
SUSE SAP automation
solution for Azure

SUSE SAP automation solution for Azure

Publication Date: 2021-02-05

SUSE LLC
10 Canal Park Drive
Suite 200
Cambridge MA 02141
USA

https://documentation.suse.com

https://documentation.suse.com

Contents

v

I SUSE SAP AUTOMATION SOLUTION FOR AZURE 1

1 Preface 2

2 Introduction 3

3 Strategy 5

3.1 Context 5

4 Business 7

4.1 SUSE SAP Automation Coverage 8

4.2 Prerequisites for SAP workloads in public clouds 9

5 Application 10

5.1 SUSE Linux Enterprise Server for SAP Applications 10

5.2 SAP Application 10

5.3 Presenting the SAP Media 10

5.4 Terraform 10

5.5 SALT 12

Overview of the available formulas which are used within the SUSE Automation

framework. 13

5.6 Monitoring 15

SAP HANA Database Exporter 15 • High Availability Cluster

Exporter 16 • SAP Host Exporter 16

iii SUSE SAP automation solution for Azure

6 Technology 17

6.1 Terraform 17

6.2 Salt 17

6.3 SAP Sizing 18

6.4 Building Blocks 18

6.5 High Availability 18

6.6 Additional Services 19

NFS service 19 • Fencing service 20 • Monitoring service 23

7 Physical 24

7.1 Prerequisites 24

7.2 Get the project 25

7.3 Terraform Building Blocks 26

7.4 Simple Install 27

Terraform file details 31 • SAP Sizing 34

7.5 Salt Building Blocks 41

Our Architecture for the Salt building blocks 42 • Salt Overview 43 • Salt

formula packages 49 • High Availability formula 54 • Additional

Services 55

8 Summary 56

A Appendix 58

iv SUSE SAP automation solution for Azure

The authors

Peter Schinagl, SUSE Software Solutions Germany GmbH

Stephen Mogg, SUSE Software Solutions UK LTD

Abdelrahman Mohamed, SUSE Software Solutions Germany GmbH

Thanks to

Bryan Gartner, SUSE Software Solutions LLC

Terry Smith, SUSE Software Solutions LLC

v

I SUSE SAP automation solution for
Azure

1 Preface 2

2 Introduction 3

3 Strategy 5

4 Business 7

5 Application 10

6 Technology 17

7 Physical 24

8 Summary 56

Glossary 57

A Appendix 58

1 Preface

This reference document contains best practices and planning considerations when using SUSE’s
Automation templates for SAP Landscapes.

It is targeted at consultants and end-customers deploying SAP Landscapes in the public cloud
and provides guidance on how Terraform, SALT, and other components work together to provide
a consistent and validated architecture.

The document can also be used as a guide for a partner enablement workshop covering the
proper use of these tools.

The following, layered 1 aspects will be covered:

Why one should consider this strategy

Who to engage with, inform and collaborate with

What key factors are important and When to consider them

What software and applications this is relevant to accomplish

How various technology components can facilitate this

Where the resulting solution may physically or virtually reside

1 link: Archimate Enterprise Architecture (https://pubs.opengroup.org/architecture/archimate3-doc)

2

https://pubs.opengroup.org/architecture/archimate3-doc

2 Introduction

SUSE’s Vision is to Simplify, Modernize, Accelerate the business of our customers.

Maintaining a competitive advantage often depends on how quickly new services can be
delivered into a business. SAP applications are designed to help analyze data to anticipate new
requirements, and rapidly deliver new products and services.

When SUSE rst released SUSE Linux Enterprise Server for SAP Applications, it already
included automated installation features for the SAP software stack. Over the last 10 years, the
SUSE SAP LinuxLab and development engineers have introduced several additional features to
automate routine system administration. Based on this experience, SUSE worked on rework the
deployment wizard capability to a modern framework.

Simplify

the deployment of an SAP Landscape in the public cloud for development, test, and
production.

Modernize

customer environments by taking advantage of the benets of the public cloud.

Accelerate

customer deployments and migrations to the public cloud.

Building the infrastructure to run SAP Applications can be complex and demand signicant
eort, especially if a manual deployment method is used. When delivering multiple
environments, for multiple engagements, reproducing the deployment can be tedious and error-
prone.

3

Highly available infrastructure congurations raise additional complexities that further delay
time to value.

When deploying and managing a large number of systems in an SAP Landscape, there is often
a secondary need, getting an overview of what is happening in the environment after the
installation is complete.

The major motivation is to improve, simplify, and unify the installation of the SAP Landscape
on SUSE Linux Enterprise Server for SAP Applications, clearly standardize deployments, and
allow customers to use one level of tooling in various ways – through a Command Line interface,
through some GUI driven processes, and through SUSE Manager or other automation framework.

To achieve this, SUSE has adopted a more modern approach, infrastructure-as-code, which helps
customers reduce eort and errors during deployments.

In recent years, SUSE Linux Enterprise Server and many other SUSE products ship with a
universal conguration management solution, this is used as the foundation for the new
automation capability.

This conguration management system is called Salt (from SaltStack) and provides a highly
scalable, powerful, and fast infrastructure automation and management, built on a dynamic
communication bus. Salt can be used for data-driven orchestration, remote execution for any
infrastructure, conguration management for any application stack, and much more.

Combining this conguration management system with an infrastructure deployment solution,
such as Terraform (from Hashicorp), makes it possible to do a hands-free and error-free setup
of an SAP Landscape. Once the deployment is complete, administrators can log in to start
customizing the SAP System.

As part of the deployment, SUSE added the ability provide insights into the SAP Landscape
with comprehensive dashboards, realtime and historic views, and active alerts and reporting,
based on exible and powerful open-source projects, Prometheus and Grafana. The deployment
automation can also be congured to set up a monitoring environment for the SAP HANA and
SAP NetWeaver clusters.

4

3 Strategy

Most SAP services are deployed on-premises with well-established procedures, but signicant
planning must go into these deployments. For example, workload growth must be estimated and
planned for in hardware requirements, often several years in advance.

Predicting the future is not easy. When considering requirements, such as storage capacity, many
factors may aect the system over its lifespan. Selections often end up being just "best guesses."

With today’s quickly changing environments, many businesses need to accelerate innovation
and increase agility across their entire landscape in order to achieve a faster time-to-market and
manage costs. Migrating products and services to the cloud can help businesses become more
exible and agile to meet changing business demands.

One key benet of the cloud is that a business no longer needs to plan hardware sizing for the
next ve or more years. Larger, faster, or even smaller infrastructure is only one reboot away.

However, "rightsizing" (or infrastructure optimization) remains an important consideration.
Businesses that actively manage "rightsizing" their environment can cut operating costs by 30
to 60 percent.

3.1 Context
There are many benets gained when moving SAP workloads to the cloud:

Quick deployment

If you need fast application implementation and deployment, the cloud is the best choice.
You can set up a cloud environment within a few hours, whereas, in-house IT infrastructure
can take days or even months to order, install, congure, and bring online.
With SUSE’s automation solution for SAP, IT teams can easily and quickly implement and
deploy their SAP Landscape remotely in the cloud.

Reduce Costs

Many businesses experience large CapEx (Capital Expenditure) to maintain IT
infrastructure, with purchases often in advance of actual need. The cloud helps businesses
transform to a more ecient OpEx (Operating Expenditure) model, with several
consumption options, including "pay as you use," that let businesses manage their
infrastructure costs.
SUSE, together with the cloud providers, can oer the right options to control costs, but
this also requires businesses to adapt how they use the resources and SAP software.

5 Context

Scalability & Flexibility

With the cloud, businesses can scale up or scale down resources as needed. This makes it
much easier to "rightsize" the environment and ensure ecient use of resources that can
also adjust to meet changing business demands.

Maintenance

With the cloud, IT departments no longer have to worry about managing and maintaining
the hardware and underlying infrastructure. The cloud service provider handles this,
freeing up company resources to focus on innovation and other business needs.
Businesses who deploy their SAP Landscapes with SUSE products and SUSE best practices
automation experience simplied maintenance and less downtime.

Resiliency

Uptime is of prime importance to ensure day-to-day business operations run smoothly.
Moving to the cloud maximizes uptime and reduces downtime. The cloud improves disaster
recovery and business continuity without the need to spend a huge amount of capital
on robust disaster recovery tools. And, cloud providers oer a variety of services to help
protect businesses from security threats and outages.
SUSE’s SAP HA automation augments these services to further reduce downtime of SAP
applications.

Remote access

The cloud allows employees to access data from anywhere and at any time, making
business more exible and increasing productivity.
SUSE products natively provide many options for remote access and control.

Overall, SUSE and public clouds oer signicant benets for all customers, regardless of size.
The use of cloud resources can lower infrastructure costs and improve the scalability, agility,
exibility, and availability of SAP applications.

6 Context

4 Business

This document is targeted at consultants and end-customers who are deploying SAP Landscapes
in the public cloud. Within cloud environments there is no strict separation of responsibility (e.g.,
Networking, DB, OS, Application), as most operations can be performed from a central control
plane. However, this should not mean that this specialized knowledge is no longer needed.
Functional teams still exist and will need to work together, this is often best achieved with a
DevOps approach utilizing Infrastructure-as-Code.

When implementing SAP in the cloud, knowledge is required of the cloud infrastructure and
the various possibilities this aords along with a good understanding of the operating system
and the tooling surrounding it; e.g., High Availability (HA). Finally, an understanding around
planning for the application usage and sizing is needed.

