynomial size, depth O(log(n)), and fan-in 2.

Finding a parallelizable algorithm for HORNSAT would imply that NC = P.
Nonetheless, it is widely believed that it is not possible. As being said, is still
an open problem.

To continue, we present a brief discussion about FNP-Completeness. The
same way we work with decision problems, we could be talking about Function
Problem. In particular:

Theorem 3.3.4. FSAT is FNP-Complete.

To briefly sketch the proof, it follows the one of the Cook-Levin theorem,
only that we have the considerations of a function problem and therefore we
have to state different final conditions.

The other function problem variation presented was MAXSAT.

Theorem 3.3.5 (theorem 2.1 [el2016computational]). MAXSAT is FNP-
Hard.

The statement of the theorem in the article differ a bit, as this is an adaptation
into our notation. The next problem we will discuss is QBF.

Theorem 3.3.6 ([12],theorem 4.11 [1]). QBF is PSPACE-Complete.

This in an important result as it shows the implicit difficult of automatically
checking theorems in first order Logic. Nonetheless, it is worthy of considering,
as the subsequent results of being able to solve this problem efficiently enough
will make mathematicians life a lot easier, as theorem resolution will be a topic
of well defined axioms and computer reasoning. This idea, was the one showcased

34 Chapter 3. Complexity Classes and Relevance of the Problem

in Gödel’s Letter.

We can use the study of NP Completeness in order to study CoNP Com-
pleteness.

Proposition 3.3.1. Let L be a language. L is NP-Complete iff CoL is CoNP-
Complete.

Proof.

⇒ Let L′ be a CoNP language. Therefore CoL′ is a NP language. There is
a reduction R from CoL′ to L such that, x ∈ CoL′ ⇐⇒ R(x) ∈ L.
Therefore x ∈ L′ ⇐⇒ R(x) ∈ CoL.

⇐ Analogue.

Therefore, UNSAT is CoNP complete and TAUT is CoNP complete.

We make a little recall of all concepts introduced, to contextualize all prob-
lems. In the first section we have introduce the most relevant complexity classes,
and we have denote some open problems:

Figure 3.3: Two possible diagram of complexity classes.

This diagram represents two possibilities of inclusion relationships between
classes. It is strongly believed by the community that all inclusions represented
are strict inclusions. Nonetheless, proving these believes remains elusive. In fact,
it is only known that LSPACE (PSPACE.

These classes have been defined in the context of this thesis in order to prove
some important results about SAT. Being the Cook-Levin theorem the most
representative among the result. Analogously to SAT, its variations play a fun-
damental role, each in their own particular class. These proof are made following

3.4. Some Exploitable Properties about SAT 35

the ideas shown in Cook-Levin’s theorem, adapting them for the Turing machine
in question.

3.3.5 Exponential Time Hypothesis

In this subsection we will introduce the hypothesis, shown first on [20]. It states
that no sub-exponential time algorithm can be found for 3-SAT. This hypothesis,
although widely accepted, is still unproven. Formally:

Definition 3.3.5 (ETH). For k ≥ 3, lets define:

sk = inf{δ : there exists a O(2δn) k− SAT solver}.

It is claim that sk > 0.

This result has some equivalent formulations.

Proposition 3.3.2 (theorem 1. [20]). The following statements are equivalent:

1. ETH: for all k ≥ 3, sk > 0.

2. For some k, sk ≥ 0.

3. s3 ≥ 0.

This theorem is proven making use of The Sparsification Lemma, which is
based in turn on the ideas of critical and forced variables. By the time of the
publication of the article, Zane has already worked with these ideas for the
development of the PPZ algorithm[35]. Although we are not going to prove this
result, we are going to present these ideas when analyzing the Paturi-Pudlák-
Zane Algorithm[6.1.1].

This claim is harder that P 6= NP, as it not only declares that SAT is not
polynomial time, but neither is sub-exponential time.

3.4 Some Exploitable Properties about SAT

In this section we explain some concepts of SAT that are interesting because they
have beautiful related mathematical theories and also because they can be useful
resolving and analyzing complexity. Also, we will present some result that where
intentionally postponed, in order to talk about them once complexity classes
has been introduced, although they belong thematically to previous chapters.
In particular we will talk about:

• Symmetric Clauses.

• Autarks assignments.

• Tseitin Theorem.

• Tautologies and CO-NP completeness

36 Chapter 3. Complexity Classes and Relevance of the Problem

• Constructiveness.

The first of them are useful when modelling a problem in order to generate
SAT problems on which we can work more efficiently. Then second of them is
an useful technique that is used extensively on SAT solvers

3.4.1 Symmetry

In this subsection we talk about symmetry groups and its application to SAT.
The information and examples resemble the ones in [39]. We will start this
subsection with a motivating example.

Example 3.4.1. Consider the boolean formula:

F = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c).

It is not difficult to see that this functions remains invariant under some
variations, namely:

• The trivial variation: the identity. For the example, we will denote this
transformation by I.

• Swapping the inputs of a and b. It is equivalent to renaming a as b and b
as a. For the example, we will denote this transformation as π:

π(F) = (¬b ∧ a ∧ c) ∨ (b ∧ ¬a ∧ c) = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) = F.
(3.2)

• Swapping the inputs of a and ¬b. It is equivalent to renaming a as ¬b and
b as ¬a. For the example, we will denote this transformation as β:

β(F) = (¬¬b ∧ ¬a ∧ c) ∨ (¬b ∧ ¬¬a ∧ c)

= (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) = F.
(3.3)

• Swapping a with ¬a and b with ¬b. For the example, we will denote this
transformation as γ:

γ(F) = (¬¬a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬¬b ∧ c)

= (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) = F.
(3.4)

With these three invariants we can also see that the composition of each one
of these invariants with each other produce another invariant. Moreover, each
invariant is its own inverse, as ϕ ◦ ϕ = I for ϕ ∈ {I, α, β, γ}.

We can see therefore that by invariant γ, it does not matter what value does
we assign to a, as either both F{a = 1} and F{a = 0} are satisfiable or none are.
Therefore we can solveF{a = 1}, and we have a simplified problem to examine.

This is what is called symmetry breaking. An avid reader would have already
recognized the group structure on the invariants. On this subsection we are going
to explore the necessary concepts to define a symmetry, explore the group of

3.4. Some Exploitable Properties about SAT 37

negations and permutations, and develop some strategies to implement symmetry
breaking. Now we are going to define a few concepts.

Definition 3.4.1. Let F be a formula and φ be a function α : FormVar(F) →
FormVar(F). We say that φ is an invariant of F if φ(F) = F.

We have a function α : FormX → FormX that maps F = (¬a∧ b∧ c)∨ (a∧
¬b ∧ c) to α(F) = (¬c ∧ b ∧ a) ∨ (c ∧ ¬b ∧ a).

Definition 3.4.2 (Group Action). An action of a group G on a set S is a map
G× S→ S such that:

• es = s for e the identity element of G and every s ∈ S.

• (g1g2)(s) = g1(g2s) for all s ∈ S and all g1, g2 ∈ G.

Definition 3.4.3 (Group-Induced Equivalence Partition). Let G be an action
group and X be a set. The action of the group G over X induces an equivalence
relation such that, for x1, x2 ∈ X:

x1 ∼ x2 if ∃g ∈ G such that gx1 = x2.

This relation induce a quotient space on X and, therefore, a partition, that could
be seen as an element of the lattice of partitions of X. We will denote this
partition as P(X, G).

Note that the inverse property on groups and the two properties of group
actions imply that the equivalence relation is, in fact, an equivalence relation.
We note a simple result in order to make this concept more manageable.

Proposition 3.4.1. Let G be a group, {g1, ..., gn} ⊂ G be a set that generates
G and X be a set. We have that:

P(X, G) = ∨i∈1,...,nP(X,< gi >),

where < gi > is the cyclic group generated by gi.

Definition 3.4.4 (Permutation). Given a finite set of variables X = {x1, ..., xn},
a permutation of X is any injective mapping α : X → X. Each permutation
induces a homonym function on α : FormX → FormX that replaces every
variable by its image by α. This homonym function can be seen as the action of
alpha over FormX.

For example given X = {a, b, c}, and a injective mapping α : X → X such
that:

α(a)→ c,
α(b)→ b,
α(c)→ a.

(3.5)

38 Chapter 3. Complexity Classes and Relevance of the Problem

We can see set of all permutations over a set X such that |X| = n along with
composition is the permutation group on n elements, Pn.

In algebra the permutations group (further on classic permutation group)
consists in the group of injective mappings of {1, ..., n} along with composition,
studied in most group algebra courses. In fact, what we define as permuta-
tion group is the action group of the classic permutation group over the set of
variables.

Definition 3.4.5. Let X be a non-empty set of variables. Given A ⊂ X a
negation of A is a mapping σA : Lit(X)→ Lit(X) defined by:

σA(xi) =

{
¬l l ∈ A,
l otherwise.

Where Lit(X) is the set of literals over X. Each negation induces a homonym
function σA : FormX → FormX.

The same way with the group of permutation this is the action group of a
elementary group of negations over integers. Nonetheless, as this group may be
a little more exotic, we include a proof that is, in fact, a group.

Proposition 3.4.2. The set of negations over a set X and composition is a
group.

Proof.

• Closure: We can see that σA ◦ σB = σ(A∪B)\(A∩B).

• Associativity: Associativity is inherited from the general associativity of
composition.

• Identity: We have an identity element σ∅.

• Inverse: For every A ⊂ X, σ2
A = σ∅.

We will denote the group of negations over n variables as Nn.

Proposition 3.4.3 (NPn). The set of negations and permutations on n variables
along with the composition is a group, denoted by NPn.

Proof. Note that every element x ∈ NPn can be expressed as α ◦ σ where α is a
permutation and σ is a negation. Also note that

• Closure: α ◦ σA ◦ α′ ◦ σA′ = α ◦ α′ ◦ σα−1 A ◦ σA′ = α′′ ◦ σA′′ , where α′′ is a
permutation and σA′′ is a negation.

• Associativity: associativity is inherited from the general associativity of
composition.

• Identity: we have an identity element σ∅ = I.

3.4. Some Exploitable Properties about SAT 39

• Inverse: for every α ◦ σA the function α−1 ◦ σα(A) is its inverse.

Proposition 3.4.4. NPn s the semi-direct product of Nn and Pn. That is:

NPn = Nn o Pn.

Proof. Note that due to the property aforementioned, NPn = PnNn and Pn ∩
Nn = I. Therefore NPn is the semi direct product of Pn and Nn.

For us, a symmetry of a formula F is any φ ∈ NP|Var(n)| that is an invariant
for F. We will have three type of symmetries:

• Value: a symmetry φ will be called a value symmetry if φ ∈ Nn. The
idea behind this name resides in the fact can flip the value of this variable
without changing the truth value of the formula.

• Variable: a symmetry φ will be called a variable symmetry if φ ∈ Pn. The
idea behind this name resides in the fact can swap two of this variables
without changing the truth value of the formula.

• Mixed: a symmetry that is not a value symmetry neither a variable sym-
metry is a mixed symmetry. The idea behind this name resides in the fact
that this symmetries has to be a composition of a value symmetry with a
variable symmetry.

We are going to search symmetries in a CNF formula F. Until now we have
a naive method in order to do this: for every φ ∈ NPn check whether φ is an
invariant of F. Nonetheless the complexity of this process is as hard as solving
SAT. Instead, we will in fact reduce the problem of symmetries detection to a
colored graph automorphism problem[3.2].

Definition 3.4.6. Let G = (V, E) be a graph where V is the set of nodes and
E be the set of edges, represented as unordered pairs. A coloring of a graph its
a partition (V1, ..., Vn) of V. Each Vi is called a color, and for every x ∈ Vi it is
said that x with color i. Also, let v ∈ V we define

d(v, Vi) = |{u ∈ Vi : (u, v) ∈ E}|.

We say that a coloring is stable if

d(u, Vi) = d(v, Vi), ∀u, v ∈ Vj, ∀i, j ∈ 1, ..., n.

A colored graph is a pair (G, π) where G is a graph and π is a coloring of it.

We are going to associated our formula with a colored graph as defined
above, and choose a coloring π of that graph. From every coloring π of G we
can make a stable coloring π′ by iteratively splitting colors with different vertex
degree. We can see that π′ ≤P π. If π′ is a discrete partition, i.e. |π′| = |V|, G
has no symmetries beyond the identity. Otherwise we have some candidates for

40 Chapter 3. Complexity Classes and Relevance of the Problem

symmetry. This possible symmetry is checked (or refuted) by selecting a color
Vi ∈ π′ = {Vi : 1 ≤ i ≤ n} with more than one element, and, for each v ∈ Vi
we put v in front of Vi\{v}, generating all symmetries.

Example 3.4.2. A little example of the procedure may be of some help:

0

1 23

Figure 3.4: Initial Graph

We now have a partition with only one set with all nodes. We will make a
refinement by selecting the node with different adjacency. Now we obtain a new
coloring.

0

1 23

Figure 3.5: First modification.

Now we have an stable coloring, with a partition π′ = {Vi : 1 ≤ i ≤ 3},
where V1 = {0, 2}, V2 = {1} and V3 = {3}. We represent this partition with a
table:

Node 0 2 1 3
Color 1 1 2 3

Table 3.1: Coloring Table.

To continue with the refinement, we are going to divide the color 1, as it is
not a singleton. we are going to make two modification of the color: modification
1, and modification 2. On modification 1 we the value of node 0 to 1’. On
modification 2 we change the value of node 2 to 1’ and put it up front of it color.
This will mean that we look for a potential symmetry between 0 and 2.

And now we reach, in both modifications, a discrete coloring. Now we have two
symmetries, each one induced by one modified coloring. We have all symmetries
on the selected graph:

3.4. Some Exploitable Properties about SAT 41

Original 0 2 1 3
Modified 1 0 2 1 3
Color Modified 1 1’ 1 2 3
Modified 2 2 0 1 3
Color Modified 2 1’ 1 2 3

Table 3.2: Partition Table.

• The first coloring induces the trivial symmetry.

• The second induces the symmetry of swapping 0 and 2.

Now that we have the right tool we can deepen in our study. In order to
discover symmetries in a formula F we will apply this method to it associated
symmetry graph SF.

Definition 3.4.7. Let F be a CNF formula, the associated symmetry graph SF,
is a colored undirected graph such that:

• has as nodes:

– Clause node: there is a node nC with color 0 for every clause C ∈ F.

– Positive Literal node: there is a node nx with color 1 for every variable
x ∈ Var(F).

– Negative Literal node: there is a node n¬x with color 1 every variable
x ∈ Var(F).

• has as edges (represented as unordered pairs):

– Clause edges: for every clause C ∈ F, and for every literal l ∈ C there
is an edge (nc, nl).

– Variable edges: for every variable x ∈ Var(F) there is an edge
(nx, n¬x).

Once we have detected for our formula F its group of symmetries GF we want
to disambiguate its properties. That is, in the same way as Clause Learning
5.1.3, we want to add a predicate in order to allow any algorithm to consider
the rest of the possible values automatically.

Although this idea tend to be portrayed with a lot of fancy tools, it is in fact
a really simple idea once well explained: we are going to order the satisfying
assignments of F and only consider true the least of them. This idea is correct,
as we can easily make an ordering on the assignment of Var(F). The interesting
idea of this method resides on how to translate it to propositional logic language.

