
SEPTun Mark II

Chapter 1

Introduction

SEPTun is (hopefully at least) a yearly series of articles that guide through the extreme
and experimental techniques to deploy Suricata IDS/IPS/NSM in high-speed networks.

In this article, we reflect and share our experience and knowledge about what we
have learned - with detailed instructions on how to deploy those findings. Alongside
that, we also describe the challenges we hit through that journey.

Each Mark summarizes last year’s one and does not include content that’s still valid
from the last one. If something needs to be updated, we show it here, if not - the old
version of documents still hold. Please read SEPTun Mark I if you haven’t already
before you read this one.

Ready? Fasten your seatbelts and enjoy the ride!!
As we were concluding our research - the big Meltdown happened. One of the

major worries with the subsequent kernel patches is that it can affect the performance
of 15%+. We did some testing to confirm if that would have an effect on our setup and
have documented those in this article as well.

SEPTun Mark II findings were initially presented on SuriCon 2017.

How is this guide different from Mark I?
∙ eXpress Data Path - describe what it is and how it can be used

∙ We received numerous questions about RSS. Deployment guide for RSS is in-
troduced in Mark II

Our set up(s)

Kernel
This guide has been tested and confirmed to work well on (we needed something with
a current toolchain and kernels):

∙ Debian Testing (Buster with kernel 4.14.x/4.15.2)

1

https://github.com/pevma/SEPTun
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)

∙ Ubuntu LTS Xenial (kernel 4.13.10/ 4.15.2)

If you would want to run a test build a Vagrant box is located at the Vagrant Cloud

General set up
∙ The traffic we tested on was a mix of ISP and corporate type in different setups

in the range up to 20Gbit/sec speeds with long and sustained peaks.

∙ Suricata 4.1.0-dev branch/latest git master at the time of this writing.

∙ Using Intel NIC X710/X520/X510 (i40/ixgbe) - one port on each card used.
Cards installed on separate NUMA nodes.

∙ Full ETpro ruleset

HW set up 1
∙ 128GB RAM, 8 DIMMS, 4 per socket.

∙ 2x Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz - 28 cores total, HT enabled
and used for 56 hardware threads.

HW set up 2
∙ 64GB RAM, 4 DIMMS, 2 per socket.

∙ 1x Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz - 8 cores total, HT enabled and
used for 16 hardware threads.

Haswell is recommended, Sandy Bridge is a minimum.

2

https://app.vagrantup.com/pevma/boxes/debian-testing64

Chapter 2

What is XDP

XDP provides another Linux native way of optimizing Suricata’s performance on sniff-
ing high-speed networks.

“ XDP or eXpress Data Path provides a high performance, programmable network
data path in the Linux kernel as part of the IO Visor Project. XDP offers bare metal
packet processing at the lowest point in the software stack which makes it ideal for
speed without compromising programmability. Furthermore, new functions can be im-
plemented dynamically with the integrated fast path without kernel modification. “

More info about XDP

XDP advantages
∙ No specific HW requirements

∙ Bare metal packet processing

∙ Integrated fast path in the kernel stack

∙ Programmable

XDP is not another generic kernel bypass technology. It augments AF_Packet and
does not replace it.

XDP bypass for Suricata
Coding began by Eric Leblond (@regiteric) 2 years ago (on the eBPF initially then
XDP in 2017) for implementation in Suricata. Peter Manev(@pevma) started prelimi-
nary testing in April/May 2017, Michal Purzynski (@MichalPurzynski) joined the test
and research effort in September 2017.

XDP allows for bypass of flows that you/Suricata is not interested in after certain
size. It does that at the earliest possible stage in the Linux stack. It drops packets before
the SKB is built, saving Linux kernel from doing most of the processing only to throw
away results later.

3

https://www.iovisor.org/technology/xdp

To do that XDP depends on eBPF scripts. Those scripts are compiled with JIT and
are really fast. Note - you have heard a lot of bad press about eBPF in context of the
recent Spectre attacks. We address those concerns in this paper, read on.

You may wonder whats eBPF is and what it has to do with XDP bypass for Suricata.

eBPF
∙ Improvement over classical BPF

∙ Allows for user hooks/programs to be run per packet

∙ Extends and improves performance of Suricata

∙ Opens more kernel space possibilities

∙ Elephant flow bypass

∙ You need to write your own eBPF “hooks”

One of the better descriptions of eBPF is found in the linux manpages:

In Linux, it’s generally considered that eBPF is the successor of
cBPF. The kernel internally transforms cBPF expressions into eBPF
expressions and executes the latter. Execution of them can be
performed in an interpreter or at setup time, they can be just-in-
time compiled (JIT’ed) to run as native machine code. Currently,
x86_64, ARM64, s390, ppc64 and sparc64 architectures have eBPF JIT
support, whereas PPC, SPARC, ARM and MIPS have cBPF, but did not
(yet) switch to eBPF JIT support.

eBPF’s instruction set has similar underlying principles as the cBPF
instruction set, it however is modelled closer to the underlying
architecture to better mimic native instruction sets with the aim to
achieve a better run-time performance. It is designed to be JIT’ed
with a one to one mapping, which can also open up the possibility for
compilers to generate optimized eBPF code through an eBPF backend
that performs almost as fast as natively compiled code. Given that
LLVM provides such an eBPF backend, eBPF programs can therefore
easily be programmed in a subset of the C language. Other than that,
eBPF infrastructure also comes with a construct called "maps". eBPF
maps are key/value stores that are shared between multiple eBPF
programs, but also between eBPF programs and user space applications.

The most significant benefit is that for XDP bypass the Linux kernel does not have
to create the SKB (Linux socket buffer structure) - hence saving CPU cycles on creating
something that would be thrown away later anyway. Not doing unnecessary work
improves performance. Decide early, drop early.

There are three modes available (af-packet section in the suricata.yaml config):

4

http://man7.org/linux/man-pages/man8/tc-bpf.8.html

∙ xdp-mode: soft

∙ xdp-mode: driver

∙ xdp-mode: hw

The "hw" mode means packets will never be seen by the Linux kernel and will be
dropped at the card itself, at the hardware level. Intel cards cannot do it as of now (the
writing of this article). Netronome cards can do it.

The "driver" mode means packets will be dropped before the SKB is created, at the
driver level, but not in hardware. Linux kernel will see whose packets but will drop
them very early saving most of the processing time. Intel cards with drivers from the
Linux kernel support it. The upstream Intel version of those drivers (from SourceForge)
do not support XDP and it’s unlikely they ever will.

The "soft" mode means packets will be dropped after the SKB is created and before
Suricata can consume those packets. The "soft" mode is the slowest one but also an
excellent fallback since it does not need any hardware or driver support.

In this article, we use xdp-mode: driver for cards that support eBPF.

NICs with native driver XDP support
∙ Broadcom

∙ Cavium/Qlogic

∙ Cavium

∙ Intel: ixgbe + i40e

∙ Mellanox

∙ Netronome

∙ Virtio-net

xdp-mode: hw is available only in Netronome currently at the time of this
article writing.

Prerequisites
Please note, that symmetric RSS is required for the XDP offload to work correctly. We
use the "QM" AF_Packet mode which binds Suricata threads to driver queues, and it is
card’s responsibility to hash flows symmetrically between those queues.

Instructions how to configure symmetric RSS are further down this article.
For generic information how to configure your system firmware (BIOS/UEFI set-

tings are important) and how Linux data processing works and how to measure packet
loss, see SEPTun Mark I. The only thing that changes here is the symmetric RSS. We
will recommend the same kernel and driver settings and pin Suricata workers to cores
and move all workload that can be moved off worker’s cores.