SAP architectures need to be ne-tuned based on customer requirements around system
availability (i.e., 99.99%, 99.95% or 99.9%). Each Single Point of Failures (SPOF) in the
components and services will need to be identied and protected against. This is normally
achieved with an HA Cluster. And, other SPOFs within the infrastructure will need to be
protected against with some form of redundancy.

If you look at a typical SAP implementation you will nd:

1. SAP Central Services (ASCS/ERS)

2. a Database (e.g., SAP HANA)

3. a Primary Application Server (PAS)

4. shared storage (NFS)

In the above list, items 1, 2, and 4 are potential SPOFs.

SUSE’s SAP Automation will try to eliminate all of these SPOFs by providing HA cluster
implementations to ensure automated failover, data protection, and higher system availability.

SAP Central Services (ASCS/ERS)

You need at least 2 nodes to congure an ASCS/ERS HA cluster. Depending on the SAP
versions, you can congure the ASCS/ERS cluster in either ENSA 1 or ENSA 2 architecture
which could be automated with the SUSE HA Extension (HAE).

Database layer

You need at least 2 nodes to congure SAP HANA HA/DR cluster in a scale-up deployment.
The SUSE HA Extension is used to detect system failures and facilitate automatic failover.

7

Depending on the services used or what services are available from the cloud provider it could
be that you need a third cluster providing a Highly Available NFS service.

This is one of the main benets of the SUSE SAP Automation project: all the required
infrastructure and conguration can be created in order to maximize the SAP System availablity.

4.1 SUSE SAP Automation Coverage

SAP HANA and Netweaver applications can be deployed in many dierent scenarios and
combinations between them. The automation is constructed from 'building blocks' which are
modular and reusable and can be used to deploy a single install through to full cluster
deployment.

The following scenarios are supported:

HANA single node

HANA HA Scale-up System Replication

Performance Optimized Scenario

active/passive

active/readonly

Cost Optimized Scenario

Netweaver

Netweaver HA with Enqueue Replication Version (ENSA1)

S/4 HANA

SUSE Engineering continues to develop new scenarios based on the demands of customers and
partners.

8 SUSE SAP Automation Coverage

The overall deployment using SUSE SAP Automation looks as follows:

4.2 Prerequisites for SAP workloads in public clouds
There are a few general prerequisites to ensure a supported SAP Landscape in public cloud
environments:

1. License for the SAP software to be deployed is required.

2. Ensure understanding of the resource requirements of the SAP workloads (via an SAP
System Sizing exercise).

3. Use certied instance types based on the capacity required by SAP software.

4. Ensure suitable network connectivity is provided (bandwidth, latency, and packet loss)
within the cloud environment for SAP workloads.

5. Deploy only certied operating systems on which the SAP workloads will run.

6. Have a good operational knowledge of the Linux OS, SAP systems operations, and the
cloud infrastructure.

7. Where highly available solutions are deployed, a deep understanding of the HA concepts,
tooling, and how this functions within and alongside the resiliency capabilities of the cloud
infrastructure are essential.

9 Prerequisites for SAP workloads in public clouds

5 Application

5.1 SUSE Linux Enterprise Server for SAP Applications

SUSE Linux Enterprise Server for SAP Applications is a product formed from a bundle of software
and services. It is targeted specically at customers running SAP workloads. At its foundation
is SUSE Linux Enterprise Server and the High Availability Extension with many additional
components and benets for running SAP Applications.

5.2 SAP Application

In order to use the automation project, there are preliminary steps which need to be taken. One
of these is to prepare the SAP installation software. The SAP software can be downloaded from
https://launchpad.support.sap.com/#/softwarecenter . This will need to be performed manually
before starting the automated deployment.

5.3 Presenting the SAP Media

After downloading the required SAP software, the les must be presented via cloud storage so
it is accessible from the new installed virtual machines / instances.

Azure oers shared storage (Azure Files) for applications using the Server Message Block (SMB)
protocol, providing a simple way to upload the SAP media and use it from the installed machines
for the SAP installation.

To use Azure Storage, start by creating a storage account.

https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction

5.4 Terraform

Terraform is an open source tool created by HashiCorp for building, changing, and versioning
infrastructure.

10 SUSE Linux Enterprise Server for SAP Applications

https://launchpad.support.sap.com/#/softwarecenter
https://docs.microsoft.com/en-us/azure/storage/files/storage-files-introduction

As an infrastructure provisioning tool, it is responsible for creating the servers, but also
load balancers, queues, monitoring, subnet congurations, rewall settings, routing rules, SSL
certicates, and many other infrastructure components.

Terraform is seen as cloud-agnostic and allows a single conguration to be used to manage
multiple providers. This simplies management and orchestration, helping operators build large-
scale multi-cloud infrastructures.

It is important to note that Terraform can not simply create a landscape in another cloud with
the press of a button. The cloud providers use dierent types of infrastructure. For example the
VMs, load balancers, and other services oered by AWS are very dierent to those in Azure
and Google Cloud.

The approach from Terraform is that code is written specic to a (cloud) provider and will take
advantage of the provider’s unique functionality. While the code needs to be modied when used
on a dierent cloud provider, being able to use the same language and toolset for all providers
makes this eortless.

The name Terraform uses for these cloud specic modules is "provider." So, for example, the
Azure Provider can be used to congure infrastructure in Microsoft Azure using the Azure
Resource Manager API’s.

Conguration les describe to Terraform which components need to deploy in order to support
the application. One of the rst steps is to run the terraform command, this will generate an
execution plan that describes the actions Terraform will perform to get to the planned desired
state. The plan is in the form of a list of cloud infrastructure to create, delete, and modify. If this
looks correct, the nal step is to execute the plan to create the described infrastructure.

SUSE provides Terraform conguration les for AWS, Azure, Google Cloud and libvirt.

An open source version of Terraform is shipped within the Public Cloud Module of SUSE Linux
Enterprise Server for SAP Applications

In addition, Azure provides an easy-to-access, web-based command line (Cloud Shell), where
Terraform is already pre-installed.

https://shell.azure.com

You will nd documentation for it at https://docs.microsoft.com/en-us/azure/cloud-shell/

overview

As Azure provides dierent types of storage suitable for supporting SAP workloads, it is
important to fully understand the SAP storage requirements for Azure.

11 Terraform

https://shell.azure.com
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/azure/cloud-shell/overview

The suggestions from SUSE’s Terraform les for the storage congurations are meant as a good
starting point.

You should still analyze the storage utilization patterns during runtime of the application. You
could realize, for example, that you are not utilizing all the storage bandwidth or IOPS provided,
and you might consider downsizing storage. Alternatively, you could see that your workload
needs more storage throughput than suggested; in which case, you might choose to change the
capacity, IOPS, or throughput to optimize the conguration. Azure oers dierent storage types
to allow you to nd and select the right storage to support your SAP workload and meet your
capacity, latency, throughput, IOPS, and cost needs.

5.5 SALT
SaltStack’s conguration management system lets you dene the applications, les, and other
settings required on a specic system. The running system is continuously evaluated against the
dened conguration, and changes are made as necessary.

Salt works with "States" which express the required state a host should be in, using small,
easy to read, easy to understand conguration les.

The automation is written as "formulas" which are a collection of pre-written Salt States
and Salt Pillar les.

The Pillar les are the variables and data used to build the system.

SLES-for-SAP Applications ships with all the Salt tools as part of the distribution and are available
to use as needed.

Salt formulas can be applied in two ways:

Salt Master with Salt Minion

All steps are initiated on the Salt master, a central management system, which sends
instructions to Salt minions, running on managed systems, to perform the required
conguration actions.

Salt Minion Only

All steps dened in Salt formulas are executed on the individual systems by standalone
Salt minions. This is the approach used by the SUSE Automation framework as it removes
the need for a central master system.

12 SALT

5.5.1 Overview of the available formulas which are used within the
SUSE Automation framework.

5.5.1.1 Netweaver

The Netweaver formula for bootstrapping and managing the SAP Netweaver platform takes care
of:

Extract the required SAP les for SAP Media (.tar,.sar,.exe)

Set up:

ASCS instance

ERS instance

PAS instance

AAS instance

Database instance (currently only HANA)

Besides that, the formula sets up all of the prerequisites, such as:

Hostnames

Virtual addresses

NFS mounts

Shared disks

SWAP partitions

The Salt formula follows the best practices dened in the ocial SUSE documentation http://

documentation.suse.com/sbp .

5.5.1.2 HANA

The HANA bootstrap formula takes care of the following:

Extract the required SAP les for SAP Media (.tar,.sar,.exe)

Install SAP HANA

13 Overview of the available formulas which are used within the SUSE Automation framework.

http://documentation.suse.com/sbp
http://documentation.suse.com/sbp

Apply "saptune" for HANA to congure and tune the OS for HANA usage

Congure SAP System Replication

Precongure the High Availability cluster requirements

Congure the SAP HANA Prometheus exporter

5.5.1.3 HA

The HA bootstrap formula takes care of creating and managing a high availability cluster:

Create and congure the High Availability cluster, pacemaker, corosync, Fencing, and SAP
resource agents

Adjustments for the Azure Infrastructure

SBD for fencing

Handle Netweaver, HANA and DRBD

The formula provides the capability to create and congure a multi-node HA cluster. Here are
some of the features:

Initialize a cluster

Join a node to an existing cluster

Remove a node from an existing cluster

Congure the prerequisites (install required packages, congure ntp/chrony, create ssh-
keys, etc.)

Auto detect if the cluster is running in a cloud provider (Azure, AWS, or GCP)

Congure fencing (agent or SBD)

Congure Corosync

Congure the resource agents

Install and congure the monitoring ha_cluster_exporter

Depending on the fencing requirements it may need an iSCSI server to provide a raw shared
disk for the fencing with SBD, where we use the iscsi-formula from SaltStack.