We are going to order the assignments in lexicographic order. We are going
to consider that Var(F) = {xi : 1 ≤ i ≤ n}, and being α, β two assignments on

42 Chapter 3. Complexity Classes and Relevance of the Problem

Var(F) then

α ≤ β ⇐⇒ ∃i ∈ 1, ..., n such that

(α(xi + 1) = β(xi + 1) : ∀j ∈ 1, ..., n− i) =⇒ α(xi) ≤ β(xi).

Then we are going to impose that, for every orbit of a symmetry π ∈ GF,
we have that α ≤ α ◦ π, therefore having only one correct assignment. This is
translated to formulas thanks to lex-leader predicate.

Definition 3.4.8 (10.7[39]). Let F be a CNF formula, X = {xi : 1 ≤ i ≤ n} =
Var(F) and π ∈ GF, we define the lex-leader predicate PP(X, π) as

PP(X, π) = ∧1≤i≤n
((
∧i+1≤j≤n(xj = π(xj))

)
→ (xi ≤ π(xi))

)
.

Definition 3.4.9. Let F be a CNF formula, and GF be its symmetry group.
We define the symmetry breaking predicate ρ(F) as:

ρ(F) = ∧π∈GF PP(X, π).

And we have that, considering F ∧ ρ(F) only the least of the symmetries can
be considered.

3.4.2 Autarks assignments

Once we have defined what is a CNF formula and what is a problem we can
proceed to define this anticipated concept.

Definition 3.4.10. An partial assignment α is called autark for a CNF formula
F if for every clause C ∈ F it happens that if Var(C)∩Var(α) 6= ∅ then Cα = 1.

An autark assignment α for a CNF formula F is an assignment that satisfies
all clauses that it ’touches’. These assignments provide simplifications of the
CNF formulas in the context of satisfiability, as they generate a new CNF for-
mula Fα that are satisfiable if, and only if, F is satisfiable. In set notation we
can state that α is autark for F if Fα (F. Subsequently, trying to find simple
autark assignment, is a good praxis.

Should it happen that we have an algorithm for the Autarks Finding Problem,
iterating it, we could find a satisfying assignment of any given formula if it exists
such assignment, therefore solving FSAT. Let’s define the problem formally:

Definition 3.4.11. Let CNF the set of formulas in CNF and Part the set of
partial assignments. The Autark Finding Problem is the function problem de-
fined by the relation:

R = {(F, α) : F ∈ CNF ∧ ∀C ∈ F,
C 6= ∅ (Var(C) ∩Var(α) 6= ∅ =⇒ Cα = 1)}.

(3.6)

3.4. Some Exploitable Properties about SAT 43

Theorem 3.4.1. There is a reduction from FSAT to the Autark-Finding prob-
lem.

Proof. Suppose that an algorithm such that if it exists any autark it return one
of them, and end with an error code otherwise is given.

Given a formula F, if there is not an autark then there is no solution for
the SAT problem. If it finds an Autark-assignment α then we apply the same
algorithm to α(F). Also, as it happens that |Var(α(F))| < |Var(F)| so we only
apply the algorithm finitely many times. Also, F will be solvable if, and only if,
Fα is solvable.

The most common autark assignment is the pure literal. A literal l is a
pure literal for a formula F if there is no ¬l in F. The partial-assignment that
only maps u → 1 is an autark assignment for F. This type of autark are used
on DPLL algorithm[5.1]. The MS algorithm[5.2.1] also uses an autark finding
technique.

Corollary 3.4.1.1. The autark finding problem is FNP-Complete.

Proof. As checking whether an assignment is autark is linear on the number of
clauses, then this make the autark-finding problem is in FNP. From 3.4.1 follows
that the autark finding problem is FNP-Complete.

3.4.3 Tseitin Theorem

Now that we are able to talk about efficiency is time to talk about an interesting,
anticipated result. If we remember Lindenbaum algebra[1.2.2] we have defined a
quotient space on the formulas in terms of satisfiability. In order to solve GSAT,
we are not in need of solving all formulas. Instead we can learn how to solve
a language of formulas F such that for every class [φ1] ∈ Form/ ∼ there is a
formula f ∈ F such that f ∈ [φ1]. Also, we will need a method that allows us
to find such f ∈ F given any element of [φ1].We want to prove that SAT is a
language that satisfies this restrictions. The naive approach to the problem is
straightforward:

Proposition 3.4.5. There is a CNF formula in each equivalence class. Moreover,
given a function f ∈ Form we are able to find an equivalent CNF formula.

Proof. Given φ1 ∈ Form we make the truth table of φ1. Two formulas are in
the same equivalent classes if, and only if, they share the same truth table.

We can generate a CNF formula that has the same table this way: for every
row [x1 → a1, ..., xn → an] (xi variables, ai ∈ {0, 1}) that falsifies φ1 we add a
clause (z1 ∨ ...∨ zn) with zi = xi if ai = 0 and zi = ¬xi if ai = 1.

This method is interesting as it shows the truth table, as the collection of all
two-valued assignmentsα such that Var(α) = φ1. Nonetheless is not a method
that should be considered useful, as it has exponential time. Tseitin theorem
provides us with a solution to this problem that runs in polynomial time. We
will need a lemma first:

44 Chapter 3. Complexity Classes and Relevance of the Problem

Lemma 3.4.2. For every SAT formula there is an associated circuit.

Proof. Every operator can be seen as a gate and every variable as an input.

Theorem 3.4.3 (Tseitin [49]). There is a 3-CNF formula on each equivalent
class. Moreover, given an element F there is a equivalent formula G in 3-CNF
which could be computed in polynomial time.

Proof. We will show that for every circuit with n inputs and m binary gates
there is a formula in 3-CNF that could be constructed in polynomial time in
n and m. Then, given a formula we will work with it considering its associated
circuit.

We will construct the formula considering variables x1, ..., xn that will repre-
sent the inputs and y1, ..., ym that will represents the output of each gate.

G = (y1) ∧
m∧

i=1

(yi ⇐⇒ fi(zi,1, zi,2)).

Where fi represents the formula associated to the i-gate, zi,1, zi,2 each of the
two inputs of the i-gate, whether they are x− or y− variables. This formula is
not 3-CNF yet, but for each configuration being fi a Boolean operator there
would be a 3-CNF equivalent.

• z ⇐⇒ (x ∨ y) = (x ∨ y ∨ ¬z) ∧ (¬x ∨ z) ∧ (¬y ∨ z).

• z ⇐⇒ (x∧ y) = (¬x∨ z)∧ (¬y∨ z)∧ (¬z∨ x)∧ (¬y∨ x)∧ (¬z∨ y)∧
(¬x ∨ y).

• z ⇐⇒ (x ⇐⇒ y)=(x∨¬y∨z)∧(¬x∨y∨¬z)∧(x∨¬y∨¬z)∧(x∨ y∨ z).

• z ⇐⇒ (x⊕ y) = z ⇐⇒ (¬x ⇐⇒ y).

In the last item we use the third one.

The fact that they are reachable on polynomial time is important because
it means it could be done efficiently. Should this be impossible it will not be of
much relevance in practice, as we yearn to solve this problem as efficiently as
possible. This result implies that if we know how to solve 3-SAT we know how
to solve GSAT.

3.4.4 Tautologies Revisited

Proposition 3.4.6. Given a tautology F → G, there exists a formula I such
that Var(I) = Var(F) ∩Var(G) and both F → I and I → G are tautologies. A
polynomial algorithm to solve this problem is not known.

3.4. Some Exploitable Properties about SAT 45

Proof. Let {x1, ..., xk} = Var(F) ∪Var(G) then we will build I by defining its
truth table in the following way: Given an assignment α:

Iα =

1 if α could be extended to an assignment that satisfies F,
0 if α could be extended to an assignment that nullifies G,
∗ otherwise.

Where * mean that it could be either 0 or 1. This is well defined because if
for an arbitrary α it happens that Gα = 0 then Fα = 0.

For every assignment β such that Var(β) = Var(F)∪Var(G) then if β(F) =
1 then β(I) = 1 so F → I is a tautology. Similarly it can not happen that Iβ = 1
and Gβ = 0, because the second will imply that Iβ = 0.

For the last part we will refer to [41].

3.4.5 From non-constructive to constructive

In this subsection we explain how a constructive SAT-solver can be made from
a non-constructive SAT-solver without changing its asymptotic time complexity,
assuming true the exponential time hypothesis[3.3.5].

Proposition 3.4.7. Let φ be an oracle that decides SAT in O(ϕ(n + m)) where
n is the number of variables and m the number of clauses. Then we can make
an algorithm that computes FSAT on O((n(ϕ(n + m)) + m)

Proof. We will iteratively expand a partial assignment α. α initially maps all
variables to υ. The procedure take as input a CNF formula F. The algorithm that
solve FSAT is described in [1]. It is based in the notion that, if F is satisfiable,
either F{x = 1} or F{x = 0} is satisfiable. We are able to explore the variable
lineally being sure that we are always assigning the correct value to each variable.

Algorithm 1 FSAT routine

1: procedure Solver(F)
2: F0 ← F
3: α← empty partial assignment.
4:

5: for x ∈ Var(F) do
6: if φ(F0{x = 1}) then
7: α+ = {x = 1}
8: F0 ← F0{x = 1}
9: else

10: if φ(F0{x = 0}) then
11: α+ = {x = 0}
12: F0 ← F0{x = 0}
13: else
14: return Unsatisfiable
15: return α

46 Chapter 3. Complexity Classes and Relevance of the Problem

Let’s analyze the complexity of this algorithm. We make at most n repetitions
of the for loop, and on each repetition we call φ and assign a variable in a
formula.Therefore the procedure runs in O(nϕ(n + m) + m)

Assuming ETH we assume that φ is exponential in time, an therefore asymp-
totic complexity O(ϕ(n + m)) is the same as O(n(ϕ(n + m) + m)), so, until
ETH is proved wrong we can consider SAT and FSAT as being equal in com-
plexity. On this text we will only deal with non-constructive solvers on the
combinatorics section[??].

47

Part II

Solvers

49

Chapter 4

Special Cases

On this part we attack the main problem of SAT: explain the different techniques
that can be applied.Onward we will see how it could be solved, and develop
applied techniques. There are a lot of approaches to this problem and they differ
on their way to attack it. We have to realise that three things are important to
judge an algorithm.

• The simplicity: following Occam’s razor, between two solutions that do
not appear to be better or worse, one should choose the easiest one. This
solution are far more comprehensible and tends to be more variable and
adaptable for our problem. We should not despise an easy solution to a
complex problem only because a far more difficult approach give slightly
better results.

• The complexity: and by that I mean its algorithmic (’Big O’) complexity.
It is important to get good running times in all cases and have an analysis
of the worst cases scenario that the algorithm could have.

• The efficiency: Some algorithms will have the same complexity as the most
simple ones, but will use some plans to be able to solve most part of the
cases fast (even in polynomial time). There are some cases that would
make this algorithms be pretty slow, but more often than not a trade-off
is convenient.

On this chapter we are going to talk about solvability in special situations
where we work with a restricted subset of formulas (more restricted than CNF
formulas). We want to exploit special characteristics of these subsets in our
favor in order to get a resolution without involving a complex exponential time
algorithms (as the ones needed to solve SAT).

The first section of this chapter will talk about combinatorics. We proceed
to analyze solvability in special cases, i.e., algorithms that work really well in
formulas given that they satisfy some restriction.

4.1 Satisfiability by Combinatorics

To get an intuition about how unsolvable clauses are, we gonna state some simple
results about combinatorics and resolution. These techinques present some cases
where we can solve the decision problem efficently, although more often that not

50 Chapter 4. Special Cases

we would not provide a satisfying assignment, i.e., we do not solve the function
problem.

As there is no complete SAT-solver known to work in polymial time complex-
ity, a polynomial increase does not affect overall the assymptotical complexity.

Firstly, it is easy to break a big clause on some smaller ones, adding one
another on this way: Suppose we got two positive integers n, m such that m < n
a clause x1 ∨ x2 ∨ ...∨ xn we could split it into two parts x1 ∨ x2 ∨ ...∨ xm−1 ∨
y,¬y ∨ xm ∨ ...∨ xn. Also given the same clause with a given length n we could
enlarge it one variable adding x1 ∨ ...∨ xn ∨ y and x1 ∨ ...∨ xn ∨ ¬y where y is
a new variable. Note that to enlarge a clause from a length m to a length n > m
we would generate 2n−m clauses.

Proposition 4.1.1. Let F be a k-CNF formula, if |F| < 2k then F is satisfiable.

Proof. Let n = Var(F), it happens that n > k. For each clause C ∈ F there
are 2n−k assignments that falsify F, so in total there could be strictly less than
2k · 2n−k = 2n. Therefore it exists an assignment that assigns all variables and
not falsifies the formula F.

Proposition 4.1.2. Let F = {C1, ..., Cn} be a CNF formula. If ∑m
j=1 2−|Cj| < 1,

then F is satisfiable.

Proof. Enlarging clauses the way it is explained to the maximum length k and
applying the previous result.

Following this idea we could define the weight of a clause C ∈ F as

ω(C) = 2−|C|

being this the probability that a uniform-random assignment violates this clause.

Corollary 4.1.0.1. For a formula in CNF, if the sum of the weights of the
clauses is less than one then the formula is satisfiable.

Definition 4.1.1. Let F be a CNF formula. It is said to be minimally unsatis-
fiable if:

• F is unsatisfiable.

• F\{C} is satisfiable ∀C ∈ F.

Then the following proof will be shown as in [42]. For that we will need the
well known Hall marriage theorem[15]. A similar result is proved in Chapter 7 of
[28], using the König theorem. Both versions take the idea of associate a graph
with a set of clauses.

Definition 4.1.2. Let G = (N, E) be a graph where N is the set of nodes and
E the set of edges, represented as pair of nodes. Given n ∈ X, the neighborhood
of n, denoted as ΓG(n), is defined as:

ΓG(n) = {n′ ∈ X : n′ 6= n, ∃e ∈ E such that n, n′ ∈ e}

Analogously, the inclusive neighborhood is defined as Γ+
G (n) = ΓG(n)∪ {n}.

The neighborhood of a subset W ⊂ X is defined as ΓG(X) = dn∈XΓG(n)

4.2. Lovász Local Lemma 51

Definition 4.1.3. Let G be a finite bipartite graph with finite sets of vertices
X, Y. A matching edge cover is a cover such that every vertex only participate
in one edge)

Theorem 4.1.1 (Hall marriage graph version). Let G be a finite bipartite graph
with finite sets of vertices X, Y. There is a matching edge cover of X if and only
if |W| ≤ |ΓG(W)| for every W ⊂ X.

Lemma 4.1.2. Let F be a CNF formula. If for every subset G of F it holds that
|G| ≤ |Var(G)|, then F is satisfiable.

Proof. We will associate a bipartite graph with F: U, V be the two set of vertices
where U consists on the set of clauses and V on the set of variables. There is
an edge (u, v) if v takes part on u.

By the marriage theorem every clause can be associated to a variable. There-
fore we could make an assignment that take every variable associated to a clause
to the value that the clause requires.