5

https://github.com/pevma/SEPTun

Packages
Specific to our setup of Suricata features:

sudo apt-get -y install git build-essential autoconf automake \
libtool pkg-config libpcre3 libpcre3-dbg libpcre3-dev \
libpcap-dev libnet1-dev libyaml-0-2 libyaml-dev zlib1g \
zlib1g-dev libmagic-dev libcap-ng-dev libjansson-dev \
libjansson4 libnss3-dev libnspr4-dev libgeoip-dev libluajit-5.1-dev \
rustc cargo

Clang & elf
Make sure you have clang & elf installed on the system for XDP. The default clang
version should do.

apt-get install clang libelf-dev

Kernel and NIC related
∙ Newer kernel that supports XDP (4.13.10+ in our case)

∙ Depending on the af-packet mode (described later in the article) - RSS symmetric
hashing on the NIC (Intel 82599ES 10-Gigabit/x520/x540 in our case)

∙ In tree kernel drivers NIC drivers. (aka downloading and compiling your drivers
did not seem to work - explained how to do it further down in the article)

If you need help, you can build the desired kernel version with the help of the
scripts here

Disable irqbalance
systemctl stop irqbalance
systemctl disable irqbalance

(make sure it is gone :) from the system)

BPF
A patched BPF (headers) are also needed:

git clone -b libbpf-release https://github.com/regit/linux.git
cd linux/tools/lib/bpf/
make clean && make
sudo make install && sudo make install_headers
sudo ldconfig

6

https://github.com/pevma/kbus
https://github.com/pevma/kbus

Compile and install Suricata
The Suricata config/compile below includes some extra functionality that we needed
(like Rust/file extraction/geoip etc..) to be build. The one important for enabling
XDP functionality is --enable-ebpf --enable-ebpf-build in the config
line. Below we use Suricata git master but the XDP functionality is present in Suricata
4.1+

git clone https://github.com/OISF/suricata.git
cd suricata && \
git clone https://github.com/OISF/libhtp.git -b 0.5.x

./autogen.sh

CC=clang-4.0 ./configure \
--prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/ \
--with-libnss-libraries=/usr/lib \
--with-libnss-includes=/usr/include/nss/ \
--with-libnspr-libraries=/usr/lib \
--with-libnspr-includes=/usr/include/nspr \
--enable-geoip --enable-luajit --enable-rust \
--enable-ebpf --enable-ebpf-build

make clean && make
sudo make install-full
sudo ldconfig

Copy the resulting xdp filter as needed - you can specify a particular path in suricata.yaml.
In our case it wwas /etc/suricata/:

cp ebpf/xdp_filter.bpf /etc/suricata/

Setup af-packet section/interface in suricata.yaml. We will use cluster_qm
as we can have symmetric hashing on the NIC, xdp-mode: driver and we will
also use the /etc/suricata/xdp_filter.bpf (in our example TCP offload-
ing/bypass)

Using one interface in the suricata.yaml config -

- interface: eth3
threads: 14
cluster-id: 97
cluster-type: cluster_qm # symmetric hashing is a must!
defrag: yes
eBPF file containing a ’loadbalancer’ function that will be inserted
into the kernel and used as load balancing function
#ebpf-lb-file: /etc/suricata/lb.bpf
eBPF file containing a ’filter’ function that will be inserted into

7

the kernel and used as packet filter function
eBPF file containing a ’xdp’ function that will be inserted into the
kernel and used as XDP packet filter function
#ebpf-filter-file: /etc/suricata/filter.bpf
Xdp mode, "soft" for skb based version, "driver" for network card
based and "hw" for card supporting eBPF.
xdp-mode: driver
xdp-filter-file: /etc/suricata/xdp_filter.bpf
if the ebpf filter implements a bypass function, you can set
’bypass’ to yes and benefit from these feature
bypass: yes
use-mmap: yes
mmap-locked: yes
Use tpacket_v3, capture mode, only active if user-mmap is true
tpacket-v3: yes
ring-size: 200000
block-size: 1048576

Using two interface in the suricata.yaml config -

- interface: eth3
threads: 7
cluster-id: 97
cluster-type: cluster_qm
defrag: yes
eBPF file containing a ’loadbalancer’ function that will be inserted
into the kernel and used as load balancing function
#ebpf-lb-file: /etc/suricata/lb.bpf
eBPF file containing a ’filter’ function that will be inserted into
the kernel and used as packet filter function
eBPF file containing a ’xdp’ function that will be inserted into the
kernel and used as XDP packet filter function
#ebpf-filter-file: /etc/suricata/filter.bpf
Xdp mode, "soft" for skb based version, "driver" for network card
based and "hw" for card supporting eBPF.
xdp-mode: driver
xdp-filter-file: /etc/suricata/xdp_filter.bpf
if the ebpf filter implements a bypass function, you can set
’bypass’ to yes and benefit from these feature
bypass: yes
use-mmap: yes
mmap-locked: yes
Use tpacket_v3, capture mode, only active if user-mmap is true
tpacket-v3: yes
ring-size: 200000
block-size: 1048576

8

- interface: eth2
threads: 7
cluster-id: 98
cluster-type: cluster_qm
defrag: yes
eBPF file containing a ’loadbalancer’ function that will be inserted
into the kernel and used as load balancing function
#ebpf-lb-file: /etc/suricata/lb.bpf
eBPF file containing a ’filter’ function that will be inserted into
the kernel and used as packet filter function
eBPF file containing a ’xdp’ function that will be inserted into the
kernel and used as XDP packet filter function
#ebpf-filter-file: /etc/suricata/filter.bpf
Xdp mode, "soft" for skb based version, "driver" for network card
based and "hw" for card supporting eBPF.
xdp-mode: driver
xdp-filter-file: /etc/suricata/xdp_filter.bpf
if the ebpf filter implements a bypass function, you can set
’bypass’ to yes and benefit from these feature
bypass: yes
use-mmap: yes
mmap-locked: yes
Use tpacket_v3, capture mode, only active if user-mmap is true
tpacket-v3: yes
ring-size: 200000
block-size: 1048576

Also enable "bypass" in the "stream" section:

stream:
bypass: true

An example of one of the test machines set up also includes (example of a stream.reassembly.deprh):

stream:
memcap: 14gb
checksum-validation: no
bypass: yes
prealloc-sessions: 375000
inline: auto
reassembly:

memcap: 20gb
depth: 1mb
toserver-chunk-size: 2560
toclient-chunk-size: 2560
randomize-chunk-size: yes

9

randomize-chunk-range: 10
raw: yes
segment-prealloc: 200000

and some timeouts like these:

flow-timeouts:

default:
new: 3
established: 30
closed: 0
bypassed: 20
emergency-new: 1
emergency-established: 10
emergency-closed: 0
emergency-bypassed: 5

tcp:
new: 3
established: 30
closed: 1
bypassed: 25
emergency-new: 1
emergency-established: 10
emergency-closed: 0
emergency-bypassed: 5

udp:
new: 3
established: 30
bypassed: 20
emergency-new: 1
emergency-established: 10
emergency-bypassed: 5

icmp:
new: 2
established: 30
bypassed: 20
emergency-new: 1
emergency-established: 10
emergency-bypassed: 5

10

Setup symmetric hashing on the NIC

The Why
RSS is technology initially defined by Microsoft. It does a general load balancing of
network data over multiple cores or CPUs by using IP tuple to calculate a hash value.

The problem from the IDS/IPS perspective is that it needs to see the traffic as the
end client will to do its job correctly. The challenge with RSS is that it RSS has been
made for another purpose for example scaling of large web/filesharing installations and
thus not needing the same "flow" consistency as an IDS/IPS deployment.

As explained clearly in the Suricata documentation:

“ Receive Side Scaling is a technique used by network cards to distribute incoming
traffic over various queues on the NIC. This is meant to improve performance, but it
is important to realize that it was designed for average traffic, not for the IDS packet
capture scenario. RSS using a hash algorithm to distribute the incoming traffic over
the various queues. This hash is normally not symmetrical. This means that when
receiving both sides of flow, each side may end up in a different queue. Sadly, when
deploying Suricata, this is the typical scenario when using span ports or taps. “

In other words in the majority of RSS cases - the hash of

∙ ipsrc=1.1.1.1,ipdst=2.2.2.2,sport=11111,dport=22222

is NOT the same as the hash of

∙ ipsrc=2.2.2.2,ipdst=1.1.1.1,sport=22222,dport=11111

....so not going to the same queue/thread!
It turns out that on specific Intel NICs you can enable symmetric RSS with a low

entropy key. In that case - we could use AF_PACKET with cluster_qm - all packets
linked by network card to a RSS queue are sent to the same socket. This requires at
least Linux 3.14. (FYI - other methods are also available)

Follow these instructions closely for desired result (per interface -in this case eth3):

ifconfig eth3 down

Use and load in tree kernel drivers for the NIC NOTE: In this case the kernel and
sources used is 4.15.2

cd /lib/modules/4.15.2-amd64/kernel/drivers/net/ethernet/intel/ixgbe
rmmod ixgbe && insmod ixgbe.ko MQ=1,1 RSS=0,0 \
InterruptThrottleRate=12500,12500 LRO=0,0 vxlan_rx=0,0

11

http://suricata.readthedocs.io/en/latest/performance/packet-capture.html?highlight=packet%20capture#rss
https://github.com/OISF/suricata/blob/master/suricata.yaml.in#L613

Enable symmetric hashing and set queues on the NIC

ifconfig eth3 down
ethtool -L eth3 combined 14
ethtool -K eth3 rxhash on
ethtool -K eth3 ntuple on
ifconfig eth3 up
./set_irq_affinity 2-15 eth3
ethtool -X eth3 hkey 6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A

equal 14
ethtool -x eth3
ethtool -n eth3

In the above set up you are free to use any recent set_irq_affinity script. It
is available in any Intel x520/710 NIC sources driver download.