14 Overview of the available formulas which are used within the SUSE Automation framework.

5.5.1.3.1 Other dependent services

HA NFS Service

To build a HA NFS Service, if there is none available, we can create one with help of 3
Linux services and the following:

DRBD bootstrap formula

HA bootstrap formula

NFS formula from SaltStack to install and congure nfs server and client

iSCSI Service

The iscsi-formula from SaltStack is able to deploy iSNS, iSCSI initiator, and iSCSI target
packages, manage conguration les and then starts the associated iSCSI services.

5.6 Monitoring
SUSE continually works to improve user experience. One of the developments is how to provide
a modern solution to monitor the several High Availability clusters that manage SAP HANA and
SAP Netweaver. The Monitoring components use the Prometheus toolkit and the Grafana project
to visualize the data. In order to be able to monitor the clusters on either HANA or Netweaver,
SUSE has written Prometheus exporters which ship as part of SLES for SAP.

5.6.1 SAP HANA Database Exporter

The exporter provides metrics from more than one database or tenant. Specically, it provides:

Memory metrics

CPU metrics

Disk usage metrics

I/O metrics

Network metrics

Top queries consuming time and memory

15 Monitoring

5.6.2 High Availability Cluster Exporter

Enables monitoring of Pacemaker, Corosync, SBD, DRBD, and other components of High
Availability clusters. This gives administrators the ability to easily monitor cluster status and
health. The following capabilities are included:

Pacemaker cluster summary, nodes, and resource status

Corosync ring errors and quorum votes (currently, only Corosync version 2 is supported)

Health status of SBD devices

DRBD resources and connections status (currently, only DRBD version 9 is supported)

5.6.3 SAP Host Exporter

Enables the monitoring of SAP Netweaver, SAP HANA, and other applications showing:

SAP start service process list

SAP enqueue server metrics

SAP application server dispatcher metrics

SAP internal alerts

Tip
The gathered metrics are the data that can be obtained by running the sapcontrol
command.

16 High Availability Cluster Exporter

6 Technology

6.1 Terraform
What is Terraform?

Terraform along with the specic cloud provider modules is used to create the infrastructure to
support the SAP application and supporting services.

The Terraform templates describe everything needed to create the desired infrastructure
components. They also provide a range of pre-dened settings to simplify creation of the correct
virtual machines, disks, networks, etc.

6.2 Salt
What is Salt?

Salt is a dierent approach to infrastructure management, founded on the idea that high-
speed communication with large numbers of systems can open up new capabilities. This
approach makes Salt a powerful multitasking system that can solve many specic problems in
an infrastructure.

The backbone of Salt is the remote execution engine, which creates a high-speed, secure, and bi-
directional communication net for groups of systems. On top of this communication system, Salt
provides an extremely fast, exible, and easy-to-use conguration management system called
Salt States.

An SAP landscape is made up of groups of machines, each machine in the group performing a
role. These groups of machines work in concert with each other to create an application stack.

To eectively manage these groups of machines, an administrator needs to be able to create
roles for those groups. As an example, a group of machines that serve front-end web trac might
have roles which indicate that those machines should all have the webserver package installed
and that the web service should always be running.

In Salt, the le which contains a mapping between groups of machines on a network and the
conguration roles that should be applied to them is called a top le.

Top les are named top.sls by default and they are so-named because they always exist in the
"top" of a directory hierarchy that contains state les. That directory hierarchy is called a state
tree and this is what is used to reference the building blocks for the SAP Landscape.

17 Terraform

6.3 SAP Sizing
To make the SAP sizing simpler, SUSE has introduced pre-dened sizes with well-known
abbreviations from T-Shirt sizes: Small (S), Medium (M), and Large (L).

The Small (S) size is targeted at non-production scenarios, whereas Medium (M) and Large (L)
sizes are recommended for production setups and certied instance types should be used.

It is possible to tweak these pre-dened sizes or create a set of custom settings.

Sizing is critical. It includes choosing the right, SAP-certied instance types from the cloud
provider, the right number of disks to support I/O requirements, and the right network options
to meet throughput needs.

6.4 Building Blocks
The main building blocks for an SAP Landscape are the Application Layer, based on Netweaver
with SAP Central Services (xSCS), a Primary Application Server (PAS), and Additional
Application Server (AAS), as well as the Database Layer, which, for this context, is SAP HANA.

There are two possible models for how SAP Business Suite can be deployed: a centralized
deployment where everything runs on one server or a distributed deployment where every
service has its own node.

The centralized deployment is mostly used for non-production, such as sandbox and
development environments.

The distributed deployment is the recommended way for production environments where each
of the SAP application layer components is independently installed on dierent instances. This
is the scenario used within the automation project.

6.5 High Availability
There are two main parts in an SAP system which should be made highly available in order to
achieve less downtime and eliminate single points of failure within the SAP Landscape.

For the Central Services this is Enqueue Replication, and for the database it is the HANA System
Replication.

For each of these building blocks, one additional machine is required to build a two-node cluster
within HA scenarios.

18 SAP Sizing

To provide something like a "virtual IP address" which is able to move between the two cluster
nodes, we use the Standard Load Balancer service from Azure to provide trac to only the active
node.

6.6 Additional Services

Depending on the available services from the cloud provider, additional functionality may need
to be created as part of the deployment (e.g., NFS). This is reected within the top.sls le.

6.6.1 NFS service

When we started with Azure, there was no NFS service available. We needed to build an NFS
service with the tools we ship in SUSE Linux Enterprise Server for SAP Applications. As the
NFS service should be highly available, we also needed a second virtual machine to build a two
node cluster.

19 Additional Services

Over time, Azure has provided more services. At the time of this writing, there is a native NFS
service (Azure Netapp les - ANF). The Azure le service is also being extended with similar
functionality.

If the cloud native NFS service is used, no additional virtual machines will be created and the
native service need to be set up in advance.

6.6.2 Fencing service

In high availability clusters, a so-called "split-brain" condition occurs when cluster nodes can no
longer communicate with each other. This is a serious situation that can result in transaction
inconsistencies as each node continues to write data. Thus, a mechanism, called 'fencing', is
needed to switch o or reset one machine until synchronization can be restored.

There are several methods which can be used, depending on the capability of the cloud provider.

Microsoft supported SUSE clustering as the rst Linux HA solution on Azure. Microsoft and SUSE
created a fencing agent for the cluster for Azure. This fencing agent should remove a machine as
quickly as possible (immediately) from the cluster to ensure that there is only one active node
and avoid data corruption.

20 Fencing service

Initially, the Azure infrastructure only provided a way to gracefully shutdown a machine, which
took 10 to 15 minutes. This is too long for the split-brain fencing requirement.

To improve on this time, SUSE implemented an OS native mechanism to fence virtual machines.
This technology is provided within the SUSE HA Extension and uses storage as an additional
communication layer between the nodes. This requires a shared raw disk, a central place where
both nodes can write messages. This is called 'SBD' or Stonith Block Device or Split Brain
Detector.

When originally designing this solution, the Azure infrastructure did not provide a raw disk
service that could be shared between nodes. Fortunately, SUSE Linux enterprise provides built-
in tooling to create an iSCSI server to provide this functionality.

Thus, with the help of a shared raw disk and the Linux watchdog, SBD provides a fast and
reliable fencing mechanism.

Note
If an iSCSI server is used to implement the shared raw disk for SBD, one additional server
is required.

21 Fencing service

Following recent improvements, there is now a method in the Azure API to "kill" a virtual
machine. The fencing agent can make use of this, and no additional iSCSI machine is needed.
However, the drawback of using the Azure API for this is that a public network connection is
needed.

So, you can choose between two methods:

SDB fencing with the help of an iSCSI service

Agent based fencing through API access

In the meantime, there is a third option. Azure also provides a raw shared disks as a native
service. As of the time of writing the document, only the SBD-fencing mechanism is implemented
within the automation.

Important
A working STONITH method is mandatory to run a supported SUSE cluster!

22 Fencing service

6.6.3 Monitoring service

If the Monitoring Service is to be deployed as part of the Automation, an additional virtual
machine to support the Prometheus and Grafana services used to provide this capability.

23 Monitoring service

7 Physical

The SAP automation consists of several building blocks, this section is in two parts, infrastructure
deployment with Terraform and conguration management with Salt.

Note
As the project is under active development to make it better and simpler to use, this
document focuses on the project version 6.0.3 of the Terraform part and v6 of the rpm
packages for Salt formulas. The new versions could have more features or slightly changed
les as shown here, but the general guidelines should still be applicable.