This idea or neighbourhood in clause is important and curious. It defines a
relation between clauses and give clauses resolution some nice graph-tools to
work with.

Proposition 4.1.3. If F is minimally unsatisfiable, then |F| > Var(F).

Proof. Since F is unsatisfiable, there must be a subset G such that is maximal
and satisfy |G| > Var(G). If G = F them the theorem is proved.

Otherwise, let H ⊂ F\G be an arbitrary subset. If |H| > |Var(H)(G)| then
|G ∪ H| > |Var(G ∪ H)| and G would not be maximal. Therefore F satisfies
the condition of the lemma and is satisfiable using an assignment that does not
use any variable x ∈ Var(G). As G is minimally unsatisfiable G is satisfiable by
an assignment β. We could then define an assignment:

γ(x) =

{
β(x) if x ∈ Var(G)

α(x) otherwise.

this assignment would satisfy F against the hypothesis. We proved G = F by
contradiction and therefore we proved the lemma.

4.2 Lovász Local Lemma

We continue to prove an interesting lemma on the theoretical analysis of satisfia-
bility problem: the Lovász Local Lemma (LLL). This lemma was first proven on
1972 by Erdös and Lovász while they were studying 3-coloration of hypergraphs.
Then it was Moser which understood the relationship between this result and
the constraint satisfaction problem. SAT could be regarded as the simplest of
these problems.

This section is going to be based on the works of Moser, Tardos, Lovász and
Erdös. As it will be shown, LLL is applicable to set a sufficient condition for

52 Chapter 4. Special Cases

satisfiability. We will explain the lemma for theoretical purposes and prove the
most general version, and give a constructive algorithm to solve a less general
statement of the problem. The principal source of bibliography for the whole
section would be Moser PhD. Thesis[30].

The main contribution of Moser’s work to this problem is finding an efficient
constructive algorithm to find what assignment satisfies the formula, given that
F satisfies the hypothesis of the lemma. Previously only probabilistic approaches
had been successful.

The probabilistic method is a useful method to prove the existence of objects
with an specific property. The philosophy beneath this type of proofs is the
following: in order to prove the existence of an object we do not need to give
the object, instead, we could just consider a random object in the space we are
exploring an prove that the probability is strictly positive. Then we can deduce
that an object with that property exists. It is not necessary to provide the exact
value, bounding it by a constant greater that zero would be enough.

This technique was pioneered by Paul Erdös. LLL is an useful tool to prove
lower bounds for probabilities that is commonly used to prove that a probaility
is strictly positive.

This section will follow this order:

• Present the notation and general expression for the LLL.

• Use the result to prove an interesting property on satisfiability on CNF.

• Prove the general result with the probabilistic result.

• Provide the more concise CNF-result with a constructive algorithm.

4.2.1 First definitions

We will work here with a very specific type of formulas.

Definition 4.2.1. Let C be a clause in F, the neighborhood of C, denoted as
ΓF(C) as

ΓF(C) = {D ∈ F : D 6= C, Var(C) ∩Var(D) 6= ∅}.
Analogously, the inclusive neighborhood Γ+

F (C) = Γ(C) ∪ {C}.

Further on Γ and Γ+ will respectively denote inclusive or exclusive neighbor-
hood on CNF formulas or graphs

Definition 4.2.2. Two clauses are conflicting if there is a variable that is
required to be true in one of then and to be false in the other. G∗F is the graph
such that there is an edge between C and D iff they conflict in some variable.

4.2. Lovász Local Lemma 53

Definition 4.2.3. Let Ω be a probability space and let A = {A1, ..., Am} be
arbitrary events in this space. We say that a graph G on the vertex set A is a
lopsidependency graph for A if no event is more likely in the conditional space
defined by intersecting the complement of any subset of its non-neighbors. In
others words:

P

(
A
∣∣∣ ⋂

B∈S
B

)
≤ P(A) ∀A ∈ A, ∀S ⊂ A\Γ+

G (A).

If, instead of requiring the event to be more likely, we require it to be inde-
pendent (i.e. to be equal in probability) the graph is called dependency graph.

4.2.2 Statement of the Lovász Local Lemma

Theorem 4.2.1 (Lovász Local Lema). Let Ω be a probability space and let
A = {A1, ..., Am} be arbitrary events in this space. Let G be a lopsidependency
graph for A. If there exists a mapping µ : A → (0, 1) such that

∀A ∈ A : P(A) ≤ µ(A) ∏
B∈ΓG(A)

(1− µ(B)),

then P
(⋂

A∈A A
)
> 0.

By considering the random experiment of drawing an assignment uniformly,
with the event corresponding to violating the different clauses we could refor-
mulate this result. The weight of each clause is the probability of violating each
clause. Therefore, we can state a SAT-focused result.

Corollary 4.2.1.1 (Lovász Local Lema for SAT). Let F be a CNF formula. If
there exists a mapping µ : F → (0, 1) that associates a number with each clause
in the formula such that

∀A ∈ A : ω(A) ≤ µ(A) ∏
B∈Γ∗G(A)

(1− µ(B)),

then F is satisfiable.

Proof. To prove the result it would only be necessary to show that Γ∗ is the lop-
sidependency graph for this experiment. Given C ∈ F and D ⊂ F\ΓG∗F (D) (i.e.
no D ∈ D conflict with C). We want to check the probability of a random
assignment falsifying C given that it satisfies all of the clauses in D, and prove
that it is at most 2−|C|.

Let α be an assignment such that it satisfies D and violates C. We could
generate a new assignment from α changing any value on Var(C), and they still
will satisfy D (as there are no conflict) so the probability is still at most 2−k.

The result that we will prove in a constructive way will be slightly more
strict, imposing the condition not only in Γ∗ but in Γ+

54 Chapter 4. Special Cases

Corollary 4.2.1.2 (Constructive Lovász Local Lema for SAT). Let F be a CNF
formula. If there exists a mapping µ : F → (0, 1) that associates a number with
each clause in the formula such that

∀A ∈ A : ω(A) ≤ µ(A) ∏
B∈ΓG(A)

(1− µ(B)),

then F is satisfiable.

In order to get a result easier to check we will present a new criteria. If k ≤ 2
the k-SAT problem is polynomially solvable so we will not be interested on such
formulas.

Corollary 4.2.1.3. Let F be a k-CNF with k > 2 formula such that ∀C ∈ F
and |ΓF(C)| ≤ 2k/e− 1 then F is satisfiable.

Proof. We will try to use [4.2.1.2]. We will define such µ : F → (0, 1), µ(C) =
e · 2−k. Let C0 ∈ F be an arbitrary clause.

2−k = ω(C) ≤ µ(C) ∏
B∈ΓF(C)

(1− µ(B)) = e2−k(1− e2−k)|ΓF(C)|.

With the hypothesis

2−k ≤ e2−k(1− e2−k)2k/e−1,

1 ≤ e(1− e2−k)2k/e−1.

Being famous that the convergence of the sequence {(1− e2−k)2k/e−1}k to
1/e is monotonically decreasing.

4.2.3 Nonconstructive proof of [4.2.1]

We explain the way Erdös, Lovász and Spencer originally proved the Lemma
[10] [46]. The write-up presented here will resemble the one done by [31].

Thorough the proof we will use repeatedly the Chain Rule. It states that for
any events {Ei}i∈1,...,r,

P

(
r⋂

i=1

E1

)
=

r

∏
i=1

P

Ei

∣∣∣ i−1⋂
j=1

Ej

 .

Further on this subsection we will consider Ω to be a probability space and
A = {A1, ..., Am} to be arbitrary events in this space, G to be a lopsidependency
graph, and µ : A → (0, 1) such that the conditions of the theorem are satisfied.
We first prove an auxiliary lemma.

4.2. Lovász Local Lemma 55

Lemma 4.2.2. Let A0 ∈ A and H ⊂ A. then

P

(
A
∣∣∣ ⋂

B∈H
B

)
≤ µ(A).

Proof. The proof is by induction on the size of |H|. The case H = ∅ follows
from the hypothesis easily:

P

(
A
∣∣∣ ⋂

B∈H
B

)
= P(A) ≤1. µ(A) ∏

B∈Γ∗G(A)

(1− µ(B)) ≤2. µ(A).

Where 1. uses the hypothesis and 2. uses that 0 < µ(B) < 1. Now we
suppose that |H| = n and that the claim is true for all H′ such that |H′| < n.
We distinguish two cases. The induction hypothesis will not be necessary for the
first of them

• When H ∩ Γ∗G(A) = ∅ then P
(

A
∣∣∣⋂B∈H B

)
= 0 ≤ P(A) by definition

of Γ∗G and P(A) ≤ µ(A) by definition of µ.

• Otherwise we have A 6∈ H and H∩ Γ∗G(A) 6= ∅. Then we can define to
sets HA = H∩ Γ∗G(A) = {H1, ..., Hk} and H0 = H\HA.

P

(
A
∣∣∣ ⋂

B∈H
B

)
=

P
(

A ∩
(⋂

B∈HA
B
) ∣∣∣⋂B∈H0

B
)

P
(⋂

B∈HA
B
∣∣∣⋂B∈H0

B
) .

We will bound numerator and denominator. For the numerator:

P

A ∩

 ⋂
B∈HA

B

 ∣∣∣ ⋂
B∈H0

B

 ≤ P

A
∣∣∣ ⋂

B∈H0

B

 ≤ P(A).

Where the second inequality is given by the definition of lopsidependency
graph. On the other hand, for the denominator, we can define Hi :=
{Hi, ..., Hk} ∪H0.

P

 ⋂
B∈HA

B
∣∣∣ ⋂

B∈H0

B

 =
k

∏
i=1

P

Bi

∣∣∣ ⋂
B∈Hi

B

≥3.

k

∏
i=1

(1− µ(Hi)) ≥4. ∏
B∈Γ∗G(A)

(1− µ(B))

56 Chapter 4. Special Cases

Where in 3. the induction hypothesis is used, and in 4. is considering that
Hi ∈ Γ∗G(A) Considering now both parts:

P

(
A
∣∣∣ ⋂

B∈H
B

)
≤ P(A)

∏B∈Γ∗G(A) (1− µ(B))
≤ µ(A).

Where the last inequality uses the hypothesis on µ.

proof of the theorem 4.2.1.

P

(⋂
A∈A

A

)
=

m

∏
i=1

P

Ai

∣∣∣ i−1⋂
j=1

Aj

 ≥5.
m

∏
i=1

(1− µ(Ai)),

where in 5. is used 4.2.2 and since µ : A → (0, 1) then P
(⋂

A∈A A
)
> 0.

4.2.4 Constructive proof of [4.2.1.2]

Moser[31] proves that there exists an algorithm such that it gives an assignment
satisfying the SAT formula, should it happen that the formula satisfies 4.2.1.1
conditions. This is no a big deal, as a backtrack would be also capable of providing
the solution, given that we know its existence. Not so trivial is that it would run
in O(|F|). We will show the version of the algorithm shown in [42].

Algorithm 2 Moser’s Algorithm

1: C1, ..., Cm ← Clauses in F to satisfy, globally accessible
2: α← assignment on Var(F)
3:

4: procedure Repair(α, C)
5: for v ∈ Var(C) do
6: α(v) = random ∈ {0, 1}
7: for j := 1 to m do
8: if (Var(Cj) ∩Var(C) 6= ∅) ∧ (Cjα = 0) then
9: Repair(Cj)

10:

11: Randomly choose an initial assignment α
12: for j := 1 to m do
13: if α(Cj) = 0 then
14: Repair(Cj)

At first sight it is not clear if it terminates. If F verifies 4.2.1.1 it is proved

that if will end after running Repair at most O(∑C∈F
µ(C)

1−µ(C)
)

4.3. Special Cases Solvable in Polynomial Time 57

4.3 Special Cases Solvable in Polynomial Time

In this section we will discuss some cases of the SAT problem solvable in P.
These cases are of interest because polynomial is no achievable in all cases.
Nonetheless, they only work with a subset of all possible formulas. They should
be used whenever possible as no general polynomial time is believed to exist,
nor it is proved its non-existence. In general thorough the section we will follow
The Satisfiability Problem: Algorithms and Analyses[42].

Definition 4.3.1. Let F be a formula. A subset V ⊂ Var(F) is called a backdoor
if Fα ∈ P for every assignment α that maps all V.

Let us explain this concept. Given a formula F a backdoor is a expecial
subset of the variables such that if all of it is assigned then we can solve the
remaning formula in polynomial time, i.e., once we have assigned these variables
the problem is easy. The trivial backdoor is the set of all variables. For a back-
door the smaller, the better.

A goal for a SAT-solver could be to find a backdoor of minimum size. DPLL
would try to search for a backdoor, using heuristics in order not to explore all
subsets (only achievable if such backdoor exists).

4.3.1 Unit Propagation

Unit propagation is a simple concept that is worth standing out because it is
commonplace. Given a CNF formula F if there is a clause with only one element
then the value of the variable should be assigned accordingly to the clause, other-
wise F is unsatisfiable. This lead to the unit propagation concept. Whenever we
have a unitary clause {p} we should resolve it and start working with F[p = 1]
being [p = 1] the assignment that maps the value of the metavariable p to 1,
which could possibly imply mapping a variable to 0.

Also, the unit propagation might result on a recursive problem, as other unit
clauses could appear. Unit propagation is a usefull way to simplify .

4.3.2 2SAT

It is already know that 3-SAT is equivalent to SAT. However, this is not the
case of 2-SAT.

Proposition 4.3.1. 2SAT is in P

Proof. To prove that 2SAT is in P, a polynomial algorithm on the number of
clauses will be given. Let F ∈ 2CNF. Without loss of generality, we will consider
that there are no clauses in F {u, u} or {u,¬u} as the first one should be handle
with unit propagation and the second one is a tautology. Therefore each clause
is (u∨ v) with var(u) 6= var(v), which could be seen as (¬u→ v)∧ (¬v→ u).

58 Chapter 4. Special Cases

We would consider a step to be as follow: we choose a variable x ∈ Var(F)
and set it to 0. Then a chain of implications would arise, which might end on
conflict. If no conflict arises, then is an autark assignment, so repeat the process.
Otherwise set it to 1 and proceed. If conflict arise, then F is unsatisfiable. If no
conflict arise, then is an autark assignment, so repeat the process.

Each step is of polynomial time over the number of clauses. Also there would
be at most as many steps as variables, therefore we have a polynomial algorithm.

4.3.3 Horn Formulas

In this subsection we will analyze Horn formulas. They named after Alfred
Horn[18]. They are of special interest as HORNSAT is P-complete.

Proposition 4.3.2. HORNSAT is in P.

Proof. Given a formula F it could have a clause with only one non-negated literal
or not. If it does not have a clause like this, set all the variables in to 0 and
is solved. Otherwise, unit-propagate the unary clause and repeat the process
recursively. If a contradiction is raised, them the F is not satisfiable.

Now we will discuss a simple generalization of Horn formulas: the renamable
Horn Formulas. These formulas allow us to give some use to the otherwise not
really useful Horn definition. They also add a condition that can be checked
efficiently.

Definition 4.3.2. Let F be a CNF formula. F is called renamable Horn if there
is a subset U of the variables Var(F), so that F[x = ¬x|x ∈ U] is a Horn
formula. That set is called a renaming.