Keep in mind that the number of combined must match what’s later used for
set_irq_affinity so if you have 16 queues, pin workers to 16 threads.

We would recommend saving 1-2 cores for each NUMA node for OS and Suricata
threads that do not do packet processing.

NOTE: We use a particular low entropy key for the symmetric hashing. More info
about the research for symmetric hashing set up

AMD
For AMD CPUs system it is recommended (based on our tests) that the general set up
above is followed except for dedicating/pining the Suricata worker threads on different
NUMA node CPUs (lscpu will show you which ones are those) than the one for the
NIC (which is the opposite we do with Intel CPU based systems). This will leverage
the AMD Hypertransport technology for better performance.

For example:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 1
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 23

12

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Model: 1
Model name: AMD EPYC 7401 24-Core Processor
Stepping: 2
CPU MHz: 2000.000
CPU max MHz: 2000.0000
CPU min MHz: 1200.0000
BogoMIPS: 3991.97
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 8192K
NUMA node0 CPU(s): 0-5,24-29
NUMA node1 CPU(s): 6-11,30-35
NUMA node2 CPU(s): 12-17,36-41
NUMA node3 CPU(s): 18-23,42-47

So in the example above if your NIC is on NUMA 0 you would do something like:

∙ enable 6 (or any number up to 12 RSS - you need to experiment to see what is
best for your set up)

∙ pin those interrupts to the CPUs on NUMA 0 (same as the card)

∙ use cpu affinity with Suricata (suricata.yaml) and make sure the af-packet
worker threads are running on anything but NUMA 0

∙ use cluster_flow (af-packet config section in suricata.yaml)

Disable the NIC offloading
for i in rx tx tso ufo gso gro lro tx nocache copy sg txvlan rxvlan; do

/sbin/ethtool -K eth3 $i off 2>&1 > /dev/null;
done

Balance as much as you can
Try to use the network’s card balancing as much as possible(in a script for example you
do/add in):

for proto in tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do
/sbin/ethtool -N eth3 rx-flow-hash $proto sdfn

done

13

IRQ affinity
Make sure you have the irq affinity correct. Example

Check with (example) grep eth2 /proc/interrupts

Start Suricata with XDP
Make sure you have the stats enabled in section eve.json in suricata.yaml:

- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: yes # include delta values

/usr/bin/suricata -c /etc/suricata/xdp-suricata.yaml \
--pidfile /var/run/suricata.pid --af-packet=eth3 -vvv

Confirm you have the XDP filter engaged in the output (example)

(runmode-af-packet.c:220) <Config> (ParseAFPConfig) \
-- Enabling locked memory for mmap on iface eth3
(runmode-af-packet.c:231) <Config> (ParseAFPConfig) \
-- Enabling tpacket v3 capture on iface eth3
(runmode-af-packet.c:326) <Config> (ParseAFPConfig) \
-- Using queue based cluster mode for AF_PACKET (iface eth3)
(runmode-af-packet.c:424) <Info> (ParseAFPConfig) \
-- af-packet will use ’/etc/suricata/xdp_filter.bpf’ as XDP filter file
(runmode-af-packet.c:429) <Config> (ParseAFPConfig) \
-- Using bypass kernel functionality for AF_PACKET (iface eth3)
(runmode-af-packet.c:609) <Config> (ParseAFPConfig) \
-- eth3: enabling zero copy mode by using data release call
(util-runmodes.c:296) <Info> (RunModeSetLiveCaptureWorkersForDevice) \
-- Going to use 8 thread(s)

14

Have a look at the stats to see how are you doing:

sudo tail -F /var/log/suricata/eve.json |grep stats \
|jq ’select(.event_type=="stats")\
|{bypassed: .stats.flow_bypassed, bytes:.stats.decoder.bytes, \
bytes_delta: .stats.decoder.bytes_delta,percent: \
(.stats.flow_bypassed.bytes / .stats.decoder.bytes * 100)}’ -

You can/should see visible difference right away (for example in one of our test
runs about 10%):

{
"bypassed": {

"closed": 3608681,
"closed_delta": 6734,
"pkts": 537177957,
"pkts_delta": 604972,
"bytes": 575615096046,
"bytes_delta": 526741771

},
"bytes": 5278384812258,
"bytes_delta": 3717316268,
"percent": 10.905137016711027

}
{
"bypassed": {

"closed": 3614378,
"closed_delta": 5697,
"pkts": 537888772,
"pkts_delta": 710815,
"bytes": 576283121574,
"bytes_delta": 668025528

},
"bytes": 5281159632142,
"bytes_delta": 2774819884,
"percent": 10.912056474616803

}

Of course depending on the type of traffic - the percentage could be much more.

Pros
∙ XDP provides a serious performance boost for native Linux drivers by introduc-

ing the XDP bypass functionality to Suricata which in turn allows for dealing
with elephant flows much earlier in the critical packet path. Thus offloading
significant work from Suricata and the kernel regarding the capability to bypass

15

flows before Suricata process them - minimizing the perf intensive work needed
to be done.

Caveats
∙ the current Suricata XDP eBPF implementation allows for TCP only flow bypass

∙ other eBPF filters can be done though it requires you to write your filters

Bugs and info
During the testing and research, there were a few bugs/optimizations discovered and
patches submitted by Eric Leblond(@regiteric) regarding the Linux kernel and Peter
Manev(@pevma) concerning Intel NIC. Some further patches (and testing) that helped
were introduced by Jesper Brouer (@netoptimizer) as well.

Bingo bug
Intel NIC interrupts.

One of the most critical bugs as of the moment of writing this article is the IRQs
reset one (on some kernel version/ Intel NIC combo). It seems right after Suricata starts
and the eBPF script code gets injected all interrupts are pinned to CPU0 (and we need
them to be spread - not like that.)

NOTE: In our tests (with the NICs specified at the beginning of the article) it
showed it affected kernel 4.13.10 and possibly 4.14.x/4.15RC. With kernel
4.15.x(4.15.2) we had no problem.

You can quickly check if the interrupts are spread correctly (or pinned to CPU0)
after Suricata starts with - grep eth2 /proc/interrupts (see section IRQ
affinity above). It is recommended you do that check on a per kernel/NIC driver
upgrade.

Current bingo fix
The fix (if you are not on 4.15.2 and above) would be to remap the interrupts right
after Suricata starts (using set_irq_affinity script as explained above). As of
the moment there is no definitive solution devised yet by Intel.

XDP bypass with cpumap to the rescue (if needed)
To counter the problem above (and the case of no symmetric RSS availability) in a
more permanent basis - the xdp_cpumap concept code was ported and introduced
into Suricata by Eric Leblond in January 2018. The xdp_cpumap is a recent Linux
kernel xdp feature that (among other things) enables redirection XDP frames to remote
CPUs (page 13) without breaking the flow.

16

https://github.com/OISF/suricata/tree/master/ebpf
https://www.spinics.net/lists/xdp-newbies/msg00452.html
http://vger.kernel.org/netconf2017_files/XDP_devel_update_NetConf2017_Seoul.pdf
http://vger.kernel.org/netconf2017_files/XDP_devel_update_NetConf2017_Seoul.pdf

How to use it
In case of no RSS symmetric hashing available you can try xdp_cpumap Make sure
you are sitting on Linux kernel 4.15.+

To make use of the xdp_cpumap functionality, you would need to:

∙ use xdp-cpu-redirect: [xx-xx] (af_packet section of suriata.yaml)

∙ use cluster-type: cluster_cpu (af_packet section of suriata.yaml)

∙ make sure you pin all interrupts of the NIC to one CPU (make sure it is on the
same NUMA as on the NIC)

∙ have CPU affinity enabled and used on the cores of the appropriate NUMA node
wise for the NIC location cores.