7.1 Prerequisites
First, make sure that all prerequisites are met:

1. Have an Azure account

2. Install the Azure command line tool az

3. Install terraform (v12) (it comes with SLES within the public cloud module)

4. Download the SAP HANA install media

5. Create an Azure File Share

6. Copy or write down the the name of the storage account and the storage key, which is
similar to a password

7. Copy the SAP HANA install media to the Azure leshare

8. Extract the HANA install media (if required)

SUSE recommends to use the following directory structure for the SAP Media:

version
 ├SWPM
 │ ├SWPMxxxxx
 │ └SAPCAR_xxxx
 │
 ├EXPORT
 │ ├xxxxEXPORT_1.zip

24 Prerequisites

 │ ├xxxxEXPORT_2.zip
 │ └...
 ├DBCLIENT
 │ └IMDB_xxxx.SAR
 │
 ├BASKET
 │ ├SAPHOSTAGENTxxxx.SAR
 │ ├igshelper_xxxxxx.sar
 │ ├igsexe_xxxxx.sar
 │ ├SAPEXEDB_xxx.SAR
 │ └SAPEXE_xxx.SAR
 │
 └HANA
 ├xxxxxxxx_part1.exe
 ├xxxxxxxx_part2.rar
 ├xxxxxxxx_part3.rar
 └xxxxxxxx_part4.rar

BASKET : contains SAP kernel, patch + more, like the hostagent.
DBCLIENT : contains the package corresponding to DB CLIENT, e.g., HANA
EXPORT : contains the package corresponding to EXPORT files
SWPM : contain the corresponding files of SAPCAR and of the SWPM
HANA : contain the full HANA media

7.2 Get the project
The project is hosted on a public GitHub site where it can be downloaded to your local machine.
https://github.com/SUSE/ha-sap-terraform-deployments

The project has the following directory structure:

├── aws
├── azure
├── doc
├── gcp
├── generic_modules
├── libvirt
├── LICENSE
├── pillar
├── pillar_examples
├── README.md
└── salt

The directories with the names of the cloud provider (aws, azure, gcp, libvirt) are the Terraform
templates for the relevant provider.

25 Get the project

https://github.com/SUSE/ha-sap-terraform-deployments

The doc directory has some brief but important documents for certain parts of the solution.

The directory generic_modules provides modules which are used by all cloud vendor templates.
That includes common variables, locally executed functions within the building block,
dependent actions on destroy, and the functions to start the SALT execution on the module
building blocks.

The other directories pillar, pillar_examples, and salt contain part of the Salt conguration
management.

7.3 Terraform Building Blocks
Terraform relies on 'providers' to interact with remote cloud frameworks.

Providers are plugins and released independently from Terraform itself, this means that each
provider has its own series of version numbers.

Each Terraform module must declare which providers it requires, so that Terraform can install
and use them.

Switching into a cloud provider directory shows one directory modules and several .tf les which
together build the Terraform template.

When creating Terraform congurations, best practice is to separate out parts of the
conguration into individual .tf les. This provides better organization and readability.

├── infrastructure.tf
├── main.tf
├── modules
├── outputs.tf
├── README.md
├── terraform.tfvars
├── terraform.tfvars.example
└── variables.tf

The infrastructure.tf file

provides the cloud specic setup with the relevant provider module of Terraform and
denes all the needed cloud specic entities.

The main.tf file

provides all the values for the variables needed for the modules. It is the main entry point
for Terraform.

The modules directory

26 Terraform Building Blocks

provides more subdirectories which are the nested child modules that represent the
technical building blocks in the project.

The output.tf file

provides the values returned from the modules; i.e., to be used or displayed.

terraform.tfvars

is a variable denitions le which will gets automatically consumed. This is used instead
of providing values manually. It is the main conguration le and should be the only
Terraform le which requires modication.

terraform.tfvars.example

is an example conguration le with many pre-lled values to set up the solution. It can
be used as a starting point for your own le.

variables.tf

provides all input variables, including a short description, the type of the variable, and a
default value which can be overwritten with the terraform.tfvars le. Please have a deep
look at all variables and the comments for it, to get aware whats is possible.
E.g., the variable provisioner is like a switch to run either the Salt or Terraform portion only

A module

is a container for multiple resources that are used together. Modules can be used to create
lightweight abstractions, so that infrastructure can be described in terms of its architecture,
rather than directly in terms of physical objects.
Modules are used as part of the technical building blocks; e.g., a HANA node.
The module directory consists of main.tf, variables.tf, and outputs.tf.
These are the recommended lenames for a minimal module, even if they are empty.
main.tf is the primary entrypoint for dening the infrastructure building block.

There is one additional le, salt_provisioner.tf, which is responsible for handing over the needed
values to the Salt building blocks. This is achieved by using a special Terraform resource called
null_provider, which remotely runs the Salt pillar to congure the instances and execute the
application installation for the building block.

7.4 Simple Install
SUSE provides example Terraform template and Salt pillar les to provide an easy way to
perform an initial simple deployment.

27 Simple Install

1. Open a browser and go to https://github.com/SUSE/ha-sap-terraform-deployments

2. Click on tags

3. Click on 6.0.3
What is new and what has changed can be seen from this page. If older versions of the
project are used, be sure to carefully review and understand the dierences.
The Usage section provides you with a link to an OpenBuildServer (OBS) repository where
the RPM packages of the building blocks discussed above are stored. Each project version
has a unique repository.
The value/link to the repository will need to be included within the Terraform variables
(terraform.tfvars) le. So copy the line as described.

4. Next, go to Assets and download the Source code as .zip or .tar.gz

5. Extract it into a folder on the local computer or the machine that will be used to create
your environment

6. Go to this folder and into the subfolder for the cloud provider

7. Copy the le terraform.tfvars.example to terraform.tfvars. There are many key-value variable
pairs, some enabled and some disabled with a = or a # in front. In order to perform a
simple deployment, only update the parameters as listed below.

8. Change the region in which to deploy the solution, change az_region = "westeurope" to the
Azure region required.

9. To make it easier to start, change all 4 image types to pay-as-you-go (PAYG). To do so,
replace all oer settings with "sles-sap-15-sp2" and sku with gen2.
Do this for hana, iscsi, monitoring, drbd.
E.g., replace

hana_public_offer = "SLES-SAP-BYOS"
hana_public_sku = "12-sp4"

with

hana_public_offer = "sles-sap-15-sp2"
hana_public_sku = "gen2"

This will make use of the on-demand images, which have all needed SUSE repositories
attached automatically.

28 Simple Install

https://github.com/SUSE/ha-sap-terraform-deployments

Next, set the name of the admin_user to the name you want to use.

10. The next step is to provide ssh keys to access the machines that will be deployed.
SUSE recommends creating new SSH keys for the deployment. Both public and private keys
will need to be provided, as they are copied to the cluster nodes during the deployment.
Change the two location variables and point them to your les.

11. As the SAP Install Media is needed for the automatic deployment of HANA, an Azure
storage account needs to be created. The SAP HANA media will need to be copied to
this storage location. If the SAP media is already extracted this will save time during the
deployment.
Next, provide the name, key, and path to this storage account, change:

storage_account_name
storage_account_key
hana_inst_master

The inst_master variable should point to the directory where you have the extracted the
hana install les. There are more possibilities, but, for simplicity, have everything already
extracted on your share.
Disable the other hana variables by adding a '#' in front of them:

#hana_archive_file = "IMDB_SERVER.SAR"
#hana_sapcar_exe = "SAPCAR"
#hana_extract_dir = "/sapmedia/HDBSERVER"

12. Additional ssh keys are needed for the cluster communications, so please save your changes
and run the following commands from the azure directory:

 mkdir -p ../salt/hana_node/files/sshkeys
 ssh-keygen -t rsa -N '' -f ../salt/hana_node/files/sshkeys/cluster.id_rsa

13. Open the tfvars le again to make nal changes.
To create a HANA Systemreplication HA automation, uncomment:

#hana_ha_enabled = true

by removing the #.
Next, we need to enable a few other services. Uncomment:

#hana_cluster_sbd_enabled = true

29 Simple Install

by removing the #.

14. Now we need to point to where the right packages for the v6 could be found. Copy the
variable from step 1; e.g.,

 ha_sap_deployment_repo = "https://download.opensuse.org/repositories/network:ha-
clustering:sap-deployments:v6"

15. If you want the additional monitoring be deployed, simply uncomment:

#monitoring_enabled = true

16. As the last step, we enable a simplication parameter which tries to determine a few
settings automatically. So scroll down to the end and uncomment

#pre_deployment = true

We are nearly done, so take a moment to save your changes before proceeding.

1. Go one directory up, change to the pillar_example directory, and then change to the
automatic directory. Here you can see 3 additional subdirectories. They provide the
conguration variables for the relevant services. This automatic folder will work for all
cloud providers we support today, which is why it is more complex.

2. For a simple deployment, which uses only HANA, please switch to the hana directory and
open the le hana_sls.

3. Change the PRIMARY_SITE_NAME to the desired value, along with value for the
SECONDARY_SITE_NAME. It is possible to change other settings (e.g., passwords), but, for
a simple test, do not modify these values.

4. Save any changes to the le and and go back to the main directory.

We are now ready to run Terraform.

 az login

 terraform init
 terraform workspace new <YOUR WORKSPACE or PROJECT NAME>
 terraform plan
 terraform apply

If all goes well, after ~40 minutes (depending on the speed of the instances) you will have an
installed and running HANA System Replication Cluster.

30 Simple Install

As a jumphost with a public ip address is created as part of the deployment, it is possible to log
in to any virtual machine as part of the deployment from your machine with

 ssh -J adminuser@_<public_ip_jumphost>_ adminuser@<private_ip_targethost>_

7.4.1 Terraform file details

All les in the Terraform directory using the .tf le format will be automatically loaded during
operations.

The infrastructure.tf provides the data sources for the network setup. This is computed in other
terraform les and some local variables, used for mainly for the autogeneration of the network.

In addition, it provides the resources for the network setup with the virtual network, the subnet
and routing, the resourcegroup to be used, a storage account, all the network security groups
(nsg), and denition of the jumphost.

The main.tf le is the main le and calls child modules, which consist of the various building
blocks and the required input and output variables dened by the child modules. In addition,
it provides the calculation for the autogenerated IP addresses.

There is the (default) possibility to autogenerate network addresses for all nodes. For this, it
is important to remove or comment out all the variables related to the IP addresses (more
information in variables.tf). With this approach, all the addresses will be retrieved based on the
provided virtual network address range (vnet_address_range).

