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1 Introduction

Today, Fischer Black’s 1971 vision of a fully automated exchange is mostly a reality.1

“Electronic market-makers” have replaced human “dealers” with algorithms that decide

the price and amount of liquidity supplied in markets.2 But this automation is not com-

plete. Humans manage algorithms, intervene to improve their design, or turn them off

entirely if conditions become unfavorable, leading to withdrawals of liquidity that may

exacerbate market volatility.3

Suppose a market, instead, consisted of just a single algorithm for facilitating trades.

One that was simple, static and deterministic. One that fulfilled both the trade matching

function of markets and managed all of the liquidity provision. An algorithm that couldn’t

be turned off. It would contain an ex-ante binding mechanism that creates certainty on

both the quantity and cost of liquidity for traders. A commitment to provide liquidity

without human intervention, and one that trades off optimality for simplicity. This com-

plete level of automation goes much further than Fischer Black ever envisioned, he may

have considered even the notion entirely unworkable. Perhaps it is?

Would fully automating a financial market be desirable, or even possible? An algorithm

unable to cancel or re-price resting orders would have quotes which were always stale,

leading to “sniping” by arbitrageurs, imposing adverse selection costs, (Budish et al.,

2015). If prices cannot be revised to reduce accumulated inventory, such liquidity providers

become exposed to extreme inventory risks. Such a mechanism would need to ensure these

risks are mitigated, or at least adequately compensated. In compensating for these high

risks from a suboptimal mechanism, would the cost of trading be driven so high that no

investor would want to trade in these markets?4 Or would the democratizing force of a

simple market making algorithm which lower barriers to entry unleash a broader set of

latent liquidity providers? These liquidity providers would have different cost structures

1Black (1971a) and Black (1971b).
2On the impacts of automation: Hendershott et al. (2011) and Chaboud et al. (2014), and on automated

market making firms: Menkveld (2013), Brogaard et al. (2015), Foucault et al. (2016), Shkilko and Sokolov
(2020), Weller (2018) and Van Kervel and Menkveld (2019).

3See liquidity withdrawals in Anand and Venkataraman (2016), flash crashes in Kirilenko et al. (2017),
extreme price movements in multiple securities in Brogaard et al. (2016), correlation of liquidity across
securities in Malceniece et al. (2019), and increasing premiums on liquidity risk in Pastor and Stambaugh
(2019).

4Glosten and Milgrom (1985) note that if information asymmetry is too severe, uninformed trading
will not occur and the market maker cannot cover the costs of adverse selection, similar to Akerlof (1970).
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and risk appetites to the typical high-frequency traders in traditional financial markets,

possibly providing more resilient liquidity.

We examine the tradeoff of optimality for simplicity through full automation currently

underway in cryptocurrency markets. A simple formula, x∗y = k, sets prices and quantities

for thousands of different assets using only 378 lines of code.5 Called “Automated Market-

Makers” (AMMs), these alternate market structures have rapidly become the venue of

choice for cryptocurrency traders, executing upwards of $50bn USD per month in digital

assets — as shown in Figure 1. We examine “Uniswap”, the largest of the AMMs, using

a year of data acquired directly from the public Ethereum blockchain containing over 39

million transactions.6

[Figure 1 about here.]

Anyone can quickly and easily become a Liquidity Provider (LP) to an AMM, where the

barrier to entry is simply the ability to transfer digital assets to discrete “pools”. Investors

can add to the liquidity of existing pools, thereby increasing the pool size, or create new

pools. In return they receive revenue from a fixed 30 basis point fee on trades (called

“swaps’) by liquidity demanders to the AMM. Fee revenue is shared equally amongst LPs

in proportion to their investment — so LP returns vary as a function of the amount of

liquidity in a pool (or the pool’s “size”). LPs can only add or remove liquidity, prices are set

by the AMM algorithm, unlike traditional market makers (MMs) that need to constantly

update prices. This makes liquidity provision via an AMM much more accessible than

traditional electronic liquidity provision.

This paper demonstrates that full automation is possible. AMMs overcome adverse

selection costs by varying the amount of liquidity they provide (pool size) as the equili-

brating mechanism, in contrast to traditional market makers that vary the cost of liquidity

(the spread). In a time-series analysis of pool returns, we observe this equilibrating mech-

anism, ensuring sustainable liquidity provision in the AMMs. Liquidity flows into more

profitable pools, with these inflows reducing fee yields. We also observe equilibrium effects

in the cross-section: higher volatility pools are associated with higher fees, and larger pools

experience less volatility and reduced order flow toxicity.

5For the core contracts of Uniswap programmed in Solidity, see: github.com/Uniswap/v2-core
6First, the entire Ethereum blockchain is synchronized. Uniswap transactions and fields are then parsed

from the raw blockchain using “The Graph” API.
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Using the AMMs pricing function, we derive and test the components that govern

returns to LPs, reconciling them to established market microstructure concepts. We em-

pirically show that LP returns can be expressed as a function of the underlying prices of

the assets in the pool, as well as the balanced and unbalanced order flow. This order flow

imbalance is shown to be a significant source of variation in both pool size and profitability.

This paper relates AMMs to classical theories of market making. These theories de-

rive how MMs can optimally address the three challenges of inventory control — adverse

selection risks, inventory holding costs, and explicit fees. Further, they imply that subop-

timal solutions to these problems will lead to inefficient liquidity provision that is unlikely

to survive more efficient competitors — an implication that potentially spells doom for

poorly designed market making mechanisms. We contrast the solution to these challenges

provided by AMMs with those provided in traditional centralized exchanges.

The first challenge, inventory control, is ensuring that the MM’s inventory quickly

reverts to the desired level (e.g., a zero or “flat” position in the risky asset) after a trade

— holding any inventory (long or short) entails risk. Inventory control models show that

MMs can solve this challenge by optimally “shading” quotes down after trading with a

seller to attract buyers, and increasing quotes after trading with a buyer to attract sellers,

thereby reverting her inventory (e.g., Stoll (1978); Ho and Stoll (1981); Hendershott and

Menkveld (2014)). AMMs, similarly have an implicit quote shading mechanism within

their pricing formula — following a buy, the AMM’s price offered to the next trader

increases, incentivizing sellers to help revert the AMMs inventory level, and vice versa.

The difference is that rather than having an “optimal” quote shading function, as derived

by inventory control models, AMMs have an arbitrary function that moves prices in the

right direction but not necessarily by an optimal amount. Instead, the quote shading

function in AMMs is designed to ensure the AMM cannot exhaust the inventory of either

of the two assets in its pool. It does this by increasing the price of an asset at an increasing

rate, as the remaining inventory of that asset falls.

The second challenge faced by such a market making model are adverse selection risks.

MMs learn about asset values through order flow, allowing them to avoid making excessive

losses to informed traders. Models of asymmetric information (e.g., Kyle (1985); Glosten

and Milgrom (1985)) show that a MM facing a mix of informed and uninformed order
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flow can use Bayesian learning to optimally extract the private information from order

flow and use it to update their beliefs about an asset’s value and adjust prices accordingly.

This learning is what drives price discovery — prices converge towards their fundamental

values, eventually impounding all private (and public) information. The models imply that

impounding private information as quickly as possible is crucial for a MM to minimize

their adverse selection losses to informed traders. In reduced form, Bayesian learning

results in MMs increasing quotes following buys; and decreasing them following sells, by

an amount proportional to the information content of the order flow. We show that the

simple deterministic pricing function of AMMs has similar reduced form behavior, with

prices adjusting up(down) following buys(sells). Even the amount of the price change

following a trade is related to the informativeness of order flow because, as we show, pools

tend to be smaller, and thus price impacts larger, for assets with more informed trading

and higher volatility profiles. Thus, AMMs function as if they have a mechanism to learn

from order flow, albeit a very simple one, allowing price discovery to occur in AMMs.

However, whether the rate of implied learning in an AMM makes their price discovery

too inefficient for them to be competitive in liquidity provision is an empirical question

explored in this paper.

While AMMs incorporate “private information” through trades, as in Kyle (1985);

Glosten and Milgrom (1985), more recent models focus on adverse selection arising from

“public information”. Budish et al. (2015) model a market maker that revises their quotes

in response to public information (information that is symmetrically observable) shocks

before “snipers” are able trade on them.7 AMMs differ from these models as they are

unable to revise quotes in response to public information, except via trading (i.e., having

their stale quotes “sniped”).8 The inability for AMMs to avoid public adverse selection

may result in higher liquidity costs in comparison to traditional MMs. Though, this may

7Others such as Foucault (1999), Foucault et al. (2003), Hoffmann (2014), Biais et al. (2015) also model
the market maker’s ability to revise stale quotes as an important driver of the cost of liquidity provision.
Budish et al. (2020) extend their model to include both public and private information and Aquilina et al.
(2021) show that this adverse selection derived from public signals is significant, at 33% of total adverse
selection. However, this estimate is from a limit orderbook, where the MM can continuously revise quotes.
With the infrequent updates experienced in an AMM, this will be higher. Brogaard et al. (2021) decompose
stock returns driven by market-wide, public and private information. They find that the return variance
is 37% of public firm-specific information, 24% private firm-specific 8% market-wide and the rest is noise.

8An AMM has recently launched called “DODO” which attempts to resolve public information arbitrage
by introducing an external pricing feed to anchor the price between two assets in the AMM. This is
demonstrably an incomplete solution however, as most traded pairs on “DODO” are entirely stable-coin
tokens, where the stability of their price relationships is highly certain, (DODO, 2020).
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be offset by the lack of expenditure by LPs on the “arms race” for speed (as in Budish

et al. (2015)) that public adverse selection avoidance entails.

Finally, the market making theories discussed above also derive the level of trading

costs (e.g., bid-ask spread) charged by the MM to exactly cover the expected costs of

market making, including an inventory holding risk premium and adverse selection costs.

Competition drives bid-ask spreads towards these break-even levels such that an inefficient

MM that has not minimized these costs and requires a wider bid-ask spread will lose market

share to more competitive MMs. The models imply that equilibrium bid-ask spreads vary

across assets because inventory holding risk and adverse selection costs are a function

of asset properties, such as volatility and the amount of informed/uninformed trading.

We show that the same cross-asset variation in liquidity is true of AMMs, although the

equilibrating mechanism is somewhat different. Rather than setting a bid-ask spread,

AMMs have a price impact function and a fixed proportional fee per transaction. We

show that the fee in AMMs serves the same role as the bid-ask spread in market marking

theories — it allows LPs to recoup compensation for adverse selection costs and inventory

holding risk. However, unlike bid-ask spreads, the fees in AMMs are fixed. Therefore,

AMMs arrive at an equilibrium level of liquidity by varying the pool size, so that a given

amount of fee revenue is shared among fewer liquidity providers (higher fees per provider)

when the costs of providing liquidity are higher (e.g., more volatile assets) and conversely

for assets with lower liquidity provision costs (e.g., less volatile assets). As a result, AMM

liquidity varies across assets, much like what is implied by the market making theories,

although with a novel mechanism for determining the liquidity level.

The simple pricing function utilized by liquidity providers in AMMs — xy = k, com-

bined with a fixed fee and variable pool size, provides AMMs with the necessary mech-

anisms to address the three key theoretical challenges in market making — inventory

control, price discovery (learning from order flow), and setting liquidity costs that vary

with asset characteristics. By documenting the dynamic components of AMMs, we are

able to empirically observe how AMMs absorb adverse selection, allowing us to determine

which types of assets such market structures would be well suited to - extending this work

from its inherently cryptocurrency origins to traditional financial instruments.

Existing research on AMMs is at an early stage, and is currently mostly theoretical.
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This paper contributes much needed empirical work. Aoyagi (2020) develops a Glosten

and Milgrom (1985) style model of liquidity provision in AMMs and demonstrates a stable

equilibrium can occur between competitive LPs. Park (2021) focuses on the role of arbi-

trageurs, showing that the design of constant product AMMs can be improved to reduce

front-running on the blockchain network, as is also documented by Daian et al. (2019).