Example:

Suricata is multi-threaded. Here the threading can be influenced.
threading:
set-cpu-affinity: yes
Tune cpu affinity of threads. Each family of threads can be bound
on specific CPUs.
#
These 2 apply to the all runmodes:
management-cpu-set is used for flow timeout handling, counters
worker-cpu-set is used for ’worker’ threads
#
Additionally, for autofp these apply:
receive-cpu-set is used for capture threads
verdict-cpu-set is used for IPS verdict threads
#
cpu-affinity:

- management-cpu-set:
cpu: ["all"] # include only these cpus in affinity settings
prio:

default: "low"
- receive-cpu-set:

cpu: [2-11] # include only these cpus in affinity settings
- worker-cpu-set:

#
cpu: ["2-11"]
mode: "exclusive"
Use explicitely 3 threads and don’t compute number by using
detect-thread-ratio variable:
threads: 3
prio:

default: "high"

17

http://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html?highlight=xdp-cpu-redirect#the-xdp-cpu-redirect-case

#- verdict-cpu-set:
cpu: [0]
prio:
default: "high"

Tools
Some nifty tools used during the research:

∙ Use nstat to get a quick overview of kernel network stats (thanks to @netop-
timizer)

nstat > /dev/null && sleep 1 && nstat

∙ Use mpstat to get an overview of CPU usage and IRQ load per CPU. This
command will print the summary every 2 sec.

mpstat -P ALL -u -I SCPU -I SUM 2

To fix mpstat colors in a white-background terminal:
export S_COLORS_SGR=’H=31;1:I=35;22:M=34;1:N=34;1:Z=32;22’

∙ smp_affinity_list

grep -H . /proc/irq/*/eth*/../smp_affinity_list

∙ top

top -H -p ‘pidof suricata‘

∙ very useful NIC stats tool (thanks to @netoptimizer again)

https://github.com/netoptimizer/network-testing/blob/master/bin/ethtool_stats.pl

∙ pidstat (thanks to @netoptimizer again)

pidstat -u -t 2
pidstat -w 2

∙ strace

strace -c your_comand_here

∙ perf top/stats - what would you do without those :)

perf stat -e ’syscalls:sys_enter_*’ \
-p 2894 -a sleep 7200 &> suri.syscalls.logs

perf top -C 0
....

18

Chapter 3

The Meltdown and Spectre

As we were finalizing our tests and experiments Suricata and XDP bypass - the big
Meltdown happened.

The security vulnerability was patched, but there is widespread expectation that
the patch itself is going to hurt the syscall performance on any Linux system. The
performance hit expectation is between 5-25% depending on the specific application
usage. We were curious about what the impact on those might be regarding Suricata
and the latest XDP code additions - hence we did some measurements.

In the case of Suricata there are two types of measurements that we did:

∙ running on live traffic

∙ reading pcaps

The first challenge with measurements while Suricata is running live is that its per-
formance depends on that actual amount and type of traffic - which has some expected
deviations even if you make consecutive/repetitive measurements.

The second challenge is that the measurement tools themselves introduce perfor-
mance overhead so we can not exclusively concentrate on performance only - but rather
to see if there is any apparent and appalling deviation in terms of syscalls.

We did some benchmarking that is documented below.
NOTE: Suricata used to do the test run was compiled with debugging symbols en-

abled. That plus the usage of strace can have performance impact alone. So we are
not interested in how fast it completed but rather than if there is any bigger deviations
between the patched and unpatched kernels in terms of syscalls (duration/occurrence).

Strace overhead is explained here (section - perf vs strace)
Suricata version used in both pre and post patched kernel:

root@suricata:/home/pevman/tests/kernel# suricata --build-info
This is Suricata version 4.1.0-dev (rev f815027)
Features: PCAP_SET_BUFF PF_RING AF_PACKET HAVE_PACKET_FANOUT
LIBCAP_NG LIBNET1.1 HAVE_HTP_URI_NORMALIZE_HOOK PCRE_JIT HAVE_NSS
HAVE_LUA HAVE_LUAJIT HAVE_LIBJANSSON TLS MAGIC RUST

19

https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
http://www.brendangregg.com/perf.html

SIMD support: SSE_4_2 SSE_4_1 SSE_3
Atomic intrisics: 1 2 4 8 16 byte(s)
64-bits, Little-endian architecture
GCC version 4.2.1 Compatible Clang 3.8.0 (tags/RELEASE_380/final),
C version 199901
compiled with _FORTIFY_SOURCE=0
L1 cache line size (CLS)=64
thread local storage method: __thread
compiled with LibHTP v0.5.25, linked against LibHTP v0.5.25

Suricata Configuration:
AF_PACKET support: yes
eBPF support: yes
XDP support: yes
PF_RING support: yes
NFQueue support: no
NFLOG support: no
IPFW support: no
Netmap support: no
DAG enabled: no
Napatech enabled: no

Unix socket enabled: yes
Detection enabled: yes

Libmagic support: yes
libnss support: yes
libnspr support: yes
libjansson support: yes
liblzma support: yes
hiredis support: no
hiredis async with libevent: no
Prelude support: no
PCRE jit: yes
LUA support: yes, through luajit
libluajit: yes
libgeoip: yes
Non-bundled htp: no
Old barnyard2 support: no
Hyperscan support: yes
Libnet support: yes

Rust support (experimental): yes
Experimental Rust parsers: no
Rust strict mode: yes
Rust debug mode: no

20

Suricatasc install: yes

Profiling enabled: no
Profiling locks enabled: no

Development settings:
Coccinelle / spatch: yes
Unit tests enabled: no
Debug output enabled: no
Debug validation enabled: no

Generic build parameters:
Installation prefix: /usr/local
Configuration directory: /usr/local/etc/suricata/
Log directory: /usr/local/var/log/suricata/

--prefix /usr/local
--sysconfdir /usr/local/etc
--localstatedir /usr/local/var

Host: x86_64-pc-linux-gnu
Compiler: clang-3.8 (exec name) / clang (real)
GCC Protect enabled: no
GCC march native enabled: yes
GCC Profile enabled: no
Position Independent Executable enabled: no
CFLAGS -ggdb -O0 -march=native
-I${srcdir}/../rust/gen/c-headers
PCAP_CFLAGS -I/usr/include
SECCFLAGS

Unpatched kernel - reading pcaps
root@suricata:/home/pevman/tests/kernel# uname -a

Linux suricata 4.13.10-amd64 #1 SMP Mon Oct 30 23:01:00 CET 2017 x86_64
x86_64 x86_64 GNU/Linux

pcap run 1
Using:

∙ 160GB pcap live ISP capture

∙ 30k ETPro rules

21

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/bigtest.pcap --runmode=autofp \
&> strace-bigpcap-run-1

Output:

[12087] 9/2/2018 -- 00:53:10 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[12087] 9/2/2018 -- 00:53:10 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[12087] 9/2/2018 -- 00:54:04 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[12087] 9/2/2018 -- 01:21:25 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[12102] 9/2/2018 -- 01:21:33 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 200000296 packets, 168537016723 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
99.92 699.882916 3433 203893 nanosleep
0.07 0.519546 4 140138 158 futex
0.00 0.011924 23 512 munmap
0.00 0.006752 614 11 madvise
0.00 0.005745 1 5423 brk
0.00 0.000887 2 589 mmap
0.00 0.000765 0 4865 2 read
0.00 0.000456 5 100 mprotect
0.00 0.000320 5 69 open
0.00 0.000225 7 34 34 access
0.00 0.000194 3 69 close
0.00 0.000169 3 60 fstat
0.00 0.000150 5 32 clone
0.00 0.000047 1 74 write
0.00 0.000005 5 1 arch_prctl
0.00 0.000003 3 1 bind
0.00 0.000003 2 2 unlink
0.00 0.000001 0 22 2 stat
0.00 0.000000 0 3 lseek
0.00 0.000000 0 10 rt_sigaction
0.00 0.000000 0 3 rt_sigprocmask
0.00 0.000000 0 2 2 ioctl
0.00 0.000000 0 1 socket
0.00 0.000000 0 1 listen
0.00 0.000000 0 1 setsockopt
0.00 0.000000 0 1 execve
0.00 0.000000 0 1 uname
0.00 0.000000 0 6 getdents
0.00 0.000000 0 14 14 mkdir
0.00 0.000000 0 1 chmod
0.00 0.000000 0 2 getrlimit