TABLE 7.1: AUTOGENERATED ADDRESSES EXAMPLE BASED ON 10.74.0.0/16 VNET ADDRESS RANGE AND
10.74.0.0/24 SUBNET ADDRESS RANGE

Name Terraform variable IP Address Comment

iSCSI server iscsi_srv_ip 10.74.0.4 needed for SBD
device in HA
conguration

Monitoring monitoring_srv_ip 10.74.0.5 if monitoring is
enabled

HANA IP’s hana_ips 10.74.0.10,
10.74.0.11

second only used in
HA

31 Terraform file details

Name Terraform variable IP Address Comment

Hana cluster virtual
IP

hana_cluster_vip 10.74.0.12 Only used if HA is
enabled in HANA

Hana cluster virtual
IP secondary

hana_cluster_vip_
secondary

10.74.0.13 Only used if the
Active/Active HA
setup is enabled

DRBD IP’s drbd_ips 10.74.0.20,
10.74.0.21

needed if HA NFS
service for NW is
used

DRBD cluster vIP drbd_cluster_vip 10.74.0.22 needed if HA NFS
service for NW is
used

Netweaver IP’s netweaver_ips 10.74.0.30,
10.74.0.31,
10.74.0.32,
10.74.0.33

Addresses for the
ASCS, ERS, PAS and
AAS. The sequence
will continue if
there are more AAS
machines

Netweaver virtual
IP’s

netweaver_virtual
_ips

10.74.0.34,
10.74.0.35,
10.74.0.36,
192.168.135.37

The 1st virtual
address will be the
next in the sequence
of the regular
Netweaver addresses

In order to reuse existing network resources (virtual network and subnets), congure the
terraform.tfvars le and adjust the relevant variables.

An example of how to use them is available at terraform.tfvars.example.

32 Terraform file details

Important
If specifying the IP addresses manually, make sure these are valid IP addresses. They
should not be currently in use by existing instances. In the case of shared account usage
in cloud providers, it is recommended to set unique addresses with each deployment to
avoid using the same addresses.

The output.tf le is a way to expose some of the internal attributes. These act like the return
values of a Terraform module to the user. It will return the IP address and node names created
from the automation.

The values dened in the variables.tf le are used to avoid hard-coding parameters, and it
provides all required Terraform input variables and their default values within the solution
instead of having them in the main.tf le.

As there are many variable values to input, these need to be dened in a variable denition le
named terraform.tfvars. Terraform will automatically load the variable values from the variable
denition le if it is named terraform.tfvars.

The modules directory provides all the needed resources to create the respective building block

modules/
├── bastion
│ ├── main.tf
│ ├── outputs.tf
│ ├── salt_provisioner.tf
│ └── variables.tf
├── drbd_node
│ ├── main.tf
│ ├── outputs.tf
│ ├── salt_provisioner.tf
│ └── variables.tf
├── hana_node
│ ├── main.tf
│ ├── outputs.tf
│ ├── salt_provisioner.tf
│ └── variables.tf
├── iscsi_server
│ ├── main.tf
│ ├── outputs.tf
│ ├── salt_provisioner.tf
│ └── variables.tf
├── monitoring
│ ├── main.tf

33 Terraform file details

│ ├── outputs.tf
│ ├── salt_provisioner.tf
│ └── variables.tf
├── netweaver_node
│ ├── main.tf
│ ├── outputs.tf
│ ├── salt_provisioner.tf
│ └── variables.tf
└── os_image_reference
 ├── outputs.tf
 └── variables.tf

The respective salt_provisioner.tf le sets the role of the node and, with the help of a Terraform
le provisioner, will pass the needed variables which were set in Terraform as custom Salt
grains for the node and starts the Salt provisioning process.

7.4.2 SAP Sizing

One of the key points to consider in an SAP deployment is sizing and applies across three key
areas: compute power, storage space and I/O capacity, and network bandwidth.

If this is a greeneld deployment, please use the SAP Quick Sizer tool to calculate the SAP
Application Performance Standard (SAPS) compute requirement and choose the right instance
types with the closest match to the performance needed.

If you have an SAP system running that you want to extend with new functionality and/or add
new users or migrate to SAP HANA, perform browneld sizing.

Overall it is an iterative and continuous process to translate your business requirements to the
correct (virtual) hardware resources.

This is a mandatory step and should not be underestimated.

SUSE makes it easier to deploy the right instance sizes with the right disks types and
performance, as well as the right network settings. A simplied SAP sizing has been introduced
with well known T-Shirt sizes, S, M, L, and a very small Demo size.

Behind the sizes, are useful combinations to provide certain SAP performance scenarios.

Below is a simple reference of the possible performance values

Demo

Small < 30.000 SAPS

34 SAP Sizing

Medium < 70.000 SAPS

Large < 180.000 SAPS

It is possible to customize the settings within the terraform.tfvars le, or provide a permanent
solution in the variables le.

The Demo and Small size are designed for non-production scenarios and do not use SAP certied
instance types, whereas the Medium and Large are meant for production usage and therefore
use SAP certied instance types. The setups also use the correct disks and I/O behavior for
production.

The SAPS values are meant for the landscape and not only for the database.

7.4.2.1 HANA

Given that low storage latency is critical for database systems, even for in-memory systems as
SAP HANA. The critical path in storage is usually around the transaction log writes of the DB
systems, but other operations like savepoints or loading data in-memory after crash recovery
can be critical.

Therefore, it is mandatory to leverage Azure premium storage or Ultra disk for /hana/data and /
hana/log volumes. Depending on the performance requirements, we may need to build a RAID-0
stripe-set to aggregate IOPS and throughput to meet the application scenario need.

The overall VM I/O throughput and IOPS limits need to be kept in mind when deciding on a
instance type.

Actual recommendations could be found at the following URL: https://docs.microsoft.com/en-

us/azure/virtual-machines/workloads/sap/hana-vm-operations-storage

The maps below describe how the disks for SAP HANA will be used and created during the
provisioning.

disks_type

As HANA has high I/O requirements the disk type Premium SSD needs to be used.

disks_size

The size of the additional disk is expressed in GB. Every size has certain IOPS caps.

caching

35 SAP Sizing

https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/hana-vm-operations-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/hana-vm-operations-storage

The caching recommendations for Azure premium disks assume the I/O characteristics for
SAP HANA, as follows:

/hana/data - no caching or read caching

/hana/log - no caching - exception for M- and Mv2-Series VMs where Azure Write
Accelerator should be enabled

/hana/shared - read caching

writeaccelerator

Azure Write Accelerator is a functionality that is available for Azure M-Series VMs
exclusively. As the name implies, the purpose of the functionality is to improve I/O latency
of writes against the Azure premium storage. For SAP HANA, Write Accelerator is supposed
to be used against the /hana/log volume only. Therefore, the /hana/data and /hana/log
are separate volumes with Azure Write Accelerator supporting the /hana/log volume only.

Number of Disks

The number of disks which get used, depend on the performance requirements. We join
disks to a stripe set to provide more performance. At a minimum we need 4 to 5 disks.

LogicalVolumes

We are using LVM to build stripe sets across several Azure premium disks. These stripe
sizes dier between /hana/data and /hana/log. The recommendations are:

256 KB for /hana/data

64 KB for /hana/log

Name of the VolumeGroup

This is the name of the volume group used.

Mount path

This is the mount point where the volume gets mounted.

The number of elements must match in all of them.

(hash character)

is used to split the volume groups.
The number of groups split by "#" must match in all of the entries

, (comma)

is used to dene the logical volumes for each volume group.

36 SAP Sizing

names

The names of the volume groups (e.g., datalog#shared#usrsap#backup#sapmnt).

luns

The luns or disks used for each volume group. The number of luns must match with that
congured in the previous disks variables (e.g., 0,1,2#3#4#5#6).

sizes

The size dedicated for each logical volume and folder (e.g, 70,100#100#100#100#100).

paths

Folder where each volume group will be mounted (e.g., /hana/data,/hana/log#/hana/
shared#/usr/sap#/hana/backup#/sapmnt/).

The values could be set with the variables "hana_vm_size",
"hana_enable_accelerated_networking," and "hana_data_disks_conguration" in the variables.tf
le if a change to the default (demo) is needed or, better still, in the terraform.tfvars to set actual
values.

7.4.2.2 Netweaver

NetWeaver is SAP’s integrated technology platform and is not a product in itself, but it provides
the required services for the SAP business applications and always needs a database.

It is the overall task of sizing to full the requirements of Netweaver plus the database, and this
is what is combined within the T-Shirt sizes of the solution.

Details of the solution T-Shirt sizes are provided below.