Definition 4.3.3. Let F be a CNF formula. Then a 2CNF formula F∗ is defined
as:

F∗ = {(u ∨ v)|u, v are literals in the same clause K ∈ F}
Theorem 4.3.1. The CNF formula F is renamable Horn if and only if the
associated F∗ formula is satisfiable. Moreover, if a satisfying assignment α for
F∗ exists then it encodes a renaming U in the sense that x ∈ U ⇐⇒ α(x) = 1.

Proof. Let F be renamable Horn and U be a renaming. We consider the assign-
ment

α(x) =

{
1 x ∈ U,
0 otherwise.

Let {u ∨ v} ∈ F∗ after the renaming. There should be at least one negative
variable so if every variable is set to 0, F∗ is satisfiable.

The other direction is analogous: let α be an assignment that satisfies F∗.
Then there is no to literals in the same clause set to 0. Defining U = {x ∈
Var(F) : α(x) = 1} there is no two positives variables in a clause.

If a renaming exists, it can be obtained efficiently, and then solve efficiently
with the HORNSAT algorithm.

59

Chapter 5

Complete Algorithms

5.1 Backtracking and DPLL Algorithms

In this section we will talk about algorithms that explore the space of possible
assignments in order to find one that satisfies a given formula, or otherwise
prove its non-existence. Onward whenever a formula is given, it would be a CNF
formula.

5.1.1 Backtracking

We will start with the approach based on the simple and well-known backtracking
algorithm.

Algorithm 3 Backtrack

1: procedure backtracking(F)
2: if 0 ∈ F then return 0
3: if F = 1 then return 1
4: Choose x ∈ Var(F)
5: if backtracking(F{x = 0}) then return 1

6: return backtracking(F{x = 1})
=0

This algorithm describe a recursion with 0(2n) complexity with n being the
number of variables. It also lends itself to describe a plethora of approaches
varying how we choose the variable x in line 4. This algorithm will be an upper
bound in complexity and a lower bound in simplicity for the rest of algorithms
in this section.

An easy modification can be done to improve a little its efficiency in the
context of k-SAT. Choosing a clause of at most k variable we could choose
between 2k − 1 satisfying assignments. The recursion equation of this algorithm
will be T(n) = (2k − 1) ∗ (T(n− k)), so it would have asymptotic upper bound

O(an) with an = (2k − 1)
1
k < 2n.

5.1.2 Davis-Putman-Logemann-Loveland (DPLL) algorithm

This algorithm is an improvement of the backtracking algorithm, still really
simple and prone to multiple modifications and improvements. This algorithm

60 Chapter 5. Complete Algorithms

was develop by Martin Davis and Hillary Putnam in 1960 while they where
studying Hilbert’s tenth problem. Nonetheless, the most extended version is the
improved algorithm develop by Martin Davis, George Logemann and Donald
Loveland in 1962.

Algorithm 4 DPLL

1: procedure DPLL(F)
2: if 0 ∈ F then return Unsatisfiable
3: if F = 1 then return Satisfiable
4:

5: if F contains a unit clause {l} then return DPLL(F{l = 1})
6: if F contains a pure literal l then return DPLL(F{l = 1})
7:

8: Choose x ∈ Var(F) with an strategy.
9: if DPLL(F{x = 0}) = Satisfiables then return Satisfiable

10: return DPLL(F{x = 1})

We could see to main differences:

• The algorithm try to look for backdoors and simplifications in lines 5 and
6. Although only some of these techniques are present, and even some
implementations skip the pure literal search, is an improvement. Search
for autarks assignments or renames could also be a good idea.

• We can see that, although we present an algorithm for SAT, it can be
adapted to FSAT by keeping a log of the calls to DPLL, and returning
this log when Satisfiability is ensured.

• It uses heuristics to select variables. It does not imply that they always
are better chosen (and there would be cases that run worse), but tend to
be better. In practice, hard heuristics approaches give excellent results[44].
The idea behind heuristics is trying to reduce as much as possible the
number of branching steps. Many heuristics functions have been proposed.
For the formulation of some of them we will define:

fk(u) = number of occurrences of literal u in clauses of size k

f (u) = number of occurrences of literal u
(5.1)

– DLIS (dynamic largest individual sum): choose u that maximizes f .
Try first u = 1.

– DLCS (dynamic largest clause sum): choose u that maximizes f (u) +
f (¬u). Try first whichever has largest individual sum.

– Jeroslaw-Wang: For the one sided version choose u such that maxi-
mizes the sum of the weights of the clauses that include the literal.
For the two sided version choose a variable instead of a literal.

– Shortest Clause: choose the first literal from the shortest clause, as
this clause is one of the clauses with the biggest weight in F.

5.1. Backtracking and DPLL Algorithms 61

– VSIDS: This heuristics function is a variation of DLIS. The difference
is that once a conflict is obtained and the algorithm need to back
track, the weight of that literals are increased by 1.

On [14] differences in behauvior between differences between DPLL SAT-
solvers are explored, mainly differences in behavior in randomized versions of
the algorithm.

5.1.3 Clause Learning

Despite not being an algorithm, clause learning is a rather useful technique in or-
der to improve any search based algorithm (as DPLL variations). The technique
works adding clauses to ensure that once reached a contradiction it would not be
reached again, that is, providing new clauses to the CNF formula that, without
being satisfied, the formula could not be satisfied. When we add those clauses
we avoid the repetitions that led to the contradiction, bounding some branches
in a problem specific manner. The technique that we introduce is the so called
Conflict Driven Clause Learning(CDCL), as we focus on learning clauses after
conflict arise. The content of this subsection is from [48]. The information and
definition on UIP is from [50]

In the context of Clause Learning we have to think about an algorithm that
works by iteratively expanding a partial assignment as is done in DPLL.

In order to add clarity to the explanation we will introduce some definitions:
Conflict clause, decision level, and implication graph. A conflict clause would
represent part of an assignment that will never be part of a solution.

Definition 5.1.1. A clause C is a conflict clause of the formula F if:

• Var(C) ⊂ Var(F)

• Each variable in Var(C) appear only once is the clause C.

• C 6∈ F and for every assignment α such that Cα = 0 it happens Fα = 0.

It is clear that the third condition of the definition is the one that add mean-
ing to it. Nonetheless the first two are important to bound the clauses that
can be interesting. By adding conflict clauses more constraints are added to
the formula, avoiding searching on assignments that will not satisfy the formula.
The purpose of clause learning is to find conflict clauses. In order to do that we
will built a implication graph and examine it when a conflict happens.

A decision is made every time a variable is assigned and its not part of a unit
clause or is a pure literal, i.e., each time we make a non-forced decision. These
decisions anidate, and the decision level refer to the number of anidations done
when the literal u was assigned to the value a.

The implication graph is the directed graph that has as nodes a pair with a
variable an a value assigned to that variable, and there is an edge from (x, ax)

62 Chapter 5. Complete Algorithms

to (y, ay) if at some point, assign x to ax makes mandatory that y is assigned to
ay. The idea behind this graph is to has a log of the decisions taken to expand
the current partial assignment. Formally:

Definition 5.1.2. Let F be a CNF formula,{xi : 1, ..., n} = Var(F), and A =
{ai ∈ {0, 1} : i ∈ {1, ..., n}. The associated implication graph GF,A is defined
inductively:

• G0 is the empty graph, and F0 = F.

• From Gi−1, Fi−1 we define Gi, Fi:

– Let xj be the first variable in Var(Fi). We add the node named (xj, aj).

– We define F′i = Fi−1{xj → aj} and Gi = Gi−1.

– Every unit clause {l} in Fi, we add to Gi a node (x, a) such that
(l){x → a} = 1. Note that (x, a) is unique as l is a literal.

– Every unit clause {l} has an associated clause C = {li1 , .., lik} ∈ F and
a associated node (x, a). Necessarily, all other literals in C has been
assigned already, so they has an associated node in the graph (y, b).
We add to Gi an edge from every associated node (y, b)→ (x, a).

– We define:

Fi = F′i {x → a : (x, a) is a node associated to a unit clause in F′i }

• We repeat the process until either all variables are assigned or a conflict
arise. The implication graph has a conflict if there are two nodes with the
same variable and opposite value. The resulting graph will be GF,A

We say that x was assigned at decision level i if x ∈ Var(Fi−1) and x 6∈ Fi.

As we can see a decision graph is dependent of the order on which the vari-
ables are assigned (should a decision be made) and the value chosen for each
variable when this decision happens.

We will show a little example in order to clarify this definition.

Example 5.1.1. Suppose that we have F = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2), (¬x1 ∨
¬x2), (¬x3 ∨ ¬x4), (x4 ∨ x2 ∨ ¬x3)}. We make a list A = {1, 1, 1, 0} of values
associated to each variable. We start by adding the node(x1, 1) to G1.

(x1, 1)

Figure 5.1: G1 before unit propagation

Then we define F′1 = F0{x1 → 1} = F0{x1 → 1} = F{x1 → 1} =
{(¬x2), (¬x3∨¬x4), (x4∨ x2∨¬x3)}. We have an unit clause, therefore, we add

5.1. Backtracking and DPLL Algorithms 63

a node(x2, 0), as this clause where associated in F with the clause (¬x1 ∨ ¬x2)
we add an edge (x1, 1) → (x2, 0). As there were only one unit clause, we can
define F1 = {(¬x3 ∨ ¬x4), (x4 ∨ ¬x3)}.

(x1, 1) (x2, 0)

Figure 5.2: G1 after unit propagation

Once we have F1 and Gi we continue the iteration. Therefore we choose the
variable x3 (as x1 and x2 where already assigned) and assign it to 1 as we initially
decided. Therefore we define G2 = G1, and immediately after we add the node
(x3, 1). We define F′2 = {(¬x4), (x4)}. We have two unit clauses. Solving them
as done above we have:

(x1, 1) (x2, 0)

(x3, 1) (x4, 1)

(x4, 0)

Conflict

Figure 5.3: G2 after unit propagation

We can see that a conflict has arised. Therefore we can not continue iterating
throw the process and GF,A = G2. Note that have we wanted to assign the values
in other order, only a renaming would have been necessary.

As we already stated, the purpose of the implication graph is to show the root
of the conflict. That is, we want to know what assignments led to the conflict.
This could be made by making a set of nodes N = {(xj, aj : j ∈ 1, ..., k)} such
that every path from a decision node to the conflict has to include one node of
the set. This will be named a cut, not confuse with the graph theory concept.

A conflict clause can be made from each cut N: once we have the set N,
we can add a new clause C = (l1, ..., lk)to F such that lk = xk if ak = 0 and
lk = ¬xk otherwise.

Let’s summarize what we know until know:

- We know how to make implication graph.

- We know how to add conflict clauses from a cut of a implication graph
with conflict.

64 Chapter 5. Complete Algorithms

So we only has to learn strategies in order to detect cuts on implication
graphs. Although every cut is enough to add conflict clauses, the most two
common approaches are to choose cut are base on the idea of Unique Implication
Point(UIP). A UIP is a vertex that dominates both vertices corresponding to
the conflicting variable.

• Last UIP - choosing every decision node that has a path to the conflict.

• First UIP - choosing the first unique point encountered. That is, following
backward the implication graph from the conflict, choosing the first UIP.

The first UIP tend to produce smaller clauses and experimental results [48]
[50] provide evidence in favor of it. It is commonplace on DPLL-based solver.
The GRASP[5.2.3] algorithm was one of the first conflict driven solver, that is,
a sat solver that implements a DPLL procedure based mainly on Clause Learning.

We can incorporate clause learning to DPLL easily:

Algorithm 5 Clause learning DPLL [9]

1: procedure Clause-Learning-DPLL (F)
2: D ← () empty decision sequence
3: Γ← {} empty set of learned clauses
4: while True do
5: if unit resolution detects a contradiction in F + Γ with D then
6: if D=() then return Unsatisfiable
7: else
8: C ← conflict clause
9: m← devision level of C

10: D ← D[0 : m]
11: Γ+ = C
12: else
13: if There is no variable not implied by unit resolution then
14: return Satisfiable
15: else
16: Add a decision on a variable x not implied by unit resolution

On the algorithm D[0 : m] represents the first m decisions of D.

5.2 Other complete algorithms

5.2.1 Monien-Speckenmeyer (MS) Algorithm

This algorithm is a variation of the DPLL-Shortest Clause algorithm, specifying
that once you choose the shortest clause, all variables you choose should be from
that clause until you satisfy it, as it will continue to be the shortest given that
there is no clause with repeated literals as well as no clause that is a tautology.
This algorithm (DPLLSC) on k-SAT generates a recursion such that T(n) =

5.2. Other complete algorithms 65

∑k
i=1 T(n− i). Under the hypothesis that MS does not has a under-exponential

worst case complexity, then T(n) = an for some a ∈ (1, ∞). Therefore,

ak =
k

∑
i=1

T(i) =
1− ak

1− a

that solved in the equation ak+1 + 1 = 2ak. The difference between MS and
DPLLSC is that MS includes an autark assignment search in addition to the unit
clause search and generalizing the pure literal search (that would be a search of
autarks of size 1). When we select a clause (the shortest) we first try to generate
an autark with its variables and otherwise continue the algorithm.

Algorithm 6 Monien-Speckenmeyer

1: procedure MS(F)
2: if 0 ∈ F then return 0
3: if F = 1 then return 1
4:

5: if F contains a unit clause {l} then return MS(F{l → 1})
6: if F contains a pure literal l then return MS(F{l → 1})
7: Choose the shortest clause C = {u1, ..., um}
8: for i ∈ {1, ..., m} do
9: α1 := {u1 → 0, ..., ui−1 → 0, ui → 1}

10: if αi is autark then return MS(Fαi)

11: if MS(F{u1 = 1}) then return 1

12: return MS(F{u1 = 0})

Other version of the algorithm repeats the last for-loop in the successive
calls of F (calling MS(Fαi)). Nonetheless we consider that with a deterministic
heuristic (that, for example, choose the first clause between the set of clauses
with minimum size) the result is equivalent and this provides a simpler algorithm.

For the k-SAT complexity analysis we have to consider whether or not an
autark was found. If so, T(n) ≤ T(n− 1). Otherwise we are applying a non
autark assignment that necessarily collide with a clause which size is at most
k− 1. Let us denote by B(n) the number of recursive calls with n variables and
under the hypothesis that there is a clause with at most k− 1 variables. In this
case T(n) ≤ ∑k

i=1 B(n− i) and B(n) ≤ ∑k−1
i=1 B(n− i). Both of these cases are

worse than T(n− 1) so in order to study a worst case complexity we have to
study the case when no autark is found. Under the hypothesis that B(n) = an

we get ak + 1 = 2k−1. For k = 3 we obtain a = 1+
√

5
2 .

5.2.2 Deterministic Local Search

The local search procedure on SAT context is the same as in other branches
of computer science. The idea is that we start with an initial assignment α
and search in the neighborhood of α for a satisfying assignment, that is, those
assignments that are close to α according to a distance d.

66 Chapter 5. Complete Algorithms

Definition 5.2.1. Let α and β be assignments, we define the Hamming distance
dH as:

dH(α, β) = |{x ∈ Var(α) ∪Var(β) : α(x) 6= β(x)}|
Note that in case that for every y ∈ Var(α)\Var(β), we can consider that
α(y) = υ, and respectively with β.

