(* Content-type: application/mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 7.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 145, 7] NotebookDataLength[ 1960, 70] NotebookOptionsPosition[ 1586, 52] NotebookOutlinePosition[ 1941, 68] CellTagsIndexPosition[ 1898, 65] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Reduce", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"1800", "*", "x"}], "-", RowBox[{"(", RowBox[{ RowBox[{"x", "*", "1503.6"}], "+", "3300"}], ")"}]}], "\[GreaterEqual]", "0"}], ",", "x"}], "]"}], "\n"}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"Reduce", "::", "\<\"ratnz\"\>"}], RowBox[{ ":", " "}], "\<\"\\!\\(\\*StyleBox[\\\"\\\\\\\"Reduce was unable to solve \ the system with inexact coefficients. The answer was obtained by solving a \ corresponding exact system and numericizing the result.\\\\\\\"\\\", \\\"MT\\\ \"]\\) \\!\\(\\*ButtonBox[\\\"\[RightSkeleton]\\\", \ ButtonStyle->\\\"Link\\\", ButtonFrame->None, \ ButtonData:>\\\"paclet:ref/message/Reduce/ratnz\\\", ButtonNote -> \ \\\"Reduce::ratnz\\\"]\\)\"\>"}]], "Message", "MSG", CellChangeTimes->{3.61972184621875*^9}], Cell[BoxData[ RowBox[{"x", "\[GreaterEqual]", "11.133603238866394`"}]], "Output", CellChangeTimes->{3.61972184621875*^9}] }, Open ]] }, WindowSize->{615, 527}, WindowMargins->{{55, Automatic}, {52, Automatic}}, FrontEndVersion->"7.0 for Microsoft Windows (32-bit) (2009\:5e743\:670818\ \:65e5)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[567, 22, 295, 10, 52, "Input"], Cell[865, 34, 579, 11, 62, "Message"], Cell[1447, 47, 123, 2, 30, "Output"] }, Open ]] } ] *) (* End of internal cache information *)