7.4.2.2.1 Demo

HANA instance size

Standard_E4s_v3

Accelerated networking

false

TABLE 7.2: HANA DISK CONFIGURATION DETAILS

disks_type Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS

37 SAP Sizing

disks_size 128,128,128,128,128,128,128"

caching None,None,None,None,None,None,None"

writeaccelerator false,false,false,false,false,false,false"

luns 0,1#2,3#4#5#6#7"

names data#log#shared#usrsap#backup"

lv_sizes 100#100#100#100#100"

paths /hana/data#/hana/log#/hana/shared#/usr/sap#/hana/backup

TABLE 7.3: NETWEAVER CONFIGURATION VARIABLES

netweaver_xscs_vm_size Standard_D2s_v3

netweaver_app_vm_size Standard_D2s_v3

netweaver_data_disk_type Premium_LRS

netweaver_data_disk_size 128

netweaver_data_disk_caching ReadWrite

netweaver_xscs_accelerated_networking false

netweaver_app_accelerated_networking false

netweaver_app_server_count 2

7.4.2.2.2 Small

HANA instance size

Standard_E64s_v3

Accelerated networking

true

38 SAP Sizing

TABLE 7.4: HANA DISK CONFIGURATION DETAILS

disks_type Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS

disks_size 512,512,512,512,64,1024

caching ReadOnly,ReadOnly,ReadOnly,ReadOnly,ReadOnly,None

writeaccelerator false,false,false,false,false,false

luns 0,1,2#3#4#5

names datalog#shared#usrsap#backup

lv_sizes 70,100#100#100#100

paths /hana/data,/hana/log#/hana/shared#/usr/sap#/hana/backup

TABLE 7.5: NETWEAVER CONFIGURATION DETAILS

netweaver_xscs_vm_size Standard_D2s_v3

netweaver_app_vm_size Standard_D2s_v3

netweaver_data_disk_type Premium_LRS

netweaver_data_disk_size 128

netweaver_data_disk_caching ReadWrite

netweaver_xscs_accelerated_networking false

netweaver_app_accelerated_networking false

netweaver_app_server_count 2

7.4.2.2.3 Medium

HANA instance size

Standard_M64s

Accelerated networking

true

39 SAP Sizing

TABLE 7.6: HANA DISK CONFIGURATION DETAILS

disks_type Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS

disks_size 512,512,512,512,512,512,1024,64,1024,1024

caching ReadOnly,ReadOnly,ReadOnly,ReadOnly,None,None,ReadOnly,ReadOnly,ReadOnly,ReadOnly

writeaccelerator false,false,false,false,false,false,false,false,false,false

luns 0,1,2,3#4,5#6#7#8,9

names data#log#shared#usrsap#backup

lv_sizes 100#100#100#100#100

paths /hana/data#/hana/log#/hana/shared#/usr/sap#/hana/backup

TABLE 7.7: NETWEAVER CONFIGURATION DETAILS

netweaver_xscs_vm_size Standard_D2s_v3

netweaver_app_vm_size Standard_E64s_v3

netweaver_data_disk_type Premium_LRS

netweaver_data_disk_size 128

netweaver_data_disk_caching ReadWrite

netweaver_xscs_accelerated_networking false

netweaver_app_accelerated_networking true

netweaver_app_server_count 5

7.4.2.2.4 Large

HANA instance size

Standard_M128s

Accelerated networking

true

40 SAP Sizing

TABLE 7.8: HANA DISK CONFIGURATION DETAILS

disks_type Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS,Premium_LRS

disks_size 1024,1024,1024,512,512,1024,64,2048,2048

caching ReadOnly,ReadOnly,ReadOnly,None,None,ReadOnly,ReadOnly,ReadOnly,ReadOnly

writeaccelerator false,false,false,true,true,false,false,false,false

luns 0,1,2#3,4#5#6#7,8

names data#log#shared#usrsap#backup

lv_sizes 100#100#100#100#100

paths /hana/data#/hana/log#/hana/shared#/usr/sap#/hana/backup

TABLE 7.9: NETWEAVER CONFIGURATION DETAILS

netweaver_xscs_vm_size Standard_D2s_v3

netweaver_app_vm_size Standard_E64s_v3

netweaver_data_disk_type Premium_LRS

netweaver_data_disk_size 128

netweaver_data_disk_caching ReadWrite

netweaver_xscs_accelerated_networking false

netweaver_app_accelerated_networking true

netweaver_app_server_count 10

7.5 Salt Building Blocks

Resources are the most important elements in Terraform. There is another resource type used
as last a step from the Terraform process, the Provisioner resource.

41 Salt Building Blocks

It can be used to model specic actions on a remote machine in order to prepare them for other
services.

The Terraform le provisioner is used to copy directories MAIN/salt and MAIN/pillar from the
machine executing Terraform to the newly created nodes.

Finally, the Terraform remote-exec provisioner is used to call the script, provision.sh, on the
remote node to run the Salt provisioning steps. It comes from the Terraform module MAIN/
generic_modules/salt_provisioner/main.tf.

From this point on, all work is performed on the respective node itself.

7.5.1 Our Architecture for the Salt building blocks

shaptools

low level python wrapper (API) around SAP utilities and commands

Execution module

provides the methods in the lower layer (shaptools) to Salt

State

combination of execution modules and other parts with logic to dene a specic
conguration

Formula

group of states that give a context for building blocks; e.g., HANA

42 Our Architecture for the Salt building blocks

The provisioning workow of the SAP building blocks consist of dierent steps:

1. Bootstrap Salt installation and conguration.

2. Perform OS setup operations; register to SCC, if needed; update the packages; etc. by
executing the states within /srv/salt/os_setup.

3. Perform predeployment operations by execution of the /srv/salt/top.sls states. It updates
hosts and hostnames, installs the formula packages, etc.

4. Perform deployment operations depending on the overall conguration settings; e.g.,
install SAP applications, congure and setup HA with the salt formulas.

7.5.2 Salt Overview

The SAP building blocks are created with help of Salt formulas after provisioning the virtual
machines with Terraform. The formulas are shipped as RPM packages with SUSE Linux
Enterprise Server for SAP Applications.

The Salt formulas can be used with two dierent approaches: Salt master/minion or only Salt
minion execution.

In this automation solution, we use the Salt minion option. The steps in the formulas must be
executed in all of the minions and are performed through a SSH connection.

The core of the Salt State system is the SLS, or SaLt State le. The SLS is a representation of the
state in which a system is expected to be, and is set up to contain this data in a simple format.

There are 3 types of Salt les used

pillar files

the conguration parameters where the data gets imported with help of jinja (map.jinja)
and Salt['pillar.get']

state files

the execution denition in /srv/salt

grains files

environment parameters from the node itself and for handing over variables from Terraform;
e.g., /etc/salt/grains

In Salt, the le which contains a mapping between groups of machines on a network and the
conguration roles that should be applied to them is called a top le.

43 Salt Overview

Top les are named top.sls by default, and they are so named because they always exist in the
"top" of a directory hierarchy, called a state tree, that contains state les.

7.5.2.1 Salt pillar

Similar to the state tree, the pillar is comprised of .sls les and has a top le too. The default
location is /srv/pillar.

The pillar les dene custom variables and data for a system.

When Salt pillar data is refreshed, each Salt minion is matched against the targets listed in the
top.sls le. When a Salt minion matches a target, it receives all of the Salt pillar SLS les dened
in the list underneath that target.

Directory structure for pillars

/srv
├── pillar
│ ├── top.sls
│ ├── drbd
│ │ ├── cluster.sls
│ │ └── drbd.sls
│ ├── hana
│ │ ├── cluster.sls
│ │ └── hana.sls
│ ├── iscsi_srv.sls
│ └── netweaver
│ ├── cluster.sls
│ └── netweaver.sls
├── salt

The top.sls pillar le describes the needed data for the respective role of the node.

State top.sls le

base:
 'role:iscsi_srv':
 - match: grain
 - iscsi_srv

 'role:hana_node':
 - match: grain
 - hana.hana

 'G@role:hana_node and G@ha_enabled:true':

44 Salt Overview

 - match: compound
 - hana.cluster

 'role:drbd_node':
 - match: grain
 - drbd.drbd
 - drbd.cluster

 'role:netweaver_node':
 - match: grain
 - netweaver.netweaver

 'G@role:netweaver_node and G@ha_enabled:true and P@hostname:.*(01|02)':
 - match: compound
 - netweaver.cluster

To run an initial deployment without specic customization, use pillar les stored in the MAIN/
pillar_example/automatic folder, as these les are customized with parameters coming from
Terraform execution. The pillar les stored there are able to deploy a basic functional set of
clusters in all of the available cloud providers.

To adapt the deployment to your scenario, provide your own pillar data les. There are some
basic examples within the directory MAIN/pillar_example. As the pillar les provide data for the
Salt formulas, all of the possible pillar options can be found in each formula project.

Important
Pillar les are expected to contain private data, such as passwords, required for automated
installation or other operations. Therefore, such pillar data need to be stored in an
encrypted state, which can be decrypted during pillar compilation.

SaltStack GPG renderer provides a secure encryption/decryption of pillar data. The
conguration of GPG keys and procedure for pillar encryption are described in the
Saltstack documentation guide:

1. SaltStack pillar encryption (https://docs.saltstack.com/en/latest/topics/pillar/#pillar-

encryption)

2. SaltStack GPG RENDERERS (https://docs.saltstack.com/en/latest/ref/renderers/all/

salt.renderers.gpg.html)

Encryption is not included in this automation solution. You are strongly advised
to take appropriate security precautions.

45 Salt Overview

https://docs.saltstack.com/en/latest/topics/pillar/#pillar-encryption
https://docs.saltstack.com/en/latest/topics/pillar/#pillar-encryption
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html
https://docs.saltstack.com/en/latest/ref/renderers/all/salt.renderers.gpg.html

7.5.2.2 Salt states

Salt state les are organized into a directory tree, called the Salt state tree, in the /srv/salt/
directory.

Directory structure for Salt state les

/srv
├── pillar
....
├── salt
│ ├── cluster_node
│ │ ├──
│ ├── default
│ │ ├──
│ ├── drbd_node
│ │ ├──
│ ├── hana_node
│ │ ├──
│ ├── iscsi_srv
│ │ ├──
│ ├── _modules
│ │ ├──
│ ├── monitoring_srv
│ │ ├──
│ ├── netweaver_node
│ │ ├──
│ ├── os_setup
│ │ ├──
│ ├── provision.sh
│ ├── qa_mode
│ │ ├──
│ ├── sshkeys
│ │ ├──
│ ├── _states
│ │ ├──
│ └── top.sls

Within this directory structure, all needed steps that depend on the role of the node can be seen.