22

0.00 0.000000 0 2 sysinfo
0.00 0.000000 0 3 prctl
0.00 0.000000 0 1 setrlimit
0.00 0.000000 0 74 gettid
0.00 0.000000 0 1 set_tid_address
0.00 0.000000 0 1 set_robust_list

------ ----------- ----------- --------- --------- ----------------
100.00 700.430108 356023 212 total

pcap run 2
Using:

∙ 160GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above. The purpose of this second identical run is
to show us if there are some small deviations and where to expect those so that we can
have that in mind when we do the runs over the patched kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/bigtest.pcap --runmode=autofp \
&> strace-bigpcap-run-2

Output:

[13707] 9/2/2018 -- 01:21:35 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[13707] 9/2/2018 -- 01:21:35 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[13707] 9/2/2018 -- 01:22:21 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[13707] 9/2/2018 -- 01:50:03 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[13761] 9/2/2018 -- 01:50:10 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 200000296 packets, 168537016723 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
99.92 646.074279 3032 213119 nanosleep
0.07 0.477696 3 139208 203 futex
0.00 0.014877 30 495 munmap
0.00 0.008516 2 5423 brk
0.00 0.003147 629 5 madvise
0.00 0.001597 3 589 mmap
0.00 0.001145 17 69 open
0.00 0.001144 0 4865 2 read
0.00 0.000589 6 100 mprotect
0.00 0.000273 5 60 fstat
0.00 0.000252 3 74 write

23

0.00 0.000249 4 69 close
0.00 0.000230 7 34 34 access
0.00 0.000177 6 32 clone
0.00 0.000085 4 22 2 stat
0.00 0.000068 5 14 14 mkdir
0.00 0.000042 7 6 getdents
0.00 0.000028 3 10 rt_sigaction
0.00 0.000022 0 74 gettid
0.00 0.000013 4 3 rt_sigprocmask
0.00 0.000012 4 3 lseek
0.00 0.000012 6 2 getrlimit
0.00 0.000009 5 2 2 ioctl
0.00 0.000007 7 1 execve
0.00 0.000005 3 2 sysinfo
0.00 0.000005 2 3 prctl
0.00 0.000004 2 2 unlink
0.00 0.000004 4 1 arch_prctl
0.00 0.000004 4 1 set_tid_address
0.00 0.000004 4 1 set_robust_list
0.00 0.000002 2 1 socket
0.00 0.000002 2 1 bind
0.00 0.000002 2 1 uname
0.00 0.000001 1 1 setsockopt
0.00 0.000001 1 1 chmod
0.00 0.000000 0 1 listen
0.00 0.000000 0 1 setrlimit

------ ----------- ----------- --------- --------- ----------------
100.00 646.584503 364296 257 total

pcap run 3
Using:

∙ 8.1GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above but on a different size pcap. The purpose of
this second run is to show us if there are some small deviations and where to expect
those so that we can have that in mind when we do the runs over the patched kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/test.pcap --runmode=autofp \
&> strace-smallpcap-run-1

24

Output:

[11774] 9/2/2018 -- 00:49:16 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[11774] 9/2/2018 -- 00:49:16 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[11774] 9/2/2018 -- 00:50:10 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[11774] 9/2/2018 -- 00:51:21 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[11836] 9/2/2018 -- 00:51:25 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 10000000 packets, 8448336975 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
98.10 33.157150 836 39663 nanosleep
1.13 0.381366 5 78731 51 futex
0.63 0.212663 9667 22 2 stat
0.06 0.020189 3 6122 brk
0.02 0.007494 3747 2 unlink
0.02 0.006948 14 500 munmap
0.02 0.006781 1 4865 2 read
0.01 0.002132 355 6 madvise
0.00 0.001489 3 589 mmap
0.00 0.000943 14 69 open
0.00 0.000427 13 32 clone
0.00 0.000333 3 100 mprotect
0.00 0.000220 4 60 fstat
0.00 0.000158 2 69 close
0.00 0.000142 4 34 34 access
0.00 0.000110 1 74 write
0.00 0.000077 1 74 gettid
0.00 0.000021 21 1 setsockopt
0.00 0.000017 2 10 rt_sigaction
0.00 0.000013 13 1 chmod
0.00 0.000011 2 6 getdents
0.00 0.000010 5 2 2 ioctl
0.00 0.000009 9 1 bind
0.00 0.000006 2 3 prctl
0.00 0.000003 1 3 lseek
0.00 0.000003 1 3 rt_sigprocmask
0.00 0.000002 2 1 socket
0.00 0.000002 2 1 listen
0.00 0.000002 2 1 arch_prctl
0.00 0.000001 1 2 getrlimit
0.00 0.000001 1 1 set_tid_address
0.00 0.000001 1 1 set_robust_list
0.00 0.000000 0 1 execve
0.00 0.000000 0 1 uname
0.00 0.000000 0 14 14 mkdir
0.00 0.000000 0 2 sysinfo
0.00 0.000000 0 1 setrlimit

25

------ ----------- ----------- --------- --------- ----------------
100.00 33.798724 131068 105 total

pcap run 4
Using:

∙ 8.1GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above. The purpose of this second identical run is
to show us if there are some small deviations and where to expect those so that we can
have that in mind when we do the runs over the patched kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/test.pcap --runmode=autofp \
&> strace-smallpcap-run-2

Output:

[11936] 9/2/2018 -- 00:51:27 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[11936] 9/2/2018 -- 00:51:27 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[11936] 9/2/2018 -- 00:52:17 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[11936] 9/2/2018 -- 00:53:04 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[11990] 9/2/2018 -- 00:53:08 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 10000000 packets, 8448336975 bytes

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
98.75 28.964359 823 35195 nanosleep
1.15 0.336672 4 79472 76 futex
0.05 0.013790 2 6011 brk
0.02 0.007125 14 507 munmap
0.02 0.005256 876 6 madvise
0.00 0.001043 2 589 mmap
0.00 0.000760 0 4865 2 read
0.00 0.000349 5 69 open
0.00 0.000342 3 100 mprotect
0.00 0.000211 7 32 clone
0.00 0.000173 3 69 close
0.00 0.000142 2 60 fstat
0.00 0.000141 4 34 34 access
0.00 0.000066 5 14 14 mkdir
0.00 0.000058 1 74 write
0.00 0.000037 2 22 2 stat

26

0.00 0.000015 0 74 gettid
0.00 0.000011 2 6 getdents
0.00 0.000011 6 2 sysinfo
0.00 0.000008 3 3 lseek
0.00 0.000006 2 3 prctl
0.00 0.000005 5 1 arch_prctl
0.00 0.000003 3 1 uname
0.00 0.000003 2 2 getrlimit
0.00 0.000003 3 1 setrlimit
0.00 0.000002 1 2 2 ioctl
0.00 0.000000 0 10 rt_sigaction
0.00 0.000000 0 3 rt_sigprocmask
0.00 0.000000 0 1 socket
0.00 0.000000 0 1 bind
0.00 0.000000 0 1 listen
0.00 0.000000 0 1 setsockopt
0.00 0.000000 0 1 execve
0.00 0.000000 0 2 unlink
0.00 0.000000 0 1 chmod
0.00 0.000000 0 1 set_tid_address
0.00 0.000000 0 1 set_robust_list

------ ----------- ----------- --------- --------- ----------------
100.00 29.330591 127237 130 total

Unpatched kernel - running live
Using: - 30k ETPro rules

We measured Suricata running live process for 2 hours 3 different sample times
during a 24 hr period.