Capponi and Jia (2021) model an AMM alongside a centralized market, showing that liq-

uidity provision in AMMs should increase in response to trading volumes, decrease in re-

sponse to volatility, and impose gas fee externalities on the blockchain network. Empirical

work is more scarce, Lehar and Parlour (2021) develop a framework of AMM competition

with a limit orderbook, comparing prices and price-impacts of trades. Han et al. (2021)

performs a price discovery analysis between Uniswap and a limit orderbook, finding that

the orderbook contributes most to price discovery, though, Uniswap’s share increases with

liquidity. This paper differs in its focus on assessing AMM liquidity provision using a

market microstructure framework.9

The remainder of the paper is organized as follows. Section 2 explains how AMMs

work, Section 3 shows how AMMs can effectively manage adverse selection risks, Section

4 identifies how well AMMs trend towards equilibrium liquidity, Section 5 estimates and

empirically validates the equilibrium pool size, Section 6 empirically calibrates our frame-

work to a variety of traditional financial assets, determining where AMMs may become

useful, while Section 7 concludes.

2 How do AMMs Work?

AMMs allow users to buy and sell tokenized assets on a blockchain without the involvement

of a centralized exchange such as “Coinbase” or “Binance.”10 An AMM consists of code

written as a smart contract which facilitates trade according to a deterministic algorithm.

Uniswap is comprised of distinct liquidity “pools”, each holding two assets (or tokens).

9There are many other papers that examine AMMs from a computer science perspective using theory:
Xu et al. (2021) derives adverse selection functions and the conservation function for several competing
AMMs, while the function for Uniswap V2 is simple (x ∗ y = k) others are more complex. Angeris et al.
(2019) formalizes mathematical properties of Uniswap, Angeris et al. (2021) proposes new AMM designs
that replicate options payoff structures for LPs and Angeris et al. (2020) demonstrates that the curvature
of the AMM conservation function can protect LPs from adverse selection in volatile assets.

10This means AMMs are sometimes referred to as “decentralized exchanges” (DEXs). This is appealing
to users as it fulfills the promise of blockchain technology not being reliant on traditional finance institutions.
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The most popular pool has the tokenized form of USD (USDT) and Ethereum (ETH).11

Consider xt and yt the quantities of USD and ETH in the AMM at time t, respectively.

Pools are created by individual liquidity providers (LPs) who transfer ETH and USDT

to the pool’s Ethereum address. LPs provide (or “stake”) a total of x0 of USD and y0 of

ETH at t = 0 when the price of ETH in dollars is P0. This gives the pool the constant

K = x0y0. The total USD value of the assets in the AMM at t = 0 is V0, which (as we

show later) is equal to 2x0 or twice the amount of deposited USD.

This creates resting liquidity which can then be accessed by liquidity demanders (LDs

or “traders”) by “swapping” any one of the two assets for the other. A trade is an

asset swap in which one asset is added and the other removed in quantities such that the

constant K is maintained (by design of constant product AMMs such as Uniswap). Thus,

a trade at time t that buys ETH involves removing ∆yt = yt − yt−1 from the AMM and

adding ∆xt = xt − xt−1 such that the constant k is preserved, xtyt = K = xt−1yt−1 =

(xt−1 + ∆xt)(yt−1 −∆yt). Conversely, a trade at time t that sells ETH adds ∆yt to the

AMM and removes ∆xt from the AMM, xtyt = (xt−1 −∆xt)(yt−1 +∆yt).

Therefore, the price of the pool is a function of the ratio x and y, but also the size of

the trade in relation to the amount of x and y in the pool. This means that the trade

price deviates from the ratio price as an increasing function of the proportion of the pool’s

liquidity that is removed.

LPs are incentivized to provide liquidity through a fixed fee of 30 basis points (bps) of

the trade value, ft = 0.003xt. These fees are added to the liquidity pool, slightly increasing

the pool’s K with each trade.12

Importantly, there can be many LPs in any given pool — the largest pools have over

20,000.13 Additional LPs can join, or existing LPs can increase the amount of liquidity

they already stake, increasing the size of the pool - in a process termed “Minting”. Minting

increases the pool constant K by depositing assets x and y at the pool’s current asset ratio

of xt and yt. They may also withdraw liquidity, reducing the pool’s K and withdrawing

11The mechanics of liquidity provision are the same for any pair. The most popular pool contains
Ethereum and USDT, which is a “stable-coin” designed to closely match the value of USD by being
redeemable for physical US Dollars . Further information on USDT and the validity of its 1:1 backing can
be found in Griffin and Shams (2020).

12For tractability, we assume fees accrue to a separate account (which assumes LPs withdraw fees).
Over the time horizons in question, this assumption makes little difference to the overall results.

13This is ascertained from the number of unique blockchain “addresses”. See Wang et al. (2021) for
more statistics on Uniswap LP addresses.
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xt and yt at the current ratio of the pool at any time - a process referred to as “Burning”.

Crucially, this means they are exposed to price changes on their staked assets and thus

adverse selection, which we will detail further in the paper. The daily net changes in

liquidity to existing pools as a result of minting and burning we refer to as pool “flows”.

Pools predominantly consist of unique combinations of cryptocurrency asset pairs.

While it is possible for LPs to create new pools for existing pairs, liquidity concentrates on

the existing pools for two reasons. The pricing function, as we show below, ensures liquidity

demanders pay a premium to transact on less liquid pools which in turn discourages

uninformed trading interest. Secondly, the Uniswap interface14 has a drop-down menu for

the largest 45 currencies. Users can enter specific pool identifiers, but must enter a 42

character string. Consequently, in the sample of the 200 largest pools used in this paper,

there are no pools with duplicate asset pairs.

2.1 AMM Properties

we set out various properties for how an AMM functions for traders buying and selling ETH

(y), with USD (x) being the unit of account. A derivation of each is given in Appendix C.

We assume that T is a sufficiently short period such that no mints or burns occur during

the period from t = 0 to t = T .

Property 1: Ignoring fees, the trade price to buy a quantity of ETH ∆yt is given as

follows:

P (∆yt) =
∆xt
∆yt

=
xt−1

yt−1 −∆yt
(1)

with a trade to sell ∆y′t units of ETH being the same but with the last term changing

from −∆yt to +∆yt. This price function is used to generate the AMM’s bonding curve,

with Figure 2 demonstrating the impact on the price of larger quantities traded.

[Figure 2 about here.]

Property 2: The “midpoint” price of ETH in the pool measured in USD (the price

of an infinitesimally small trade that has negligible price impact) is purely a function of

the quantities of the two assets in the pool at the time of the trade: Pt,MID = xt/yt.

14Accessible via app.uniswap.org
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Property 3: Ignoring fees, the sequence in which trades occur does not matter for

the final outcome (state) of the AMM — its pool quantities and midpoint price.

Property 4: Ignoring fees, a round-trip trade reverts both price and quantities back

to their initial state, with the trader making neither profit nor loss.

Property 5: Two unidirectional trades of quantity x will have an equivalent impact

as one trade of 2x in the same direction (same end price in the AMM, same end state in

terms of quantities in the AMM, and same cost to the trader).

Property 6: If the AMM receives a series of trades, only the buy/sell imbalance

quantity of the series of trades is needed to measure the impact on the AMM’s state. The

balanced volume (buy volume equal to sell volume) has no impact (irrespective of what

combination of trades generates the balanced volume), nor does the sequence of trades

matter. The AMM is “memory-less” in that the impact of a trade depends only on the

current state of the AMM and not the history of trades.

Property 7: Assuming the presence of arbitrageurs, the value of each of the two

assets staked by the LP are equal, when measured in one unit of account, for example,

the USD value of xt is always equal to the USD value of yt. This is true at every point,

including minting, burning and swapping.

3 Can AMMs Effectively Manage Adverse Selection Risks?

For full market automation to be possible, liquidity providers must be adequately com-

pensated for the risks they bear. The two main risks liquidity providers face in financial

markets are: inventory risk and adverse selection risk. Inventory risks arise out of the

necessity for an LP to hold assets to meet buying or selling demands, exposing them to

changes in asset values. In modern financial markets, LPs are able to minimize inventory

risks using algorithms that minimize holding times and hedge inventory exposures in cor-

related assets. AMMs, by contrast, require an LP to hold or provide fully collateralized

positions in both assets. The fees an AMM LP earns are a linear function of the amount

of inventory they hold, whereas the fees earned by an LP in traditional markets may bear

little or no relationship to their inventory.

Adverse selection risks arise from information asymmetry between the liquidity provider

and demanders of that liquidity. In traditional markets, the LP provides liquidity at prices
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based on all publicly available information, experiencing adverse selection from more in-

formed liquidity demanders with additional private information, (Glosten and Milgrom,

1985). In AMM settings, LPs are unable to set prices incorporating even public infor-

mation. As a result, they bear all the costs associated with public as well as private

information being impounded into prices. However, in modern markets LPs now bear a

significant proportion of public information adverse selection, as shown in Aquilina et al.

(2021). The economics of market making, at its core, is a problem of balancing profits

from uninformed traders against the losses incurred to informed traders (adverse selection

costs). Traditional market making and liquidity provision in an AMM are similar in that

they both profit from uninformed order flow — balanced (or round-trip) trading, and incur

losses from informed, directional trading. Thus, all else equal, in both mechanisms, the

more balanced — and the less directional — order flow (more uninformed traders and less

informed traders), the more profitable is liquidity provision.

Where the two mechanisms differ is that in traditional markets the profits from unin-

formed, balanced flow are modulated by adjusting the bid-ask spread. If the bid-ask spread

is too wide, the market-maker (MM) will earn profits in excess of their adverse selection

costs, encouraging competing liquidity providers to undercut the MM’s quotes, reducing

the spread towards its equilibrium (or efficient) level. If the spread is too narrow, MM’s

make losses, leading to a widening of spreads and/or a departure of competing liquidity

providers. Thus the liquidity of a stock in a traditional MM model (bid-ask spread and

quoted depth) is a function of the relative amount of informed and uninformed trading.

In AMMs, there is no explicit bid-ask spread set by the LPs, rather the fee paid by

liquidity demanders is fixed at 30 basis points,15 but varies in percentage terms for each

contributing LP (and is modulated by) the quantity of staked assets in the liquidity pools.

This results in a slightly different equilibrating mechanism to traditional market-making,

although both are driven by similar underlying principles.

If a pool is highly profitable, with fee yield exceeding adverse selection costs, the

pool will attract flows from new LPs staking the pools assets. Assuming both informed

and uninformed traders’ actions remain unchanged (as is traditional in models of market

making), a larger quantity of staked assets will reduce the fee yield component FYT = FT
V0

15This refers to Uniswap Version 2. The launch of Uniswap V3 allows for separate pools to set fees at 1,
5, 30 and 100 basis points. These three options are still far from dynamic spreads in traditional markets.
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by increasing the value staked in denominator, V0, without impacting the numerator - total

pool fees. With adverse selection unchanged, LP’s total profits will reduce. Conversely, if

the LP is making losses due to adverse selection costs that exceed the fee yield, LPs will

withdraw assets from the AMM, reducing the total staked value and increasing the fee

yield — driving up LP profitability to a break-even level.

Thus, AMMs are expected to equilibrate their level of liquidity to match the levels

of informed and uninformed trading, such that LPs do not earn excess profits. Unlike

traditional market making, the mechanism is the modulation of the pool size, rather than

adjustments to the bid-ask spread. Ultimately, the effects on liquidity are similar — if the

spread is increased to cover a high adverse selection cost, this increases the cost of trading,

much like decreasing the pool size to increase yield also increases price impact due to the

lower liquidity constant, K. Larger price impacts of trading are economically similar to

paying a higher bid-ask spread. Ultimately, the relation between the level of liquidity and

the underlying properties of the asset and its traders (mix of informed and uninformed,

fundamental value volatility) are similar for both AMMs and traditional market-makers,

despite mechanical differences in their design.

3.1 Return Components for the LP in the AMM

In the previous section we set out the mechanism by which AMMs can manage liquidity

risks in equilibrium. In this section we derive the return components to liquidity provision

so that we can empirically assess AMM feasibility for assets with different characteristics.