The top.sls le describes two environments for the nodes, pre-deployment and base which reect
steps 3 and 4 of the workow above.

The Pre-deployment environment is needed, as formulas can not be installed and used directly
in the same execution.

State top.sls le

46 Salt Overview

predeployment:
 'role:hana_node':
 - match: grain
 - default
 - cluster_node
 - hana_node

 'role:netweaver_node':
 - match: grain
 - default
 - cluster_node
 - netweaver_node

 'role:drbd_node':
 - match: grain
 - default
 - cluster_node
 - drbd_node

 'role:iscsi_srv':
 - match: grain
 - iscsi_srv

 'role:monitoring_srv':
 - match: grain
 - default
 - monitoring_srv

base:
 'role:hana_node':
 - match: grain
 - hana

 'G@role:hana_node and G@ha_enabled:true':
 - match: compound
 - cluster

 'role:drbd_node':
 - match: grain
 - drbd
 - cluster

 'role:netweaver_node':
 - match: grain
 - netweaver

 'G@role:netweaver_node and G@ha_enabled:true and P@hostname:.*(01|02)':

47 Salt Overview

 - match: compound
 - cluster

7.5.2.3 Salt grains

SaltStack comes with an interface to derive information about the underlying system. This is
called the grains interface, because it presents Salt with grains of information. It collects static
informations about the underlying managed system, such as the operating system, domain name,
IP address, kernel, OS type, memory, and many other system properties. The SUSE Automation
project uses custom grains to match the roles and the further states.

The role is a custom grains dened with help of the Terraform le salt_provisioner.tf for the
respective building block.

Caution
If using the Salt formulas independently from the Terraform templates, it is important
to take care of providing all required variables that would normally get set by the
salt_provisioner.tf.

7.5.2.4 State details

If targeting a directory during a state.apply or in the state Top le, Salt looks for an init.sls le
in that directory and applies it.

Within the os_setup directory

│ ├── os_setup
│ │ ├── init.sls
│ │ ├── ip_workaround.sls
│ │ ├── minion_configuration.sls
│ │ ├── packages.sls
│ │ ├── registration.sls
│ │ └── repos.sls

there is one interesting le, the minion_conguration.sls. It provides the conguration how and
where Salt / the Minion looks for Salt states and Salt formulas.

Looking deeper into one of the directories, hana-node, there are more les.

HANA Node state les

48 Salt Overview

│ ├── hana_node
│ │ ├── download_hana_inst.sls
│ │ ├── files
│ │ │ └── sshkeys
│ │ │ ├── cluster.id_rsa
│ │ │ └── cluster.id_rsa.pub
│ │ ├── hana_inst_media.sls
│ │ ├── hana_packages.sls
│ │ ├── init.sls
│ │ └── mount
│ │ ├── azure.sls
│ │ ├── gcp.sls
│ │ ├── init.sls
│ │ ├── mount.sls
│ │ ├── mount_uuid.sls
│ │ └── packages.sls

When targeting a directory during a state.apply or in the state Top le, Salt looks for an init.sls
le in that directory and applies it. Salt executes what is in init.sls in the order listed in the le.
When a Salt le is named init.sls, it inherits the name of the directory path that contains it. This
formula/state can then be referenced with the name of the directory.

In our case here, it rst gets the SAP HANA Media with help of hana_ins_media, creates the
mountpoints, partitions disks for SAP HANA, and enters them into the fstab with help of the
states in the mount directory. Similar as before, the starting point is again the init.sls le.

After all is processed within mount, it gets back to the le hana_packages. It then installs the RPM
packages, shaptools and saphanabootstrap-formula, which get shipped with SUSE Linux Enterprise
Server for SAP Applications.

All other states les get processed in the same way as the example above.

7.5.3 Salt formula packages

Formulas are pre-written Salt states. They are as open-ended as Salt States themselves, and they
can be used for tasks such as installing a package, conguring and starting a service, setting up
users or permissions, and many other common tasks. Each formula is intended to be immediately
usable with the sane defaults and no additional conguration.

The formulas in the automation solution are congurable by including data in Pillar les, as
discussed above. During RPM install, the les of the packages end up in the directory /usr/share/
salt-formulas/states. This was dened as the directory where Salt searches for les in addition
to /srv/salt (see os_setup state above).

49 Salt formula packages

shaptools package. The directories modules and states come from the install of the package
shaptools and provide a python wrapper as an API for sap command line tools, making it simpler
to with Salt. This package is a base dependency for most of the SUSE formula packages as it
provides the needed SAP commands.

│ ├── _modules
│ │ ├── ...
│ ├── _states
│ │ ├── ...

7.5.3.1 HANA formula

The main work of preparing the node for HANA and installing HANA is performed by the
saphanabootstrap-formula.

The structure is similar to what has been seen above for pillars and states but lives in the
directory /usr/share/salt-formulas/states/…

states/
└── hana
 ├── defaults.yaml
 ├── enable_cost_optimized.sls
 ├── enable_primary.sls
 ├── enable_secondary.sls
 ├── exporter.sls
 ├── init.sls
 ├── install.sls
 ├── map.jinja
 ├── packages.sls
 ├── pre_validation.sls
 └── templates
 ├── hanadb_exporter.j2
 ├── scale_up_resources.j2
 └── srTakeover_hook.j2

Salt includes the Jinja2 template engine which can be used in Salt state les, Salt pillar les,
and other les managed by Salt. Salt lets you use Jinja to access minion conguration values,
grains, and Salt pillar data, and to call Salt execution modules. One of the most common uses
of Jinja is to insert conditional statements into Salt pillar les.

1. The formula package is installed through the HANA Node state les

2. To install it manually please use zypper, as this will include the other dependent packages
such as salt-shaptools and habootstrap-formula

50 Salt formula packages

 zypper install saphanabootstrap-formula

The Salt formula will need input data through a pillar le which is part of the main project le
(in MAIN/pillar/… or on the node /srv/pillar) If using the formula standalone, the data needs
to be provided manually. There are more options available as shown in the example le.

Example HANA pillar

hana:
 saptune_solution: 'HANA'
 nodes:
 - host: 'hana01'
 sid: 'prd'
 instance: "00"
 password: 'SET YOUR PASSWORD'
 install:
 software_path: '/sapmedia/HANA'
 root_user: 'root'
 root_password: ''
 system_user_password: 'SET YOUR PASSWORD'
 sapadm_password: 'SET YOUR PASSWORD'
 primary:
 name: PRIMARY_SITE_NAME
 backup:
 key_name: 'backupkey'
 database: 'SYSTEMDB'
 file: 'backup'
 userkey:
 key_name: 'backupkey'
 environment: 'hana01:30013'
 user_name: 'SYSTEM'
 user_password: 'SET YOUR PASSWORD'
 database: 'SYSTEMDB'

 - host: 'hana02'
 sid: 'prd'
 instance: "00"
 password: 'SET YOUR PASSWORD'
 install:
 software_path: '/sapmedia/HANA'
 root_user: 'root'
 root_password: ''
 system_user_password: 'SET YOUR PASSWORD'
 sapadm_password: 'SET YOUR PASSWORD'
 secondary:
 name: SECONDARY_SITE_NAME

51 Salt formula packages

 remote_host: 'hana01'
 remote_instance: "00"
 replication_mode: 'sync'
 operation_mode: 'logreplay'
 primary_timeout: 3000

1. The formula is executed within the hana_node Salt state les.

2. If wanting to execute the formula manually

salt '*' state.apply hana_node.sls

With the help of the pillar data, the state le, and the formula, Salt will create all needed
conguration on the node, will install HANA and, if enabled, will install hana systemreplication
and set up the pacemaker cluster, correctly for Azure.

The templates directory provides the needed les for cluster rules, the needed hook for HANA,
and the monitoring exporter. All the values come from the best practices guides SUSE created
with the Cloud provider Azure for the HA scenario.

7.5.3.2 Netweaver formula

The SAP Netweaver deployment is performed using the sapnwbootstrap-formula and uses, as of
today, only SAP HANA as a database.

The formula takes care of the ASCS, the Application Servers, and, if HA is selected, the Enqueue
Replication server.

The formula has some hard dependencies and all of them must be in place for a successful
netweaver deployment. In order to deploy a valid Netweaver environment, a NFS share is
needed (SAP stores shared les there). The NFS share must have the folders sapmnt and usrsapsys
in the exposed folder. The folders are created with the Netweaver SID name (e.g., /sapdata/
HA1/sapmnt and /sapdata/HA1/usrsapsys). This content is removed by default during the
deployment.

Secondly, the SAP installation software (SWPM) must be available in the system. To install the
whole Netweaver environment with all the 4 components, the SAP Media must be provided.
The structure depends on the version of SWPM.

52 Salt formula packages

For SWPM 1.0 the swpm folder, sapexe folder, Netweaver Export folder and HANA HDB Client
folders must already exist, or be previously mounted when provided by external service, such
as NFS share. The netweaver.sls pillar le must be updated with all this information. Netweaver
Export and HANA HDB Client folders must go in additional_dvds list.