For every α we define its neighborhood as D(α, δ) = {β : dH(α, β) ≤ δ}. In
order for this algorithm to work is necessary that δ > 0 and is preferable that
δ << |Var(α) ∪ Var(β)|, in order to avoid doing a backtrack. The procedure
determines whether or not there is a satisfying assignment for F in D(α, δ). The
procedure takes as input a CNF formula F, an assignment α and a positive
integer δ.

Algorithm 7 Local Search[42]

1: procedure LS(F, α, δ)
2: if Fα = 1 then return Satisfiable
3: if δ = 0 then return Unsatisfiable
4: Choose C = l1, ..., ln ∈ F such that Cα = 0
5: for i ∈ {1, ..., n} do
6: return LS(F, α ◦ {l1 → 1}, δ -1)

For 3-SAT the running time is O(m3δ) where m is the number of clauses.
This technique is useful on formulas with a great density of satisfying assign-
ments. Nonetheless, until now this is an incomplete algorithm. The strategy
to prove incompleteness is the following. Let F be a CNF formula, such that
Var(F) = {x1, ..., xn} and consider δ = n//2 + n%2 where // is the integer
division and % is the modulo, and αa = {x1 → a, ..., xn → a}. Then by run-
ning LS(F, α0, δ) and LS(F, α1, δ) we have a complete algorithm. The asymptotic
complexity for this algorithm is O(3n/2) ≈ O(20.793n). Note that in this context
we only work with two-valued assignment, as we are not dealing with partial
assignments.

Algorithm 8 Complete Local Search

1: procedure CLS(F)
2: n← |Var(F)|
3: α0 ← {xi → 0 : 1 ≤ i ≤ n}
4: α1 ← {xi → 1 : 1 ≤ i ≤ n}
5:

6: if LS(F,α0, n//2 + n%2) then return Satisfiable

7: return LS(F,α1, n//2 + n%2)

There is a natural way to generalize the idea of exploring all the space of
assignments by coordinates local searches, and that is the covering codes.

Definition 5.2.2. Let X be a set of variables and let A = {αi : 1 ≤ i ≤ n} be a
set of two valued assignments over X, and δ be a positive integer. The pair (A, δ)

5.2. Other complete algorithms 67

is a covering code with Hamming radius δ if for any two-valued assignment α
over X, there exists α′ ∈ A such that dH(α, α′) < δ.

We can note that the only important thing about X on a covering code
is the number of variables that it has. Therefore a covering code (A, δ) for
X = {x1, ..., xn} is also, after a renaming, a covering code for Y = {y1, ..., yn},
therefore we can consider that A is a covering code of length n. When no details
about the set of variables is given other than its length n we assume is a covering
code over the set X = {x1, ..., xn}

For the next lemma we introduce the Shannon’s binary entropy function, that
will be useful when dealing with binomial coefficients. The information needed
is provided on chapter1 [26] and Appendix on binomial coefficients [42]. Claude
Shannon was a mathematician and electronic engineer, known as the father of
Information Theory.

Definition 5.2.3. We define the Shannon’s binary entropy function as h :
(0, 1)→ R such that:

h(δ) = −δ log2
1
δ
− (1− δ) log2

1
1− δ

.

Proposition 5.2.1. Let δ ∈ (0, 1) and n ∈N, we have that:

1. ∑δn
i=0 (n

i) ≤ 2h(δ)n,

2. (n
i) =poly 2h(δ)n.

3. 2h(δ) = 1
(δ)(δ)n(1−δ)(1−δ)n

Where =poly means that the expressions are equals expect for a polynomial
coefficient.

For the proof of 1. and 2. we refer to Appendix on binomial coefficients [42].
3. is just a reformulation of the definition.

Lemma 5.2.1 (lemma 5.3[42]). For every ε > 0 and δ ∈ (0, 1
2) there is a length

n0 so that there is a covering code C0 = (A = {αi : 1 ≤ i ≤ t}, δn0) of length

n0, with t ≤ 21−h(δ)+ε)n0, where h(δ) is Shannon’s binary entropy function.

Proof. As done with the LLL, we will prove this result with probabilistic ex-
istence. We fix a set of variables X = {xi : 1 ≤ i ≤ n} choose t random
assignments over x following a uniform distribution.

We are going to prove that

P(∃α0∀i ∈ 1, ..., t : dH(α0, α1) > δn) < 1.

We can see that

68 Chapter 5. Complete Algorithms

P(∃α0∀i ∈ 1, ..., t : dH(α0, α1) < δn) = ∑
α0∈AX

∏
α∈A

P(dH(α0, α) > δn)

= ∑
α0∈AX

∏
α∈A

(1− P(dH(α0, α) ≤ δn))

=1. ∑
α0∈AX

∏
α∈A

(
1−

∑δn
j=0 (n

j)

2n

)

=2. 2n

(
1−

∑δn
j=0 (n

j)

2n

)t

≤3. 2ne−t
∑δn

j=0 (n
j)

2n

=4.
(

2
e

)n
→n→∞ 0.

(5.2)

Where AX is the set of all two-valued assignments over X, 1. is because of
results on binomials distribution, 2. is because the expresion is independent of
eithet α0 and α, 3. is because properties derived on the fact that lim(1− 1

n)n → e
and 4. is because we have yet to define t and we choose to define it as:

t =
n2n

∑δn
j=0 (n

j)
.

As
(2

e
)n →n→∞ 0 for some n0 big enough we have that P(∃α0∀i ∈ 1, ..., t :

dH(α0, α1) < δn) < 1 and therefore there exists a covering on which such α
does not exists. To end the proof, we consider that:

t =
n02n

0

∑δn0
j=0 (n0

j)
≤5. 21−h(δ)+ε)n0 .

where 5. is a direct consequence of proposition[5.2.1].

Remark 5.2.1. Every covering code C = ({αi : 1 ≤ i ≤ k}, δ) of length n can
be truncated to a covering code C′ = ({α′i : 1 ≤ i ≤ k}, δ) of length m < n with
α′i defined as:

α′i(x) =

{
αi(x) x ∈ {xi : 1 ≤ i ≤ m},
υ otherwise.

Remark 5.2.2. Every covering code C = ({αi : 1 ≤ i ≤ k}, δn0) of length n
can be extended to a covering code C′ = ({α′i1,...,im//n+1

: 1 ≤ ij ≤ k}, δn) of

length m > n with α′i defined as:

α′i1,...,im//n+1
(x) =

{
αij(x) x ∈ {xi : n(j− 1) + 1 ≤ i ≤ nj},
υ otherwise.

5.2. Other complete algorithms 69

Then, for every ε > 0, setting δ = 0.5 we have a covering code C0. We can
suppose that for implementing our algorithm we have such covering without
any need of processing for our algorithm, as we can brute-force look for it once,
and then the algorithm can run as many time as required without any need of
repeating those computations.

Algorithm 9 Covering Code Local Search

1: C0 ← the covering code provided by the lemma for ε > 0∧ δ = 0.5
2: procedure Covering-Codes-LS(F)
3: n← |Var(F)|
4: if n ≤ n0 then return CLS(F)

5: C = (A, δn0)← the extended covering code of C0 to n variables
6: for α ∈ A do
7: if LS(F, α, δn) = Satisfiable then return Satisfiable

8: return Unsatisfiable

This algorithm for 3-SAT run on O((1.5 + ε)n)[8].

In fact what made this algorithm relevant is that its performs different from
DPLL algorithm. No only on complexity but on what formulas it is able to solve
efficiently.When we reduce a problem to SAT we have to take into account how
a SAT will behave with our formulas, and from that we have to consider how
to code it (if several alternative codings are available). LS allows us to not only
design formulas that will work well in a DPLL search.

5.2.3 GRASP

We present now one of the most cited algorithms. GRASP(Generic seaRch Al-
gorithm for the Satisfiability Problem) was introduced by Marques-Silva and
Sakallah[29] that works on CNF formulas. It is based on clause learning tech-
niques, and unit propagation. It divides the search process in four parts:

1. Decide: Chooses a decision assignment at each stage of the search process.
Based of experimental results it uses the heuristic DLIS.

2. Deduce: Which implement a recursive unit propagation as done before.

3. Diagnose: Which implement a clause learning procedure.

4. Erase: Which delete assignments implied by the last decision.

The method Erase is needed as the assignment is considered a global variable.
The way that the algorithm work is that each time, either a new conflict clause
is added to the formula, and therefore we Erase our last assignment to explore
other options, or we find an assignment that satisfy the formula.

GRASP is important as it popularized the Clause Learning, and introduced
non-chronological backtrack as a standard.

71

Chapter 6

Probabilistic Algorithms

In this chapter we consider probabilistic algorithms for SAT and k-SAT.When
we talk about probabilistic algorithms, we are trying to define an incomplete
SAT-solver, with a bounded probability error. This might seems like a big loss in
power. Nonetheless, given the complexity of the problem, neither are complete
solvers capable of solving all formulas in a feasible time. Therefore, dropping
completeness could be a fair exchange in order to get better time complexity.

6.1 Paturi-Pudlák-Zane

The first one that we will consider is the Paturi-Pudlák-Zane(PPZ) algorithm
[35] developed in 1997 and its improvements Paturi-Pudlák-Saks-Zane(PPSZ).
It was the first probabilistic algorithm for k-SAT proven to work. It has an as-
sociated deterministic version that could well be included in the DPLL chapter.
Then, some improvements have been done to the algorithm in [36] and [16].

6.1.1 Paturi-Pudlák-Zane

In this subsection we will present the PPZ algorithm and in the next subsection
its improved version PPSZ. The information presented here follows the discus-
sion in [36]. The difference between PPZ and PPSZ is some added preprocessing.
At the time of release, PPSZ was the asymptotically fastest algorithm for ran-
dom k-SAT with k ≥ 4 only improved in 3-SAT by the Schönning random walk
algorithm and its improved version the Hofmeister algorithm, because PPSZ
were not able to extend the results they found but it was suggested that it should
be extendable. At the end, it was proved 9 years later by Hertli [16] that the
bounds hold on general.

To define the algorithms, we first define some subroutines. The first of them
take a CNF formula F, an assignment α and a permutation π and returns other
assignment u.Note that in line 5 and 7 on the procedure modify [Algorithm10]
is only checking whether or not we can unit propagate the variable xπ(i). The
algorithm Search[Algorithm 11] is obtained by running Modify on many pairs
(α, π) where α is a random assignment and π a random permutation.

72 Chapter 6. Probabilistic Algorithms

Algorithm 10 Modify subroutine

1: procedure Modify(α, π, F)
2: F0 ← F
3: u← empty partial assignment.
4:

5: for i ∈ {0, ..., m− 1} do
6: if {xπ(i)} ∈ Fi then

7: u+ = {xπ(i) = 1}
8: else
9: if {¬xπ(i)} ∈ Fi then

10: u+ = {xπ(i) = 0}
11: else
12: u+ = {xπ(i) = α(xπ(i))}
13: Fi+1 = Fiu
14: return u

This procedure is the named PPZ algorithm. As we can see is a pretty simple
algorithm, but more often than not the work on random algorithms is not to
program but to prove them correct. Therefore we will proceed to prove why this
algorithm is, in fact, a correct probabilistic algorithm.

Algorithm 11 Search subroutine

1: procedure Search(F, I)
2: for i ∈ {0, ..., I} do
3: α← random assignment on Var(F)
4: π ← random permutation on 1, ..., |Var(F)|
5: u← Modify(α, π, F)
6: if u(F) = 1 then
7: return Satisfiable
8: return Unsatisfiable

Search always answers Unsatisfiable if F is unsatisfiable. The only problem
is to upper bound the error probability in the case that F is unsatisfiable. In fact,
we only have to to find τ(F): the probability that Modify(F, π, α) find a satisfy-
ing assignment. The error probability of search would be therefore (1− τ(F))I .
As 1− x ≤ exp(−x) with x ∈ [0, 1] them (1− τ(F))I ≤ exp(−Iτ(F)), which
is at most exp(−n) where n = |Var(F)| provided I > n/τ(F) . it suffices to
give good upper bounds on τ(F). In order to do that we will prove first two
lemmas.

To prove the first lemma we introduce some notation:

Definition 6.1.1. A variable x is forced for an assignment α, a formula F
and a permutation π if x is unit propagated in the procedure Modify(α, π, F).
Forced(α, π, F) is the set of all variables that are forced for (α, π, F)

6.1. Paturi-Pudlák-Zane 73

Lemma 6.1.1. Let z be a satisfying assignment of a CNF formula G, and let
π be a permutation of {1, ..., n} and y be any assignment to the variables. Then,
Modify(G, π, y)=z if and only if y(x) = z(x) ∀x ∈ Var(G)\Forced(z, π, G) .

Proof. If y(x) = z(x) ∀x ∈ Var(G)\Forced(z, π, G) we prove that u = z where
u is the assignment provided by Modify(i, π, F). by induction on i. x{π(0)} is
forced only if F has a unit clause on x, therefore either it is forced for all as-
signments or it is not forced for any of them. Otherwise u(xπ(0)) = z(xπ(0)) =

y(xπ(0)) Therefore u(xπ(0)) = z(xπ(0)). Let suppose that u(xπ(j)) = z(xπ(j))
for j < i. If the variable xπ(i) is forced on z it should be forced on u to (and to

the same value). Otherwise u(xπ(j)) = z(xπ(j)) = y(xπ(j)).

Let i be the first index such that y(xπ(i)) 6= z(xπ(i)) with xπ(i) 6∈ Forced(z, π, G)

therefore u(xπ(i)) = y(xπ(i)) 6= z(xπ(i)).

Now, let τ(F, z) the probability that Modify(α, π, F) would return z with
random π and α. From the previous lemma:

τ(F, z) = 2−nEπ[2|Forced(z,π,F)|] ≥1. 2−n+Eπ [|Forced(z,π,F)|],

where 1. is by the convexity of the exponential function and Eπ is the ex-
pected value with π as variable.

Let v be a variable in Var(f) and z a satisfying assignment of F. let C be a
clause in F, then we say that C is critical for (v, z, F) if the only true literal in C is
the one corresponding to v. Suppose that π is a permutation such that v appears
after all other variables in C. It is easy to follow that v ∈ Forced(z, π, F) if C is
critical for (v, z, F). Conversely, if z is forced it must be critical and appears last
on the permutation. Let Last(v, G, z) be the set of permutation of the variables
such that for at least one critical clause for (v, G, z), v appears last on the
permutation. That is, the set of permutations where v is forced. Let P(v, z, F)
the probability that a random permutation is in Last(v, G, z). It follows that

Eπ[|Forced(z, π, F)|] = ∑
v∈Var(F)

Eπ[v ∈ Forced(z, π, F)]

= ∑
v∈Var(F)

P(v, z, F).

Putting it all together we have:

Lemma 6.1.2. For any satisfying assignment z of a CNF formula F

τ(F, z) ≥ 2−n+∑v∈Var(F) P(v,z,F).

In particular, if P(v, z, F) ≥ p for all variables v then τ(G, z) ≥ 2−(1−p)n.

