
A study on AMMs for trading fixed yield and

Pendle V2’s Principal Token AMM

Vu Nguyen

vu@pendle.finance

October 14, 2022

1

mailto:vu@pendle.finance

Abstract

Fixed-yield products play a key role in any financial systems by providing certainty in a turbulent
market. In DeFi, fixed-yield products allow users to speculate on fixed-yield by trading principal
tokens (PT). PTs are analogous to zero-coupon bonds where it is redeemable for a fixed amount of
assets after expiry. In this paper, we will first compare the efficiencies of current PT AMM models.
Afterwards, we will introduce Pendle V2’s PT AMM, which uses Notional Finance’s AMM model [5]
as a baseline.

1 A study on AMMs for trading fixed yield

1.1 Definitions

yield generating asset is an asset following the Generic Yield Generating Pool model, as described
in the Standardized Yield paper [7] . The value of the yield generating asset is measured in asset
(as defined in the GYGP model). E.g: cDAI (DAI deposited into Compound) is a yield generating
asset and DAI is the corresponding asset.

expiry the end of the period where yield can be traded until

normalised time t is a measure of time left until the expiry, 0 ≤ t ≤ 1, such that t = 0 at expiry

Principal token (PT) is a token that allows users to get back 1 asset worth after the expiry. As
the final value of principal token is known, PT holders receive fixed yield on expiry. Buying PT is
also equivalent to shorting yield, profiting in the short run if yield drops. E.g: 1 PT-DAI-1stJan2023
will be redeemable for the principal of 1 DAI after 1st Jan 2023.

principal token price at time t is pricep(t), which is the price of principal token in terms of
asset

asset price in principal at time t, pricea(t) is simply 1
pricep(t)

, which is the price of the asset in

terms of principal token

implied interest rate is the annual average interest rate from now (t) until the expiry that the
market is implying, by trading principal token at pricep(t). In this paper, an interest rate of x% is
represented by the number 1 + x

100

Since holding 1 asset = pricea(t) principal tokens now will return pricea(t) asset on expiry, the
interest from now to expiry is pricea(t)

As such, the annual interest rate (which is also the implied interest rate) is:

pricea(t)
toneY ear

t

principal token AMM is an AMM that allows users to buy or sell principal tokens against the
asset. Buying principal tokens will increase its price pricep(t) and decrease asset price in
principal pricea(t), hence decreasing the implied interest rate. Conversely, selling principal
tokens will increase the implied interest rate.

Let nasset and npt be the amounts of assets and principals in the AMM pool. We will also use x = nasset

and y = npt as the short forms.

2

proportion p is a measure of the proportion of principal tokens in the pool:

p =
y

x+ y

It follows that:

p

1− p
=

y

x
(1)

1.2 Existing models for principal token AMM

1.2.1 Constant geometric mean for PT and asset

In this model, the AMM trades PT and asset based on a constant geometric mean formula (similar to
Balancer’s formula [3])

xwx × ywy = k (2)

wx + wy = 1 (3)

This model is used in Pendle V1 (Sushiswap pool which follows Uniswap V2 formula [1] where wx =
wy = 0.5) and Apwine [2] (where wx = wy = 0.5 at the start, and wy increases over time)

asset price in principal is − dy
dx

From (2):

y =
k

1
wy

x
wx
wy

dy

dx
= −wx

wy
× k

1
wy

x
1+wx

wy

−dy

dx
=

wx

wy
× (xwx × ywy)

1
wy

x
1+wx

wy

pricea =
wx

wy
× y

x

From (1), we get:

pricea =
wx

wy
× p

1− p
(4)

1.2.2 YieldSpace’s constant power sum

In this model, the AMM trades PT against asset based on a constant power sum formula that changes
over time:

x1−t + y1−t = k (5)

This model is used in Yield Protocol [8], Element Finance [4] and Sense Finance [6].