Assume that there are no mints or burns between t = 0 and t = T . An LP that

deposits assets at t = 0 and withdraws them at t = T , earns a Total Return of:

RTOTAL =
VT + FT

V0
− 1 (2)

where V0 = x0 + y0P0 = x0 + y0
x0
y0

= 2x0 is the USD value of the initial staked assets at

t = 0, VT = xT + yTPT = 2xT is the value of the staked assets in the pool at t = T (after

T trades) excluding fees, and FT =
∑t=T

t=1 ft = 0.003
∑t=T

t=1 |∆xt| is the sum of the accrued

fees on the T trades. The LP’s total return in (2) can be rewritten such that it is broken
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down into three components:

RTOTAL =

(
VT,FIXED

V0
− 1

)
︸ ︷︷ ︸

Inventory Holding Return

+

[(
VT

V0
− 1

)
−

(
VT,FIXED

V0
− 1

)]
︸ ︷︷ ︸

Adverse Selection Cost

+
FT

V0︸︷︷︸
Fee Yield

(3)

where VT,FIXED = x0 + y0PT is what the staked assets would be worth (in USD) if the

LP had held them passively outside of the AMM — keeping the initial quantities fixed at

x0 and y0.

Each of these three return components has an economic interpretation that maps to

the market microstructure models of liquidity provision by market makers in traditional

financial markets:

The first component, Inventory Holding Return: IHRT =
VT,FIXED

V0
− 1, is an increase

or decrease in the value of the LP’s inventory, purely from asset price changes, and not

from changes in the quantities held (in contrast, adverse selection costs play out through

the quantities changing in adverse ways). In traditional models of market making, the MM

typically holds inventory close to zero by being allowed to short sell and buy on margin,

but temporarily takes on non-zero positions while intermediating between buys and sells

until such time as she can revert her inventory back to zero. While holding a non-zero

inventory, the MM faces the risk that the asset price adversely appreciates or falls, which

gives rise to inventory holding risk. If the MM is risk-averse, the inventory holding risk

is undesirable and MM’s factor it into their bid-ask spread so that they are compensated

for bearing such risk.16 In contrast, in the AMM, the LP cannot hold an inventory close

to zero (unless they hedge their staked liquidity positions with external contracts) as they

physically have to post a positive quantity of both assets into the AMM pool. Thus,

inventory holding risk is a material consideration for an AMM LP, and the IHRT reflects

the profit or loss (as a return) on the inventory the LP holds.

The second component, Adverse Selection Cost: ASCT = (VT
V0

− 1)− (
VT,FIXED

V0
− 1), is

how much worse off the LP is from staking both assets to the AMM pool compared to the

benchmark of holding the same initial asset quantities outside of the AMM. It results from

adverse changes to the quantities of the two assets in the AMM pool as traders use the

16See classic inventory management models such as Stoll (1978), Ho and Stoll (1980), Ho and Stoll
(1981), Stoll (1989), and more recently Hendershott and Menkveld (2014).
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AMM to swap one asset for another. When the value of the risky asset falls, and the AMM

price has not yet adjusted, arbitrageurs will buy the asset at a low price in external markets

and sell it to the AMM at the AMM’s (stale) high price, making the AMM overpay for the

asset. Similarly, when the value of the risky asset increases arbitrageurs will buy the asset

at the (stale) low price in the AMM and sell it at a higher price in an external market,

resulting in the AMM selling the asset at a price below fundamental. Consequently, the

quantities of the assets within the AMM change in an adverse way, resulting in an adverse

selection cost akin to the classic adverse selection cost in traditional models of market

making (for example, Glosten and Milgrom (1985); Kyle (1985)). As we will show, this

return component is strictly less than or equal to zero, consistent with it being a true

“cost” to the LP of providing traders the option to buy or sell assets from the AMM and

having arbitrageurs do so, on average, in a way that “exploits” stale prices in the AMM.

We will also show that this component is largely a function of the asset price changes —

irrespective of whether the asset price increases or decreases, the LP will incur an adverse

selection cost, ASCT .

The third component, Fee Yield: FYT = FT
V0

is expressed as a yield on the staked asset

value earned by the LP. This component of total return is strictly positive as long as

there are trades with the AMM. The ability to earn fee revenue is what incentivizes LPs

to stake their assets knowing that they face adverse selection costs — thus, the basic

proposition of an AMM is to try and earn a sufficient fee yield to at least cover the adverse

selection costs. Ideally fees will also compensate the LP for the inventory holding risk.

The fee yield also maps very closely to traditional market microstructure models in which

MMs earn profits from the round-trip trades of uninformed traders and incur losses to the

directional trades — similar to the cost of trading with informed traders. In traditional

market making models, the MM adjusts the bid-ask spread that she charges per round-trip

trade so that she earns just enough from the uninformed traders (in a competitive market)

to cover the losses made to the informed traders. Similarly in AMMs, round-trip trades

accrue fee yield without imposing any adverse selection or inventory holding costs, whereas

directional trades cause price changes that impose adverse selection costs on the LP.

While the Total Return is the sum of each of these three components and reflects the

overall returns to liquidity providers, the Staking Return is the net sum of the Adverse
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Selection Cost and the Fee Yield. It is thus the net economic impact of the choice to invest

or provide liquidity to the AMM by “staking” assets, rather than holding them outside of

the AMM. Therefore, we use it as a key measure in assessing the profitability of liquidity

provision to AMMs.

Figure 3 plots Total Return and each of the three components against the return of

the underlying pool assets, expressed as the ratio R = Rt=1
Rt=0

of changes in price over the

time period t. Total Return is bounded at -100% (with no fee revenue) and -70% with 30%

assumed fee revenue in this Figure. For example, a pool holding assets ETH and USDT

would have -100% return if the price of ETH goes to zero. This is because arbitrageurs

swap ETH into the pool in exchange for USDT, leaving the pool holding only ETH, a now

worthless asset. The Inventory Holding Return (IHR) is bounded at -50% when the ETH

price goes to zero. Notice that the IHR is larger than the Total Return. As the ETH price

increases, arbitrageurs swap ETH out of the pool in exchange for USDT, limiting the total

returns the LP receives from ETH’s appreciation. Adverse Selection Costs is bounded at

-50% because if the price of ETH goes to zero, the LP loses all the of the USDT they

deposited but they would have lost the ETH regardless of investing in the pool, so just

the loss in USDT is considered. At the other end of the curve, losses can exceed 100%

if the price of ETH increases significantly such that the opportunity cost of holding ETH

outside the pool exceeds the value of the ETH deposited.

[Figure 3 about here.]

3.2 Adverse Selection Costs and Staking Returns in the Data

Next, we empirically assess whether AMMs sufficiently reward LPs for the significant risks

they take as automated market-makers. The AMM receives little protection from the risks

involved in liquidity provision. It cannot reprice stale quotes when market prices of the

assets in the pool change (adverse selection risks), and it cannot actively manage inventory

risks by reducing inventory holdings (inventory holding risks). The LP bears the totality

of these risks with the hope that the fees they earn will offset them. In practice, this is

mostly the case. The value-weighted average fee revenue, net of adverse selection costs,

is positive. We refer to this measure as the “Staking Return” as it is the net impact

on returns of an LP transferring their tokens to a Uniswap pool, termed “staking” in
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blockchain terminology.

Table 1 sets out the descriptive statistics of Uniswap pool characteristics and LP returns

for the sample of the top 200 pools by size.17 Pool Size is highly skewed, with the largest

1% of pools having more than a quarter of a billion dollars in tokenized assets, with a

mean Pool Size of $8.5 million. LPs do not frequently update their positions, with the

median pool-date experiencing no flows, with the largest 1% of Flows being 34% of pool

value and the lowest 1% being -24%.

Fee Yield averages 12 basis points per pool-date, or 44% per year when annualized.

Adverse Selection Costs (ASC) are either zero or negative by construction. The pool-

date mean ASC is -17bps per pool-date, whilst the weighted mean is -4bps (annualized

-62% and -15%, respectively). This sets the sum of the two — the Staking Return —

below 0% for the unweighted mean, but positive 2bps (7% annualized) for the pool-size

weighted mean. This implies that AMM liquidity provision is profitable for an LP that

invests proportionate to the size of the top 200 pools, though this profitability is not evenly

distributed across pools.

Given the overall increase in cryptocurrency prices over the sample period one would

expect both Total Returns and Inventory Holding Returns/IHR, which are positively re-

lated to the returns in the underlying assets, to be highly positive. The mean pool-date

return is 6 (total) and 11 basis points (IHR), but the median is negative. The majority of

pools in the sample are “Token-Token” pools, however, which means that price changes

can be driven by changes in pricing relationships between two tokens, rather than a general

increase in overall cryptocurrency prices. Order flow is highly balanced, with a weighted

mean Uninformed Order flow of 92%. This highly balanced order flow helps explain the

viability of AMMs. As a comparison, the equivalent measure for the S&P500 Futures

contract is 77.43% in Easley et al. (2012).

[Table 1 about here.]

Figure 4, plots the return components against the daily change in price for each pool-

17We also require the pool to have traded for more than 8 months of the 1 year sample, and remove the
first 7 days for each pool (as pool balances take time to grow to meaningful sizes). We also remove all pools
that contain “re-balancing tokens”. These are tokens that modify their balances according to predefined
rules. These tokens create problems for assessing profitability. We obtain a list of re-balancing tokens from
“Coingecko”. While Uniswap V2 starts on May 19th, 2020, we remove the first 3 weeks of the sample and
begin on the 1st of June, 2020 as pool sizes take until this time to become meaningful.
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date in the sample. The ASC and IHR curves match those in Figure 3, varying only with

R on the x-axis. Total Return and Staking Return vary with R but also upwards along

the y-axis when fee-yield is non-zero. This is in contrast to Figure 3, where a fixed fee of

30% is assumed.

[Figure 4 about here.]

Figure 5 presents a histogram ofASCT and StakingReturnT which isASCT+FeeY ieldT

for each pool-date in the sample. ASC is always negative or zero, whilst the addition of

Fee Yield shifts the distribution to the right to outweigh ASC to be positive for 58.8%

of pool-date observations. This demonstrates that the fees earned by LPs are sufficiently

large to compensate LPs for adverse selection costs they bear, for most pool-dates in the

sample. It also provides evidence that liquidity provision in Uniswap AMMs may approach

a rational equilibrium. Small changes in pool size (while maintaining constant order flow)

could be sufficient to generate positive average returns to LPs.

[Figure 5 about here.]

Panel B of Figure 6 reports pool-size weighted average Adverse Selection Costs and

Staking Return across various pool characteristics: pool-type, Volatility and Pool Size.

“Token-Stable” pools have the highest returns, averaging 4.6bps per day, due to the large

Fee Yield of 8.2bps. “Stable-Stable” pools return 3bps per day, almost all of which is fee

yield due to the lack of adverse selection costs associated with stable USD pegged tokens.

“Token-Token” pools experience the most Adverse Selection Cost, at 5.7bps per day with

insufficient fees (4.9bps) to recoup these losses. While it is possible for “Token-Token”

pools to be profitable (“SUSHI-WETH” has the second highest total cumulative return in

Figure 6), the large number of token-token pools in the sample means that there is likely

a bias towards higher Volatility tokens in this category.

Higher Volatility pools are less profitable, with only the lowest quartile of pools in

Panel B being profitable. While this may seem intuitive, it is possible for higher volatility

pools to be profitable: negative profits could drive outflows from the pool, reducing Pool

Size and equilibrating Fee Yields. However, if the pool size decreases such that it becomes

prohibitively expensive to execute due to the AMM bonding curve slope, volumes may

also endogenously decrease so that Fee Yield does not increase. This might explain the
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positive relationship between pool size and profitability observed in Panel C. Only the

largest quartile of pools are found to be profitable.

[Figure 6 about here.]

3.3 Deriving Determinants of LP Returns

Liquidity providers to AMMs receive Total Returns that can be decomposed into three

components: IHR, ASC and Fee Yield. These components are either driven by price

changes in the underlying pool assets, the volatility of these assets, the nature of order

flow in the AMM or the amount of liquidity staked in the AMM. We present theoretical

relationships for each component.