Theorem 6.1.3. Let F be a k-CNF formula. If F is satisfiable by an isolated

assignment, τ(F) ≥ 2−(1− 1
k)n, where n is the number of variables.

74 Chapter 6. Probabilistic Algorithms

Proof. Let z be a satisfying assignment of F. Then τ(F) ≥ τ(F, z). If z is an
isolated assignment, them for each variable v there is a critical clause Cv and
the probability that for a random permutation v appear last is 1/k. Therefore
by the previous lemma

τ(F) ≥ τ(F, z) ≥ 2−(1− 1
k)n.

Then we can think that it is unusual that it is easier to guess a satisfying
assignment with such a simple method when there is less satisfiable assignments.
We are now going to formalize that intuition, growing on the previous lemmas,
and giving similar arguments. For that we will introduce a new concept.

Definition 6.1.2. Let α be an assignment of a proper subset A ⊂ Var(F). Then
the subcube defined by α is the set of the assignments that extends α, i.e. all β
that assign all elements in Var(F) and β(x) = α(x), ∀x ∈ A.

Lemma 6.1.4. Let V be a set of variables and let A 6= ∅ be a set of assignments
that map all variables in V. The set of all assignments that map all V can be
partitioned into a family (Bz : z ∈ A) of distinct disjoint subcubes so that
z ∈ Bz ∀z ∈ A.

Proof. If |A| = 1 choose Bz as the set of all possible assignments. Otherwise
there is two assignments that differ on one variable X. We will partition two
subcubes: the one from the assignment that map x to 0 and the assignment that
map x to 1. Then we proceed recursively on both subcubes.

Given a formula F we will apply this lemma to the set sat(F) of assignments
that satisfy F, and obtain a family of {Bz : z ∈ sat(F)}. We will analyze the
probability τ(F, z|Bz), that is, the probability of Modify(y, π, F) returns z given
that y ∈ Bz. It is easy to follow that:

τ(G) ≥ ∑
z∈sat(F)

τ(G, z|Bz)Prob(y ∈ Bz)

≥ ∑
z∈sat(F)

min
χ∈sat(F)

{τ(G, χ|Bχ)}Prob(y ∈ Bz)

= min
χ∈sat(F)

{τ(G, χ|Bχ)}.

Further on let z be a satisfying assignment and B = Bz. Let N be the set of
unassigned variables in Bz (the set of variables that are not assigned equal for
all α in B). Writing Forcedz(y, π, F) = N ∩ Forced(y, π, F) we have

τ(F, z|B) ≥ 2−N+E[|Forcedz(z,π,G|]

Therefore P(v, z, F) ≥ 1/k for v ∈ N. This is true because z is the unique
satisfying assignment in B, hence changing the value in v produce a nonsatisfying
assignment. Therefore v is critical on some permutation and analogously as the
lemma6.1.2 we have that P(v, z, F).

6.1. Paturi-Pudlák-Zane 75

Theorem 6.1.5 ([36]). Let F be a k-CNF formula, z a satisfying assignment and
let B be a subcube on Var(F) that contains z and no other satisfying assignment.
Then:

τ(G, z|B) ≥ 2−(1− 1
k)|N|

With that we could analyze the complexity of this algorithm. Modify run on
O(nC) where n is the number of variables and C is the number of clauses (assign
CNF-formula has a worst case of C). Search run on O(I ·O(Modify)) supposing
that we can get a random number in O(1) and therefore a random assignment
and a random permutation on O(n). As we will set I > n/τ(G, z|B) > n/τ(F)

we get a running time of O(n · C · 21− 1
k n), with a one-sided error probability of

e−n (0.049 for 3-SAT).

6.1.2 Paturi-Pudlák-Saks-Zane

This algorithm includes a preprocessing of the formula prior to the searching
algorithm. This preprocessing will try to find isolated assignments improving its
running time (or at least its complexity analysis). The preprocessing takes as
input a CNF formula F and a positive integer I. It uses the concept of resolution:
should it happen that we have to clauses C1 = {x1, ..., xn}, C2 = {y1, ..., yn′}
such that C1, C2 ∈ G and the literal xi = ¬yj; i ∈ {1, ..., n}, j ∈ {1, ..., n′} them
we could generate a clause C = R(C1, C2) = {xk : k ∈ {1, ..., n}\i} ∪ {yk : k ∈
{1, ..., n′}\j} and the formula F′ = F ∧ C has the same satisfying assignment
that F. A pair of clauses (C1, C2) are said to be s-bounded if they are resolvable
and |C1|, |C2|, |R(C1, C2)| < s.

Algorithm 12 Resolve subroutine

1: procedure Resolve(F, s)
2: Fs = F
3: while Fs has a s-bounded pair (C1, C2) with R(C1, C2) 6∈ Fs do
4: Fs = Fs ∧ R(C1, C2)

5: return Satisfiable
6: return Fs

7:

8: procedure ResolveSat(F, s, I)
9: Fs = Resolve(F, s)

10: return Search(F, s)

With this prepossessing added to the algorithm a better upper bound is
proved. Defining

µk =
∞

∑
j=1

1

j
(

j + 1
k−1

)

76 Chapter 6. Probabilistic Algorithms

Theorem 6.1.6 (theorem 1. [36]). Let k ≥ 31, let s(n) a function going to
infinity. Then, for any satisfiable k-CNF formula F on n variables,

τ(Fs) ≥ 2−(1− µk
k−1)n−o(n)

Hence ResolveSat(F,s,I) with I = 2+(1− µk
k−1)n+o(n) has an error probability

o(1) and running time 2−(1− µk
k−1)n−o(n) on any satisfiable k-CNF formula, pro-

vided that s(n) goes to infinity sufficiently slowly.

By slowly the theorem means that s(n) diverge in o(log(n)). Also the term
o(n) can be reduced as wished.

6.2 Schöning WalkSAT algorithm

In this section we consider the Schöning WalkSAT algorithm, first introduced
on 1998 [40]. At the time of publication provides the best complexity for 3-SAT,
achieving O((4/3)n), and it remained so until Hertli result. It is also one of the
most simple algorithms. The information presented here follows the discussion
in the original paper [40] as well as the book [42], also by Schöning himself.
Without further ado, we present the algorithm.

Algorithm 13 WalkSAT algorithm

1: procedure Random-LS(F, α, t)
2: for i ∈ {1, ..., t} do
3: if Fα = 1 then return Satisfiable
4: Choose C = l1, ..., ln ∈ F such that Cα = 0
5: Choose randomly n ∈ 1, ..., n..
6: α← α ◦ {l1 → 1}
7: return Unsatisfiable
8: procedure WalkSAT(F, r)
9: n← |Var(F)|

10: for i ∈ 1, ..., r do
11: α← random two-valued assignment on Var(F)
12: if Random-LS(F, α, n) = Satisfiable then return Satisfiable

13: return Unsatisfiable

Note that we look in a random walk with as many steps as the number of
variables. this parameter, in the original paper, was set to 3n, but it was later
proved that n is enough. This is not really important in terms of complexity,
as a constant variation does not imply a difference on its big O complexity.
Nonetheless is a sensible difference on running time on industrial applications.

Theorem 6.2.1. WalkSAT is a correct Probabilistic Algorithm. The algorithm
runs on O∗(2(1− 1

k)n).
1Here we are also using the Hertli Result[16].

6.2. Schöning WalkSAT algorithm 77

Proof. Let’s analyze this algorithms for a k-CNF formula F. As previously ex-
plained, to prove that this is a correct probabilistic algorithm, we have to prove
that it has a one-sided bounded error. It is clear that, if no satisfiable assignment
exists, the WalkSAT algorithm will always get the correct result, so the stress of
the proof on bounding the probability of not finding a satisfying assignment in
the case that F is satisfiable.

Suppose that F is satisfiable, and therefore there is a satisfying assignments
α0. Let n = |Var(F)|. We will analyze the probability that α0 is obtanied after
n iterations of the algorithm. In order to do that, we can analyze the process as
a Markov Chain, that is, a sequence of random variables where the value of each
variable is independent of all others except the previous one. We have sequence
of random variables (Xj) that represents the distance dH from α0 to a randomly
drawn α after j steps on the for loop. These random variables have an image
{0, ..., n}. It is easy to see that the value of the random variable Xi+1 depends
only on the value on Xi. In particular we have a Markov chain on a finite state
space.

Now let us suppose that we have an assignment α such that dH(α, α0) = d. If
d = 0 we have a satisfying assignment, so there is nothing left to do. Otherwise
there is a clause C ∈ F such that Cα = 0. Let C = (∨i∈1,..,nli) where each li
is a literal. In the next steps of our process we will change α forcing a map
from one li to 1. It is clear that α0 maps at least one of those literals to 1. Let
p = |{l ∈ C : α0(l) = 1}|. There, on each iteration, there is a probability of
p/k of decreasing the distance between α and α0 by 1 and 1− p/k of increasing
it by 1. Therefore on the worst case we have a probability of 1/k to progress in
the right direction.

0 1 ... n− 1 n
1
k

k−1
k

1
k

1
k

k−1
k

k−1
k

1

Figure 6.1: Representation of the Stocastic Process

Therefore we can see that our markov chain is denoted by the matrix:
1 0 0 ... 0

1/k 0 (k− 1)/k ... 0
...

...
...

...
0 ... 1/k 0 (k− 1)/k
0 ... 0 1 0

Now that we have all our machineri working we will define and study three

events:

78 Chapter 6. Probabilistic Algorithms

• The event E1 is the event where X0 = bn/kc, i.e.,the event of an uniformly
drawn variable is at distance bn/kc, where bn/kc = max{a ∈ N : a ≤
n/k}.

• The event E2 where Xn = 0, given that X0 = bn/kc.

• The event E3 is the event Xn = 0

For the analysis of the probability of E1 we can assume α0 = {x → 0 :
x ∈ Var(F)} without loss of generality. To draw our assignment α we randomly
choose a value ax ∈ {0, 1} for every x ∈ Var(F). Therefore, the number of
variables mapped to 1 obtained in a random assignment follows a binomial
distribution B(n, 1/2). We can see that:

P(E1) = P(B(n, 1/2) = bn/kc) =

(
n
bn/kc

)(
1
2

)n
.

Note also that k ≤ n, as by the Pigeon Hole Principle, there would exists a
variable x ∈ Var(F) for every C ∈ F such that both literals x and ¬x belong to
C, and therefore the formula would be a tautology. We do not consider clauses
with repeated literals.

For the probability of the event E2, we ’walk’ in the right direction at least
bn/kc. As each step follows a Bernoulli distribution of probability 1/k we can
see that:

P(E2) = P(B(n, 1/k) ≥ bn/kc) =
n

∑
i=bn/kc

(
n
i

)(
1
k

)i (k− 1
k

)n−i
.

Now we can see that

P(E3) ≥ P(E1 ∧ E2) = P(E1)P(E2)

=

(
n
bn/kc

)
2−n

n

∑
i=bn/kc

(
n
i

)(
1
k

)i (k− 1
k

)n−i

≥
(

n
bn/kc

)2

2−n
(

1
k

)n/k (k− 1
k

)n−(n/k)

=poly 1. 22h(1/k)n2−n
(

1
k

)n/k (k− 1
k

)n−(n/k)

=
2−n

(
1
k

)n/k (k−1
k

)n−(n/k)

(1
k)2n/k(k−1

k)2((k−1)/k)n
=

1(
2
(

1− 1
k

))n .

(6.1)

Where 1. is a direct consequence of proposition[5.2.1]. Now that we have
bounded the probability that Random-LS finds a satisfiable assingment, we can

see that, if r = c
(

2
(

1− 1
k

))n
then the probability of WalkSAT algorithm not

finding a correct assignment conditioned on its existence is:

6.3. Summary of introduced algorithms 79

1− 1(
2
(

1− 1
k

))n

(c2(1− 1

k))
n

≈2. e−c,

where on 2. we coinsder n to be big enough in order to approximate to the
limit of the expresion.

This algorithm was fully derandomized [32].

6.3 Summary of introduced algorithms

As a last section of this part we will summarize all SAT solver explained and
classify them. Note that restricted algorithms are considered to be complete,
mean that they are complete for their restricted set of Formulas.

Name Restricted Complete Construtive Complexity

Lovasz Yes Yes No O(n)
Constructive Lovasz Yes Yes No O(n)
2-SAT Yes Yes Yes O(n2)
Horn-SAT Yes Yes Yes O(n2)

Backtrack No Yes Yes O(2n)
DPLL No Yes Yes O(2n)∗

MS No Yes Yes O (1.618n)
Local Search No Yes Yes O(1.5n)

PPZ No No Yes O(1.587n)
PPZS(H) No No Yes O(1.307n)
WalkSAT No No Yes O(1.334n)

Table 6.1: Algorithms presented.

We have gone through the main algorithms in question of their theoretical
relevance. We would like to make a mention of Stalmark’s algorithm. This
algorithm, instead of trying to solve the SAT problem focuses on the resolution
of the TAUT analog. This algorithm had great importance since its discovery and
is said to be very well adapted to induced formulas of real situations. However, our
mainly theoretical point of view has made us prefer to expose other algorithms.

81

Part III

Reductions

83

Chapter 7

Development

The objective of this chapter is to develop a brief work based mostly on original
ideas as a final step to an extensive work of deepening in an area of knowledge.
It also seeks to illustrate some of the skills acquired during the degree in the
context of programming, as well as to develop tools that are of practical interest
in the field of mathematics.

To this end, we are going to create a library (SATreduce) in the Python
programming language that will allow us to solve NP-complete problems in
an elegant and efficient way. We will consider graph, hypergraph, and other
problems.

7.1 Development Environment

In this chapter we briefly introduce the development environment used to pro-
gram reductions.

We use the programming language Python for three main reasons:

• It is interpreted. Furthermore, it is compatible with major platforms and
systems. This allow us to develop a program that is accessible to virtually
everyone without the need of compiling the program multi-platform.

• It is considered to have one of the most accessible learning curves. There-
fore, is excellent to introduce to reductions programming to those who are
mostly interested in the theoretical part.

• It allow us to satisfy all necessary software dependencies using free soft-
ware[47]. I believe that, whenever possible, public-funded research should
be accessible to everyone interested. This implies reducing the barriers to
access to knowledge to a minimum. Furthermore, it must not encourage
the economic gain of a third party private entity that is not even aware of
the existence of the project by making it compulsory to use it for the full
exploitation of the project carried out.

All test cases are done in an ARCH-BASED OS. In particular:

Linux 4.19.122-1-MANJARO 2020 x86_64 GNU/Linux

84 Chapter 7. Development

With 4 physical (8 virtual) processor Intel(R) Core(TM) i7-8550U CPU @

1.80GHz.

The code was uploaded and updated at:

https://github.com/pedrobn23/TFG/tree/master/src

The code uploaded may be subject to small modifications or corrections, so
we recommend to check the link best. On this repository you will also find this
document and all the .text files attached to it.

7.2 PySAT

PySAT[19] is a library developed for python SAT solving. It has been primarily
develop by Alexey Ignatiev, Antonio Morgado, Joao Marques-Silva since 2018.
Among their feature we can highlight:

• Solvers: PySAT include some solvers of great diffusion. Namely

– CaDiCaL: A CDCL based, developed by Armin Biere et al. Armin
Biere is one of the leading voices in SAT Solving. Is one of editors of
Handbook of Satisfiability. CaDiCaL won the SAT Race 2019.