3

Asset price in principal is − dy
dx

From (5):

y1−t = k − x1−t

Differentiate both sides w.r.t x:

(1− t)× y−t × dy

dx
= −(1− t)× x−t

−dy

dx
=

(y
x

)t

pricea =

(
p

1− p

)t

1.2.3 Notional AMM

The Notional AMM [5] is not defined based on a formula on the PT and asset reserves. Instead, it’s
defined by this formula for the asset price in principal:

pricea(t) =
ln

(
p(t)

1−p(t)

)
rateScalar(t)

+ rateAnchor(t) (6)

rate scalar rateScalar(t) at time t is a parameter used in calculating the price at time t, to adjust
the capital efficiency.

rateScalar(t) =
scalarRoot

t

rateAnchor(t) is a parameter used to adjust the interest rate around which the trading will be
the most capital efficient, at time t.

rateAnchor(t) is adjusted before every trade, such that the pre-trade implied interest rate is the
same as the implied interest rate after the last trade.

scalarRoot is a fixed parameter for each AMM pool, to adjust the trade-off between the capital
efficiency of the market and the trade-able range of interest. It is the value for rateScalar at t = 1.

1.3 Framework for comparing principal token AMM models

1.3.1 A graphical representation of the AMM models

For all the three models, asset price in principal at a certain time t can be written as a function of
proportion f(p).

If we plot f(p), we can see how the price (of asset/principal token) moves when users buy or sell
principal tokens (hence, changing the proportion).

The y-axis represents the implied interest rate (that is not annualized). For example, a value of 1.13
represents 13% interest from now to expiry.

In Figure 1:

• black is the geometric mean model with wx = 0.5

• blue is the YieldSpace model for t = 0.3

4

Figure 1: Price over proportion

• red is the Notional model with anchorRate = 1, scalarRoot = 2, t = 0.3

The slope of the curve represents how much price (and hence, implied interest rate) is moved by a
certain change in proportion. Intuitively, a gentler slope means higher capital efficiency. From the
graph alone, we can see that for the particular chosen set of parameters, the Notional AMM model is
the most capital efficient.

1.3.2 Customisability

Both the constant geometric mean model and YieldSpace’s constant power sum model are not
customizable which means that the same curve is used for every yield generating asset.

There are two main parameters that can be set for each pool in the Notional AMM: the scalar root
and the initial rate anchor.

In principle, higher customizability means that the curve for each Notional AMM’s pool is more
specialised in trading the yield of a particular yield generating asset.

In this paper, we will define a heuristic in setting scalar root and initial rate anchor in a Notional
AMM pool, to maximise the capital efficiency for trading a particular yield generating asset:

Setting scalar root and initial rate anchor
To set the parameters, there are three assumptions about the yield generating asset:

• The market interest rate will be trading around a rateexpected level. This is a guess of where the

5

average interest rate will be.

• The implied interest rate will not trade above ratemax.

• The implied interest rate will not trade below 1. This is always true since principal token price
must not exceed asset price.

Let tstart be the start of the pool and yearsLeft = tstart

toneY ear

From the first assumption, at the start of the pool, we will set the initial rate anchor to be
(rateexpected)

yearsLeft.

As observed from the curve for the Notional AMM model, which takes its shape from the logit curve,
the slope becomes exceedingly high at the two extremes. We will define the reasonable trading
range as the range from p = 0.1 to p = 0.9, where slippage is considered reasonable.

At the start of the pool (tstart), we can set the scalar root such that the initial reasonable trading
range can cover implied interest rates from 1 to ratemax.

f(0.9) ≥ (ratemax)
yearsLeft (7)

f(0.1) ≤ 1 (8)

From (7)

ln(0.9
1−0.9)

rateScalar
+ rateexpected ≥ (ratemax)

yearsLeft (9)

rateScalar ≤ ln(9)

(ratemax)yearsLeft − (rateexpected)yearsLeft
(10)

From (8)

ln(0.1
1−0.1)

rateScalar
+ rateexpected ≤ 1 (11)

rateScalar ≤ ln(9)