The IHR can be expressed as a function of returns:

IHRT =
1

2

(
PT

P0
− 1

)
=

1

2
ry (4)

and as returns are a function of unbalanced order flow, it can be expressed as a func-

tion of the Relative Order Imbalance (ROIB), where ROIBT = OIBT /V0. OIBT is the

cumulative net order flow
∑t=T

t=1 ∆xt and V0 is the pool value:

IHRT = 2ROIBT + 2ROIB2
T (4B)

so that the inventory holding return is an increasing function of the order imbalance,

expressed as a proportion of the total pool value in USD.

Adverse Selection Costs can also be expressed as a function of returns,

ASCT =
√
RT − 1

2
(RT + 1) ≤ 0 (5)

where RT = PT
P0

, which shows that ASC are always less than or equal to zero, are min-

imized when prices do not change, and increase from returns in either direction (positive

or negative returns). ASCT can also be expressed as a function of the order imbalance.

ASCT = −2

(
∆xT
V0

)2

= −2 (ROIBT )
2 ≤ 0 (5B)
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Which shows that balanced or round-trip trades do not contribute to ASCT , when

ROIBT = 0 and ASCT = 0 and when the order imbalance increases in either direction, it

increases ASCT at a quadratic rate.

The Fee Yield is unrelated to returns and is instead a function of the total traded

volume QT , irrespective of either the trade direction or whether the flow is balanced or

unbalanced:

FYT =
FT

V0
=

0.003
∑t=T

t=1 |∆xt|
V0

=
0.003QT

V0
= 0.003TURNT (6)

Thus, higher traded volumes are expected to increase Fee Yield. Also, lower pool

values (lower V0) will increase the Fee Yield. So, ultimately, Fee Yield is an increasing

function of trading volume normalized by pool size, which we refer to as pool turnover,

TURNT = QT /V0.

The three LP return components can be re-combined to examine the drivers of Total

Returns:

In terms of price changes:

TotalReturnT =

√
PT

P0
− 1 + 0.003

QT

V0
(7)

In terms of order flow:

TotalReturnT = 2ROIBT + 0.003 |ROIBT |+ 0.003RBALT (8)

Interestingly, while the adverse selection costs are increasing in the absolute amount of

order imbalance in either direction (excess buying or excess selling), the Total Return is

directionally increasing in the volume of buys (decreasing in the volume of sells) due to the

strong effects of the IHR component (Formula 8). The same effect can be seen in terms

of returns: while the ASC increases irrespective of the direction of returns as long as the

asset price changes, the total return is positively related to the return to the risky asset

(Formula 7).

18



4 Equilibrium Effects: Is Liquidity Allocated Where it is

Needed?

In any market, there needs to be a mechanism to allocate capital to its most productive

use. The sensitivity of fund inflows and outflows to fund performance is of key interest

in the investment funds management literature. In Uniswap AMMs, flows are crucial in

determining LP returns and pushing pools towards equilibrium. In this section we search

for evidence that pools trend towards equilibrium by varying their size.

Hypothesis 1: Liquidity should inflow to pools that have higher Total Return.

To examine if flows chase returns we first compute correlations between current period

pool flows and 30 lags and leads of fee yield in the time-series. Figure 7 shows that fee

yield is positively correlated with lagged flows but negatively correlated with future flows.

This demonstrates the equilibrating effect of flows on fee yield — flows chase yields but

also act to depress them.

[Figure 7 about here.]

Table 2 regresses pool Flow on lagged measures of each pool return component, as well

as lagged pool Flow, similar to a structural VAR model. Consistent with the correlogram,

fees are positively related to flows. A one percent increase in fees in the previous day results

in a 1.1% flow into the pool. However, as the mean Fee Yield in the sample is 12bps, there

is a muted reaction by flows to such an increase, which perhaps explains why the cross-

section of AMMs is not in full equilibrium, with some pools exhibiting both positive and

negative Total Returns. Capponi and Jia (2021) also find this positive relationship between

flows and fee yield in a contemporaneous model at the weekly level.

A positive relationship between IHR and Total Returns is also found, however their

coefficients are not meaningfully large. ASC exhibits either no, or a very small, relationship

with Flow. This implies that LPs may make investment decisions over longer horizons

rather than the daily horizon used in this specification. As ASC forms a key component of

staking returns, perhaps the same explanation can be offered for the lack of a significant

relationship between Staking Return and Flow. Fee yields are readily visible and easy to

calculate, perhaps identifying why these are the largest drivers of LP flows.
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The regression includes dummy variables “Sushiswap Attack” and “Uniswap Incen-

tive”. These variables take the value of one during the period a rival AMM and Uniswap

provide incentives to LPs in certain pools. Date fixed effects likely subsume most of the

significance of these variables, so we see little significance in these coefficients.

[Table 2 about here.]

While positive returns may attract inflows (and negative returns outflows), it is also

possible that staking flows by LPs themselves impact pool returns. This occurs as the

explicit fees charged on trading (the primary revenue of the LPs) are independent of pool

size. Larger pools spread these revenues out amongst a wider base of LPs, reducing overall

pool return. To test for these effects, we propose the following:

Hypothesis 2: Following liquidity inflows (/outflows) to/from an AMM pool, the

Total Return of the LPs in that pool should be lower (/higher), as should be Fee Yield.

Table 3 regresses each return component on lagged flows, as well as lagged pool returns,

similar to a structural VAR model. Fee Yield equilibrates as predicted. An increase in

pool Flow of 10% in the previous day results in a decrease in the daily Fee Yield of 0.6

basis points. As the weighted mean Fee Yield averages 6 basis points, this represents a

similar reduction of 10 percent.

Perhaps unsurprisingly, the external incentives provided by Uniswap to encourage liq-

uidity provision are associated with a reduction in Fee Yield and Staking Return. This is

because LPs received the newly created “Uniswap Token” during this period and were thus

willing to accept lower pool yields in return for these additional incentives. The “Sushi

Attack” period has the opposite impact, as LPs were incentivized to leave Uniswap to

instead stake on their competitor, SushiSwap, during this period. While they also impact

Total Returns and IHR, this is likely confounded by price changes to major assets such as

Ethereum during the period.

In summary, this section provides evidence that pool size works to equilibrate fee yields

through inflows and outflows. LPs direct flows to high yield pools which then dilutes the

percentage Fee Yield received by all LPs in the pool.

[Table 3 about here.]
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5 Deriving the Equilibrium Pool Size

In this section we will derive the theoretical equilibrium pool size for an AMM. We start

with our expression for the total return for an LP, Formula 3. Consider the marginal

LP that holds each of the two tokens and is considering whether to commit them to the

AMM or not.18 Assuming risk neutrality and competition that drives profits down to

the opportunity cost of capital Rc (e.g., the interest rate that could be earned by risk-

free lending of the capital), the LP will be indifferent (and hence this is the equilibrium

condition) when the Adverse Selection Cost and Fee Yield components together equal Rc:

[(
VT

V0
− 1

)
−
(
VT,FIXED

V0
− 1

)]
︸ ︷︷ ︸

Adverse Selection Cost<0

+
FT

V0︸︷︷︸
Fee Yield >0

= Rc (9)

Redefine the ASC to be a positive number reflecting the magnitude of the adverse

selection cost, i.e., ASC = −
[(

VT
V0

− 1
)
−
(
VT,FIXED

V0
− 1

)]
> 0. As shown previously,

the ASC is determined primarily by the price changes of the tokens, and is therefore an

increasing function of the token price volatility (σ) :

ASC =
1

2

(
PT

P0
+ 1

)
−

√
PT

P0
> 0 = f(σ) such that

dASC

dσ
> 0 (10)

Yet the fee yield is a function of the total trading volume (QT ) and the pool size (V0):

FT

V0︸︷︷︸
Fee Yield

= 0.003
QT

V0
(11)

Assuming at least some traders (LDs) are sensitive to the costs of trading, total trading

volume is an increasing function of the pool size, because larger pools have lower slippage

and therefore lower trading costs:

QT = f (V0) such that
dQT

dV0
> 0 (12)

Putting the pieces together (substitute into the equilibrium condition (9)), the equi-

librium pool size (V ∗
0 ) is:

18This is likely to be the marginal liquidity provider as they will not require a premium for IHR – other
potential LPs that do not hold the tokens would be in a similar position — either assuming they can hedge
the token prices with futures or are risk neutral.
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0.003
QT (V ∗

0 )

V ∗
0

−ASC(σ) = Rc (13)

V ∗
0 = 0.003

QT (V ∗
0 )

Rc +ASC(σ)
(14)

This equilibrium condition implies that, all else equal, the equilibrium AMM liquidity

is:

1. Decreasing with higher asset volatility, σ;

2. Decreasing with higher opportunity cost of capital, Rc (e.g., over-collateralized lend-

ing yields of the tokens);

3. Increasing with higher trading volume, QT (V
∗
0 );

4. Increasing with the AMM fee (e.g., 30bps rather than 1bp)19

Therefore, we expect to see particularly deep/liquid AMMs for assets that have low

volatility (like stable-stable pairs), low interest rates, and high trading volumes. But there

is more to this — the equilibrium pool size depends critically on how trading volume in

the AMM responds to trading costs and hence to pool size, i.e., the elasticity of trading

demands. A slight reorganization of (14) makes this clear:

V ∗
0 =

[
0.003

Rc +ASC(σ)

]
QT (V ∗

0 ) (15)

The term
[

0.003
Rc+ASC(σ)

]
is independent of trading volume, and can be thought of as a

‘constant’ or exogenous parameter with respect to the equilibrating process between pool

size and trading volume. Its interpretation is that it tells you the equilibrium pool size

as a multiple (or fraction) of the AMM’s trading volume. The term tells us that, all else

equal, for a given trading volume, pools will be smaller if the asset has a higher ASC or

opportunity cost of capital, and the pool will be larger if the AMM charges a higher fee.

For example, suppose annual lending interest rates are 3% p.a., ASC is 5% p.a., and the

AMM charges a 30bps fee, we get
[

0.003
Rc+ASC(σ)

]
= 0.003

0.03+0.05 = 0.0375, i.e., for these given

19While Uniswap V2 has a fixed fee of 30bps, Uniswap V3, which is currently in operation, allows for
100, 30, 5 and 1 basis point fee tiers. We examine an even wider theoretical fee schedule in our calibration
in the next section.
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exogenous parameters, the equilibrium pool size will be 3.75% of the annual AMM trading

volume. It is not clear that is a feasible/viable pool size — e.g., suppose we start with a

$1mil pool size and $1mil of annual trading. That is too big a pool size for equilibrium,

being 100% rather than 3.75% of the trading volume — the model tells us the fee yield

will not be sufficient to cover the ASC at that pool size. So, what would happen is the

pool size would shrink (LPs withdraw as they realize ASC¿FY). If there was no change

to trading volume, the pool size would just shrink down to $37.5k and we would have an

equilibrium. But where it gets tricky is that volume would also shrink as the pool size

shrinks as trading becomes more costly due to slippage. The lower volume then leads to

an even lower equilibrium pool size, and so on, potentially never finding a stable point

(i.e., equilibrium size could be zero and the AMM is infeasible). Whether it is feasible or

not depends critically on how sensitive volume is to trading costs and thus to pool size.

5.1 Empirical Validation of Equilibrium Pool Size Derivation

To empirically validate our derivation of the equilibrium pool size, we regress the actual

pool size on the predicted equilibrium pool size in our sample. The three inputs necessary

for deriving the equilibrium size for a given pool are adverse selection costs, the value

traded, and the cost of capital. We have the first two measures from our existing analysis,

but obtain the estimates of cost of capital (Rc) from daily lending rates from the on-chain

lending platform ‘AAVE’. This is a suitable proxy for the opportunity cost as holders of

tokens can derive returns from lending through the AAVE platform. We match the con-

stituent tokens of pool pairs and average the lending rates. Where rates are not available,

we apply the average rate for the same token-type (‘stable’ or ‘token’).20

We calculate V ∗ using the monthly means of daily observations of ASC, Q and Rc.