The structure is similar what has been illustrated above for the HANA formula.

states/
└── ...
└── netweaver
 ├── defaults.yaml
 ├── ensa_version_detection.sls
 ├── extract_nw_archives.sls
 ├── ha_cluster.sls
 ├── init.sls
 ├── install_aas.sls
 ├── install_ascs.sls
 ├── install_db.sls
 ├── install_ers.sls
 ├── install_pas.sls
 ├── install_pydbapi.sls
 ├── map.jinja
 ├── monitoring.sls
 ├── pillar.example
 ├── pre_validation.sls
 ├── saptune.sls
 ├── setup
 │ ├── init.sls
 │ ├── keepalive.sls
 │ ├── mount.sls
 │ ├── packages.sls
 │ ├── sap_nfs.sls
 │ ├── shared_disk.sls
 │ ├── swap_space.sls
 │ ├── users.sls
 │ └── virtual_addresses.sls
 └── templates
 ├── aas.inifile.params.j2
 ├── ascs.inifile.params.j2
 ├── cluster_resources.j2
 ├── db.inifile.params.j2
 ├── ers.inifile.params.j2
 └── pas.inifile.params.j2

53 Salt formula packages

As described earlier, a pillar le is needed with the conguration. There is one example in the
path, which can be used as a base for standalone Salt usage. In general, the pillar data will be
passed from the Terraform main project.

As SAP Netweaver has additional nodes in an HA environment, the pillar le will be larger than
the one for HANA. Take the time to review this by viewing the example le.

Similar to before, the starting point is the init.sls le, where the workow is dened.

The templates directory provides the needed les for Netweaver cluster rules, and the values
come from the best practices guides SUSE created with Azure for the ERS scenario.

In addition, here are the templates which are used by SWPM for an automated hands-free
installation of the SAP Netweaver services.

7.5.4 High Availability formula

The habootstrap-formula will take care of the needed cluster setup for SAP HANA, SAP Netweaver,
and, if needed, for the HA NFS service built with DRBD.

The formula will be similar to all the other formulas used and installed in /usr/share/salt-
formulas/states/cluster.

states
├── cluster
│ ├── create.sls
│ ├── defaults.yaml
│ ├── init.sls
│ ├── join.sls
│ ├── map.jinja
│ ├── monitoring.sls
│ ├── ntp.sls
│ ├── packages.sls
│ ├── pre_validation.sls
│ ├── remove.sls
│ ├── resource_agents.sls
│ ├── sshkeys.sls
│ ├── support
│ │ └── ssh_askpass
│ └── watchdog.sl

The main dierence to the HANA and Netweaver formula is that the init.sls already makes use
of jinja. Jinja is the default templating language in SLS les and gets evaluated before YAML,
which means it is evaluated before the states are run.

54 High Availability formula

The most basic usage of Jinja in state les is using control structures to wrap conditional or
redundant state elements.

7.5.5 Additional Services

The additional services depend on what is used or available from the cloud provider, but needed
by SAP HANA or SAP Netweaver or the HA services.

7.5.5.1 NFS service

To build an HA-NFS service, we use the above described habootstrap-formula together with drbd-
formula to mirror the data between two nodes and the _linux nfs-server: packages been setup
with the SaltStack _nfs_formula (see https://github.com/saltstack-formulas/nfs-formula)

DRBD®– software is a distributed replicated storage system for the Linux platform. It is
implemented as a kernel driver, several userspace management applications, and some shell
scripts. So think about it as "RAID-1 over network."

Details are available at the SUSE documentation page for the SLE HA Extension https://

documentation.suse.com/sle-ha/15-SP2/single-html/SLE-HA-nfs-quick/#art-sleha-nfs-quick

7.5.5.2 Fencing service

If the setup is using HA for SAP Netweaver or for SAP HANA or with the NFS service, and there
is no mechanism for fencing of the virtual machines over an API, we use the SUSE SBD-device
method. Such a SBD-Device is normally a raw shared disk beween two nodes.

Unfortunately not all clouds are able to provide a raw shared disk, but with the help of Linux
native services (iSCSI) we can build this by our own.

We use here the iscsi-formula provided by SaltStack itself (see https://github.com/saltstack-

formulas/iscsi-formula) to provide to the nodes of the cluster a raw-shared-disk with help of
a iscsi target for the SBD fencing mechanism.

It gets congured through the pillar les we provided through the role iscsi_srv

The use of possible fencing method depends on the cloud provider’s features. As of today, SBD
is needed only for Azure, but it is a general method which could be used nearly independent
of the base infrastructure.

55 Additional Services

https://github.com/saltstack-formulas/nfs-formula
https://documentation.suse.com/sle-ha/15-SP2/single-html/SLE-HA-nfs-quick/#art-sleha-nfs-quick
https://documentation.suse.com/sle-ha/15-SP2/single-html/SLE-HA-nfs-quick/#art-sleha-nfs-quick
https://github.com/saltstack-formulas/iscsi-formula
https://github.com/saltstack-formulas/iscsi-formula

8 Summary

More and more companies move to a computing as a service, rather than as a product, which
bring new possibilities for innovations, but reshaping the landscape, will bring new challenges
where SUSE can help with to solve them.

The SUSE solution manages complex operations with automation and help ease the transition
to Linux and the cloud, and reduce the problem resolution time with insights to the SAP
infrastructure landscape.

It help to deliver SAP services faster, more eciently and with less risk.

56

Glossary

Python

A scripting language. It interacts with lower-layer utilities such as crm shell and several
SAP commands, including SAP HANA management tools.

Salt (also SaltStack)

A conguration infrastructure management system written in Python. Due to its modular
approach, it is often referred as SaltStack. Salt has as a client/server architecture. The
server (also called the Salt Master) acts as a central control unit for the Salt clients. The
other supported setup option is called masterless.

Salt Grains

Static data about Salt clients. Grains contain information about the operating system that
is running, the CPU architecture in use, and much more. Grains can also be set to assign
values to Salt clients.

Salt Formulas

Formulas are pre-written Salt States.
For more information about Salt, refer to the upstream documentation at https://

docs.saltstack.com .

Salt Master

Manages the infrastructure and the Salt clients within it. It can execute commands remotely
on Salt clients and manage their state. The Salt Master captures grains sent from Salt clients
and decide what to do with this information.

Salt Client (sometimes Minion)

A server or machine often controlled by the Salt Master. Its main purpose is to execute
commands sent from the Salt Master, report data back, and send information about itself.

Salt State

YAML text le to maintain consistency across your environment. Salt states can be
executed.

Terraform

An “infrastructure as code” software tool. It deploys the required infrastructure in cloud
or virtual environments and AutoYaST for on-premises deployments.

57

https://docs.saltstack.com
https://docs.saltstack.com

A Appendix

Copyright © 2006–2021 SUSE LLC and contributors. All rights reserved.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or (at your option) version 1.3; with the Invariant
Section being this copyright notice and license. A copy of the license version 1.2 is included in
the section entitled "GNU Free Documentation License".

SUSE, the SUSE logo and YaST are registered trademarks of SUSE LLC in the United States and
other countries. For SUSE trademarks, see https://www.suse.com/company/legal/ .

Linux is a registered trademark of Linus Torvalds. All other names or trademarks mentioned in
this document may be trademarks or registered trademarks of their respective owners.

This article is part of a series of documents called "SUSE Best Practices". The individual
documents in the series were contributed voluntarily by SUSE’s employees and by third parties.
The articles are intended only to be one example of how a particular action could be taken.

Also, SUSE cannot verify either that the actions described in the articles do what they claim to
do or that they don’t have unintended consequences.

All information found in this article has been compiled with utmost attention to detail. However,
this does not guarantee complete accuracy. Therefore, we need to specically state that neither
SUSE LLC, its aliates, the authors, nor the translators may be held liable for possible errors or
the consequences thereof. Below we draw your attention to the license under which the articles
are published.

58

https://www.suse.com/company/legal/

	SUSE SAP automation solution for Azure
	Contents
	
	Part I. SUSE SAP automation solution for Azure
	Chapter 1. Preface
	Chapter 2. Introduction
	Chapter 3. Strategy
	3.1. Context

	Chapter 4. Business
	4.1. SUSE SAP Automation Coverage
	4.2. Prerequisites for SAP workloads in public clouds

	Chapter 5. Application
	5.1. SUSE Linux Enterprise Server for SAP Applications
	5.2. SAP Application
	5.3. Presenting the SAP Media
	5.4. Terraform
	5.5. SALT
	5.5.1. Overview of the available formulas which are used within the SUSE Automation framework.
	5.5.1.1. Netweaver
	5.5.1.2. HANA
	5.5.1.3. HA
	5.5.1.3.1. Other dependent services

	5.6. Monitoring
	5.6.1. SAP HANA Database Exporter
	5.6.2. High Availability Cluster Exporter
	5.6.3. SAP Host Exporter

	Chapter 6. Technology
	6.1. Terraform
	6.2. Salt
	6.3. SAP Sizing
	6.4. Building Blocks
	6.5. High Availability
	6.6. Additional Services
	6.6.1. NFS service
	6.6.2. Fencing service
	6.6.3. Monitoring service

	Chapter 7. Physical
	7.1. Prerequisites
	7.2. Get the project
	7.3. Terraform Building Blocks
	7.4. Simple Install
	7.4.1. Terraform file details
	7.4.2. SAP Sizing
	7.4.2.1. HANA
	7.4.2.2. Netweaver
	7.4.2.2.1. Demo
	7.4.2.2.2. Small
	7.4.2.2.3. Medium
	7.4.2.2.4. Large

	7.5. Salt Building Blocks
	7.5.1. Our Architecture for the Salt building blocks
	7.5.2. Salt Overview
	7.5.2.1. Salt pillar
	7.5.2.2. Salt states
	7.5.2.3. Salt grains
	7.5.2.4. State details

	7.5.3. Salt formula packages
	7.5.3.1. HANA formula
	7.5.3.2. Netweaver formula

	7.5.4. High Availability formula
	7.5.5. Additional Services
	7.5.5.1. NFS service
	7.5.5.2. Fencing service

	Chapter 8. Summary
	Glossary
	Appendix A. Appendix