(rateexpected)yearsLeft − 1
(12)

From (10), (12) and the fact that we would want a high rateScalar to maximise capital efficiency, we
can set scalarRoot such that at tstart:

rateScalar(tstart) = min

(
ln(9)

(ratemax)yearsLeft − (rateexpected)yearsLeft
,

ln(9)

(rateexpected)yearsLeft − 1

)
(13)

1.3.3 Capital efficiency

To compare capital efficiency, we can assume a fixed amount of liquidity in an AMM pool, and measure
how much a user can trade, in terms of principal token amount, to move the implied rate by a certain
amount.

Scenario 1
Simulating fixed yield trading for cUSDC (USDC deposited into Compound):

• The expiry is in 2 years. tstart = 1 and toneY ear = 0.5

6

Figure 2: Scenario 1, t = 1

• Average interest rate rateexpected = 1.09 (9%)

• Max implied interest rate ratemax = 1.2 (20%)

• Assume the pool has 1 million USDC worth of PT and USDC

For the Notional AMM, following the heuristics defined, we get initial rate anchor = 1.1881,
rateScalar(tstart) = 8.7226

At t=1, we can see the graphs of the 3 models in Figure 2 (Note that both the YieldSpace and geometric
mean model curve overlaps, represented by the blue curve)

Assuming the initial interest rate is at 1.09 (price=1.1881), we can calculate how much PT we could
sell to push the interest rate to 1.11 (price=1.221):

• For geometric mean model and YieldSpace model: users can sell 10,900 PTs

• For Notional model: users can sell 102,936 PTs

For the same liquidity depth and interest rate change, Notional’s AMM can accommodate a trade
size of 9.44 times larger. As such, at t=1, the Notional model is 9.44 times more capital efficient than
the other two models in this scenario.

Table 1 shows the numbers for when t=0.5 and t=0.25 as well, which shows that:

• The Notional AMM is consistently more capital efficient than the other models. It’s around 9-35
times more capital efficient than geometric mean, and 8-9.4 times more capital efficient than
YieldSpace’s.

• The geometric mean model performs significantly worse than the other two models as it
approaches expiry.

7

Figure 3: Scenario 1, t=0.5

Table 1: Scenario 1
t 1 (2 years left) 0.5 (1 year left) 0.25 (6 months left)

Estimated anchor
rate

1.1881 1.09 1.034

Market interest
rate

1.09 1.11 1.07

Desired interest
rate

1.11 1.13 1.09

Possible trade
size(Geometric
mean)

10900 PTs 4977 PTs 2400 PTs

Possible trade
size(Yield Space)

10900 PTs 9920 PTs 9567 PTs

Possible trade
size(Notional)

102936 PTs 87671 PTs 83300 PTs

Figure (3) shows how the 3 models look like at t=0.5.

Scenario 2: Fixed yield trading for an asset X with very high yield:

• The expiry is in 3 months. tstart = 1 and toneY ear = 4

• Average interest rate rateexpected = 100 (10000%)

• Max implied interest rate ratemax = 200 (20000%)

• Assume the pool has 1 million X worth of PT and X

For the Notional AMM, following the heuristics defined, we get initial rate anchor = 3.162,
rateScalar(tstart) = 1.0161

8

Table 2: Scenario 2

t 1 (3 months left)
0.667 (2 months
left)

0.333 (1 month
left)

Estimated anchor
rate

3.162 2.189 1.455

Market interest
rate

100 (10000%) 110 (11000%) 90 (9000%)

Desired interest
rate

110 (11000%) 120 (12000%) 100 (10000 %)

Possible trade
size(Geometric
mean)

18950 PTs 7964 PTs 3201 PTs

Possible trade
size(Yield Space)

18950 PTs 11484 PTs 8336 PTs

Possible trade
size(Notional)

29420 PTs 15121 PTs 9290 PTs

We can observe that: the Notional AMM model is still consistently more capital efficient. However, the
difference is not as significant as in Scenario 1, around 1.5-2.9 more capital efficient than the geometric
mean model and 1.1-1.5 more capital efficient than the YieldSpace model.