– MapleSAT: Another variations of DPLL. It used an specific heuristic:
the learning rate branching heuristic (LRB), which is inspired in the
ones that are used for in Machine Learning as in Decision Trees.
MapleSAT is developed by the University of Waterloo, and is the
winner of SAT competition 2018.

– Minisat: is ”a minimalistic, open-source SAT solver, developed to help
researchers and developers alike to get started on SAT.” Is one of the
main references in SAT solving. This year SAT competitions included
a MiniSAT Hack Track, that aim to display the best improvements
possible to the classical MiniSAT with only minor changes (<10 lines).

We will use generally the solver CaDiCaL. The solvers read a formula as a
list of list of integers, negated or not. Should an integer n exists, it assumes
that all integers in {1, ..., n} exist as variable. Each particular solver is a
class. The class Solver is a wrapper that works as an interface between
the users and a solver.

• Cardinality Encodings: PySAT includes a series of cardinality encodings.
This will play an important in the development of reductions, as this type
of constraints are commonplace on problems. An example the formula
explained in the lemma[3.3.1], that is the called pairwise encoding. There
are two classes involved:

– IDPool: a class that help us manage variables without having per-
sonally to have a log of what variable is associated to each integer.
Nonetheless, we do not consider this class to be a black box. Reading

https://github.com/pedrobn23/TFG/tree/master/src

7.3. Reductions 85

the code we recognize that the variables are named after their order
of arrival. This details is important in order to solve some function
problems.

– CardEnc: a class that allow us to encode cardinality restrictions of
the type atmost, atleast and equals. I feel proud to say that I notified
a bug in this particular class relative to a unidiomatic use of Python
that derived in a error, while thoroughly studying the project. >

7.3 Reductions

7.3.1 Graph based Problems

In order to demonstrate the utility of SAT, a series of reductions will be developed.
This will imply a formal approach to the resolution of the problems, as well as
deploying a little theoretical background to some problems when needed. Also
we would like to show that this technique provides sometimes really simple
approximations to the problems. We start approaching graph related problems,
for two reasons:

1. The graphs arouse interest both in mathematics and in computer science,
thus deriving a work that could be interesting for profiles coming from
both subjects.

2. We want to use SAT to solve problems at least as complex as SAT. Thus,
we look for problems that are NP-Hard. Some of the most important
classical NP-Problems are defined over graphs.

We choose to solve three of the 21 Karp’s NP-Complete problems[21], namely:

• Hamiltonian Path.

• Proper Coloring.

• Dominant Subseting.

When we talk about graph in this subsection we will consider undirected
graphs only, more precisely, undirected graphs without more than one edge
between two nodes and no loops.

These problems are among the most representatives of graphs theory, so we
believe that there is a great interest developing a library to solve then. Thorough
the chapter, when we refer to C(A) we do it in the context of the lemma 3.3.1.

Hamiltonian Path

The problem of, given a graph, whether there exists a Hamiltonian Path is well
know to be NP-Complete. Then by Cook Theorem it is known that a reduction
from the problem of the Hamiltonian Cycle to SAT exists. This theorem is
constructive, so it effectively does gives a reduction. Nonetheless, this reduction
is unmanageable and in order to use SAT-solvers to improve Hamiltonian cycle
resolution it would be necessary to provide easier programming techniques. On
this subsection an alternative reduction will be shown.

86 Chapter 7. Development

Definition 7.3.1. A Hamiltonian cycle (resp. path) is a cycle (resp. path) that
visits every node in a graph only once. The associated problem is to check, given
a graph, whether such cycle (resp. path) exists.

We will consider the problem of the Hamiltonian cycle of undirected graphs.
Therefore an edge would have two sources instead of a source and a target as it
is regarded on directed graphs.

This problem is a very good example to represent what means to use a SAT-
solver to solve a hard problem. The presented reduction is done as shown in [4],
with a minor error solved.

It moves the complexity of the problem from how to solve it to how to imple-
ment a SAT-solver.The reduction will encode the Hamiltonian cycle problem as
a SAT problem. We use the same reduction in order to reduce both the problem
for the Hamiltonian path and the Hamiltonian cycle.

Let G = (V = {v1, ..., vn}, E = {e1, ..., em}) be a graph. To reduce it to a
SAT problem, we will first define the variables {xi,j : i ∈ 1, ..., n; j ∈ 1, ..., n}. If
the variable xi,j is assigned to true it would mean that the vertex vi is in position
j in the path. We would like to find a assignment of these variables that satisfy
the following clauses.

1. Each vertex must appear at least once in the path, and only one. Thus:

C({xi,j : j ∈ 1, ..., n}) i ∈ 1, ..., n.

2. Every position in the path must has an associated vertex, and only one:

C({xi,j : i ∈ 1, ..., n}) j ∈ 1, ..., n.

3. Two consecutive vertices have to be adjacent:

(¬xi,j ∨ ¬xi+1,k) ∀(k, j) 6∈ E, i ∈ 1, ..., n− 1.

4. Should a cycle be wanted, we add:

(¬x1,j ∨ ¬xn,k) ∀(k, j) 6∈ E.

This is a correct reduction, i.e., that an assignment that can satisfy these
clauses exists if, and only if, the graph G has a Hamiltonian graph. If such an
assignment exists we can make a Hamiltonian cycle with the variables assigned
to 1. On the other hand if such cycle exists an assignment that assign to 1 the
variable xi,j given that the vertex vi is in position j in the path would satisfy all
the clauses.

7.3. Reductions 87

The optimization trick

The next problems that we consider have a characteristic in common: they are
optimization problem with an associated NP-Complete decision problem. That
is, we have a decision problem that, given a graph G and a number k, check
whether a condition is satisfied, and an associated minimizing (resp. maximiz-
ing) problem that consists of looking for the least (resp. greatest) k where the
conditions are satisfied for G. For the rest of the discussion we consider that we
can solve the decision problem in O(f (n)) for some f ∈NN.

The naive approach is straight forward: trying iteratively for every k in-
creasingly (resp. decreasingly) until that one satisfy the condition, therefore
finding the minimum (resp. maximum). As in all three problems it happens that
1 ≤ k ≤ n therefore we can solve the function problem in O(n f (n)).

Nonetheless there is a somewhat common trick that consist of using one more
property of these type of problem: if the conditions are satisfied for a number
k then they are satisfy for every k′ ≥ k. Therefore we can implement a binary
search, therefore achieving a better efficiency O(log(n) f (n)).

Algorithm 14 Optimization trick for minimizing

1: G ← a graph.
2: procedure Minimizing(G)
3: old ← maximun value for k
4: new ← old / 2
5: while old 6= new do
6: if decision_problem(G,new) then
7: old ← new
8: new ← new / 2
9: else

10: new ← (old - new) / 2

11: return new

This method allows us to study the decision problem, and having an slightly
refined algorithm to solve the associated optimization problem.

Coloring

We now introduce one of the most active problems in graph theory: the graph
coloring. In this text we have already consider graph coloring, defined in definition
3.4.6. In that context we focused on trying to find a stable coloring in order to
exploit symmetry in formulas, we now focus on proper colorings.

Definition 7.3.2. Let G = (V, E) be a graph and let π be a coloring of G. We
say that π is a proper coloring of G if not two adjacent vertices belong to the
same color.

88 Chapter 7. Development

Definition 7.3.3. The Graph Proper Coloring Language is the language L ⊂
GRAPH×N, such that for every (G, k) ∈ L there exists a proper coloring π of
G such that |π| = k.

The Graph Proper Coloring Decision problem is a well-known NP-Complete
problem. We will reduce this problem to SAT in order to make use of efficient
solvers, nonetheless, we will first consider a minor generalization of the problem.

Definition 7.3.4. We define the chromatic number function χ : GRAPH→N

as follows:

χ(G) = min{|π| : π is a proper coloring of G} G ∈ GRAPH

.

We get an associated function problem by considering the relation R ⊂
GRAPH×N such that R = {(G, χ(G)) : G ∈ GRAPH.}. This problem is
NP-Hard, as a simple result of the following remark.

Remark 7.3.1. Let L be The Graph Proper Coloring Language. If (G, k) ∈ L
we have that (G, k′) ∈ L for every k′ ≥ k.

Therefore being able to solve this problem is enough to be able to solve the
coloring problem. This remark also allow us to use the optimization trick for
minimizing, if we find a upper bound for k. This upper bound is the number of
vertices, as every discrete coloring is a proper coloring. Let us therefore solve the
decision problem and we will solve both problem described in this subsection as
a consequence.

Let G = (V = {v1, ..., vn}, E = {e1, ..., em}) be a graph and let k ∈ N. To
reduce it to a SAT problem, we will first define the variables {xi,j : 1 ≤ i ≤
n, 1 ≤ j ≤ k}. If the variable xi,j is assigned to true, it would means that the
vertex vi is in the color j. We would like to find a assignment of these variables
that satisfy the following clauses.

1. Each vertex should have one and only one coloring. Thus, for every vertex
vi:

C({xi,j : j ∈ 1, ..., k}) ∀i ∈ 1, ..., n.

2. No two adjacent vertices should have the same color:

(¬xi,j,¬xk,j) ∀(i, k) ∈ E, ∀j ∈ 1, ..., k.

This is a correct reduction. If there exists a satisfying assignment of the
following clauses, thanks to 1, we can define a coloring of G and thanks to 2,
such coloring is a proper coloring. Reversely, should that coloring Vj exists we
can define a satisfying assignment α as:

α(xi,j) = 1Vj(vi),

where 1Vj is the characteristic function of Vj.

7.3. Reductions 89

Dominant subset

As in the previous subsection this problem is among the ones that consist on a
NP-Complete decision problem with an associated NP-Hard minimizing problem.
Dominant subseting is used in planification in order to ensure supply of areas
using the minimum amount of resources.

Definition 7.3.5. Let G = (V, E) be a graph and let V′ ⊂ V. We say that V
is a dominant subset of G for every v ∈ V there exists some v′ ∈ V′ such that
(v, v′) ∈ E.

Definition 7.3.6. The Graph Dominant Subset Language is the language L ⊂
GRAPH×N, such that for every (G, k) ∈ L there exists a dominant subset V′

of G such that |V′| = k

Therefore we have a decision problem. We define the associated minimizing
problem of, for a given graph G, finding the least k ∈N that satisfy the decision
problem. As we can state that k ≤ |V| and the remark 7.3.1 holds for The
Graph Dominant Subset Language we can also use the optimization trick for
minimizing in order to solve the associated minimizing problem, once we solve
the decision problem.

Let G = (V = {v1, ..., vn}, E = {e1, ..., em}) be a graph and let k ∈ N. To
reduce it to a SAT problem, we will first define the variables {xi : 1 ≤ i ≤ n}.
If the variable xi is assigned to 1, it would means that the vertex vi is in V′.
We would like to find a assignment of these variables that satisfy the following
clauses.

1. At most k vertex should be selected:

(¬xij : j ∈ 1, ..., k + 1) ij ∈ 1, ..., n.

2. All vertices should be accessible, therefore

(x : (x, xi) ∈ E) i ∈ 1, ..., n

7.3.2 Other problems approached

QBF

We look on this problem for a series of reasons:

• We want to study a PSPACE-Complete problem in order to analysis it
whole complexity, and to make some considerations about the feasibility
of this class.

• We have commented about Gödel letter [25]. The ’Gödel’s dream’ was of
a QBF solver that run in linear time. A bit too ambitious, but nothing to
reproach yourself with, given the youth of the branch at the time.

• The 23rd International Conference on Theory and Applications of Satis-
fiability Testing is on 3-10 July 2020. A workshop about the state of the

90 Chapter 7. Development

art on QBF will be hold, and I was interested in trying to implement over
this clean skeleton some of the improvements.

At the moment of exposing this thesis the conference will be finishing, however
I am very interested to see how it will be and to see what line or development
are though of being optimal.

We implement a pretty simple QBF-solver that we have called naive-solver.
We hope that it will serve as a basis for developing QBF-solvers over preexisting
SAT-Solvers.

The resolution is done by computing the formula as in 2.2.10. Therefore we
have an algorithm of complexity O(2n) where n is the number of variables.

Closest string

This is the latest of the decision problems with an associaged minimization
problem. it is named closest string problem. Our interest in this problem arises
from our study of Hamming distance for the Local Search Procedure.

We find that this is a simple, yet interesting problem relating codes and
strings. Let us define the problem.

Definition 7.3.7. Let m ∈ N and s1, s2 ∈ {0, 1}m , we define the Hamming
distance for Strings dS as:

dS(s1, s2) = |{i : s1(i) 6= s2(i)}|,

where sj(i) is the position i of the string sj.

Definition 7.3.8. The Language of Closest string of length m is the language
L ⊂ ({0, 1}m)n ×N, such that, for every ((s1, ..., sm), k) ∈ L there is an string
s′ ∈ {0, 1}m such that dS(s′, sj) < k for all j ∈ 1, ..., n. The string s′ is called a
string of distance k.

This problem is known to be NP-Complete[23]. We reduce it to SAT. For
this reduction we use some of the techniques developed in order to solve the
Tseitin theorem 3.4.3. In particular we use the fact that:

z ⇐⇒ (x ⇐⇒ y) =(x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z)∧
(x ∨ ¬y ∨ ¬z) ∧ (x ∨ y ∨ z) = C ′(z, x, y)

(7.1)

We would use this in order to gain more flexibility reducing the problem,
without needing a GSAT solver.

Lets define the reduction, Let {s1, ..., sn}) be a set of strings of length k ∈N.
We look for a string s′ that is at most at distance k. To reduce this to a SAT
problem, we will first define the variables{xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
{yi : 1 ≤ i ≤ m} and {zi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. xi,j represents the value
of the word sj at position i, and yj represent the value of s′ at position j. zj is

7.4. Implementation 91

an auxiliary variable that allow us to make a more elegant reduction. We would
like to find a assignment of these variables that satisfy the following clauses.

1. zi,j is true if and only if xi,j = yj:

C ′(zi,j, xi,j, yi) i ∈ 1, ..., m, j ∈ 1, ..., n

2. At most zi,j can be true for each j:

(¬xij : j ∈ 1, ..., k + 1) ij ∈ 1, ..., n.

Note that, although we treat xi,j as variables, they are fixed constants, defined
by the problem itself. It is easy to see that if such a satisfying assignment α
exists therefore the string < α(yi) : 1 ≤ i ≤ m > is a string of distance k.
Conversely, if such an string s exists, by assigning α(yi) = s(i) and computing
every value of zi,j we can find a satisfying assignment of the clauses.

7.4 Implementation

In this subsection, once we have proved the reduction in a constructive way, we
proceed to program this in order to make these ideas usable.

Planning

We consider that we have to face three problems:

• Representation of the graph. We want to make an elegant yet useful rep-
resentation of the graph.

• Development of the reduction.

• Adapt the reduction to the solver.

• Prepare folder as a package in order to be importable and release it.

Analysis and Design

We start with the design of the library. We divide the library in four different
modules grouped by thematic. We can see the organization in figure 7.1. Lets
talk about each module.