Command:

perf stat -e ’syscalls:sys_enter_*’ \
-p 2894 -a sleep 7200 &> suri.syscalls-1

Output:

root@suricata:/home/pevman/tests/meltdown/prepatched-kernel#
cat suri.syscalls-1 |grep -v ’ 0 ’|grep syscalls | sort -rn

151,125,258 syscalls:sys_enter_write
67,712,628 syscalls:sys_enter_futex
51,441,437 syscalls:sys_enter_poll

709,513 syscalls:sys_enter_nanosleep
118,331 syscalls:sys_enter_getsockopt
35,813 syscalls:sys_enter_select
12,595 syscalls:sys_enter_mprotect

905 syscalls:sys_enter_munmap

27

457 syscalls:sys_enter_mmap
42 syscalls:sys_enter_madvise
12 syscalls:sys_enter_mkdir
2 syscalls:sys_enter_open
2 syscalls:sys_enter_newfstat
2 syscalls:sys_enter_lseek
2 syscalls:sys_enter_close

root@suricata:/home/pevman/tests/meltdown/prepatched-kernel#
cat suri.syscalls-2 |grep -v ’ 0 ’|grep syscalls | sort -rn

118,638,811 syscalls:sys_enter_write
75,667,793 syscalls:sys_enter_futex
33,108,479 syscalls:sys_enter_poll

707,233 syscalls:sys_enter_nanosleep
246,737 syscalls:sys_enter_mprotect
74,174 syscalls:sys_enter_getsockopt
35,810 syscalls:sys_enter_select
6,272 syscalls:sys_enter_munmap
3,298 syscalls:sys_enter_mmap

119 syscalls:sys_enter_madvise
92 syscalls:sys_enter_brk
12 syscalls:sys_enter_mkdir
4 syscalls:sys_enter_gettid
2 syscalls:sys_enter_open
2 syscalls:sys_enter_newfstat
2 syscalls:sys_enter_lseek
2 syscalls:sys_enter_getrandom
2 syscalls:sys_enter_close

root@suricata:/home/pevman/tests/meltdown/prepatched-kernel#
cat suri.syscalls-3 |grep -v ’ 0 ’|grep syscalls | sort -rn

64,659,097 syscalls:sys_enter_write
53,363,829 syscalls:sys_enter_poll
42,849,286 syscalls:sys_enter_futex

709,535 syscalls:sys_enter_nanosleep
120,551 syscalls:sys_enter_getsockopt
35,814 syscalls:sys_enter_select
2,676 syscalls:sys_enter_munmap
1,472 syscalls:sys_enter_mprotect
1,344 syscalls:sys_enter_mmap

52 syscalls:sys_enter_madvise
12 syscalls:sys_enter_mkdir
2 syscalls:sys_enter_open
2 syscalls:sys_enter_newfstat
2 syscalls:sys_enter_lseek
2 syscalls:sys_enter_getrandom

28

2 syscalls:sys_enter_close

Patched kernel - reading pcaps
root@suricata:~# uname -a

Linux suricata 4.15.2-amd64 #1 SMP Thu Feb 8 23:36:33 CET 2018 x86_64 x86_64
x86_64 GNU/Linux

pcap run 1
Using:

∙ 160GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above. The purpose of this second identical run is
to show us if there are some small deviations and where to expect those so that we can
have that in mind when we do the runs over the patched kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/bigtest.pcap --runmode=autofp \
&> strace-bigpcap-run-2

Output:

[5053] 9/2/2018 -- 11:07:24 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[5053] 9/2/2018 -- 11:07:24 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[5053] 9/2/2018 -- 11:08:05 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[5053] 9/2/2018 -- 11:35:21 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[5076] 9/2/2018 -- 11:35:30 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 200000296 packets, 168537016723 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
99.90 749.382002 3641 205839 nanosleep
0.10 0.731366 5 143718 113 futex
0.00 0.006696 14 495 munmap
0.00 0.006093 1 5423 brk
0.00 0.002849 407 7 madvise
0.00 0.000695 0 4865 2 read
0.00 0.000531 1 589 mmap
0.00 0.000288 3 100 mprotect
0.00 0.000208 7 32 clone
0.00 0.000173 2 74 write
0.00 0.000161 2 69 open

29

0.00 0.000101 3 34 34 access
0.00 0.000093 2 60 fstat
0.00 0.000090 1 69 close
0.00 0.000021 1 22 2 stat
0.00 0.000008 4 2 unlink
0.00 0.000008 0 74 gettid
0.00 0.000005 1 10 rt_sigaction
0.00 0.000005 2 3 rt_sigprocmask
0.00 0.000005 5 1 bind
0.00 0.000003 3 1 socket
0.00 0.000003 1 3 prctl
0.00 0.000003 3 1 arch_prctl
0.00 0.000002 1 3 lseek
0.00 0.000002 1 2 2 ioctl
0.00 0.000002 1 2 getrlimit
0.00 0.000002 1 2 sysinfo
0.00 0.000002 2 1 set_tid_address
0.00 0.000001 1 1 listen
0.00 0.000001 1 1 setsockopt
0.00 0.000001 1 1 chmod
0.00 0.000001 1 1 setrlimit
0.00 0.000001 1 1 set_robust_list
0.00 0.000000 0 1 execve
0.00 0.000000 0 1 uname
0.00 0.000000 0 6 getdents
0.00 0.000000 0 14 14 mkdir

------ ----------- ----------- --------- --------- ----------------
100.00 750.131422 361528 167 total

pcap run 2
Using:

∙ 160GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above. The purpose of this second identical run is
to show us if there are some small deviations and where to expect those so that we can
have that in mind when we do the runs over the patched kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/bigtest.pcap --runmode=autofp \
&> strace-bigpcap-run-2

30

Output:

[6948] 9/2/2018 -- 11:35:32 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[6948] 9/2/2018 -- 11:35:32 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[6948] 9/2/2018 -- 11:36:22 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[6948] 9/2/2018 -- 12:03:36 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[7005] 9/2/2018 -- 12:03:45 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 200000296 packets, 168537016723 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
99.91 751.687483 3661 205336 nanosleep
0.09 0.680834 5 143158 87 futex
0.00 0.009765 20 498 munmap
0.00 0.006480 1 5423 brk
0.00 0.001268 2 589 mmap
0.00 0.000921 0 4865 2 read
0.00 0.000741 93 8 madvise
0.00 0.000501 7 69 open
0.00 0.000444 4 100 mprotect
0.00 0.000217 3 74 write
0.00 0.000217 7 32 clone
0.00 0.000163 5 34 34 access
0.00 0.000162 3 60 fstat
0.00 0.000139 2 69 close
0.00 0.000043 2 22 2 stat
0.00 0.000017 6 3 prctl
0.00 0.000013 1 10 rt_sigaction
0.00 0.000010 5 2 getrlimit
0.00 0.000008 4 2 unlink
0.00 0.000007 2 3 rt_sigprocmask
0.00 0.000006 3 2 2 ioctl
0.00 0.000006 6 1 bind
0.00 0.000006 6 1 setrlimit
0.00 0.000006 0 74 gettid
0.00 0.000004 1 3 lseek
0.00 0.000003 2 2 sysinfo
0.00 0.000003 3 1 arch_prctl
0.00 0.000003 3 1 set_tid_address
0.00 0.000003 3 1 set_robust_list
0.00 0.000002 2 1 socket
0.00 0.000002 2 1 chmod
0.00 0.000001 1 1 listen
0.00 0.000001 1 1 setsockopt
0.00 0.000001 1 1 uname
0.00 0.000000 0 1 execve
0.00 0.000000 0 6 getdents
0.00 0.000000 0 14 14 mkdir

31

------ ----------- ----------- --------- --------- ----------------
100.00 752.389480 360469 141 total

pcap run 3
Using:

∙ 8.1GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above but on different pcap size. The purpose of
this second identical run is to show us if there are some small deviations and where to
expect those so that we can have that in mind when we do the runs over the patched
kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/test.pcap --runmode=autofp \
&> strace-smallpcap-run-1

Output:

[4680] 9/2/2018 -- 11:03:33 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[4680] 9/2/2018 -- 11:03:33 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[4680] 9/2/2018 -- 11:04:24 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.
[4680] 9/2/2018 -- 11:05:35 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[4739] 9/2/2018 -- 11:05:43 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 10000000 packets, 8448336975 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
94.55 35.217995 722 48761 nanosleep
5.19 1.934846 24 81204 80 futex
0.18 0.065717 2987 22 2 stat
0.03 0.009975 4988 2 unlink
0.02 0.008279 1 5932 brk
0.02 0.005664 11 502 munmap
0.01 0.002228 557 4 madvise
0.00 0.001004 0 4865 2 read
0.00 0.000830 1 589 mmap
0.00 0.000546 7 74 write
0.00 0.000415 13 32 clone
0.00 0.000270 4 74 gettid
0.00 0.000170 2 100 mprotect
0.00 0.000130 2 69 open
0.00 0.000074 7 10 rt_sigaction
0.00 0.000070 1 60 fstat