Scenario 3: Mimicking fixed yield trading for stETH (Liquid staked ETH in Lido):

• The expiry is in 1 year. tstart = 1 and toneY ear = 1

• Average interest rate rateexpected = 1.04 (4%)

• Max implied interest rate ratemax = 1.07 (7%)

• Assume the pool has 1000 stETH worth of PT and stETH

For the Notional AMM, following the heuristics defined, we get initial rate anchor = 1.04,
rateScalar(tstart) = 54.93

9

Table 3: Scenario 3
t 1 (1 year left) 0.5 (6 months left) 0.25 (3 months left)

Estimated anchor
rate

1.04 1.0198 1.455

Market interest
rate

1.04 (4%) 1.05 (5%) 1.03 (3%)

Desired interest
rate

1.05 (5%) 1.06 (6%) 1.04 (4 %)

Possible trade
size(Geometric
mean)

2.494 PTs 1.22 PTs 0.609 PTs

Possible trade
size(Yield Space)

2.494 PTs 2.43 PTs 2.43 PTs

Possible trade
size(Notional)

136.6 PTs 116.48 PTs 130.5 PTs

We can observe that: the Notional AMM model is still consistently more capital efficient. However,
the difference is significantly bigger than in Scenario 1. It is around 55-214 times more capital efficient
than the geometric mean model and 48-55 more capital efficient than the YieldSpace model.

1.3.4 Conclusions

We can draw a few conclusions from this study:

• The Notional AMM model is consistently the most capital efficient. Intuitively, the two degrees
of freedom in the Notional AMM model (in the form of the rate scalar and rate anchor) make
each pool more specialised in trading principal token for a particular yield bearing asset.

• The geometric mean model is consistently the least capital efficient. This model becomes much
less efficient compared to the other two when nearing expiry. Intuitively, this is because the
model does not take into account the fact that PT price will converge to 1 at expiry.

• The YieldSpace model behaves exactly the same as the geometric mean model at the start, and
becomes more capital efficient as it approaches expiry.

• The gap in capital efficiency between the Notional AMM model and the other models is the most
pronounced for yield bearing assets with a tighter range of possible interest rates. Intuitively,
the curve can be customised to be concentrated on a tighter range of interest rates, which makes
the trading much more capital efficient.

From this study, we have decided to adopt the Notional AMM model for PendleV2’s principal token
AMM, with some slight changes. We will introduce how PendleV2 PT AMM works in the next sections

2 Pendle V2 PT AMM - Basic definitions

market is a pool of SY and PT, where users could trade one for the other, or provide liquidity to it

SY is a Standardized Yield token (as defined in a separate paper). At time t, the Market has nsy(t)
SY tokens.

10

PT is a PT token of the same SY token (as defined in the Yield Tokenisation paper). At time t, the
Market has npt(t) PT tokens.

asset is the asset of the SY token.

totalAsset(t) is equivalent amount of asset that the SY tokens in the Market are worth, at time t.
Short form: is nasset(t)

nasset(t) = nsy(t) ∗ syExchangeRate(t)

expiry is the expiry of the PT token. Short form: texpiry

timeToExpiry(t) is the time left until the expiry

timeToExpiry(t) = texpiry − t

yearsToExpiry(t) is the time left until the expiry, counted in years

yearsToExpiry(t) = timeToExpiry(t)/(oneY earDuration)

proportion(t) is a measure of the proportion of PT in the market at time t

p(t) =
npt(t)

npt(t) + nasset(t)

scalarRoot is a fixed parameter for each market, to adjust the capital efficiency of the market. It
is the value for rateScalar

initialAnchor is the initial rate anchor to anchor the market’s formula to be more capital efficient
around a certain interest rate.

