{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Matrix factorization" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Let $L$ be a lower-triangular matrix ($n \\times n$) and $U$ be an upper-triangular matrix (also $n \\times n$).\n", "\n", "We've discussed how to solve $Ux = y$ with backward substitution:\n", "\n", "$$ x_i = \\frac{\\displaystyle y_i - \\sum_{j = i+1}^n u_{ij}x_j}{u_{ii}},\\quad i = n, n-1, \\ldots, 2,1.$$\n", "\n", "We also discussed how to solve $Ly = b$ with forward substitution:\n", "\n", "$$ y_i = \\frac{\\displaystyle b_i - \\sum_{j=1}^{i-1} l_{ij} y_j }{l_{ii}}, \\quad i = 1,2,\\ldots,n-1,n.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Using an LU factorization\n", "\n", "Assume that we can express $A$ as $LU$ and we want to solve $Ax=b$:\n", "\n", "$$A x = LU x = b = L(Ux) = b.$$\n", "\n", "1. Solve $Ly = b$ for $y = Ux$ by forward substitution.\n", "2. Solve $Ux = y$ for $x$ by backward substitution.\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Operation count\n", "\n", "Recall from Lecture 9 that backward substitution requires $O(n^2)$ operations. The same is true of forward substitution." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "To solve $Ax = b$ when a factorization $A = LU$ is known therefore also requires $O(n^2)$ operations. \n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "This should be compared with Gaussian elimination with backward substitution (or worse, matrix inversion), which requires $O(n^3)$ operations." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "But what if the $LU$ factorization is not known in advance? How much effort is required to compute it? The answer is $O(n^3)$ because Gaussian elimination is the means by which we $LU$-factorize, as we will see next. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Thus $LU$ factorization and Gaussian elimination are just two sides of the same coin. " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "slide" } }, "source": [ "#### The LU factorization algorithm\n", "\n", "Assume $A$ is an $n\\times n$ matrix that can be put in upper-triangular form without row swaps (we'll deal with those next lecture).\n", "\n", "Consider the $3\\times 3$ case first\n", "\n", "$$A = \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix}$$\n", "\n", "$$ R_2 - \\frac{a_{21}}{a_{11}}R_1 \\to R_2$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "$$ R_2 - \\frac{a_{21}}{a_{11}}R_1 \\to R_1$$\n", "\n", "$$A = \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix}$$\n", "\n", "Here $a^{(1)}_{22} = a_{22} - a_{12} \\frac{a_{21}}{a_{11}}$ and $a^{(1)}_{23}= a_{23} - a_{13} \\frac{a_{21}}{a_{11}}$. The question that will lead us to an $LU$ factorization is: What type of matrix does this row operation correspond to?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "\n", "$$ \\begin{bmatrix} 1 & 0 & 0 \\\\ -a_{21}/a_{11} & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix}\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Recall that the goal is to express $A = LU$, so we find the inverse of the lower-triangular matrix:\n", "\n", "$$\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix}\\begin{bmatrix} 1 & 0 & 0 \\\\ -a_{21}/a_{11} & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix} = \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix} $$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "So, after a single step, we have found\n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix}\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix}$$\n", "\n", "This is closer to a lower/upper factorization." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Next we perform the row operation $R_{3} - \\frac{a_{31}}{a_{11}} R_1 \\to R_3$ which corresponds to\n", "\n", "$$\\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ - a_{31}/a_{11} & 0 & 1 \\end{bmatrix}\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} = \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix}$$\n", "\n", "where $a^{(1)}_{32} = a_{32} - a_{12} \\frac{a_{31}}{a_{11}}$ and $a^{(1)}_{33} = a_{33} - a_{13} \\frac{a_{31}}{a_{11}}$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The inverse of the lower-triangular factor can be confirmed\n", "\n", "$$\\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ a_{31}/a_{11} & 0 & 1 \\end{bmatrix}\\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ - a_{31}/a_{11} & 0 & 1 \\end{bmatrix} = \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0& 0 & 1 \\end{bmatrix}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Thus:\n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} = \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ a_{31}/a_{11} & 0 & 1 \\end{bmatrix}\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix}$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Combine the two row operations to yield:\n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix} \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ a_{31}/a_{11} & 0 & 1 \\end{bmatrix}\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix}$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "which can be written as: \n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ a_{31}/a_{11} & 0 & 1 \\end{bmatrix} \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix}$$\n", "\n", "This brings us very close to an $LU$ factorization" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "For the last step, we need to perform $R_3 - \\frac{a^{(1)}_{32}}{a^{(1)}_{22}} R_2 \\to R_3$\n", "\n", "$$ \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & -a^{(1)}_{32}/a^{(1)}_{22} & 1 \\end{bmatrix} \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix} = \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & 0 & a^{(2)}_{33} \\end{bmatrix}$$\n", "\n", "where $a^{(2)}_{33} = a^{(1)}_{33} - a^{(1)}_{23} \\frac{a^{(1)}_{32}}{a^{(1)}_{22}}$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Again, you can check that the inverse of the matrix on the left is simple\n", "\n", "$$ \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & a^{(1)}_{32}/a^{(1)}_{22} & 1 \\end{bmatrix} \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & -a^{(1)}_{32}/a^{(1)}_{22} & 1 \\end{bmatrix} = \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & 0 & 1 \\end{bmatrix} $$\n", "\n", "so that we get: \n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix} = \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & a^{(1)}_{32}/a^{(1)}_{22} & 1 \\end{bmatrix} \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & 0 & a^{(2)}_{33} \\end{bmatrix}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Inserting this into the existing factorization:\n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ a_{31}/a_{11} & 0 & 1 \\end{bmatrix} \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & a^{(1)}_{32} & a^{(1)}_{33} \\end{bmatrix}$$\n", "\n", "yields: \n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ a_{31}/a_{11} & 0 & 1 \\end{bmatrix} \\begin{bmatrix} 1 & 0 & 0 \\\\ 0 & 1 & 0 \\\\ 0 & a^{(1)}_{32}/a^{(1)}_{22} & 1 \\end{bmatrix} \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & 0 & a^{(2)}_{33} \\end{bmatrix}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "The inner factors simplify and we have an LU factorization\n", "\n", "$$\\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ a_{21} & a_{22} & a_{23} \\\\ a_{31} & a_{32} & a_{33} \\end{bmatrix} =\\begin{bmatrix} 1 & 0 & 0 \\\\ a_{21}/a_{11} & 1 & 0 \\\\ a_{31}/a_{11} & a^{(1)}_{32}/a^{(1)}_{22} & 1 \\end{bmatrix} \\begin{bmatrix} a_{11} & a_{12} & a_{13} \\\\ 0 & a^{(1)}_{22} & a^{(1)}_{23} \\\\ 0 & 0 & a^{(2)}_{33} \\end{bmatrix}$$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "The LU algorithm (no row interchanges)\n", "\n", "INPUT a n x n matrix A\n", "\n", "OUTPUT the LU factorization of A, or a message of failure\n", "\n", "STEP 1: Set L to be the n x n identity matrix;\n", "STEP 2: For j = 1, 2, ...,n do STEPS 3-4\n", " STEP 3: If A(j,j) = 0\n", " OUTPUT('LU Factorization failed')\n", " STOP.\n", " STEP 4: For i = j+1, j+2, ... , n do STEPS 5-6\n", " STEP 5: Set L(i,j) = A(i,j)/A(j,j);\n", " STEP 6: Perform row operation Ri - L(i,j)*Rj --> Ri on A;\n", "STEP 7: OUTPUT([L,A]);\n", " " ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.14" } }, "nbformat": 4, "nbformat_minor": 1 }