32

0.00 0.000033 33 1 socket
0.00 0.000029 10 3 rt_sigprocmask
0.00 0.000026 0 69 close
0.00 0.000020 3 6 getdents
0.00 0.000012 6 2 2 ioctl
0.00 0.000008 3 3 lseek
0.00 0.000006 6 1 bind
0.00 0.000006 2 3 prctl
0.00 0.000005 5 1 chmod
0.00 0.000004 2 2 getrlimit
0.00 0.000003 3 1 setsockopt
0.00 0.000003 3 1 set_tid_address
0.00 0.000003 3 1 set_robust_list
0.00 0.000001 1 1 listen
0.00 0.000000 0 34 34 access
0.00 0.000000 0 1 execve
0.00 0.000000 0 1 uname
0.00 0.000000 0 14 14 mkdir
0.00 0.000000 0 2 sysinfo
0.00 0.000000 0 1 arch_prctl
0.00 0.000000 0 1 setrlimit

------ ----------- ----------- --------- --------- ----------------
100.00 37.248372 142449 134 total

pcap run 4
Using:

∙ 8.1GB pcap live ISP capture

∙ 30k ETPro rules

NOTE: This is the same run as above. The purpose of this second identical run is
to show us if there are some small deviations and where to expect those so that we can
have that in mind when we do the runs over the patched kernel.

Command:

strace -c /usr/local/bin/suricata -c /etc/suricata/suricata.yaml \
--pidfile /var/run/suricata.pid -l /tmplog/ -k none \
-r /var/log/suricata/pcap/test.pcap --runmode=autofp \
&> strace-smallpcap-run-2

Output:

[4855] 9/2/2018 -- 11:05:45 - (conf-yaml-loader.c:265) <Info> (ConfYamlParse) -- Configuration node ’filename’ redefined.
[4855] 9/2/2018 -- 11:05:45 - (suricata.c:1073) <Notice> (LogVersion) -- This is Suricata version 4.1.0-dev (rev f815027)
[4855] 9/2/2018 -- 11:06:39 - (tm-threads.c:2172) <Notice> (TmThreadWaitOnThreadInit) -- all 25 packet processing threads, 6 management threads initialized, engine started.

33

[4855] 9/2/2018 -- 11:07:17 - (suricata.c:2716) <Notice> (SuricataMainLoop) -- Signal Received. Stopping engine.
[4918] 9/2/2018 -- 11:07:23 - (source-pcap-file.c:354) <Notice> (ReceivePcapFileThreadExitStats) -- Pcap-file module read 1 files, 10000000 packets, 8448336975 bytes
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
98.33 26.938375 667 40380 nanosleep
1.59 0.435495 5 81020 170 futex
0.04 0.010092 2 5923 brk
0.02 0.005007 10 507 munmap
0.02 0.004506 644 7 madvise
0.00 0.000815 1 589 mmap
0.00 0.000676 0 4865 2 read
0.00 0.000287 9 32 clone
0.00 0.000284 3 100 mprotect
0.00 0.000189 3 74 write
0.00 0.000083 1 69 open
0.00 0.000068 1 74 gettid
0.00 0.000058 1 69 close
0.00 0.000055 1 60 fstat
0.00 0.000044 1 34 34 access
0.00 0.000025 3 10 rt_sigaction
0.00 0.000018 6 3 rt_sigprocmask
0.00 0.000016 1 22 2 stat
0.00 0.000012 2 6 getdents
0.00 0.000009 9 1 listen
0.00 0.000007 2 3 lseek
0.00 0.000006 3 2 2 ioctl
0.00 0.000005 3 2 unlink
0.00 0.000005 2 3 prctl
0.00 0.000004 2 2 getrlimit
0.00 0.000004 4 1 arch_prctl
0.00 0.000003 3 1 socket
0.00 0.000003 3 1 bind
0.00 0.000003 3 1 set_tid_address
0.00 0.000003 3 1 set_robust_list
0.00 0.000001 1 1 chmod
0.00 0.000000 0 1 setsockopt
0.00 0.000000 0 1 execve
0.00 0.000000 0 1 uname
0.00 0.000000 0 14 14 mkdir
0.00 0.000000 0 2 sysinfo
0.00 0.000000 0 1 setrlimit

------ ----------- ----------- --------- --------- ----------------
100.00 27.396158 133883 224 total

34

Patched kernel - running live
Using: - 30k ETPro rules

We measured Suricata running live process for 2 hours 3 different sample times
during a 24 hr period this time on patched kernel.

Command:

perf stat -e ’syscalls:sys_enter_*’ \
-p 6732 -a sleep 7200 &> suri.syscalls-1

Output:

root@suricata:/home/pevman/tests/meltdown/postpatched-kernel#
cat suri.syscalls-1 |grep -v ’ 0 ’|grep syscalls | sort -rn

84,924,210 syscalls:sys_enter_bpf
68,532,207 syscalls:sys_enter_write
49,748,847 syscalls:sys_enter_poll
31,703,441 syscalls:sys_enter_futex
1,405,306 syscalls:sys_enter_nanosleep

114,988 syscalls:sys_enter_getsockopt
90,183 syscalls:sys_enter_mprotect
35,945 syscalls:sys_enter_select
11,136 syscalls:sys_enter_getdents
5,571 syscalls:sys_enter_open
5,571 syscalls:sys_enter_close
5,570 syscalls:sys_enter_newfstat

12 syscalls:sys_enter_mkdir
5 syscalls:sys_enter_mmap
3 syscalls:sys_enter_munmap
3 syscalls:sys_enter_getrandom
2 syscalls:sys_enter_madvise
2 syscalls:sys_enter_lseek
1 syscalls:sys_enter_read

root@suricata:/home/pevman/tests/meltdown/postpatched-kernel#
cat suri.syscalls-2 |grep -v ’ 0 ’|grep syscalls | sort -rn

80,899,986 syscalls:sys_enter_bpf
56,413,573 syscalls:sys_enter_write
52,876,878 syscalls:sys_enter_poll
26,021,319 syscalls:sys_enter_futex
1,403,290 syscalls:sys_enter_nanosleep

114,841 syscalls:sys_enter_getsockopt
35,941 syscalls:sys_enter_select
11,120 syscalls:sys_enter_getdents
5,562 syscalls:sys_enter_open
5,562 syscalls:sys_enter_newfstat
5,562 syscalls:sys_enter_close

35

887 syscalls:sys_enter_mprotect
12 syscalls:sys_enter_mkdir
2 syscalls:sys_enter_lseek

root@suricata:/home/pevman/tests/meltdown/postpatched-kernel#
cat suri.syscalls-3 |grep -v ’ 0 ’|grep syscalls | sort -rn

75,524,061 syscalls:sys_enter_bpf
50,218,601 syscalls:sys_enter_write
48,793,033 syscalls:sys_enter_poll
26,645,822 syscalls:sys_enter_futex
1,403,810 syscalls:sys_enter_nanosleep

113,632 syscalls:sys_enter_getsockopt
35,942 syscalls:sys_enter_select
11,130 syscalls:sys_enter_getdents
5,567 syscalls:sys_enter_open
5,567 syscalls:sys_enter_newfstat
5,567 syscalls:sys_enter_close

131 syscalls:sys_enter_mprotect
12 syscalls:sys_enter_mkdir
3 syscalls:sys_enter_munmap
2 syscalls:sys_enter_mmap
2 syscalls:sys_enter_lseek
2 syscalls:sys_enter_getrandom

Observations
In the results above with regards to strace we have in the first case running Suri-
cata in regular af-packet mode with cluster-type: cluster_flow and
the second run (with the patched kernel) we have Suricata running with XDP and
af-packet cluster-type: cluster_qm. It was evident with the usage of
syscalls:sys_enter_bpf.