feeRateRoot is a fixed parameter for each market, which is the fees rate in terms of interest rate

rateScalar(t) is a parameter used in calculating the exchangeRate at time t, to adjust the capital
efficiency.

rateScalar(t) =
scalarRoot

yearsToExpiry(t)

rateAnchor(t) is a parameter used in calculating the exchangeRate at time t, to adjust the interest
rate around which the trading will be the most capital efficient.

exchangeRate is the spot exchange rate of asset in PT, without any fees. At time t, it is
exchangeRate(t). Since 1 PT can be redeemed for 1 asset worth at the expiry, the value of 1 PT
should naturally be less than or equal to 1 asset: exchangeRate(t) ≥ 1

exchangeRate(t) =
ln(p(t)

1−p(t))

rateScaler(t)
+ rateAnchor(t) (14)

11

implied rate The implied rate for a certain exchangeRate exchangeRate0 at time t, is the return
rate per annum (for an interest rate of 5 % per annum, the return rate is 1.05) being implied by
valuing PT at 1

exchangeRate0
asset. With a capital of 1 asset = exchangeRate0 PT, we will receive

exchangeRate0 asset, after a duration of timeToExpiry(t). As such:

impliedRateForExchangeRate(exchangeRate0, t) = exchangeRate
oneY earDuration
timeToExpiry(t)

0 (15)

= exchangeRate
1

yearsToExpiry(t)

0 (16)

Conversely, at time t, an implied rate of impliedRate0 is equivalent to a exchangeRate of:

exchangeRateForImpliedRate(impliedRate0, t) = impliedRate
yearsToExpiry(t)
0 (17)

liquidity token represents ownership in the market. At time t, there is a total of L(t) liquidity
tokens.

liquidity providers are users who contribute liquidity to the market. At time t, a liquidity provider
u has lu(t) liquidity tokens. It follows that:∑

u

lu(t) = L(t) (18)

3 Pendle V2 PT AMM - State changes

We denote t∗ as the time moment just before t when a certain event happens.

3.1 Initialisation

When a market is initialised at time t0:

• scalarRoot, initialAnchor and feeRateRoot are set

• The following initial values are defined:

L(t0) = 0

nsy(t0) = 0

npt(t0) = 0

nasset(t0) = 0

3.2 Bootstrap liquidity

At time t, when L(t∗) = 0, a user u can add dsy SY tokens and dpt PT into the market to bootstrap
it. A portion of Llocked of liquidity token is locked forever in an pseudo-user ux, such that L(t) will
never be 0 again and the market can only be bootstrapped once.

12

dasset = dsy × syExchangeRate(t)

L(t) = dasset

nsy(t) = dsy

npt(t) = dpt

nasset(t) = dasset

lu(t) = dasset − Llocked

lux(t) = Llocked

3.3 Add or remove liquidity

At time t, a user u adds dl liquidity tokens worth into the pool (or removes from the pool if dl < 0),
where dl + lu(t∗) ≥ 0.
The user will need to add dsy SY and dpt PT into the pool (or can remove −dsy SY and −dpt PT from
the pool if dl < 0)

dsy = nsy(t∗)×
dl

L(t∗)

dpt = npt(t∗)×
dl

L(t∗)
lu(t) = lu(t∗) + dl

L(t) = L(t∗) + dl

nsy(t) = nsy(t∗) + dsy

npt(t) = npt(t∗) + dpt

nasset(t) = nsy(t)× syExchangeRate(t)

3.4 Trade

At time t, a user u buys dpt PT from the market (or sells −dpt into the market if dpt < 0).
First, we need to define a few terms:

lastImpliedRate The implied rate for the last trade that occurred at tlast.

trade proportion short form: ptrade

ptrade =
npt(t∗)− dpt

npt(t∗) + nasset(t∗)

trade exchangeRate with no fee short form: exchangeRatetradeNoFee

exchangeRatetradeNoFee =
ln(ptrade(t)

1−ptrade(t)
)

rateScalar(t)
+ rateAnchor(t)