We regress the last observation of the pool-size for a given month log(V0) on the predicted

log(V ∗
0 ). This means the regression compares the actual pool-size for a month to the

components that determine it over the previous month, i.e. a 1-month look-back period.21

20We winsorize these rates at 99% by token to lessen the impact of extreme outlier dates.
21We find this time-period gives us the largest R2, though a weekly model also performs well, with

overall R2 of 72% rather than 77%. While we do find the average holding period of liquidity providers is
around 7 days, (see Appendix Table 6) our regressions suggest the equilibration process may take longer
than a week. We drop observations prior to and including the ‘Sushiswap attack’ and Uniswap incentive
periods up to the 21st of November, 2020 as they provide additional incentives that are not factored into
our model.
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Table 4 performs four separate panel regressions across the top 200 pools by size in

our sample. First, a pooled regression with no fixed effects, second; a panel regression with

pool fixed effects, then month, and then pool-month fixed effects. Overall, the predicted

equilibrium pool-size performs well, with an overall R2 of 77%. A clear result is that

the model is less successful at explaining variations in pool-size across the time-series

dimension, as opposed to the cross-section. This may imply that pools are more successful

at equilibrating in the cross-section than over time, but it is more likely that this is driven

by a tendency for both Q and ASC to be more variable on a time-series basis.

[Table 4 about here.]

6 Calibration of AMMs in Traditional Assets

Cryptocurrencies represent a relatively anomalous asset in terms of the estimates of their

investability. They exhibit high levels of volatility, have no clear cashflows, and their fun-

damental value is very difficult to determine. Some may argue that AMMs are only viable

due to their simplicity of execution on a decentralized blockchain. More cynical detractors

may argue that such a market structure is only viable in the presence of irrational liquidity

providers who are idealistically, rather than economically, motivated.

We seek to determine which asset classes AMMs would be best suited to. To determine

this, we obtain the volume, returns and opportunity costs of capital for a variety of tra-

ditional assets. We then examine what the theoretical pool size would be, for a given fee

level. We further compute what the trading costs (in basis points) would be for a ‘typical’

order size in each asset class.22 We also obtain the ‘free float’ value of the asset to allow

comparisons with the predicted equilibrium pool size.23

Table 5 shows our results for U.S. equities (both large and small capitalization), Forex,

bonds, commodities and cryptocurrency transactions. For all assets, we see a monotonic

22The trade sizes are informed by the following papers. We take the largest credible sizes for conservatism
(as it biases AMM transaction costs to be larger). For equities: Van Kervel and Menkveld (2019) and
Neumeier et al. (2023) have mean parent orders of $2.2m USD and $1.2m USD, while Frazzini et al. (2018)
has a smaller size of $0.6m due to their sample being just one hedge fund. We take $2.2m as an upper
bound for large caps and $0.5m as a lower-bound for small-caps. For FX, Melvin et al. (2020) estimates
parent order sizes using data from FX clearer CLS. While they estimate average sizes as $1.5m, they
estimate and use an upper bound of $25m in their analysis.

23This is market capitalization for equities, the M3 money supply for FX and the value of total tokens
on issue for tokens.
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reduction in pool size as the fixed fee reduces. For example, for JNJ, with a 100bps fee, the

equilibrium pool size is estimated at $23,302 million, while for the same asset with a 1bps

fee, the estimated pool size is only $78 million. Such a relationship makes intuitive sense

— given we have ‘forced’ 100% of the markets transactions to migrate to the AMM, and

we have not allowed uninformed order flow to respond to the fee, higher fees can support

larger staked pool sizes.

When we turn to the fee estimations, we almost always observe a U-shape to the trans-

actions costs. While large transaction fees (i.e. 100bps) attract more stakers, enlarging

pool size and reducing slippage, the 100bps fixed cost dominates the transaction fee. At

the other end of the spectrum, a 0.1bps fixed fee attracts such a small transaction pool

size, where the increased slippage begins to outweigh the reduced fixed fee.

To compare our AMM transaction cost estimates to those in traditional assets, the

‘implementation shortfall’ (IS) is the most appropriate measure. In most markets, trad-

ing must be undertaken in discrete chunks (called ‘child orders’) that make up the total

desired trade package (‘parent order’). This is to allow an orderbook time to replenish

so that the order does not need to ‘walk the book’ along multiple price levels of liquidity

and thus pay a larger spread. However, while parent order executions are taking place,

‘information leakage’ can occur, which changes orderbook prices. The IS captures these

costs by measuring trading costs across an entire parent order. In contrast, the design of

an AMM allows for an entire parent order to be executed in one trade, as there are limited

advantages to order-splitting. Indeed, this ability of AMMs to absorb orders larger than

a traditional limit orderbook is one of the key advantages such a market structure can

generate.

Measures of IS from traditional markets are as follows. In equities, Frazzini et al.

(2018) provide an IS estimate of 9.84bps for large-cap equities and 19.93 for small-cap in

a global sample of parent orders from 2006 to 2016. Van Kervel and Menkveld (2019) and

Neumeier et al. (2023) also provide estimates of 8.27 - 13.01bps for large, U.S. equities.

In FX, Melvin et al. (2020) estimates transaction costs of 1.29bps for EUR-USD (G10

currency) and 26bps for ILS-USD (exotic currency).

In most cases, the optimal fixed fee is found to be between 1-5bps, in line with the typ-

ical ‘quoted spread’ observed in traditional limit order markets. AMMs appear to be least
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suitable (or most costly) in low-liquidity, high-volatility assets, such as the small-cap U.S.

equities — generating minimum transactions costs of 1.2-13% for a modest $500,000 trade.

Interestingly, AMMs appear to be ‘best suited’ (in the sense of creating low transactions

costs) to low-volatility, high-volume assets, such as the Forex, commodities and large-cap

equities markets. Our estimates for the Forex markets are significantly lower than current

estimates for traditional transactions costs in this market — our estimate of 0.1bps for

EUR/USD is more than 10x smaller than the estimate of 1.29bps from Melvin et al. (2020),

and is over 20x smaller for exotic currency pairs such as ILS/USD or BRL/USD (1.2bps

vs 26bps). Our minimum transactions costs in large-cap U.S. equities measure 3.7-25.3bps

— falling in a similar range to the current academic estimates of IS of 8.27 - 13.01bps.

The minimum transactions costs for our other major asset classes fall within reasonable

bounds: Commodities transactions cost 1.9-27.4bps, as compared to the 8-12bps in Gold

markets (Hauptfleisch et al. (2016)); U.S. Corporate Bonds cost 6.9-16.6bps, as compared

to the 20-50bps reported by O’Hara and Zhou (2021); and US Treasuries cost 6.4bps-8.8bps

which is in line with estimates.24

While it may seem implausible for AMMs to provide cheaper trading than traditional

market structures, there are many key features of AMMs that could explain such a result.

As discussed above, they do not incur information leakage from order-splitting. Also, while

trades in AMMs incur slippage (and a fixed fee), they do not have any concept of a quoted

spread or a tick size. Each AMM trade effectively trades at a modified midpoint price,

analogous to midpoint dark-pool trading.25 This ‘saves’ the trade paying a traditional

quoted spread. Further, for a large enough pool size, the slippage on a large trade can

be infinitesimally small. As shown by Dyhrberg et al. (2019), small tick sizes lead to

additional costs for traders due to issues such as undercutting. Large pools are likely to

generate slippage (or spread) far smaller than would be feasible as a tick size in a limit

orderbook. AMMs also do not need to recover the cost of capital and operational expenses

that are factored into the ‘spread’ charged by a market maker or dealer such as Citadel

24There is limited research on the implementation shortfall of U.S. Treasury Bonds. Fleming et al.
(2018) find bid-ask spreads of 1-2bps, along with price impacts that are in line with equity markets. Given
that quoted spreads are similar to US Large-cap equities, it would be reasonable to assume a similar
implementation shortfall. Given our AMM costs are at the exchange-level (i.e. they include explicit and
implicit costs) whilst our comparisons don’t factor in fees, AMMs appear to be competitive with current
transactions costs in these markets.

25For further discussion on midpoint dark pool trading, see Foley and Putniņš (2016).
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and Virtu. These unusual features of a novel market design provide a promising future

for their integration in traditional financial assets, should market regulation allow for such

new innovations.

[Table 5 about here.]

7 Conclusion

Dealers or market makers have performed the valuable function of liquidity provision in

financial markets for centuries. Remarkably, it has recently become possible to replace

them with a simple set of code. This innovation, borne out of the regulation-free cryp-

tocurrency markets, effectively democratizes liquidity provision, allowing unsophisticated

investors with no comparative advantage in market making to directly participate in what

is typically a highly competitive, and specialized, profession. While many have shown

that these AMMs are able to maintain prices that closely mirror those found in centralized

exchanges, few have sought to understand the dynamics of how such mechanisms deal

with inventory and adverse selection. We show that the architecture created by these

Automated Market Makers is able to efficiently provide liquidity by charging fees to com-

pensate “liquidity providers”. While these fees are fixed for those trading with the AMM,

capital flows to discrete AMM “pools” equilibrate the return on capital to appropriately

compensate the liquidity providers for their adverse selection risks. We characterize and

derive the components of these mechanisms, relating them to the traditional conceptual

costs existent in traditional theory models of market making. providing evidence for this

equilibrium which explains the viability of this new market design.

Our evidence suggests that AMM liquidity pools have difficulty reaching equilibrium,

with negative staking returns in high volatility pairs (which are often smaller pools) as well

as in most “token-token” pairs. To resolve these negative staking returns, some liquidity

providers must endogenously depart, reducing the size of these pools and consequently in-

creasing the proportional fee revenue. Such an equilibrating mechanism necessarily reduces

the capacity of the AMM to support large levels of liquidity. In traditional markets, by

contrast, market-makers can vary both the price of liquidity (by charging a higher spread),

as well as varying the amount of liquidity (by varying the size of their limit orders). In
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this way, the amount of liquidity, or the market depth, can remain constant. This suggests

that a dynamic (as opposed to a fixed) fee for liquidity providers would improve overall

liquidity in the AMM. Indeed, the latest iterations of AMMs are experimenting with the

availability of multiple pools for each pair of assets, where each of the pools carry differ-

ent fixed fees for liquidity provision. This theoretically provides LPs with an additional

mechanism for equilibration — the ability to vary the “price” of liquidity without varying

the quantity.

Utilizing our theoretical model and the empirical features of the various asset pairs

(volatility, volume, and the cost of capital) we are able to show that our model performs

remarkably well at predicting the observed pool sizes, further validating the relevance of

our theoretical contribution. Finally, we take our theoretical data to other non-crypto

assets, including bonds, equities and foreign exchange. We then ask a simple question:

given the observed characteristics of these asset classes, what would happen if we moved

all trading to an AMM? To answer this question, we estimate both the total size of the

AMM pool that would be required, as well as the transactions costs on average sized

trades. Our results suggest that AMMs perform exceptionally well in low-volatility, high-

volume assets such as Forex, generating transactions costs rivaling those currently seen in

traditional marketplaces. High-volume medium-volatility assets such as large-cap equities

perform reasonably, whilst low-volume high-volatility assets such as small-mid cap equities

generate transactions costs so large that they are clearly infeasible.

Our results suggest that the innovative structure AMMs provide may be more than

just a curiosity of the cryptocurrency market. Indeed, they may be optimal for several tra-

ditional financial assets, with cryptocurrencies merely serving as a regulation-free sandbox

in which these innovative structures were free to evolve. It is remarkable that even at such

an early stage, AMMs offer tangible benefits in comparison to centralized markets, which

have had a few centuries head start. There are still several limitations, but rapid iterations

to the design of the AMM (absent typical regulatory barriers) may quickly close this gap.

While modifying the AMM is as simple as modifying the code, the economic incentives

and equilibrating mechanisms implicit in such changes require careful consideration.
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Appendices

A LP Holding Times

Examining the duration at which LPs provide liquidity, or ‘resting times’ helps inform the

time horizon of our analysis.26 Resting times are measured as the time interval between

the mint and burn events of a given LP. Table 6 shows that LPs provide liquidity for 5.6

days on average, with over 50% of LPs providing liquidity for over 2 days. This shows that

AMM liquidity is provided over longer time horizons than centralized exchanges, which

may contribute towards resiliency. This proportion is even higher when LPs that never

cancel are included in the sample, where we assume the holding time is until the end of

the sample. The mean holding time increases to 35.7 days with over 50% holding more

than 7.7 days.