We start with the module graph. For that purpose we implement a graph
class. We choose the basic implementation from [38], that resembles the one
done by Networkx. We like the fact that it uses a dictionary, an object that
naturally represents a graph. We improve two major details:

1. The original class uses a dictionary as a god-object on which resides all
the work. As recommended in [45], we choose to inherit directly from dict,
in order to gain some strength in processing.

92 Chapter 7. Development

2. We consider a set to be better to represent the adjacent nodes, as the
order that a list provides is useless and makes more difficult membership
checking.

We implement the graph in a class Graph, that can be found in the file
graph.py. We implement, among other functionalities that provide a good in-
terface, the methods:

• find_hamiltonian_path

• coloring

• dominating_subset

Let’s now talk about the package utility. we implement two main functional-
ities:

1. The functions xvar,yvar, zvar that provide an useful interface to define
variables with an undefined number of variables. For that we use the
multiple function parameters syntax allowed in python. This functions
should be used in conjunction with an IDPool object.

2. We implement the triple_equal function that is to be used in the closest
string reduction.

SATreduce

graph

hamiltonian_path

minimun_coloring

minimun_dominating_subset

qbf

naiveQBF

string

closest_string

utility

Figure 7.1: Diagram of the library. We can see in red the
library name, in white the different modules and in grey the

reductions implemented in each module.

The last two modules include a single homonym function each, that imple-
ments the associated reduction. More information about the code can be found
in the documentation of each function.

7.4. Implementation 93

Test

In order to automatize testing we use the Python class of test classes. Therefore
we can use automatic test cases in order to check our implementations. The
work-flow followed is an agile one, on which we first define the objective of each
code along with the test cases that we want it to pass, and then we start to
develop the code. We use the class graph_test.py to test the Graph class as a
example of this process.

95

Conclusions

In this document we have developed an overview on the properties, algorithms
and applications of SAT problems. We have made a selection of these results,
mainly because the investigation on SAT has been a thriving field in the last
half century. Nonetheless, we consider that all main results have been covered.
To our knowledge, we have also studied the most influential algorithms that can
be found in the literature.

We are satisfied with the work done in the bibliographic research on the
topic. On the development of the library we celebrate what is done, with the
note that much more can be done. There are a lot of NP-Complete problems,
and as many reductions.

Further work

We propose further work to be done in each part:

1. For the first part we are interested in the Valiant–Vazirani theorem. This
theorem states that if there is a polynomial algorithm for Unambiguous-
SAT, then NP = RP. The proof is based on the Mulmuley–Vazirani–Vazirani
isolation lemma.

2. As we mention in the summary section, we would like to explore the
Stalmark’s Algorithm. For the first section of this part the addition of the
Schaefer’s dichotomy theorem would be nice.

3. Initially the reduction of MAXSAT to a class based of on SAT-Solver was
proposed as one of the objectives of this thesis. This work has already
been done for PySAT as can be seen in:

https://github.com/pysathq/pysat/blob/master/examples/rc2.py.

Therefore we propose as further work to improve the skeleton provided
with the class nativeQBF.

Acknowledgements

Professor Seraf́ın Moral Callejón has helped me greatly with his corrections
and advice in writing this document, assisting me with useful bibliography and
notifying when more clarity was needed. I am also thankful to him and to the
Department for allowing me to pursue this project with a collaboration grant.

https://github.com/pysathq/pysat/blob/master/examples/rc2.py

96 Chapter 7. Development

The PySAT project has been a key piece in adding another dimension to this
work, which otherwise would have been eminently theoretical. Without them it
would not have been possible to demonstrate so efficiently the advantages that
SAT research provides us with.

Lastly, I thanks to all my classmates that has enriched this text, leaving
a bit of their ideas in myself and in this project every time we discuss how a
concept could be understand or clarified. In particular, conversations with the
undergraduates Antonio Cóın, Sof́ıa Almeida, Yabir Garćıa, Antonio Mart́ın and
José Maŕıa Mart́ın, and the graduates Pablo Baeyens and Francisco Luque have
greatly influence this thesis.

97

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational complexity: a modern ap-
proach. Cambridge University Press, 2009.

[2] László Babai. “Monte-Carlo algorithms in graph isomorphism testing”. In:
Université tde Montréal Technical Report, DMS 79-10 (1979).

[3] Yves Bertot. “A short presentation of Coq”. In: International Conference
on Theorem Proving in Higher Order Logics. Springer. 2008, pp. 12–16.

[4] Dor Cohen. Find hamilton cycle in a directed graph reduced to sat problem.
Computer Science Stack Exchange. url: https://cs.stackexchange.
com/q/49593%20(version:%202016-07-29).

[5] Stephen Cook. “The P versus NP problem”. In: The millennium prize prob-
lems (2006), pp. 87–104. url: https://www.claymath.org/millennium-
problems/p-vs-np-problem.

[6] Stephen A Cook. “The complexity of theorem-proving procedures”. In:
Proceedings of the third annual ACM symposium on Theory of computing.
1971, pp. 151–158.

[7] Nadia Creignou and Miki Hermann. “Complexity of generalized satisfia-
bility counting problems”. In: Information and computation 125.1 (1996),
pp. 1–12.

[8] Evgeny Dantsin et al. “Deterministic algorithms for k-SAT based on cov-
ering codes and local search”. In: International Colloquium on Automata,
Languages, and Programming. Springer. 2000, pp. 236–247.

[9] Adnan Darwiche and Knot Pipatsrisawat. “Complete Algorithms.” In:
Handbook of Satisfiability 185.99-130 (2009), p. 142.

[10] Paul Erdős and László Lovász. “Problems and results on 3-chromatic hyper-
graphs and some related questions”. In: Colloquia Mathematica Societatis
Janos Bolyai 10. Infinite And Finite Sets, Keszthely (Hungray). Citeseer.
1973.

[11] Scott Fortin. The graph isomorphism problem. 1996. url: https://doi.
org/10.7939/R3SX64C5K.

[12] John Franco and John Martin. “A History of Satisfiability.” In: Handbook
of satisfiability 185 (2009), pp. 3–74.

[13] Robert Goldblatt. Topoi: the categorial analysis of logic. Elsevier, 2014.

[14] Carla P Gomes and Ashish Sabharwal. “Exploiting Runtime Variation in
Complete Solvers.” In: Handbook of Satisfiability (2009).

[15] Philip Hall. “On representatives of subsets”. In: Classic Papers in Combi-
natorics. Springer, 2009, pp. 58–62.

https://cs.stackexchange.com/q/49593%20(version:%202016-07-29)
https://cs.stackexchange.com/q/49593%20(version:%202016-07-29)
https://www.claymath.org/millennium-problems/p-vs-np-problem
https://www.claymath.org/millennium-problems/p-vs-np-problem
https://doi.org/10.7939/R3SX64C5K
https://doi.org/10.7939/R3SX64C5K

98 Bibliography

[16] Timon Hertli. “3-SAT Faster and Simpler—Unique-SAT Bounds for PPSZ
Hold in General”. In: SIAM Journal on Computing 43.2 (2014), pp. 718–
729.

[17] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to
automata theory, languages, and computation. Pearson, 2007. Chap. 8.

[18] Alfred Horn. “On sentences which are true of direct unions of algebras”.
In: The Journal of Symbolic Logic 16.1 (1951), pp. 14–21.

[19] Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. “PySAT: A
Python Toolkit for Prototyping with SAT Oracles”. In: SAT. 2018, pp. 428–
437. doi: 10.1007/978-3-319-94144-8_26. url: https://doi.org/
10.1007/978-3-319-94144-8_26.

[20] Russell Impagliazzo and Ramamohan Paturi. “On the complexity of k-
SAT”. In: Journal of Computer and System Sciences 62.2 (2001), pp. 367–
375.

[21] Richard M Karp. “Reducibility among combinatorial problems”. In: Com-
plexity of computer computations. Springer, 1972, pp. 85–103.

[22] Peter Lammich. “Efficient verified (UN) SAT certificate checking”. In:
Journal of Automated Reasoning 64.3 (2020), pp. 513–532.

[23] J Kevin Lanctot et al. “Distinguishing string selection problems”. In: In-
formation and Computation 185.1 (2003), pp. 41–55.

[24] Leonid Levin. Leonid Levint Curriculum Vitae. url: http://www.cs.bu.
edu/fac/lnd/research/curv.htm.

[25] Dick Lipton. “Gödel’s Lost Letter and P=NP”. In: url: https : / /

rjlipton.wordpress.com/about-me/.

[26] David JC MacKay and David JC Mac Kay. Information theory, inference
and learning algorithms. Cambridge university press, 2003. Chap. 1, pp. 2–
15. url: https://web.archive.org/web/20160304062221/http:

//www.inference.phy.cam.ac.uk/itprnn/book.pdf.

[27] Stephen M Majercik. “Stochastic Boolean Satisfiability.” In: Handbook of
satisfiability 185 (2009), pp. 887–925.

[28] Victor W Marek. Introduction to mathematics of satisfiability. CRC Press,
2009.

[29] João P Marques-Silva and Karem A Sakallah.“GRASP: A search algorithm
for propositional satisfiability”. In: IEEE Transactions on Computers 48.5
(1999), pp. 506–521.

[30] Robin Moser. “A constructive proof of the Lovász local lemma”. In: Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing.
2009, pp. 343–350.

[31] Robin Moser. Exact Algorithms for Constraint Satisfaction Problems. Lo-
gos Verlag Berlin GmbH, 2013, pp. 17–45.

[32] Robin A Moser and Dominik Scheder. “A full derandomization of schön-
ing’s k-SAT algorithm”. In: Proceedings of the forty-third annual ACM
symposium on Theory of computing. 2011, pp. 245–252.

https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1007/978-3-319-94144-8_26
http://www.cs.bu.edu/fac/lnd/research/curv.htm
http://www.cs.bu.edu/fac/lnd/research/curv.htm
https://rjlipton.wordpress.com/about-me/
https://rjlipton.wordpress.com/about-me/
https://web.archive.org/web/20160304062221/http://www.inference.phy.cam.ac.uk/itprnn/book.pdf
https://web.archive.org/web/20160304062221/http://www.inference.phy.cam.ac.uk/itprnn/book.pdf

Bibliography 99

[33] NPDatalog Main page. url: http : / / wwwinfo . deis . unical . it /

npdatalog/ (visited on 06/23/2020).

[34] Christos H Papadimitriou. “Games against nature”. In: Journal of Com-
puter and System Sciences 31.2 (1985), pp. 288–301.

[35] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. “Satisfiability cod-
ing lemma”. In: Proceedings 38th Annual Symposium on Foundations of
Computer Science. IEEE. 1997, pp. 566–574.

[36] Ramamohan Paturi et al. “An improved exponential-time algorithm for
k-SAT”. In: Journal of the ACM (JACM) 52.3 (2005), pp. 337–364.

[37] Steven David Prestwich. “CNF Encodings.” In: Handbook of satisfiability
185 (2009), pp. 75–97.

[38] Python Advanced Course Topics, Graphs in Python. url: https://www.
python-course.eu/graphs_python.php (visited on 06/23/2020).

[39] Karem A Sakallah. “Symmetry and Satisfiability.” In: Handbook of Satisfi-
ability 185 (2009), pp. 289–338.

[40] T Schoning. “A probabilistic algorithm for k-SAT and constraint satisfac-
tion problems”. In: 40th Annual Symposium on Foundations of Computer
Science (Cat. No. 99CB37039). IEEE. 1999, pp. 410–414.

[41] Uwe Schöning and Jacobo Torán. “A note on the size of Craig interpolants”.
In: Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für
Informatik. 2007.

[42] Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms
and Analyses. Vol. 3. Lehmanns media, 2013.

[43] Dmitry Sergeev. “Hamiltonian” path using Python. Computer Science
Stack Overflow. url: https://stackoverflow.com/questions/47982604/
hamiltonian-path-using-python%20(version:%202020-06-23).

[44] Carsten Sinz and Markus Iser. “Problem-sensitive restart heuristics for the
DPLL procedure”. In: International Conference on Theory and Applica-
tions of Satisfiability Testing. Springer. 2009, pp. 356–362.

[45] Brett Slatkin. Effective Python: 90 Specific Ways to Write Better Python.
Addison-Wesley Professional, 2019.

[46] Joel Spencer. “Asymptotic lower bounds for Ramsey functions”. In: Dis-
crete Mathematics 20 (1977), pp. 69–76.

[47] Richard Stallman. Free software, free society: Selected essays of Richard
M. Stallman. Lulu. com, 2002.

[48] Richard Tichy and Thomas Glase. “Clause learning in sat”. In: University
of Potsdam (2006).

[49] Grigori S Tseitin. “On the complexity of derivation in propositional calcu-
lus”. In: Automation of reasoning. Springer, 1983, pp. 466–483.

[50] Lintao Zhang et al. “Efficient conflict driven learning in a boolean satisfia-
bility solver”. In: (2001), pp. 279–285.

http://wwwinfo.deis.unical.it/npdatalog/
http://wwwinfo.deis.unical.it/npdatalog/
https://www.python-course.eu/graphs_python.php
https://www.python-course.eu/graphs_python.php
https://stackoverflow.com/questions/47982604/hamiltonian-path-using-python%20(version:%202020-06-23)
https://stackoverflow.com/questions/47982604/hamiltonian-path-using-python%20(version:%202020-06-23)

	Dedicatoria
	Introduction
	Summary
	I Satisfiability Problem: Definition and Relevance
	Logic
	Boolean Algebra
	Propositional Logic
	Syntax of Propositional Logic
	Semantics of Propositional Logic

	Definition of the problem
	Satisfiability Problem
	Decision Problems
	Definition

	Variations
	SAT certificates
	Constraint Satisfaction Problem

	Complexity Classes and Relevance of the Problem
	Model of Computation
	Deterministic Computation
	Non-deterministic Computation
	Reductions

	Complexity Classes
	Deterministic complexity
	Non-Deterministic Complexity
	Complementary Classes

	Completeness
	Definition
	Cook-Levin Theorem
	Graph Isomorphism Problem
	Other Completeness Results
	Exponential Time Hypothesis

	Some Exploitable Properties about SAT
	Symmetry
	Autarks assignments
	Tseitin Theorem
	Tautologies Revisited
	From non-constructive to constructive

	II Solvers
	Special Cases
	Satisfiability by Combinatorics
	Lovász Local Lemma
	First definitions
	Statement of the Lovász Local Lemma
	Nonconstructive proof of [4.2.1]
	Constructive proof of [4.2.1.2]

	Special Cases Solvable in Polynomial Time
	Unit Propagation
	2SAT
	Horn Formulas

	Complete Algorithms
	Backtracking and DPLL Algorithms
	Backtracking
	Davis-Putman-Logemann-Loveland (DPLL) algorithm
	Clause Learning

	Other complete algorithms
	Monien-Speckenmeyer (MS) Algorithm
	Deterministic Local Search
	GRASP

	Probabilistic Algorithms
	Paturi-Pudlák-Zane
	Paturi-Pudlák-Zane
	Paturi-Pudlák-Saks-Zane

	Schöning WalkSAT algorithm
	Summary of introduced algorithms

	III Reductions
	Development
	Development Environment
	PySAT
	Reductions
	Graph based Problems
	Other problems approached

	Implementation

	Conclusions and further work
	Bibliography