13

3.4.1 Interest rate continuity

To achieve interest rate continuity, we need to adjust the rateAnchor(t) such that the pre-trade implied
rate, at t∗ is the same as the lastImpliedRate

This means that:

impliedRateForexchangeRate(exchangeRate(t∗), t) = lastImpliedRate

⇒ exchangeRate(t∗) = lastImpliedRateyearsToExpiry(t)

From (1), we get:

exchangeRate(t∗) =
ln(p(t∗)

1−p(t∗))

rateScaler(t)
+ rateAnchor(t) (19)

We can hence deduce rateAnchor(t):

exchangeRate(t∗) =
ln(p(t∗)

1−p(t∗))

rateScaler(t)
+ rateAnchor(t)

rateAnchor(t) = lastImpliedRateyearsToExpiry(t) −
ln(p(t∗)

1−p(t∗))

rateScaler(t)
(20)

3.4.2 Dynamic fees charged on interest rate

Let’s define exchangeRatetrade(t) to be the actual exchangeRate for the trade, such that we are
charging a fixed feeRateRoot (for example, 1.01 for a 1 % fees) in terms of interest rate slippage. This
means that:

impliedRateForExchangeRate(exchangeRatetrade, t)

= impliedRateForExchangeRate(exchangeRatetradeNoFee, t)(×or÷)feeRateRoot

(× if the trade is from PT to asset)

Applying (15):

exchangeRate
1

yearsToExpiry(t)

trade = exchangeRate
1

yearsToExpiry(t)

tradeNoFee (×or÷)feeRateRoot

exchangeRatetrade = exchangeRatetradeNoFee(×or÷)feeRateRootyearsToExpiry(t) (21)

4 Pendle V2 PT AMM - Implementation details

4.1 Changing of variables for easier implementation

Since natural logarithms and exponents are easier to compute, we could introduce a few variables:

lnFeeRateRoot is ln(feeRateRoot)

lnLastImpliedRate is ln(lastImpliedRate)

(7) and (8) will become the following:

rateAnchor(t) = elnlastImpliedRate×yearsToExpiry(t) −
ln(p(t∗)

1−p(t∗))

rateScaler(t)
(22)

exchangeRatetrade = exchangeRatetradeNoFee(×or÷)elnfeeRateRoot×yearsToExpiry(t) (23)

14

4.2 Swapping exact amounts of assets

The AMM formula is defined in terms of the amount of PT being swapped, making it trivial to swap
an exact amount of PT in or out of the pool. We can write the amount of asset going in dasset as a
function of amount of PT going out dpt

dasset = f(dpt)

=
dpt

exchangeRatetrade

=
dpt

exchangeRatetradeNoFee(×or÷)feeRateRootyearsToExpiry(t)

=
dpt

ln(
ptrade(t)

1−ptrade(t)
)

rateScalar(t) + rateAnchor(t)

(÷or×)feeRateRootyearsToExpiry(t)

=
dpt

ln(
npt−dpt

nasset+dpt
)

rateScalar(t) + rateAnchor(t)

(÷or×)feeRateRootyearsToExpiry(t)

For swapping an exact amount of asset in or out of the market, we need to use approximation
algorithms because reversing f(dpt) is non trivial.

4.2.1 Swapping asset for PT

Looking at the graph of f(dpt) in Figure 4, we can see that for dpt > 0, or when we are swapping
asset to PT, f is a monotonous function. This means that we can simply binary search for dpt given
an exact dasset.