[Table 6 about here.]

B Framework of AMM Properties and LP Returns

Consider an AMM for the asset pair USD and ETH, where xt and yt are the quantities of

USD and ETH in the AMM at time t, respectively.27

Liquidity providers (LPs) stake a total of x0 of USD and y0 of ETH at t = 0 when the

price of ETH in dollars is P0. This gives the pool the constant K = x0y0. The total USD

value of the assets in the AMM at t = 0 is V0, which (as we show later) is equal to 2x0 or

twice the amount of USD deposited in the AMM, because the design of the AMM ensures

that the value of both assets in the AMM is equal at the time of staking assets and at any

subsequent time.

The AMM facilitates trades by liquidity demanders (LDs or “traders”). Trades with

the AMM occur in discrete time at t = 1, 2, 3, . . . T where t = T is the time at which the

26Resting times also inform the appropriate time horizon over which to assess LP profitability
27We use USD and ETH throughout an example of two assets staked in the AMM because this is the

most popular combination of assets in AMMs. The derivations and mechanics of liquidity provision are
the same for any pair. One asset is the unit of account (or numeraire), in this case USD is considered the
unit of account, and the other is denoted as the “risky asset” as its price can fluctuate relative to the unit
of account. While it is natural to think of USD as “stable” and ETH being a risky asset that fluctuates in
price, ETH can also be considered the unit of account without affecting the derivations in this paper.
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LP ceases liquidity provision and exits the game with the assets that can be withdrawn

from the AMM at the time.

A trade is an asset swap in which one asset is added and the other removed in quantities

such that the constant K is maintained (by design of constant product AMMs). Thus,

a trade at time t that buys ETH involves removing ∆yt = yt − yt−1 from the AMM and

adding in ∆xt = xt − xt−1 to the AMM such that the constant is preserved, xtyt = K =

xt−1yt−1 = (xt−1−∆xt)(yt−1+∆yt). Conversely, a trade at time t that sells ETH by adding

∆yt to the AMM and removing ∆xt from the AMM, xtyt = (xt−1 −∆xt)(yt−1 +∆yt).

Each trade also pays a fee equal to 30 basis points (bps) of the trade value, ft = 0.003xt.

While fees would usually be added to the liquidity pool thereby slightly increasing the

pool’s K with each trade, for expositional clarity and tractability, we assume that fees

accrue to a separate account, which is equivalent to assuming that LPs withdraw the fees

from the AMM to maintain their staked amount of liquidity constant and rather than

reinvest the fees to increase the provided liquidity. Over the time horizons in question,

this simplifying assumption makes little difference to the overall results. If (as we will show

later) there is an equilibrium level of liquidity (value of staked assets), then maintaining

that equilibrium would require an LP to withdraw fees, consistent with the approach we

use in the derivations below.

While the amount of liquidity staked in an AMM can be varied through time by LPs

“minting” (staking more of both assets) and “burning” (redeeming or withdrawing assets),

we assume that T is a sufficiently short period such that no mints or burns occur during

the period from t = 0 to t = T . Allowing for mints or burns during this staking horizon

would not qualitatively change the key results, it merely complicates the calculations.

Defining some trading volumes that will be used in later calculations, during the staking

period t = 0 to t = T , the total dollar volume of LD buys is BUY ST =
∑t=T

t=1 max[0,∆xt],

i.e., the total amount of USD added to the AMM, and similarly the total dollar volume of

LD sells is SELLST =
∑t=T

t=1 max[0,−∆xt], that is, the total amount of USD removed from

the AMM. The total dollar volume of trading is Qt = BUY ST + SELLST =
∑t=T

t=1 |∆xt|.

The balanced (roundtrip) order flow is BALT = 2∗min[BUY ST , SELLST ] and the order

imbalance between buys and sells is OIBT = BUY ST − SELLST =
∑t=T

t=1 ∆xt, such

that the total dollar volume is the sum of the balanced volume and the absolute value of
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the order imbalance QT = BALT + |OIBT |. It is convenient to also normalize the trade

volumes by the total pool value, V0, such that the turnover in horizon T is TURNT =

QT /V0, the balanced turnover (“relative” balanced volume) is RBALT = BALT /V0, and

the relative order imbalance is ROIBT = OIBT /V0.

C AMM Properties

Property 1: Ignoring fees, the trade prices in this AMM ($ per ETH) for any quantity

of ETH ∆yt are given as follows:

� Consider a trade to buy ∆yt > 0 units of ETH in exchange for paying ∆xt > 0 To

retain the constant product, we must have (xt−1 + ∆xt)(yt−1 − ∆yt) = K = xtyt.

Rearranging, the price of the swap (how many dollars are spent per unit ETH in the

swap) is:

P (∆yt) =
∆xt
∆yt

=
xt−1

yt−1 −∆yt
(1)

� Similarly, a trade to sell ∆y′t units of ETH and receive ∆x′t will occur at the price

(how many dollars are received by the trader per unit ETH in the swap):

P (∆yt) =
∆xt
∆yt

=
xt−1

yt−1 +∆yt

which is the same as 1, just denoting the sell quantity as a negative value, ∆yt =

−∆y
′
t < 0, that is, the AMM is governed by the price function (1) in which we have

∆yt > 0 for buys and ∆yt < 0 for sells of ETH.

� This price function gives the AMM’s bonding curve in Figure 2.

Property 2: The ‘midpoint’ ETH price of the pool in USD (the price of an infinites-

imally small trade that has negligible price impact) is purely a function of the two asset

quantities in the pool at the time: P0,MID = x0/y0 or more generally Pt,MID = xt/yt.

� To see this, consider an infinitesimally small swap to buy ∆yt units of ETH and pay

∆xt in the pricing function (1) above, that is, as ∆yt → 0, P(∆yt) → xt
yt
.

Property 3: Ignoring fees, the sequence in which trades occur does not matter for

the final outcome (state) of the AMM, being its pool quantities and midpoint price.

31



� To see this, consider a trade to buy or sell ∆y
′
t units of ETH ( ∆yt > 0 implies a

buy, and ∆yt < 0 implies a sell), followed by a trade to buy or sell ∆y′′t units of

ETH (‘first scenario’) and compare that with the two trades occurring in the reverse

sequence ( ∆y′′t first and ∆y′t second, ‘second scenario’). Let the $ paid or received

in each of the trades be ∆x
′
t and ∆x′′t in Scenario 1 and ∆y∗∗t and ∆y∗t in scenario 2

(when buying ETH ∆x > 0 is the amount of $ paid by the trader, and when selling

ETH ∆x < 0 is the amount received).

� To retain the constant product, in Scenario 1 we must have: (x0 +∆x′) (y0 −∆y′) =

K, giving pool quantities x1 = x0 +∆x′ and y1 = y0 −∆y′ after 1st trade

(x1 +∆x′′) (y1 −∆y′′) = K, giving pool quantities x2 = x1+∆x′′ and y2 = y1−∆y′′

after 2nd trade

and thus, x2 = x0 +∆x′ +∆x′′ and y2 = y0 +∆y′ +∆y′′ and

(x0 +∆x′ +∆x′′) (y0 −∆y′ −∆y′′) = K

� Similarly, in Scenario 2 (reverse order) we must have:

(x0 +∆x∗∗) (y0 −∆y′′) = K, giving pool quantities x1 = x0 +∆x∗∗ and y1 = y0 −

∆y′′ after 1st trade

(x1 +∆x∗) (y1 −∆y′) = K, giving pool quantities x2 = x1 +∆x∗ and y2 = y1 −∆y′

after 2nd trade

and thus, x2 = x0 +∆x∗ +∆x∗∗ and y2 = y0 +∆y′ +∆y′′ and

(x0 +∆x∗ +∆x∗∗) (y0 −∆y′ −∆y′′) = K

� Equating the two final equations in each scenario, we get:

(
x0 +∆x′ +∆x′′

) (
y0 −∆y′ −∆y′′

)
= (x0 +∆x∗ +∆x∗∗)

(
y0 −∆y′ −∆y′′

)
∆x′ +∆x′′ = ∆x∗ +∆x∗∗ implying x2 is the same under both scenarios and so is y2

� Therefore, under both trade sequences, the final quantities of the two assets in the

AMM are the same, and so too must be the final ‘midpoint’ prices of the AMM, so

the sequence in which trades occur does not matter for the final outcome (state) of

the AMM.
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Property 4: Still ignoring fees, a roundtrip trade reverts the price back to the original,

reverts the pool quantities back to the original, and the trader breaks even (receives the

same amount of $ as she paid).

� To see this, consider a trade to buy ∆y units of ETH in exchange for paying ∆x (pay

$∆x ) and then selling the same ∆y units of ETH back to receive ∆x′. To retain

the constant product, we must have

(
x0 +∆x−∆x′

)
(y0 −∆y +∆y) = K = x0y0(

x0 +∆x−∆x′
)
(y0) = x0y0

x0 +∆x−∆x′ = x0

∆x−∆x′ = 0

∆x = ∆x′

� Therefore, the dollars paid to the pool equal the dollars received from the pool, so

the pool quantities all revert back to their original, so too must the price.

Property 5: Two small trades in the same direction are equivalent to one larger trade

in the same direction with quantity equal to the sum of the two smaller quantities (same

end price in the AMM, same end state in terms of quantities in the AMM, and same cost

to the trader). In other words, there is no advantage from trade slicing as the outcomes

are the same.

� To see this, consider a trade to buy ∆y units of ETH, then buy another ∆y′ units of

ETH (first scenario) and compare that with a trade to buy ∆y′′ = ∆y+∆y′ units of

ETH (second scenario). Let the $ paid in each of the trades be ∆x,∆x′, and ∆x′′.

� To retain the constant product, we must have

(
x0 +∆x+∆x′

) (
y0 −∆y −∆y′

)
= K (Scenario 1)(

x0 +∆x′′
) (

y0 −∆y′′
)
= K (Scenario 2)

Thus the two left hand sides must be equal,

(
x0 +∆x+∆x′

) (
y0 −∆y −∆y′

)
=

(
x0 +∆x′′

) (
y0 −∆y′′

)
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and recognizing that ∆y′′ = ∆y +∆y′, we get:

∆x′′ = ∆x+∆x′

which says that the trader would pay just as much in $ for the one big purchase of

ETH vs the two small buys that sum to the big trade’s volume. Therefore, also the

quantities of both assets left in the pool are the same under the two scenarios, and

thus so too is the ending “midpoint” price in the pool (even though the trade prices

are different).

Property 6: If the AMM receives a series of trades, only the buy/sell imbalance

quantity of the series of trades is needed to work out the impact on the AMM’s state

(change in asset quantities in the pool and the pool’s midpoint price), that is, the balanced

part of volume (buy volumes equal to sell volumes) has no impact (irrespective of what

combination of trades makes the balanced volume), the sequence of trades does not matter,

and the AMM is “memoryless” in that the impact of a trade depends only on the current

state of the AMM and not the history of trades.

� To see this, exploit Property 3 saying the sequence does not matter and Property

5 saying we can sum trade quantities together, and sum all the ETH buy quanti-

ties to the aggregate quantity ∆yBUY =
∑

i∈BUY S
[∆yi] ≥ 0 and sum all the ETH

sell quantities to the aggregate quantity ∆ySELL =
∑

i∈SELLS
[−∆yi] ≥ 0 (note here

we am defining the sell quantity as a positive value, but in the pricing function

(1) we would have ∆y = −∆ySELL). Let the aggregate $ spent by the trader on

the buys be ∆xBUY ≥ 0 and the aggregate $ received by the trader on the sells

be ∆xSELL ≥ 0. The total trade volumes can be broken up into the order im-

balance, ∆yOIB = ∆yBUY − ∆ySELL and the roundtrip trades, ∆yROUNDTRIP =

2×min [∆yBUY ,∆ySELL]. For example, if we have buys that sum to 2ETH and sells

that sum to 5ETH then the 2 ETH buys are perfectly offset by 2ETH in sells (total

roundtrip volume of 4ETH ) but the additional 3ETH in sells is not offset so the

order imbalance is −3.