Overall there is no definitive observation of any performance penalty (especially in
the range of additional 5-25% CPU usage) with our set up from the tests done. There
is also no observation of any adverse impact of general performance of Suricata with
regards to packet drops/memcap hits or higher CPU usage.

Those observations have been confirmed in production at Mozilla. We have been
running Meltdown patched kernel from the day of release, and we saw no noticeable
performance degradation.

Technical details
The Meltdown mitigation (it does not solve the problem, it makes it impossible to abuse
it) is KPTI (for Linux) and KvaShadow (for Windows). What this mitigation does is it
removes most of the kernel mappings from the userspace (userspace mappings in the

36

kernel page tables are still there).
Now that most of those mappings are gone, every system call needs a full or partial

page table reload, flushing some or all data from the TLB (and some or all data from
the instruction TLB, which is separate).

For amortizing the cost impact, it would be possible to use PCID (process context
identifier) for CPUs that have it. Thought initially as a performance optimization for
the VMEXIT case, when hypervisor was switching between virtual machines (thus
trashing the TLB frequently) can now be reused for the userspace -> kernel space
switches.

While PCID is present on Intel platforms from Sandy Bridge up, only from Haswell
up, they have INVPCID that can precisely remove individual entries from the TLB,
instead of flushing the whole thing.

With PCID+INVPCID the performance impact of KPTI should not be noticeable.
You want to run Haswell if you can.

As far as other mitigations go - IBRS + IBPB might have a noticeable performance
impact on everything pre-Skylake. We didn’t test it because no stable CPU microcode
was available.

Given all these and what we know about those attacks, one might wonder...

Should I be worried?
In which we walk our readers through a beautiful world of risk management.

Microsoft released a wonderful example of risk management related to those vul-
nerabilities

We highly recommend to read it and take a while to think about scenarios here.
The NSM sensor, by design, should be on an isolated host that does not expose any

interfaces but the bare minimum. Logs should be shipped out, the only service should
be SSH (from something like a bastion host), with MFA. No unnecessary services
should be running.

Should our reader be worried about highly scientific and unlikely attacks that re-
quire for the threat actor to be on the same host? Are there other ways the threat actor
can accomplish what they want if they already have a local shell?

The Linux local privilege escalation history looks exploitable nonetheless and as
such it is safe to assume there are many, much more comfortable, ways to escalate
local privileges than using Meltdown and Spectre attacks on a local host.

But you recommend using eBPF which was used in a
Spectre PoC
Yes, we do. A careful reader will see that using eBPF was merely optimization the re-
searches did and they had several other methods to find gadgets to abuse in the Spectre
PoC. They just brought gadgets with them, in the form of a short eBPF program, to
prove the point.

37

https://support.microsoft.com/en-us/help/4073225/guidance-protect-sql-server-against-spectre-meltdown
https://support.microsoft.com/en-us/help/4073225/guidance-protect-sql-server-against-spectre-meltdown

The eBPF code has been significantly hardened. The method researchers used to
bypass verification (by calling a function that didn’t verify the provided eBPF code)
has been removed. JIT constant blinding is all over the place.

BTW, KVM broke the PoC in 5 seconds by clearing registers on VMEXIT :)
While there are for sure other vulnerabilities in the eBPF JIT, we would recommend

doing a risk assessment of how likely it those would be used.

38

Chapter 4

Further reading

XDP:
[1] http://people.netfilter.org/hawk/presentations/LLC2017/XDP_DDoS_protecting_

LLC2017.pdf
[2] http://people.netfilter.org/hawk/presentations/driving-IT2017/driving-IT-2017_

XDP_eBPF_technology_Jesper_Brouer.pdf
[3] https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_

xdp_tx.html
[4] http://people.netfilter.org/hawk/presentations/NetConf2017_Seoul/XDP_devel_

update_NetConf2017_Seoul.pdf
[5] https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
[6] https://www.iovisor.org/technology/xdp
[7] https://people.netfilter.org/hawk/presentations/NetDev2.2_2017/XDP_for_the_

Rest_of_Us_Part_2.pdf

Netronome white papers
[8] https://open-nfp.org/dataplanes-ebpf/technical-papers/

symRSS:
[9] http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
[10] http://www.ran-lifshitz.com/2014/08/28/symmetric-rss-receive-side-scaling/
[11] https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/

intel-ethernet-flow-director.pdf

Suricata Readthedocs - XDP:

39

http://people.netfilter.org/hawk/presentations/LLC2017/XDP_DDoS_protecting_LLC2017.pdf
http://people.netfilter.org/hawk/presentations/LLC2017/XDP_DDoS_protecting_LLC2017.pdf
http://people.netfilter.org/hawk/presentations/driving-IT2017/driving-IT-2017_XDP_eBPF_technology_Jesper_Brouer.pdf
http://people.netfilter.org/hawk/presentations/driving-IT2017/driving-IT-2017_XDP_eBPF_technology_Jesper_Brouer.pdf
https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_xdp_tx.html
https://prototype-kernel.readthedocs.io/en/latest/blogposts/xdp25_eval_generic_xdp_tx.html
http://people.netfilter.org/hawk/presentations/NetConf2017_Seoul/XDP_devel_update_NetConf2017_Seoul.pdf
http://people.netfilter.org/hawk/presentations/NetConf2017_Seoul/XDP_devel_update_NetConf2017_Seoul.pdf
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://www.iovisor.org/technology/xdp
https://people.netfilter.org/hawk/presentations/NetDev2.2_2017/XDP_for_the_Rest_of_Us_Part_2.pdf
https://people.netfilter.org/hawk/presentations/NetDev2.2_2017/XDP_for_the_Rest_of_Us_Part_2.pdf
https://open-nfp.org/dataplanes-ebpf/technical-papers/
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ran-lifshitz.com/2014/08/28/symmetric-rss-receive-side-scaling/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

[12] http://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html?highlight=
XDP#ebpf-and-xdp

Linux Syscalling:
[13] http://www.brendangregg.com/perf.html

40

http://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html?highlight=XDP#ebpf-and-xdp
http://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html?highlight=XDP#ebpf-and-xdp
http://www.brendangregg.com/perf.html

Chapter 5

Authors

In mob we trust
A word about the authors:

Michal Purzynski (@MichalPurzynski)
∙ Threat Management, Mozilla

∙ Intrusion detection

∙ Digital Forensics

∙ Incident response

Peter Manev (@pevma)
∙ Suricata Core Team

∙ Lead QA and training instructor

∙ Stamus Networks

∙ Mobster evangelist

41

Chapter 6

Thank you

People and organizations without whom this guide would have not been possible:

∙ Eric Leblond (@regiteric – Suricata AFP/XDP godlike dev doing kernel patches
while chasing off cats from the keyboard)

∙ Jesper Brouer (@netoptimizer, RedHat Principal kernel engineer, XDP devel-
oper)

∙ Dave Miller for AFPacket :-)

∙ IOvisor project

∙ SuriCon 2017 !!

∙ Suricata community for inspiring us to push the limits further

42

https://www.iovisor.org/technology/xdp)

	Introduction
	How is this guide different from Mark I?
	Our set up(s)
	Kernel
	General set up
	HW set up 1
	HW set up 2

	What is XDP
	XDP advantages
	XDP bypass for Suricata
	eBPF

	NICs with native driver XDP support
	Prerequisites
	Packages
	Clang & elf
	Kernel and NIC related
	Disable irqbalance
	BPF

	Compile and install Suricata
	Setup symmetric hashing on the NIC
	The Why
	AMD

	Disable the NIC offloading
	Balance as much as you can
	IRQ affinity
	Start Suricata with XDP
	Pros
	Caveats
	Bugs and info
	Bingo bug
	Current bingo fix

	XDP bypass with cpumap to the rescue (if needed)
	How to use it

	Tools

	The Meltdown and Spectre
	Unpatched kernel - reading pcaps
	pcap run 1
	pcap run 2
	pcap run 3
	pcap run 4

	Unpatched kernel - running live
	Patched kernel - reading pcaps
	pcap run 1
	pcap run 2
	pcap run 3
	pcap run 4

	Patched kernel - running live
	Observations
	Technical details
	Should I be worried?
	But you recommend using eBPF which was used in a Spectre PoC

	Further reading
	Authors
	Michal Purzynski (@MichalPurzynski)
	Peter Manev (@pevma)

	Thank you