One thing to note is that exchangeRatetrade must be greater or equal to 1. As such,

exchangeRatetradeNoFee ÷ feeRate ≥ 1

ln(ptrade(t)
1−ptrade(t)

)

rateScalar(t)
+ rateAnchor(t) ≥ feeRate

ln(
ptrade(t)

1− ptrade(t)
) ≥ (feeRate− rateAnchor(t))× rateScalar(t)

ptrade(t)

1− ptrade(t)
≥ e(feeRate−rateAnchor(t))×rateScalar(t)

1− ptrade(t)

ptrade(t)
≤ e(rateAnchor(t)−feeRate)×rateScalar(t)

1

ptrade(t)
≤ e(rateAnchor(t)−feeRate)×rateScalar(t) + 1

npt − dpt
npt + nasset

≥ 1

e(rateAnchor(t)−feeRate)×rateScalar(t) + 1

npt − dpt ≥
npt + nasset

e(rateAnchor(t)−feeRate)×rateScalar(t) + 1

dpt ≤ npt −
npt + nasset

e(rateAnchor(t)−feeRate)×rateScalar(t) + 1

15

Figure 4: f(dpt)

With that, we have a bound on the maximum PT that could be bought, which is

npt −
npt + nasset

e(rateAnchor(t)−feeRate)×rateScalar(t) + 1

4.2.2 Swapping PT for asset

Looking at the graph of f(dpt) in Figure 4, we can see that for dpt < 0, or when we are swapping PT
to asset, there is point of diminishing returns where swapping more PT will not get more assets.

This means that while binary searching for dpt given an exact dasset, we need to know whether we
are on the negative or positive slope.

The sign of the slope for f(dpt) is the same as the sign of the slope for

g(dpt) =
dpt

ln(
npt−dpt

nasset+dpt
)

rateScalar(t)
+rateAnchor(t)

, which is

slopeFactor(dpt) = g′(dpt) =

(
dpt (npt + nasset)

(npt − dpt) (nasset + dpt)
+ ln

(
npt − dpt

nasset + dpt

))
· 1

rateScalar(t)
+ rateAnchor(t)

Another note is that ptrade must be less than 1. Therefore, npt − dpt < npt + nasset, which means
−dpt < nasset. In other words, the amount of PT that can be swapped in must be less than nasset

References
[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap V2 Core. url: https://uniswap.

org/whitepaper.pdf.
[2] Apwine. Apwine AMM. url: https://docs.apwine.fi/protocol/amm.
[3] Balancer. Balancer Whitepaper. url: https://balancer.fi/whitepaper.pdf.
[4] Element Finance. The Element Protocol Construction Paper. url: https://paper.element.fi/.
[5] Notional Finance. Notional AMM. url: https://docs.notional.finance/notional- v2/

technical-topics/notional-amm.
[6] Sense Finance. Sense Protocol Litepaper. url: https://docs.sense.finance/litepaper/.

16

https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf
https://docs.apwine.fi/protocol/amm
https://balancer.fi/whitepaper.pdf
https://paper.element.fi/
https://docs.notional.finance/notional-v2/technical-topics/notional-amm
https://docs.notional.finance/notional-v2/technical-topics/notional-amm
https://docs.sense.finance/litepaper/

[7] Vu Nguyen and Long Vuong. Standardized Yield. url: https://pendle.finance/SY.pdf.
[8] Allan Niemerg, Dan Robinson, and Lev Livnev. YieldSpace: An Automated Liquidity Provider for

Fixed Yield Tokens. url: https://yield.is/YieldSpace.pdf.

17

https://pendle.finance/SY.pdf
https://yield.is/YieldSpace.pdf

	A study on AMMs for trading fixed yield
	Definitions
	Existing models for principal token AMM
	Constant geometric mean for PT and asset
	YieldSpace's constant power sum
	Notional AMM

	Framework for comparing principal token AMM models
	A graphical representation of the AMM models
	Customisability
	Capital efficiency
	Conclusions

	Pendle V2 PT AMM - Basic definitions
	Pendle V2 PT AMM - State changes
	Initialisation
	Bootstrap liquidity
	Add or remove liquidity
	Trade
	Interest rate continuity
	Dynamic fees charged on interest rate

	Pendle V2 PT AMM - Implementation details
	Changing of variables for easier implementation
	Swapping exact amounts of assets
	Swapping asset for PT
	Swapping PT for asset