� From Property 4 we know that the roundtrip trades have no effect on the state

of the AMM, so only the imbalance matters. Thus, any sequence of any number

34



of trades t = 1, . . . N in any directions, can be summarized in a sufficient statistic,

∆yOIB = ∆yBUY−∆ySELL, which determines the change in the AMM asset quantities

and midpoint price from x0, y0, P0 to: yN = y0−∆yOIB, xN = x0+
x0∆yOIB
y0−∆yOIB

(drawing

on equation (1)), and

PN,MID =
xN

yN

=
x0 +

x0∆yOIB
y0−∆yOIB

y0 −∆yOIB

=
x0

y0 −∆yOIB

+
x0∆yOIB

(y0 −∆yOIB)
2

=
x0

y0 −∆yOIB

(
1 +

∆yOIB

y0 −∆yOIB

)

� The midpoint price change in the AMM, expressed as a return, is:

R− 1 =
PN,MID

P0,MID

− 1 =

(
y0
x0

)(
x0

y0 −∆yOIB

)(
1 +

∆yOIB

y0 −∆yOIB

)
=

y0
y0 −∆yOIB

(
1 +

∆yOIB

y0 −∆yOIB

)
− 1 (16)

that is, in any series of trades, the change in the price of ETH in the AMM is purely

a function of the order imbalance quantity (how much more ETH was bought than

sold) and the initial ETH quantity in the pool, which determines the pool depth.

Property 7: At every point in time, including when assets are staked and redeemed,

assuming the ‘midpoint’ ETH price of the pool is approximately equal to the value of ETH

(arbitrage has driven the AMM to the ‘correct’ price) the value of each of the two assets

staked by the LP are equal, when measured in one unit of account, for example, the USD

value of xt is always equal to the USD value of yt

� To see this, convert the quantity of asset y into an equivalent value in currency x

using the midpoint price implied by the AMM at the time: ytPt,MID = yt
xt
yt

= xt

� It follows that an LP stakes assets in equal value weights, and those equal value

weights are maintained by the AMM pricing function even as trades occur.

D Effects of fees

Fees, if left in the AMM (default option), result in an increase in the pool’s assets by the

amount of the fee each time a transaction occurs, effectively slowly increasing the constant
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K through time due to reinvestment by the LPs. In such cases, some of the properties

above will not hold exactly, but will be a reasonable approximation. For example, consider

a buy followed by an equal size sell. The second trade, the sell, will have a slightly smaller

price impact due to the slight increase in K from the first trade. Thus, the AMM midpoint

price will not return exactly to the same price following the roundtrip trade (but it will

return to a very close value), so Properties 3-6 only hold to an approximation. In practice,

the approximation will be very close, irrespective of whether fees are left in the pool as

reinvested liquidity or withdrawn, given fees are 0.30% of a transaction value and typical

staking horizons are only a matter of a few days. Treating the fees as if they accrue to a

separate account (equivalent to withdrawing the fees) maintains tractable solutions to the

various derivations below. We therefore adopt this approach throughout the rest of the

document, treating fees as if they accrue to an account but are not ‘recycled’ back into

the liquidity pools.
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Malceniece, L., Malcenieks, K., and Putniņš, T. J. (2019). High frequency trading and

comovement in financial markets. Journal of Financial Economics, 134(2):381–399.

Publisher: Elsevier.

Melvin, M., Pan, W., and Wikstrom, P. (2020). Retaining alpha: The effect of trade

size and rebalancing frequency on FX strategy returns. Journal of Financial Markets,

51:100545.

Menkveld, A. J. (2013). High frequency trading and the new market makers. Journal of

Financial Markets, 16(4):712–740.

Neumeier, C., Gozluklu, A., Hoffmann, P., O’Neill, P., and Suntheim, F. (2023). Banning

Dark Pools: Venue Selection and Investor Trading Costs. Journal of Financial Markets

(Forthcoming).

O’Hara, M. and Zhou, X. A. (2021). Anatomy of a liquidity crisis: Corporate bonds in the

COVID-19 crisis. Journal of Financial Economics, 142(1):46–68. Publisher: Elsevier.

Park, A. (2021). The Conceptual Flaws of Constant Product Automated Market Making.

SSRN Scholarly Paper ID 3805750, Social Science Research Network, Rochester, NY.

Pastor, L. and Stambaugh, R. F. (2019). Liquidity Risk After 20 Years. Working Paper

25774, National Bureau of Economic Research. Series: Working Paper Series.

40



Shkilko, A. and Sokolov, K. (2020). Every cloud has a silver lining: Fast trading, microwave

connectivity, and trading costs. The Journal of Finance, 75(6):2899–2927. Publisher:

Wiley Online Library.

Stoll, H. R. (1978). The supply of dealer services in securities markets. The Journal of

Finance, 33(4):1133–1151. Publisher: Wiley Online Library.

Stoll, H. R. (1989). Inferring the components of the bid-ask spread: Theory and empirical

tests. The Journal of Finance, 44(1):115–134.

Van Kervel, V. and Menkveld, A. J. (2019). High-frequency trading around large institu-

tional orders. The Journal of Finance, 74(3):1091–1137.

Wang, Y., Heimbach, L., and Wattenhofer, R. (2021). Behavior of Liquidity Providers in

Decentralized Exchanges. arXiv:2105.13822 [q-fin]. arXiv: 2105.13822.

Weller, B. M. (2018). Does Algorithmic Trading Reduce Information Acquisition? The

Review of Financial Studies, 31(6):2184–2226.

Xu, J., Vavryk, N., Paruch, K., and Cousaert, S. (2021). SoK: Decentralized Ex-

changes (DEX) with Automated Market Maker (AMM) protocols. arXiv preprint

arXiv:2103.12732.

41



Figure 1: AMM Trading Values
This figure plots the total value traded on AMMs in billions $ USD each month. The sample
period covers January 2020 to October 2021 inclusive. The data is obtained from the Ethereum
blockchain, on which each of these AMMs process transactions, via “Dune Analytics”. The “Other”
category is comprised of “Bancor Network”, “dYdX”, “Airswap”, “Mooniswap” and “Linkswap”.
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Figure 2: AMM Price Bonding Curve for Different Pool Sizes
This plot illustrates the price paid or received ($ per ETH) when buying (+) or selling (-) ETH in
an AMM containing ETH and USD for different pool sizes. It assumes the initial price of the pool
is P0 = $1, 000. The less liquid market of K = 1, 000 corresponds to 1 ETH and $1,000 staked, the
more liquid market of K = 4, 000 corresponds to 2 ETH and $2,000 staked and the highly liquid
market of K = 400, 000 corresponds to 20 ETH and $20,000 staked.
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Figure 3: Return Components to a Theoretical LP
This figure sets out the components of returns to Uniswap liquidity provision in response to price
changes in the pool, calculated as the log of the price ratio R + 1. The Inventory Holding Return
is the return a liquidity provider would have obtained from holding the token assets outside of the
pool, calculated as: (R− 1)/2. Adverse Selection Costs (ASC) are calculated as the Total Returns
less the Inventory Holding Return, measuring returns that an LP would have otherwise obtained
by not providing Uniswap liquidity. This figure assumes Fee Yield of 30% over the time period.
Staking Return is the net of ASC and Fee Yield. Total Return is the change in the value of the
pool assets.
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Figure 4: Scatter Plot of LP Return Components Against Price Ratio
This figure plots Adverse Selection Costs, Inventory Holding Return, Staking Return and Total
Return, by pool-date for the top 200 pools. The ratio, R = Pt=1/Pt=0 for date t. ASC and IHR
vary with R whilst Total Return and Staking Return vary with R and fee yield.
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Figure 5: Histogram of Adverse Selection Costs and Staking Return for Each Pool-
Date
Winsorized at 1% and 99% cutoffs. Pool-date observations. 58.86% of observations of the Staking
Return are above zero.
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Figure 6: Adverse Selection Costs and Fees by Pool-Type, Volatility & Size
This figure sets out the Adverse Selection Costs (ASC) and Staking Return (ASC + Fee Yield) for
the sample of the largest 200 pools by size. ASC and Fee Yield are calculated daily assuming a
theoretical LP that invests at the start of the day and redeems at the end. Panel A reports the
value-weighted average of each measure by Pool Type, “T-T” refers to “Token-Token” pools, “T-S”
refers to “Token-Stable” pools and “S-S” refers to “Stable-Stable” pools. There are 181, 15 and 4
of each in the sample. Panel B reports the value-weighted average of each measure by Volatility
Quintile. Quintiles are constructed by calculating the rolling 30-day standard deviation of returns
for each pair over the sample, and then ranking pair means into quintiles.
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Figure 7: Correlogram of Current Period Flows Against 30 Day Lag/Lead Fee Yield
Pearson correlation coefficients are constructed between current period flows and the respective
lag/lead Fee Yield first within a given pool. Means are then constructed across all pools.
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Table 1: Descriptive Statistics of Pools and Returns
This table sets out descriptive statistics pool-date observations in the sample of the top 200 pools
in the same by mean size. There are 51,901 pool-date observations in the sample period from 1st of
June 2020 to the 19th of May 2021. Pool-size weighted means are reported alongside means, due to
the highly positively skewed distribution of pool size in the sample. We report 1%, Median and 99%
distribution cutoffs for each variable as well as % of pool-date observations that are above 0. Pool
Size, V0, is calculated as the value of the two pool assets in USD at the end of the day. Swap Value,
Qt, is the total daily gross swap value in USD. Conversions to USD use ‘Coinmarketcap’ closing
prices. Flow is the total net mint and burn amounts divided by V0. Total Return is calculated as
in Formula 7, IHR (Inventory Holding Return) as in 4, ASC (Adverse Selection Cost) as in 5, Fee
Yield as in 6, Staking Return is the net sum of Fee Yield and ASC, RBAL (proportion of balanced
order flow) is BALT = 2∗min[BUY ST , SELLST ] divided by the pool value V0. ROIB (proportion
of order imbalance) is calculated as ROIBT = OIBT /V0 where OIBT is the cumulative net order

flow
∑t=T

t=1 ∆xt. Return is Pt

P0
− 1, Turnover is Qt/V0. Volatility is calculated as the standard

deviation of returns at the rolling horizon of 30 days prior to each pool-date observation. Toxic
Order flow is OIBT on Qt and Uninformed Order flow is BALT on Qt.

Mean
Wtd.
Mean

Stddev 1% 50% 99% % >0

Pool Size ($ Millions) 8.56 46.46 0.01 0.71 251.42 100.00
Swap Value ($ Millions) 1.90 44.31 16.36 0.00 0.11 43.59 100.00
Flow (% of Pool Size) 3.09 -0.08 343.62 -23.69 0.00 33.84 29.62
Total Return (%) 0.06 0.16 7.67 -11.92 -0.37 19.16 43.42
IHR (%) 0.11 0.14 6.76 -11.34 -0.42 20.48 42.55
ASC (%) -0.17 -0.04 1.71 -2.05 -0.02 0.00 0.00
Fee Yield (%) 0.12 0.06 4.87 0.00 0.05 0.77 100.00
Staking Return (%) -0.05 0.02 5.11 -1.74 0.01 0.48 59.76
RBAL (%) 35.56 21.28 1,146.55 0.00 13.81 253.52 100.00
ROIB (%) -1.85 0.08 477.95 -6.00 -0.18 9.81 43.45
Return (%) 0.22 0.27 13.51 -22.68 -0.83 40.96 42.55
Turnover (%) 39.61 22.24 1,621.89 0.16 15.31 260.34 100.00
Volatility (Std Deviations) 10.18 5.40 5.61 0.28 9.20 33.46 100.00
Toxic Order flow (%) 16.92 8.35 23.73 0.09 7.24 100.00 100.00
Uninformed Order flow (%) 83.08 91.65 23.73 0.00 92.76 99.91 100.00
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Table 2: Time Series Regression of Flows on LP Return Components
This table reports regressions of pool flows on lagged return components. Flow is the daily net mint
and burn value divided by the pool value, in percent. The following are in basis points: Total Return
as in Formula 7, Fee Yield as in Formula 6, ASC as in 5, IHR as in 4 and StakingReturn is the net of
ASC and Fee Yield. ‘SushiAttack’ equals 1 for period AMM rival Sushiswap provided LP incentives.
‘UniIncentive’ equals 1 for time period of Uniswap LP Incentives. Pool-date observations with
absolute value of Flows above the 99th percentile are removed.

(1) (2) (3) (4) (5)
Flow Flow Flow Flow Flow

SushiAttack 3.72 3.63 3.66 3.71 3.67
(1.49) (1.46) (1.47) (1.49) (1.47)

UniIncentive 0.10 0.25 0.09 0.09 0.08
(0.22) (0.55) (0.19) (0.21) (0.19)

Flowt−1 0.04*** 0.03*** 0.04*** 0.04*** 0.04***
(3.67) (3.39) (3.76) (3.70) (3.76)

Flowt−2 0.03*** 0.03*** 0.03*** 0.03*** 0.03***
(3.48) (3.33) (3.54) (3.50) (3.53)

Flowt−3 0.02*** 0.02*** 0.02*** 0.02*** 0.02***
(3.15) (3.04) (3.15) (3.16) (3.15)

TotalReturnt−1 0.01***
(3.13)

TotalReturnt−2 0.01***
(3.79)

TotalReturnt−3 0.01*
(1.82)

FeeY ieldt−1 1.06***
(2.62)

FeeY ieldt−2 0.36
(1.44)

FeeY ieldt−3 0.28
(1.44)

ASCt−1 -0.03*
(-1.69)

ASCt−2 -0.02
(-1.39)

ASCt−3 -0.01
(-0.55)

IHRt−1 0.01***
(2.86)

IHRt−2 0.01***
(3.37)

IHRt−3 0.01
(1.53)

StakingReturnt−1 -0.69
(-0.62)

StakingReturnt−2 -1.28
(-0.97)

StakingReturnt−3 0.59
(0.56)

Constant -0.00 -0.16*** -0.01 -0.00 -0.00
(-0.09) (-4.54) (-0.45) (-0.17) (-0.10)

Obs. 50,019 50,019 50,019 50,019 50,019
R2 (%) 0.406 0.667 0.363 0.396 0.351
Number of pairid 200 200 200 200 200
Pool FE: Yes Yes Yes Yes Yes
Date FE: Yes Yes Yes Yes Yes

SE clustered by pool and date
T-statistics in parentheses. *p<.05; **p<.01; ***p<.001
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Table 3: Time Series Regression of LP Return Components on Flows
This table reports regressions of pool return components on lagged flows. Flow is calculated as
the daily net of mint and burn values divided by the pool value, expressed as a percentage. The
return components are expressed in basis points. See previous Table 2 for variable descriptions.
Pool-date observations with absolute value of Flows above the 99th percentile are removed.

(1) (2) (3) (4) (5)
Total Return Fee Yield ASC IHR StakingReturn

SushiAttack -116.63** 1.95** -3.18* -114.83** -0.00
(-2.24) (2.01) (-1.67) (-2.25) (-0.19)

UniIncentive -25.38* -4.98*** 1.80*** -17.60 -0.07***
(-1.93) (-7.69) (5.59) (-1.33) (-15.87)

Flowt−1 -1.26** -0.06** 0.14 -1.47** 0.00
(-2.16) (-2.17) (0.93) (-2.18) (1.24)

Flowt−2 0.53 -0.02 -0.08* 0.57 -0.00
(1.21) (-0.76) (-1.90) (1.27) (-1.25)

Flowt−3 0.00 0.01 0.14 -0.17 0.00**
(0.01) (0.31) (1.48) (-0.34) (1.97)

TotalReturnt−1 0.00
(0.04)

TotalReturnt−2 -0.01
(-1.26)

TotalReturnt−3 0.01
(0.95)

FeeY ieldt−1 0.30***
(3.45)

FeeY ieldt−2 0.09
(1.62)

FeeY ieldt−3 0.08**
(2.12)

ASCt−1 0.04**
(2.19)

ASCt−2 0.01
(0.99)

ASCt−3 0.00
(0.54)

IHRt−1 0.01
(0.44)

IHRt−2 -0.01
(-1.02)

IHRt−3 0.01
(1.05)

StakingReturnt−1 0.02*
(1.73)

StakingReturnt−2 0.01
(0.77)

StakingReturnt−3 0.00
(0.26)

Constant 1.74 4.80*** -15.71*** 9.13*** -0.07***
(0.67) (9.01) (-17.05) (3.10) (-9.56)

Obs. 50,019 50,019 50,019 50,019 50,019
R2 (%) 0.036 14.781 0.168 0.036 0.075
Number of pairid 200 200 200 200 200
Pool FE: Yes Yes Yes Yes Yes
Date FE: Yes Yes Yes Yes Yes

SE clustered by pool and date
T-statistics in parentheses. *p<.05; **p<.01; ***p<.001
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Table 4: Regression of Pool Size on Predicted Pool Size
This table regresses the last observation of pool size (V0) in a given month on the predicted
equilibrium pool-size (V ∗) which is calculated from the mean of daily observations that determine
it (ASC, Q and RC) over that month. The sample size is pool-month dates of the top 200 pools in
our sample, excluding the early period of Uniswap V2 and the incentive period up to and including
21st of November, 2020.

(1) (2) (3) (4)
log(V0) log(V0) log(V0) log(V0)

log(V ∗
0 ) 0.85*** 0.55*** 0.85*** 0.51***

(44.74) (7.61) (44.47) 97.50)
Constant 1.66*** 3.68*** 1.66*** 3.92***

(10.98) (7.41) (12.63) (8.75)

No. Observations 997 997 997 997
R-Squared (Within) 0.31 0.45 0.31 0.44
R-Squared (Between) 0.94 0.81 0.94 0.78
R-Squared (Overall) 0.92 0.80 0.92 0.77
Estimator Pooled Panel Panel Panel
Fixed Effects None Pool Month Pool-Month

Standard errors clustered by pool and month.
T-Statistics in parentheses. *p<.05; **p<.01; ***p<.001
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Table 5: Calibration of Trading Costs of AMMs in Traditional Asset Classes
This table presents the theoretical trading costs of an AMM across different traditional assets. First, the pool size of the asset is determined under
equilibrium (as in Formula 14) by computing the weekly mean ASC from the asset returns and obtaining traded value in millions USD over the
period 2021-2022. This is estimated under 5 different fee conditions: 100bps, 30bps (the current fee level of a Uniswap AMM), 5bps, 1bps and
0.1bps. This is presented under the ‘equilibrium pool sizes’ columns. ‘Trading costs’ in basis points for each equilibrium pool size are presented in
the next set of columns. These are calculated according to the AMM bonding curve, for a trade corresponding to the average institutional sized
‘parent order’ for each asset (this is reported under ‘trade size’ in USD.) We also conduct the same analysis for three token assets. The 30bps
columns can be interpreted as ‘actual values’, as we find the pools in our data are close to equilibrium, whilst the other volumes are calibrations.
‘Free float’ is the market capitalization for equities, the M3 money supply for FX and the value of total tokens on issue for tokens.

Equilibrium Pool Sizes (USD Millions) Trading Costs (bps)
Fees (100-0.1 bps) Fees (100-0.1 bps)

Free Float Trade Current
Category Ticker (USD Millions) 100 30 5 1 0.1 Size ($) 100 30 5 1 0.1 Costs

Equities L.Cap AAPL 2,260,000 1,615,119 484,536 80,756 16,151 1,615 2,200,000 100.5 30.1 5.5 3.7 27.3 8.27-13.01
Equities L.Cap MSFT 1,810,000 1,038,108 311,432 51,905 10,381 1,038 2,200,000 100.5 30.2 5.8 5.2 42.4 8.27-13.01
Equities L.Cap JNJ 423,555 77,674 23,302 3,884 777 78 2,200,000 101.1 31.9 16.3 57.5 551.4 8.27-13.01
Equities L.Cap KO 262,240 48,381 14,514 2,419 484 48 2,200,000 101.4 33.1 23.2 91.5 871.6 8.27-13.01
Equities L.Cap XOM 467,640 43,238 12,971 2,162 432 43 2,200,000 101.5 33.4 25.3 102.2 970.7 8.27-13.01
Equities S.Cap TREE 493 365 110 18 4 0 500,000 127.6 120.6 537.8 2443.0 17342.0 19.93
Equities S.Cap POWW 287 112 34 6 1 0 500,000 188.5 322.6 1655.0 6824.6 49148.6 19.93
Equities S.Cap BOOM 412 54 16 3 1 0 500,000 282.5 628.6 3211.3 12522.2 97475.7 19.93
Equities S.Cap LAW 458 25 8 1 0 0 500,000 482.9 1262.4 6140.3 23662.4 201627.0 19.93
Equities S.Cap CATO 201 7 2 0 0 0 500,000 1352.7 3806.2 17074.1 71794.0 676363.3 19.93
FX G10 EUR USD 16,562,578 57,819,031,319 17,345,709,396 2,890,951,566 578,190,313 57,819,031 25,000,000 100.5 30.0 5.0 1.0 0.1 1.29
FX Exotic BRL USD 1,275,614 476,097,370 142,829,211 23,804,868 4,760,974 476,097 25,000,000 100.5 30.0 5.0 1.1 1.2 26
FX Exotic ILS USD 176,321 247,056,673 74,117,002 12,352,834 2,470,567 247,057 25,000,000 100.5 30.1 5.0 1.2 2.1 26
FX Exotic THB USD 748,830 248,037,016 74,411,105 12,401,851 2,480,370 248,037 25,000,000 100.5 30.1 5.0 1.2 2.1 26
US Corp Bonds MSFT 53,847 207,322 62,197 10,366 2,073 207 959,000 100.6 30.4 6.9 10.2 92.2 20-50
US Corp Bonds AAPL 110,572 82,019 24,606 4,101 820 82 959,000 100.7 30.8 9.7 24.4 231.3 20-50
US Corp Bonds JNJ 30,102 41,335 12,400 2,067 413 41 959,000 101.0 31.6 14.3 47.3 453.8 20-50
US Corp Bonds XOM 41,203 54,912 16,474 2,746 549 55 959,000 100.9 31.2 12.0 35.9 343.5 20-50
US Corp Bonds KO 36,700 33,024 9,907 1,651 330 33 959,000 101.1 32.0 16.6 58.9 564.9 20-50
US Treasury Bonds US10 24,108,577 3,446,780 1,034,034 172,339 34,468 3,447 12,000,000 100.6 30.3 6.4 8.0 69.5 8.27-13.01
US Treasury Bonds US30 24,108,577 1,273,841 382,152 63,692 12,738 1,274 12,000,000 100.7 30.7 8.8 19.8 186.8 8.27-13.01
US Treasury Notes US02 24,108,577 2,847,152 854,146 142,358 28,472 2,847 12,000,000 100.6 30.3 6.7 9.4 84.0 8.27-13.01
Commodities Oil LCOc1 206,175 1,934,099 580,230 96,705 19,341 1,934 864,000 100.5 30.1 5.2 1.9 9.0 8-12
Commodities Gold GCc1 38,400 37,589 11,277 1,879 376 38 2,111,625 101.6 33.8 27.4 112.7 1066.9 8-12
Token t-s USDC WETH 235,369 682 205 34 7 1 3,058 100.6 30.3 6.8 10.0 89.4
Token t-t WBTC WETH 110,588 215 64 11 2 0 2,676 100.8 30.9 10.0 25.9 246.5
Token s-s USDC USDT 441,779 178 53 9 2 0 6,697 101.3 32.5 20.0 76.0 726.6
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Table 6: Liquidity Provider Resting Times
This table presents liquidity provider resting times, measured as the time interval between the
mint (submission) and burn (cancellation) events of a discrete LP address. Only burn events which
remove more than 90% of an LP’s resting liquidity are considered. Statistics are then reported by
LP for the top 200 pools by value in the sample.

Mint and Resting Time (Days)
Burn Counts w/ Never Cancels No Never Cancels

Mean 5.6 35.67 20.32
Median 2.0 7.65 5.29
Std. Dev 55.4 61.57 34.51
p10 1.0 0.21 0.16
p25 2.0 1.24 0.99
p75 5.0 39.48 24.49
p90 10.0 111.84 60.20
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